
UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

First Time Experiences
Using SciPy

for Computer Vision Research

Damian Eads and Edward Rosten
ISR Division

Los Alamos National Laboratory
Los Alamos, New Mexico

{eads,edrosten}@lanl.gov

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

Research Problem

➲ Find the cars

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

Algorithm Workflow

Learning
Algorithm

Object
Detector

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

New Research Project

➲ New government research project in 2007
➲ Learn object detectors from example data
➲ Explore new algorithms
➲ Requirements: short deadlines, must work

on Windows and Linux, algorithms explo-
ration, and production system.

➲ Extensive knowhow with MATLAB and C++
➲ No experience with SciPy
➲ Chose Scipy: risk

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

Postmortem

➲ SciPy: a superior choice
➲ nice learning curve: useful in a few hours
➲ effective for research and production codes
➲ universal language (Python)
➲ easy to rework prototypes into deployable

applications

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

SciPy: good for prototyping

➲ Easy to vectorize
➲ Succinct syntax (thanks to Python's exten-

sive support for operator overloading)
➲ Slicing with views: avoids copying!
➲ Unlike MATLAB, R and Octave: Python is a

universal language
● Separation of concerns:

● Python group: the language
● SciPy group: scientific codes

● Larger corpora of libraries, more subcommunities:
GUI, database, file unpacking, etc.

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

What this talk is about...

➲ Topic 1. Extensions
● Have large data sets
● Can't always vectorize

➲ Topic 2. C++
● Lots of anti-C++ people
● Static efficiency
● How to interface?

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

Why we need C++?

➲ A lot of Computer Vision code can't be vec-
torized

● Python “for” loops: cost prohibitive for very large
data sets.

➲ C++:
● “for” loops are efficient
● lots of serial algorithms and data structures, e.g.

sets, queues, heaps, multimaps, etc.
● static efficiency
● you can do more in-place

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

Computer Vision Codes

➲ large data sets and significant computation
● efficiency is important
● Avoid unnecessary duplication

● Can slow things down,
● Or hose you!

➲ used LIBCVD: a C++ library
● Cambridge Video Dynamics Library
● Frame-rate real time implementations of many

computer vision algorithms
● Essential for our work
● Need to interface C++ library with Python

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

Basic LIBCVD Data Structures

➲ BasicImage<T>: an image object that
does not manage its memory

➲ Image<T>: a new image object whose
memory is allocate when created

➲ SubImage<T>: region of an image
➲ ImageRef: coordinates in an image; has

two members: x and y.

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

What we want?

➲ Call LIBCVD function, pass a numpy array
and get back a numpy array.

➲ Hide the LIBCVD infrastructure!

C++

Python
convolve()

ndarray

CVD::convolve

CVD::BasicImage<T> CVD::Image<T>

ndarray

Function Call Function Return

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

C++ and Python

➲ Semantic differences can be painful
● Both want to manage their own memory
● Example: when resizing an array, there is no way

to tell Python to look at a different buffer
● Fortunately, LIBCVD has numpy-like semantics
● Can't always preallocate: size of the buffer might

not be known a priori
➲ Hard to examine C++ data structures from

Python, e.g. std::vector

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

ctypes

➲ Call functions by name from shared libraries
➲ Distutils won't compile shared libraries

properly on windows and Mac OS X
➲ Does not understand C++ name mangling

or template instantiation
● Hard to translate C++ data structures into Python

ones

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

ctypes

extern � C� int* wrap_find_objects(const float *image,
 int m, int n,
 int *size) {
 BasicImage <float> cpp(image, ImageRef(m, n));
 vector <ImageRef> cpp_refs;
 find_objects(cpp, cpp_refs);
 *size = cpp_refs.size();
 return convertToC(cpp_refs);
}

➲ C wrapper function. Can call it like a Python
function with C-types.

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

ctypes

 int *convertToC(vector <ImageRef> &xy_pairs,
 int *num) {
 int *retval = new int[xy_pairs.size()*2];
 *num = xy_pairs.size();
 for (int i = 0; i < xy_pairs.size(); i++) {
 retval[i*2] = xy_pairs[i].x;
 retval[i*2+1] = xy_pairs[i].y;
 }
 return retval;
 }

➲ Converts a C++ vector of (x,y) points to a C-
array so it can be understood by c-types

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

ctypes

➲ Type checking cannot always be done
● can cause core dumps.
● Python wrapper may be needed

➲ three wrappers per C++ function!
➲ more wrappers to write, more bugs
➲ ctypes inappropriate for our purposes!

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

ctypes

➲ Appropriate for wrapping
● numerical C codes where buffer sizes are known

a priori
● non-numerical C codes with simple interfaces

➲ Not appropriate for C++.

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

weave

➲ can write C++ and C programs in Python as
multi-line strings!

➲ hashes C++ program strings to map to
compiled code

➲ properly handles iteration over strided ar-
rays

➲ pseudo-templated: changing types of input
variables causes recompile

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

weave

➲ Pros
● Great for prototyping “high risk” code
● Seems to work on both platforms

➲ Cons
● Compiler errors can be somewhat cryptic.
● Code translation: somewhat opaque
● Released binary requires compiler

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

Boost::Python

➲ Large, powerful, and mature library for inter-
facing C++ code with Python.

➲ Steep learning curve: Large investment of
time up-front

➲ Protection can be annoying
● C++ objects are copied prior to being returned to

Python space: avoid problems
● Hard to avoid copying
● Excessive copying: either quite costly or a show

stopper!

