
Interval arithmetic:
Python implementation and

applications

Stefano Taschini
Altis Investment Management AG

Switzerland
http://www.altis.ch/

1

http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch
http://www.altis.ch

An example (1)

2

f(x, y) =(333.75− x2)y6 + x2(11x2y2 − 121y4 − 2)

+ 5.5y8 + x/(2y)

>>> def f(x,y):
... return (
... (333.75 - x**2)* y**6 + x**2 *
... (11* x**2 * y**2 - 121 * y**4 - 2)
... + 5.5 * y**8 + x/(2*y))

>>> f(77617.0, 33096.0)
1.1726039400531787

http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/

An example (2)

3

>>> from gmpy import mpf
>>> f(mpf(77617), mpf(33096))
mpf(’-4.29496729482739605995e9’)

>>> from pprint import pprint
>>> pprint([f(mpf(77617, n), mpf(33096, n)) for n in range(53, 65)])
[mpf(’-4.29496729482739605995e9’),
mpf(’-4.29496729482739605995e9’,54),
mpf(’-4.29496729482739605995e9’,55),
mpf(’-4.29496729482739605995e9’,56),
mpf(’-4.29496729482739605995e9’,57),
mpf(’-4.29496729482739605995e9’,58),
mpf(’-4.29496729482739605995e9’,59),
mpf(’-4.29496729482739605995e9’,60),
mpf(’-4.29496729482739605995e9’,61),
mpf(’-4.29496729482739605995e9’,62),
mpf(’-4.29496729482739605995e9’,63),
mpf(’-4.29496729482739605995e9’,64)]

http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/

An example (3)

4

>>> from decimal import Decimal, getcontext
>>> def fd(x,y):
... return (
... (Decimal(’333.75’)-x**2)* y**6 + x**2 *
... (11* x**2 * y**2 - 121*y**4 - 2)
... + Decimal(’5.5’) * y**8 + x/(2*y))

>>> fd(Decimal(77617), Decimal(33096))
Decimal("-999999998.8273960599468213681")

>>> def with_prec(n, f, *args):
... getcontext().prec = n
... return f(*(Decimal(x) for x in args))

>>> pprint([with_prec(n, fd, 77617, 33096) for n in (28, 29)])
[Decimal("-999999998.8273960599468213681"),
Decimal("100000001.17260394005317863186")]

http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/

An example (4)

5

f(77617, 33096) = −54767
66192

= −0.827396 . . .

>>> from interval import interval
>>> print f(interval(77617.0), interval(33096.0))
interval([-3.54177486215e+21, 3.54177486215e+21])

http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/

Martelli’s example

6

>>> from interval import imath, interval
>>> def f1(x):
... return imath.sqrt(x+1) - imath.sqrt(x)
>>> f1(9876543.21)
interval([0.00015909901640043245, 0.00015909902822386357])

>>> def f2(x):
... return 1/(imath.sqrt(x+1) + imath.sqrt(x))
>>> f2(9876543.21)
interval([0.00015909902173878482, 0.00015909902173878517])

http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/

Functions of intervals (1)

7

a b
x

y

f(a)

f(b)

a b
x

y

f(a)

f(b)

http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/

Functions of intervals (2)

8

R ∪ {−∞,+∞}. Let f([a, b]) be the image of the
closed interval [a, b] under the function f . Real anal-
ysis teaches that if the interval is bounded and the
function is continuous over the interval, then f([a, b])
is also a closed, bounded interval, and, more signifi-
cantly,

f([a, b]) =
[

min
x∈[a,b]

f(x), max
x∈[a,b]

f(x)
]

(1)

Computing the minumum and maximum is trivial if
the function is monotonic (Figure 1), and also for
the non-monotonic standard mathematical functions
(even-exponent power, cosh, sin, cos...) these are rela-
tively easy to determine.

Figure 1. The image f([a, b]) for a continuous
monotonic function: [f(a), f(b)] for a non-decreasing f
(left), and [f(b), f(a)] for a non-increasing f (right).

