
NUMSCONS: GETTING
CONTROL OF NUMPY
BUILD SYSTEM BACK

A NEW BUILD SYSTEM FOR NUMPY, SCIPY AND COMPLEX C/
FORTRAN EXTENSIONS

What is the tutorial about ?

Rationales and goals for a new build system,
examples

Limitation of distutils: why using scons ?

Design of numscons

How to use numscons:

what a C/Fortran extension developer should
know

what a core numpy/scipy developer should know

What’s a build system ?

How to get from sources to a built software

platform specific detection

compilation and link step

customization

NOT about installation or deployment issues
(eggs, inter-package dependencies, etc...)

Why bother ?

User-friendliness:

build is often the first contact with the user

people want to play with build flags,
compiler, etc...

For our users

For us, developers
New and improved features:

better dependency handling

fine-grained control of build options

better configuration stage: easier library and
platform dependencies handling

new features: ctypes extension, etc...

Easy to understand: any numpy/scipy developer
should be able to “touch” it.

numscons today
version 0.9.1 (available in pypi, code on launchpad)

Build numpy and scipy on

Mac OS X (gcc)

Linux (gcc/Intel/Sun)

Open Solaris (gcc/Sun)

Windows (mingw, Visual 2003/2005/2008)

Support for MKL, Sunperf, ATLAS, FFTW2/3,
Accelerate/Veclib

Examples
Building a numpy C extension:

from numscons import GetNumpyEnvironment
env = GetNumpyEnvironment(ARGUMENTS)
env.NumpyPythonExtension("spam", source =
["spam.c"])

Finding a dependency on libsndfile:

from numscons import GetNumpyEnvironment
env = GetNumpyEnvironment(ARGUMENTS)
config = env.NumpyConfigure()
config.NumpyCheckLibAndHeader('sndfile',
'sf_open', 'sndfile.h')
config.Finish()

Examples (2)
Building quickly for debugging purpose:

CFLAGS=”-DDEBUG -Wall -W -g” python setup.py build

Building on with 4 cores:
python setup.py scons --jobs 4

Building ala kbuild:
python setup.py scons --silent=1

PYEXTCC build/scons/numpy/random/mtrand/mtrand.c
PYEXTCC build/scons/numpy/random/mtrand/randomkit.c
PYEXTCC build/scons/numpy/random/mtrand/initarray.c
PYEXTCC build/scons/numpy/random/mtrand/distributions.c
PYEXTLINK build/scons/numpy/random/mtrand/mtrand.os

Simple demos

Basic build

Parallel build

Customized build

Terse output

Automatic dependencies

Why starting from
scratch ?

Current build system
numpy.distutils:

core part of numpy (scipy_core)

Handle fortran, blas/lapack detection, etc...

big: numpy/distutils ~ 10000 loc

depends on distutils implementation details:
effective size of numpy.distutils = size(distutils) +
size(numpy.distutils)

fragile: difficult to modify something without
breaking somewhere else.

Main design decisions of numscons

Use scons for handling low level build issues
(dependencies, flags, compiler configuration)

Simple: ~ 3000 loc

clear separation between core and customization

Less magic than distutils, but easier to customize
(for users and developers)

Hardcode as little as possible, detect platform-
specific features at runtime (fortran, etc...)

why scons ?

What is scons ?

SCONS IS AN OPEN SOURCE SOFTWARE CONSTRUCTION TOOL—
THAT IS, A NEXT-GENERATION BUILD TOOL. THINK OF SCONS AS AN
IMPROVED, CROSS-PLATFORM SUBSTITUTE FOR THE CLASSIC MAKE
UTILITY WITH INTEGRATED FUNCTIONALITY SIMILAR TO AUTOCONF/
AUTOMAKE.

From scons website:

a make replacement in python

scons scripts are in python

Almost any python code is legal in scons scripts

scons scripts are declarative

access to python stdlib and numpy.distutils is
available

scons has a configuration system

scons has a basic configuration system ala
autoconf

Can check for type, their size, functions, headers,
declaration

Can be extended (but ugly: one of the worse part
of scons IMHO)

Targets customization

Each target can be built differently

Compilation flags, extensions, etc... can be
customized in a really fine-grained manner (per file
if wanted)

Scons is extensible
scons has many unpythonic aspects to it (in python 1.5.2.,
use of apply, etc...)

