
Proceedings of the 7th Python in Science Conference (SciPy 2008)

The State of SciPy
Jarrod Millman (millman@berkeley.edu) – University of California Berkeley, Berkeley, CA USA
Travis Vaught (travis@enthought.com) – Enthought, Austin, TX USA

The annual SciPy conference provides a unique op-
portunity to reflect on the state of scientific pro-
gramming in Python. In this paper, we will look
back on where we have been, discuss where we are,
and ask where we are going as a community.

Given the numerous people, projects, packages, and
mailing lists that make up the growing SciPy commu-
nity, it can be difficult to keep track of all the disparate
developments. In fact, the annual SciPy conference is
one of the few events that brings together the commu-
nity in a concerted manner. So it is, perhaps, appro-
priate that we begin the conference proceedings with
a paper titled “The State of SciPy”. Our hope is we
can help provide the context for the many interesting
and more specific papers to follow. We also aim to
promote a much more detailed discussion of the state
of the project, community, and software stack, which
will continue throughout the year.
The last year has seen a large number of exciting de-
velopments in our community. We have had numer-
ous software releases, increased integration between
projects, increased test coverage, and improved docu-
mentation. There has also been increased focus on im-
proving release management and code review. While
many of the papers in the proceedings describe the
content of these developments, this paper attempts to
focus on the view from 10,000 feet.
This paper is organized in three sections. First, we
present a brief and selective historical overview. Sec-
ond, we highlight some of the important developments
from the last year. In particular, we cover the status of
both NumPy and SciPy, community building events,
and the larger ecosystem for scientific computing in
Python. Finally, we raise the question of where the
community is heading and what we should focus on
during the coming year. The major goal of the last
section is to provide some thoughts for a roadmap for-
ward—to improve how the various projects fit together
to create a more unified user environment.
In addition to this being the first year that we have
published conference proceedings, it is also the first
time we have had a formal presentation on the state
of SciPy. It is our hope that these will both continue
in future conferences.

Past: Where we have been

Before highlighting some of the communities’ accom-
plishments this year, we briefly present a history of
scientific computing in Python. Since almost the first
release of Python, there has been interest in the scien-
tific community for using Python. Python is an ideal
choice for scientific programming; it is a mature, ro-
bust, widely-used, and open source language that is

freely distributable for both academic and commercial
use. It has a simple, expressive, and accessible syntax.
It does not impose a single programming paradigm
on scientists but allows one to code at many levels
of sophistication, including Matlab style procedural
programming familiar to many scientists. Python is
available in an easily installable form for almost ev-
ery software platform, including Windows, Macintosh,
Linux, Solaris, FreeBSD and many others. It is there-
fore well suited to a heterogeneous computing environ-
ment. Python is also powerful enough to manage the
complexity of large applications, supporting functional
programming, object-oriented programming, generic
programming, and metaprogramming. In contrast,
commercial languages like Matlab and IDL, which also
support a simple syntax, do not scale well to many
complex programming tasks. Lastly, Python offers
strong support for parallel computing. Because it is
freely available, and installed by default on most Unix
machines, Python is an excellent parallel computing
client.

Using Python allows us to build on scientific program-
ming technologies that have been under active devel-
opment and use for over 10 years; while, at the same
time, it allows us to use mixed language program-
ming (primarily C, C++, FORTRAN, and Matlab)
integrated under a unified Python interface. IPython
(ipython.scipy.org) is the de facto standard interac-
tive shell in the scientic computing community. It has
many features for object introspection, system shell ac-
cess, and its own special command system for adding
functionality when working interactively. It is a very
efficient environment both for Python code develop-
ment and for exploration of problems using Python
objects (in situations like data analysis). Further-
more, the IPython has support for interactive paral-
lel computing. Matplotlib (matplotlib.sourceforge.net)
is a tool for 2D plots and graphs, which has become
the standard tool for scientific visualization in Python.
NumPy (numpy.scipy.org) is a high-quality, fast, stable
package for N-dimensional array mathematics. SciPy
(scipy.org) is a collection of Python tools providing
an assortment of basic scientific programming algo-
rithms (e.g., statistics, optimization, signal process-
ing, etc.). The combination of IPython, matplotlib,
NumPy, and SciPy forms the basis of a Matlab-like
environment that provides many of the strengths of
Matlab (platform independence, simple syntax, high
level algorithms, and visualization routines) without
its limitations (proprietary, closed source with a weak
object model and limited networking capabilities).