Equation (1) no longer holds if the interval is un-
bounded – e.g., tanh([0,+∞]) = [0, 1), which is not
closed on the right – or the function is not continu-
ous over the whole interval – e.g., the inverse func-
tion inv(x) = 1/x yields inv([−1,+1]) = (−∞,−1] ∪
[+1,+∞), two disjoint intervals (Figure 2).

Figure 2. The image f([a, b]), with f(x) = 1/x, is the
union of two disjoint intervals.

Both limitations can be overcome by means of two gen-
eralizations: 1) using the image closure instead of the
image, and 2) looking at the lattice generated by IR!

instead of IR!.
The image closure is defined for any subset K ⊆ R∗ as

f̄(K) =
{

lim
n→∞

f(xn)
∣∣∣ lim

n→∞
xn ∈ K

}
(2)

Equation (2) is a generalization of equation (1), in the
sense that if f is continuous over K and K is a closed,

bounded interval, equations (1) and (2) yield the same
result.
The lattice generated by the intervals in the extended
real set, L(IR∗), is the smallest family of sets contain-
ing IR∗ that is closed under union and intersection –
this extension accomodates the fact that, in general,
the union of two intervals is not an interval. The sets
in the lattice can always be written as the finite union
of closed intervals in R∗. In Python,

>>> k = interval([0, 1], [2, 3], [10, 15])
represents the the union [0, 1]∪[2, 3]∪[10, 15] ∈ L(IR∗).
The intervals [0, 1], [2, 3], and [10, 15] constitute the
connected components of k. If the lattice element con-
sists of only one component it can be written, e.g., as

>>> interval[1, 2]
interval([1.0, 2.0])

signifying the interval [1, 2], not to be confused with
>>> interval(1, 2)
interval([1.0], [2.0])

which denotes {1} ∪ {2}. When referring to a lattice
element consisting of one degenerate interval, say {1},
both following short forms yield the same object:

>>> interval(1), interval[1]
(interval([1.0]), interval([1.0]))

The state of the art on interval arithmetic [R4] is at
present limited to considering either intervals of the
form [a, b] with a, b ∈ R∗ or to pairs [−∞, a] ∪ [b,∞],
the Kahan-Novoa-Ritz arithmetic [R5]. The more gen-
eral idea of taking into consideration the lattice gen-
erated by the closed intervals is, as far as the author
knows, original.
Note that equation (2) provides a consistent definition
for evaluating a function to infinity:

f̄({+∞}) =
{

lim
n→∞

f(xn)
∣∣∣ lim

n→∞
xn = +∞

}

f̄({−∞}) =
{

lim
n→∞

f(xn)
∣∣∣ lim

n→∞
xn = −∞

}

For instance, in the case of the hyperbolic tangent one
has that tanh({+∞}) = {1}. More in general, it can
be proved that if f is discontinuous at most at a finite
set of points, then

∀K ∈ L(IR∗), f̄(K) ∈ L(IR∗) (3)

The expression in equation (3) can be computed by
expressing K as a finite union of intervals, and then
by means of the identity

f̄ (
⋃

h[ah, bh]) =
⋃

h f̄([ah, bh])

For the inverse function, one has that

inv (
⋃

h[ah, bh]) =
⋃

h inv([ah, bh])

with

inv([a, b]) =




[b−1, a−1] if 0 '∈ [a, b]

[−∞, inv−(a)] ∪ [inv+(b),+∞] if 0 ∈ [a, b]

2

x

y

0 2

−1/4

2

http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/

Functions of intervals (3)

9

x

y

a
bf(a)

f(b)

[a, b]−1 = [−∞,+∞] ?