But:

 scons has a good manual

can be extended relatively easily: easy things are easy,
complicated things can be hairy, but still possible

is relatively well tested

Good and responsive community

Are opened to discussion and improvements

Scons users

Users of scons:

scons is the build system for doom3 on Linux

scons is used for major products of Vmware

ardour2 (Direct-to-disk audio software) uses
scons, blender

Generally popular in the gaming open source
scene (windows support)

Core scons concepts

Builders
Builder: scons concept to build things

Builder for object code, program, shared library,
etc...

SharedLibrary("foo.c") # Build a shared library
StaticLibrary("bar.c") # Build a static library
Program("foobar.c") # Build a program

Custom builders possible

Builders customization
Each builder can be given an arbitrary set of
arguments

env = Environment()
Add -DFOO on posix
env.Append(CPPDEFINES = ["FOO"])
Override -DFOO to -DBAR
env.Object("foo", source = "foo.c", CPPDEFINES = ["BAR"])
env.Append(CPPDEFINES = ["BAR"])
env.Object("bar", source = "bar.c")

Output:

gcc -o bar.o -c -DFOO -DBAR bar.c
gcc -o foo.o -c -DBAR foo.c

Dependency handling

Targets builds from dependencies by walking
through a DAG (like make)

But dependencies are automatically inferred by
scanning source code (implicit dependency)

md5-based system to decide whether a target has
to be rebuilt

Automatic dependency handling

SIMPLE MAKEFILE
FOO.O: FOO.C

 $(CC) -C FOO.C -O FOO.O

#include "foo.h"
int foo()
{

 return 0;
}

What if foo.h is changed ?

scons scans automatically foo.c to find foo.c

Scons uses scanners to scan source files

You can add your own scanners (numscons:
scanner for f2py <%include%>)

Scons signature system
How to determine whether one needs to rebuild a target

make uses time-stamps to determine whether a target is up
to date

scons uses md5: more reliable (NFS, time clock skew); md5
are put in a signature db file

But scons also keeps the signature of the command lines,
options, etc...: if the C compiler changes, scons will rebuild
C code, if a library changes (ATLAS vs MKL), only link step
will change, etc...

Can be customized

Node concept
At the DAG level, everything is a node

Every builder returns a list of nodes:
foo = Object("foo.c")
bar = Object("bar.c")
This is not portable (.obj on windows)
Program("foobar", source = ["foo.o", "bar.o"])
But this is
Program("foobar", source = [foo, bar])

Internally, in scons, everything is a node, but you
can generally ignore the distinction between e.g. a
file and its node

(only needed for advanced use of scons/numscons)

Environments
Global object to keep configurations

env = Environment()

env2 = env.Clone()
env.Append(CFLAGS = "-O2")

env.Program("foo.c")
env2.Program("bar.c")

Each environment has builders attached to it

Builders wo environments use a default
environment

scons configure system

If you depend on libfoo, how to detect it on the
system ?

env = Environment()

config = env.Configure()
config.CheckLib("sndfile", "sf_open", "#include
<sndfile.h>")
config.Finish()

Can be extended, but non trivial tests are really
difficult

Scons tools
Scons concept to handle compilers, linkers, etc...

A tool is a python module with two public methods
called by scons

A tool set up environment values of an
environment

A new compiler can be supported by a scons tool

Worst part of scons design (configure/tools
problems are somewhat linked): tools are not
reentrant, fragile, and not reusable.

More about scons

man scons is complete and readable

scons manual available on http://www.scons.org

wiki with many examples + Mailing list

Non trivial projects using numscons will require
scons knowledge

http://www.scons.org
http://www.scons.org

scons for numpy ?
Distutils revamp features list: (By David M Cooke)

 • better dependency handling
 • make it easier to use a specific compiler or compiler options.
 • allow .c files to specify what options they should/shouldn't be compiled with (such as

using -O1 when optimization screws up, or not using -Wall for .c made from Pyrex
files)

 • simplify system_info so that adding checks for libraries, etc., is easier
 • a more "pluggable" architecture: adding source file generators (such as Pyrex or

SWIG) should be easy.
 • better setuptools support
 • more as I think of them...

scons solve almost all the above “for free”

Extending scons to build python extensions and
fortran

Instead of “fixing” distutils, I improve scons....