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

Python C Extensions (PythonExt)

➲ Eventually settled on PythonExt
➲ Conversion from Numpy to CVD and vice

versa is easy: helper functions
➲ Error handling is easy!

● Aggressive type checking with templated helpers
● Throw exception

➲ Only a single wrapper function needed.
● Wrapper in Python space was unnecessary

➲ Easy to parse complicated argument tuples!
➲ Great framework!

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

PythonExt

➲ Wrote suite of C++-templated helper func-
tions

● Numpy to C++/CVD
● BasicImage <T> to_cvd<T>(PyObject *np)
● void np_to_irvec<T>(PyArrayObject *obj, vec-

tor <ImageRef> &out)
● C++/CVD to Numpy

● PyArrayObject *from_cvd<T>(BasicImage <T>
&img)

● PyArrayObject *irvec_to_np<T>(vector <Im-
ageRef> &points)

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

PythonExt: type checking

#define CODE(Type, PyType) \
template<> struct Code<Type>\
{\
 static const int type = PyType;\
 static string name(){ return #Type;}\
 static char code(){ return PyType##LTR;}\
}

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

PythonExt: type checking

CODE(unsigned char , NPY_UBYTE);
CODE(char , NPY_BYTE);
CODE(short , NPY_SHORT);
CODE(unsigned short, NPY_USHORT);
CODE(int , NPY_INT);
CODE(unsigned int , NPY_UINT);
CODE(float , NPY_FLOAT);
CODE(double , NPY_DOUBLE);

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

PythonExt: type checking

template<class I, class P> BasicImage<I>
pyobject_to_basic_image(P* p, const string& n="") {
 if (!PyArray_Check(p) || PyArray_NDIM(p) != 2
 || !PyArray_ISCONTIGUOUS(p)
 || PyArray_TYPE(p) != Code<I>::type)
 throw string(n + " must be a contiguous array of " +

Code<I>::name() + " (type code " + Code<I>::code() +
")!");

 PyArrayObject* image = (PyArrayObject*)p;
 int sm = image->dimensions[1];
 int sn = image->dimensions[0];
 BasicImage <I> img((I*)image->data,

 ImageRef(sm, sn));
 return img;
}

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

PythonExt: error checking

 PyObject* wrapper(PyObject* self,
 PyObject* args) {
 try {
 if(!PyArg_ParseTuple(...))
 return 0;

 //C++ code goes here.
 }
 catch(string err) {
 PyErr_SetString(PyExc_RuntimeError,
 err.c_str());
 return 0;
 }
 }

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

Type Generality: no if statements!
struct End{};

template<class C, class D> struct TypeList
{
 typedef C type;
 typedef D next;
};

typedef TypeList<char,
 TypeList<unsigned char,
 TypeList<short,
 TypeList<unsigned short,
 TypeList<int,
 TypeList<unsigned int,
 TypeList<float,
 TypeList<double, End> > > > > > > > CVDTypes;

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

Type Generality: no if statements!

template<class List> struct load_image_by_type_letter
{
 static PyObject* load(const string& fname, char

type_letter)
 {
 typedef typename List::type type;
 typedef typename List::next next;

 if(type_letter == Code<type>::code())
 return image_load_by_type<type>(fname);
 else
 return load_image_by_type_letter<next>::load(fname,

type_letter);
 }
};

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

Type Generality: no if statements!

template<> struct load_image_by_type_letter<End>
{
 static PyObject* load(const string& fname,
 char type_letter) {
 char L[2] = {type_letter, 0};
 throw string("Can't load image in to unknown type: ")+L;
 }
};

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

C++ Extensions

➲ ctypes
● Three wrappers needed per function
● Bug prone
● Conversion code messy

➲ Boost::Python
● Object lifetime issues

➲ PythonExt
● templated greatness: type checking, type general-

ity, clean conversion functions
● easy error handling: throw an exception, catch in

one place
● is around to stay!

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

Comparison with mex

➲ separate source file for each function!
➲ No PyArg_ParseTuple or equivalent
➲ Opening mex with gdb

● Cumbersome
● Difficult to pin down segmentation faults

➲ Lacks succinctness and expressibility
● Temptations to copy code: leads to bugs

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

Windows Version

➲ Use Linux or Mac OS X whenever possible
● Windows: not the best scientific computing OS

➲ Memory manager is wimpy
● Allocation of large buffers: very problematic
● Not aggressive about cleaning up data

➲ Processing does not work as well
● Memory leaks

➲ Hard to get optimizations right
● Core dumps optimized code requiring aligned

memory – not a problem on linux
➲ Nice installers with distutils

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

MATLAB

➲ MATLAB
● object-oriented infrastructure

● objects are immutable
● one directory per class
● one file per method

● Pass-by-value: global variables
● Not really good for production systems
● Richer data structures often encoded with matrix

● graphs
● trees

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

Python: Production Capable

➲ Can code richer data structures
● Graphs, trees, lists

➲ Good for organizing larger code bases
● production systems

➲ Universal language
● Lots of GUI toolkits, networking libraries,

database suites, etc.
➲ MATLAB-like: simple calling conventions

UNCLASSIFIED // LA-UR-08-05860 - Eads, Rosten

Conclusion

➲ SciPy
● A good choice!
● Easy to implement extensions to handle large

data sets
● Python provides a nice extension framework
● C++ templated helpers and exceptions do the job!
● Easy to write prototype code in Python+Weave
● Universality and Separation of Concerns

● Lots of libraries out there when your app becomes
more sophisticated!

● Good quality code!