[a, b]−1 = [−∞, a−1] ∪ [b−1,+∞] ?

http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/

Intervals in Python (1)

10

>>> k = interval([0, 1], [2, 3], [10, 15])

k = [0, 1] ∪ [2, 3] ∪ [10, 15]

>>> interval[1, 2]
interval([1.0, 2.0])

>>> interval(1, 2)
interval([1.0], [2.0])

>>> interval(1), interval[1]
(interval([1.0]), interval([1.0]))

http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/

Intervals in Python (2)

11

>>> interval[-2,+4].inverse()
interval([-inf, -0.5], [0.25, inf])

>>> interval[10] / interval[3]
interval([3.333333333333333, 3.3333333333333339])

>>> imath.exp(1)
interval([2.7182818284590451, 2.7182818284590455])

>>> imath.log(interval[-1, 1])
interval([-inf, 0.0])

>>> print imath.tanpi(interval[0.25, 0.75])
interval([-inf, -1.0], [1.0, inf])

http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/

Dependency (1)

12

SciPy08 conference proceedings

where inv−(0) = −∞, inv+(0) = +∞, and inv−(x) =
inv+(x) = 1/x if x #= 0.
In Python,

>>> interval[0].inverse()
interval([-inf], [inf])
>>> interval[-2,+4].inverse()
interval([-inf, -0.5], [0.25, inf])

Interval arithmetic

The definition of image closure can be immediately ex-
tended to a function of two variables. This allows sum
and multiplication in L(IR∗) to be defined as

H + K =
{

lim
n→∞

(xn + yn)
∣∣∣ lim

n→∞
xn ∈ H, lim

n→∞
yn ∈ K

}

H ×K =
{

lim
n→∞

xnyn

∣∣∣ lim
n→∞

xn ∈ H, lim
n→∞

yn ∈ K
}

Since sum and multiplication are continuous in R×R
the limits need to be calculated only when at least one
of the end-points is infinite. Otherwise the two oper-
ations can be computed component-by-component us-
ing equation (1). Subtraction and division are defined
as

H −K = H + {−1}×K

H ÷ K = H × inv(K)

These definitions provide a consistent generalization of
the real-set arithmetic, in the sense that for any real
numbers x and y

x ∈ H, y ∈ K =⇒ x ' y ∈ H 'K

whenever x'y is defined, with ' representing one of the
arithmetic operations. Additionally, this arithmetic is
well-defined for infinite end-points and when dividing
for intervals containing zero.
In conclusion, the lattice of intervals in the real ex-
tended set is closed under the arithmetic operations as
defined by image closure of their real counterparts.

Dependency

Not always is one inclined to find the image closure of
a given function on a given interval. Even for a simple
function like f(x) = x2 − x one might be induced to
compute f([0, 2]) by interpreting the expression x2−x
using interval arithmetic. Interestingly, whereas

∀x ∈ R, x2 − x = x(x− 1) = (x− 1/2)2 − 1/4

the three expressions lead to different results with in-
tervals:

>>> (lambda x: x**2 - x)(interval[0,2])
interval([-2.0, 4.0])
>>> (lambda x: x*(x - 1))(interval[0,2])
interval([-2.0, 2.0])
>>> (lambda x: (x - 0.5)**2 - 0.25)(interval[0,2])
interval([-0.25, 2.0])

Incidentally, graphic inspection (Figure 3) immedi-
ately reveals that f̄([0, 2]) = [−1/4, 2]. The three in-

terval functions
f1 : X ∈ L(IR∗))→ X2 −X

f2 : X ∈ L(IR∗))→ X(X − 1)

f3 : X ∈ L(IR∗))→ (X − 1/2)2 − 1/4

differ because interval arithmetic handles recurring
occurences of the same variables as independent in-
stances of the same interval. Only in the case of f3,
where X occurs only once, one has that f3(X) = f̄(X).
For the other two cases, given,

g1 : (x, y) ∈ R× R)→ x2 − y

g2 : (x, y) ∈ R× R)→ x(y − 1)

one has that f1(X) = ḡ1(X, X) and f2(X) = ḡ2(X, X).
This phenomenon, called dependency, causes f2 and f3

to yield possibly wider intervals (or the union thereof)
than what is returned by the image closure.