Scons for numpy ?

scons solve almost all the distutils shortcomings
“for free”

But scons has limited/no support for

python extensions

fortran

Instead of “fixing” distutils, I improve scons
(significant patches included upstream)

numscons

A new distutils command which drives a scons
process

numscons: a set of extensions around scons to
build numpy and scipy

numscons: architectural
choices

Goals

Simplicity (for numscons users and numscons
developers)

Use autoconf philosophy for platform specifics: do
not depend on versions, but test capabilities

Less magic than distutils, but easier to customize
(mere-mortals should be able to add new compiler,
customize flags)

Architecture

SCONS
PROCESS

DISTUTILS
PROCESS

SETUP.PY
def configuration(parent_package='',top_path=None):
 from numpy.distutils.misc_util import Configuration
 config = Configuration('foo',parent_package,top_path)
 config.add_sconscript('SConstruct')
 return config

CALL SCONS
COMMAND WITH

ARGUMENT

from numscons import GetNumpyEnvironment
env = GetNumpyEnvironment(ARGUMENTS)

Now one can do whatever we could with scons, and
more...
env.NumpyPythonExtension("spam", source = ["spam.c"])

SCONSTRUCT FILE

Architecture
Add a scons command to distutils:

 scons scripts are added through setup.py files

options passed to scons on the command line

scons scripts get their environment through a
numscons function GetNumpyEnvironment

After this call, like being in scons + numscons
add-in

Not easy to give information from scons back to
distutils

subpackages
numpy and scipy: collection of subpackages

Difficult problem from a build POV:

build and configuration can be run anywhere in the
tree

Two possibilities:

recursive scons: how to do configuration (recursive
configuration ?), build directory problem

calling scons for every subpackage: simpler;
current numscons design

subpackages (2)
Calling scons for every subpackage:

scons process called many times (scipy ~ 20
subpackages)

scons + numscons + numpy import everytime

Consequence on some design decisions:
numscons optimizes its own import time heavily

Decision made at the beginning: I still think it was
the right one given the constraints (no modification
of the source tree)

Build directory
distutils put everything in the build directory by default

numscons put everything in build/scons, and “install”
binaries where distutils expects them

Uses the VariantDir mechanism of scons

Removing build directory: start from scratch (like distutils)

In place build works: internally, very easy to change in
numscons

One could imagine different build directories

Hopefully, nobody needs to care

Build directory (2)
VariantDir: difficult to understand

Used for build directories (debug vs release
built)

What it really does: duplicate sources into the
variant dir

From a user POV: mostly transparent, all path are
“translated” by scons

The actual mechanism is fairly complicated, but totally
transparent to users, and developers who use numscons.

Numscons organization
Three fundamental subpackages in numscons
namespace

numscons.core: set scons from distutils
arguments, customize compilers (1000 loc)

numscons.checkers: handle blas/lapack/fft (900
loc) and fortran configuration (400 loc)

numscons.tools: extra tools (f2py, vs2005/
vs2008). Hopefully will mostly go upstream

numscons.core

GetInitEnvironement:

1. Initialize a NumpyEnvironment from distutils

2. Initialize compilers from distutils-passed commands to
scons tools name

3. Customize compilers (given user configuration)

4. Add custom builders (Python extension, etc...)

Misc utilities (compiler detection, configuration, etc...)

numscons.checkers

Blas/lapack checkers: support for sunperf, atlas, mkl,
veclib and accelerate

Two layers: perflib (mkl, sunperf, atlas) and “meta lib”
which uses perflib as an implementation

Use code snippet for testings instead of testing for file
existence (more robust w.r.t broken configurations)

customization from env (MKL=None) and site.cfg handled
automatically

numscons.checkers.fortran
Handle fortran support: do it like autoconf

Checkers for C/Fortran support, fortran
mangling, etc...

Detected at runtime through code snippets:
robust to “weird” configurations (icc + sun
fortran, gcc + intel fortran, etc...)

In theory, should be robust to fortran runtime
mismatch (g77-built atlas with gfortran-built
scipy)

What’s left to be done

More work on windows (2.6/3.0 and SxS
nightmare)

Use consistent code style + documentation

A lot of code in numscons could end up upstream
(~ 1/3: visual studio 2003/2005/2008, dlltool/
dllwrap)

For 2.0: getting rid of distutils ?