Figure 3. f([0, 2]) for f(x) = x2 − x.

The idea of a function g on the interval lattice returing
“wider” results than needed is captured by saying that
g is an interval extension of f :

g ∈ ext(f)⇐⇒ ∀X ∈ L(IR∗), f̄(X) ⊆ g(X)

Referring to the previous example, f1, f2, and f3 are
all interval extensions of f . Interval extensions can be
partially ordered by their sharpness: given two exten-
sions g, h ∈ ext(f), g is sharper than h on X ∈ L(IR∗)
if g(X) ⊂ h(X).
The extensions f1, f2 are not as sharp as f3 because
of dependency. A further source of sharpness loss is
rounding, as it will be shown in the following.

Reals and floats

Floating-point numbers, or floats in short, form a finite
subset F ⊂ R∗. It is assumed that floats are defined
according to the IEEE 754 standard [R6]. Rounding is
the process of approximating an arbitrary real number
with some float. It is worth noting that rounding is a
necessity because for an arbitrary real function f and
an arbitrary float x ∈ F, f(x) is generally not a float.
Of the four rounding techniques defined in the stan-
dard, relevant for the following are rounding toward
−∞, or down, defined as

↓(x) = max{p ∈ F | p ≤ x}

3

SciPy08 conference proceedings

where inv−(0) = −∞, inv+(0) = +∞, and inv−(x) =
inv+(x) = 1/x if x #= 0.
In Python,

>>> interval[0].inverse()
interval([-inf], [inf])
>>> interval[-2,+4].inverse()
interval([-inf, -0.5], [0.25, inf])

Interval arithmetic

The definition of image closure can be immediately ex-
tended to a function of two variables. This allows sum
and multiplication in L(IR∗) to be defined as

H + K =
{

lim
n→∞

(xn + yn)
∣∣∣ lim

n→∞
xn ∈ H, lim

n→∞
yn ∈ K

}

H ×K =
{

lim
n→∞

xnyn

∣∣∣ lim
n→∞

xn ∈ H, lim
n→∞

yn ∈ K
}

Since sum and multiplication are continuous in R×R
the limits need to be calculated only when at least one
of the end-points is infinite. Otherwise the two oper-
ations can be computed component-by-component us-
ing equation (1). Subtraction and division are defined
as

H −K = H + {−1}×K

H ÷ K = H × inv(K)

These definitions provide a consistent generalization of
the real-set arithmetic, in the sense that for any real
numbers x and y

x ∈ H, y ∈ K =⇒ x ' y ∈ H 'K

whenever x'y is defined, with ' representing one of the
arithmetic operations. Additionally, this arithmetic is
well-defined for infinite end-points and when dividing
for intervals containing zero.
In conclusion, the lattice of intervals in the real ex-
tended set is closed under the arithmetic operations as
defined by image closure of their real counterparts.

Dependency

Not always is one inclined to find the image closure of
a given function on a given interval. Even for a simple
function like f(x) = x2 − x one might be induced to
compute f([0, 2]) by interpreting the expression x2−x
using interval arithmetic. Interestingly, whereas

∀x ∈ R, x2 − x = x(x− 1) = (x− 1/2)2 − 1/4

the three expressions lead to different results with in-
tervals:

>>> (lambda x: x**2 - x)(interval[0,2])
interval([-2.0, 4.0])
>>> (lambda x: x*(x - 1))(interval[0,2])
interval([-2.0, 2.0])
>>> (lambda x: (x - 0.5)**2 - 0.25)(interval[0,2])
interval([-0.25, 2.0])

Incidentally, graphic inspection (Figure 3) immedi-
ately reveals that f̄([0, 2]) = [−1/4, 2]. The three in-

terval functions
f1 : X ∈ L(IR∗))→ X2 −X

f2 : X ∈ L(IR∗))→ X(X − 1)

f3 : X ∈ L(IR∗))→ (X − 1/2)2 − 1/4

differ because interval arithmetic handles recurring
occurences of the same variables as independent in-
stances of the same interval. Only in the case of f3,
where X occurs only once, one has that f3(X) = f̄(X).
For the other two cases, given,

g1 : (x, y) ∈ R× R)→ x2 − y

g2 : (x, y) ∈ R× R)→ x(y − 1)

one has that f1(X) = ḡ1(X, X) and f2(X) = ḡ2(X, X).
This phenomenon, called dependency, causes f2 and f3

to yield possibly wider intervals (or the union thereof)
than what is returned by the image closure.