How to use numscons

As a user

Basic usage: python setup.py scons

Can be customized from user environment:

CFLAGS=”-DDEBUG -g” CC=colorgcc python setup.py scons

site.cfg customization should work

As a developer

Boilerplate

Three files: setup.py, SConscript and SConstruct

Setup.py:

def configuration(parent_package='',top_path=None):
 from numpy.distutils.misc_util import Configuration
 config = Configuration('pyext',parent_package,top_path)
 config.add_sconscript('SConstruct', source_files =
['hellomodule.c'])
 return config

Boilerplate (2)

SConstruct (always the same)

from numscons import GetInitEnvironment
GetInitEnvironment(ARGUMENTS).DistutilsSConscript('SConscript')

SConscript (do the real work)

from numscons import GetNumpyEnvironment
env = GetNumpyEnvironment(ARGUMENTS)

env.DistutilsPythonExtension('spam', source = ['hellomodule.c'])

Basic task: C extension

Simple python extension:

env.DistutilsPythonExtension("hello", source =
["hellomodule.c"])

Simple numpy extension:

env.NumpyPythonExtension("hello", source =
["hellomodule.c"])

Simple numpy extension:

env.NumpyCtypes("hello", source =
["hellomodule.c"])

Basic configuration

Checking for header, declaration:

config = env.NumpyConfigure()
config.CheckDeclaration("SYS_WAIT")
config.CheckHeader("stdint.h")
config.CheckType("int32_t")
config.Finish()

Everything is logged in package-specific file
(config.log)

Can generate a config.h (config_h argument of
NumpyConfigure)

Basic task: dependency

Your extension depends on library foo, with header
foo and function do_foo:

config = env.NumpyConfigure()
config.NumpyCheckLibAndHeader("foo", "do_foo", "foo.h", "foo_opt")
config.Finish()

LIBRARY

SYMBOL TO CHECK

HEADER TO CHECK

SECTION NAME

Note: not implemented for ctypes

More advanced tasks

Fortran blas

from numscons.checkers.perflib import CheckF77BLAS
config = env.NumpyConfigure()
config.CheckF77BLAS()
config.Finish()

Now, env has the necessary flags, libs to compiler blas

Generating code

Autoconf-like .in processor:

dictionary of symbols : value
env['SUBST_DICT'] = {"@FOO1@": "foo", "@FOO2@": "bar"}
Generate foo.h from foo.h.in, with expanded
macro from env["SUBST_DICT"]
env.SubstInFile("foo.h", "foo.h.in")

#define FOO1 @SYMBOL1@
#define FOO2 @SYMBOL2@

#define FOO1 foo
#define FOO2 bar

Sconscript:

Note: if SUBST_DICT changes, automatic rebuild

Fortran mangling
C++ source file:

config = env.NumpyConfigure()
Detect f77 compiler mangling; set a mangler in env["F77_NAME_MANGLER"] if
successful
config.CheckF77Mangling()
config.Finish()

Generate a .cxx file from template with true mangled fortran symbol
env['SUBST_DICT'] = {'@HELLO@' : env['F77_NAME_MANGLER']('hello')}
env.SubstInFile('main.cxx.in')

scons script:

extern "C" void @HELLO@();
int main() {
 @HELLO@();
 return 0;
}

Fortran runtime support

Linking Fortran with C/C++

config = env.NumpyConfigure(custom_tests = {'CheckF77Clib' : CheckF77Clib})
Automatically detect link flags to link C and C++ with fortran
if not config.CheckF77Clib():
 raise Exception("Could not check F77 runtime, needed for interpolate")
config.Finish()
At this point, the link flags are automatically added

Output
Checking gfortran C compatibility runtime ...-L/usr/local/
gfortran/lib/gcc/i386-apple-darwin8.10.1/4.4.0 -L/usr/local/
gfortran/lib/gcc/i386-apple-darwin8.10.1/4.4.0/../../.. -
lgfortranbegin -lgfortran

Detecting optimized libraries

Testing for perflibs explicitely

from numscons.checkers.perflib import
CheckATLAS, CheckAccelerate, CheckMKL,
CheckSunperf
config = env.NumpyConfigure()
config.CheckATLAS(autoadd = 0)
config.CheckMKL(autoadd = 0)
config.CheckAccelerate(autoadd = 0)
config.CheckSunperf(autoadd = 0)
config.Finish()

autoadd option: do not update env

Conclusion

Conclusion
Numscons is usable today as an alternative build
system for most numpy/scipy users/developers
needs

Simple things are easy; complex, customized
builds are doable, with scons knowledge

Should be more extensible and flexible than
distutils

First alpha (public API freeze) planned soon

Questions ?