Figure 3. f([0, 2]) for f(x) = x2 − x.

The idea of a function g on the interval lattice returing
“wider” results than needed is captured by saying that
g is an interval extension of f :

g ∈ ext(f)⇐⇒ ∀X ∈ L(IR∗), f̄(X) ⊆ g(X)

Referring to the previous example, f1, f2, and f3 are
all interval extensions of f . Interval extensions can be
partially ordered by their sharpness: given two exten-
sions g, h ∈ ext(f), g is sharper than h on X ∈ L(IR∗)
if g(X) ⊂ h(X).
The extensions f1, f2 are not as sharp as f3 because
of dependency. A further source of sharpness loss is
rounding, as it will be shown in the following.

Reals and floats

Floating-point numbers, or floats in short, form a finite
subset F ⊂ R∗. It is assumed that floats are defined
according to the IEEE 754 standard [R6]. Rounding is
the process of approximating an arbitrary real number
with some float. It is worth noting that rounding is a
necessity because for an arbitrary real function f and
an arbitrary float x ∈ F, f(x) is generally not a float.
Of the four rounding techniques defined in the stan-
dard, relevant for the following are rounding toward
−∞, or down, defined as

↓(x) = max{p ∈ F | p ≤ x}

3

http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/

Dependency (2)

13

x

y

0 2

−1/4

2

http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/

Newton (1)

N(ξ, η) = ξ − f(ξ)/f ′(η)

(x2 − 1)(x− 2) = 0

>>> interval[-100, 100].newton(
... lambda x: (x**2 - 1)*(x - 2),
... lambda x: 3*x**2 - 4*x -1)
interval([-1.0], [1.0], [2.0])

cos(πx/3) = 0.5

>>> print interval[-10, 10].newton(
... lambda x: imath.cospi(x/3) - 0.5,
... lambda x: -imath.pi * imath.sinpi(x/3) / 3)
interval([-7.0, -7.0], [-5.0, -5.0], [-1.0, -1.0], \

[1.0, 1.0], [5.0, 5.0], [7.0, 7.0])

http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/

Newton (2)

15

and rounding towards +∞, or up, defined as

↑(x) = min{p ∈ F | p ≥ x}

The interval I(x) = [↓(x), ↑(x)] is the float enclo-
sure of x, i.e., the smallest interval containing x with
end-points in F. The enclosure degenerates to the
single-element set {x} whenever x ∈ F. Similarly,
for an interval [a, b], its float enclosure is given by
I([a, b]) = [↓(a), ↑(b)]. Note that the enclousure of
an interval extension f is also an interval extension, at
best as sharp as f .
Also for any of the arithmetic operations, represented
by &, it can happen that for any two arbitrary H,K ∈
L(IF), H & K '∈ L(IF). It is therefore necessary to
use the float enclosure of the interval arithmetic oper-
ations:

H ⊕K = I(H + K) H)K = I(H −K)
H ⊗K = I(H ×K) H -K = I(H ÷ K)

In Python, the effect of the float enclosure on the arith-
metic operations is easily verifiable:

>>> interval[10] / interval[3]
interval([3.333333333333333, 3.3333333333333339])

Controlling the rounding mode of the processor’s
floating-point unit ensures that arithmetic operations
are rounded up or down. In the Python implemen-
tation presented here, ctypes provides the low-level
way to access the standard C99 functions as declared
in fenv.h [R7], falling back to the Microsoft C runtime
equivalents if the former are not present. A lambda ex-
pression emulates the lazy evaluation that is required
by the primitives in the interval.fpu module:

>>> from interval import fpu
>>> fpu.down(lambda: 1.0/3.0)
0.33333333333333331
>>> fpu.up(lambda: 1.0/3.0)
0.33333333333333337

Unfortunately, common implementations of the C
standard mathematical library do not provide the
means of controlling how transcendetal functions are
rounded. Part of this work therefore required imple-
menting Python binding for CRlibm, the Correctly
Rounded Mathematical Library [R8].

>>> import crlibm
>>> crlibm.exp_rd(1.0)
2.7182818284590451
>>> crlibm.exp_ru(1.0)
2.7182818284590455

The float enclosure of the image closures for the most
common transcendental functions are available in the
interval.imath module:

>>> from interval import imath
>>> imath.exp(1)
interval([2.7182818284590451, 2.7182818284590455])
>>> imath.log(interval[-1, 1])
interval([-inf, 0.0])
>>> print imath.tanpi(interval[0.25, 0.75])
interval([-inf, -1.0], [1.0, inf])

Solving nonlinear equations

Let f be a smooth function in [a, b], i.e., therein contin-
uous and differentiable. Using the mean-value theorem
it can be proved that if x∗ ∈ [a, b] is a zero of f , then

∀ξ ∈ [a, b], x∗ ∈ N̄({ξ}, [a, b])

where N is the Newton iteration function,

N(ξ, η) = ξ − f(ξ)/f ′(η) (4)

If f(x) = 0 has more than one solutions inside [a, b],
then, by Rolle’s theorem, the derivative must vanish
somewhere in [a, b]. This in turn nullifies the denom-
inator in equation (4), which causes N̄({ξ}, [a, b]) to
possibly return a lattice interval consisting of two dis-
joint components, in each of which the search can
continue. The complete algorithm is implemented in
Python as a method of the interval class:

def newton(self, f, p, maxiter=10000):
def step(x, i):

return (x - f(x) / p(i)) & i
def some(i):

yield i.midpoint
for x in i.extrema.components:

yield x
def branch(current):

for n in xrange(maxiter):
previous = current
for anchor in some(current):

current = step(anchor, current)
if current != previous:

break
else:

return current
if not current:

return current
if len(current) > 1:

return self.union(branch(c) for
c in current.components)

return current
return self.union(branch(c) for

c in self.components)

In this code, step implements an interval extension
of equation (4), with the additional intersection with
the input interval to make sure that iterations are not
widening the interval. Function some selects ξ: first
the midpoint is tried, followed by the endpoints. The
arguments f and p represent the function to be nul-
lified and its derivative. The usage of the Newton-
Raphson solver is straightforward. For instance, the
following finds the solution of (x2 − 1)(x − 2) = 0 in
the interval [−100,+100]:

>>> interval[-100, 100].newton(
... lambda x: (x**2 - 1)*(x - 2),
... lambda x:3*x**2 - 4*x -1)
interval([-1.0], [1.0], [2.0])

Figure 4 shows the iterations needed to solve the same
equation in the smaller interval [−1.5, 3].

4

http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/

Newton (3)

16

0
·
·
·
4
·
·
·
8
·
· !
·

12 ∅
·
·
·

16
·
·
·

20
·
·
·

24 !
·
· ∅
·

28
· ∅
·
·

32
·
·
·

36
· !

x

y

0
·
·
·
4
·
·
·
8
·
· !
·

12 ∅
·
·
·

16
·
·
·

20
·
·
·

24 !
·
· ∅
·

28
· ∅
·
·

32
·
·
·

36
· !

x

y

http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/

Notes

17

• http://pyinterval.googlecode.com/

• http://pypi.python.org/pypi/pyinterval/

• http://conference.scipy.org/slides/

If you are on Windows or Linux:
easy_install py_interval

http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/
http://www.altis.ch/