Here is a selective timeline:

• 1994 — Python Matrix object (Jim Fulton)

5 J. Millman, T. Vaught: Proc. SciPy 2008, G. Varoquaux, T. Vaught, J. Millman (Eds), pp. 5–11



The State of SciPy

• 1995 — Numeric born (Jim Hugunin, Konrad Hin-
sen, Paul Dubois, David Ascher, Jim Fulton)

• 2000 — Numeric moves to sourceforge (Project reg-
istered as numpy)

• 2001 — SciPy born (Pearu Peterson, Travis
Oliphant, Eric Jones)

• 2001 — IPython born (Fernando Perez)

• 2002 — SciPy ’02 - Python for Scientific Computing
Workshop

• 2003 — matplotlib born (John Hunter)

• 2003 — Numarray (Perry Greenfield, J. Todd Miller,
Rick White, Paul Barrett)

• 2006 — NumPy 1.0 Released

Present: Where we are

With the release of NumPy 1.0 in 2006, the commu-
nity had a new foundation layer for scientific comput-
ing built on the mature, stable Numeric codebase with
all the advanced functionality and features developed
in Numarray. Of course, the existing scientific software
had to be ported to NumPy. While Travis Oliphant
spent a considerable effort to ensure that this would
be as simple as possible, it did take some time for all
the various projects to convert.
This is the second conference for the community since
the release of NumPy. At this point, most projects
have adopted NumPy as their underlying numeric li-
brary.

NumPy and SciPy packages

For several months leading up to last year’s conference,
we were in the unfortunate position that the current
releases of NumPy and SciPy were incompatible. At
the conference we decided to resolve this by releasing
NumPy 1.0.3.1 and SciPy 0.5.2.1. These releases in-
cluded a few other minor fixes, but didn’t include the
bulk of the changes from the trunk. Since then we have
had three releases of NumPy and one release of SciPy:

• SciPy 0.6.0 (September 2007)

• NumPy 1.0.4 (November 2007)

• NumPy 1.1.0 (May 2008)

• NumPy 1.1.1 (August 2008)

These releases featured a large number of features,
speed-ups, bug-fixes, tests, and improved documenta-
tion.

• New masked arrays — MaskedArray now subclasses
ndarray. The behavior of the new MaskedArray
class reproduces the old one.

• Overhaul of IO Code — The NumPy/SciPy IO code
is undergoing a major reworking. NumPy will pro-
vide basic IO code for handling NumPy arrays, while
SciPy will house file readers and writers for third-
party data formats (data, audio, video, image, etc.).
NumPy also supports a new standard binary file for-
mat (.npy/.npz) for arrays/groups_of_arrays. This
is the new default method of storing arrays; pickling
arrays is discouraged.

• Better packaging — The win32 installer now solves
the previously recurring problem of non-working at-
las on different sets of CPU. The new installer simply
checks which CPU it is on, and installs the appro-
priate NumPy accordingly (without atlas if the CPU
is not supported). We also now provide an official
Universal Mac binary.

• Improved test coverage — This year has seen a con-
certed focus on better test coverage as well as a push
for test-driven development. An increasing number
of developers are requesting patches or commits to
include unit tests.

• Adopted Python Style Guide [PEP8] — For years
the official naming convention for classes in NumPy
and SciPy was lower_underscore_separated. Since
the official Python convention used CapWords for
classes as well as several SciPy-related projects (e.g.,
ETS, matplotlib), it was confusing and led to both
standards being used in our codebase. Going for-
ward, newly created classes should adhere to the
Python naming convention. Obviously, we will have
to keep some of the old class names around so that
we don’t needlessly break backward compatibility.

Version numbering. During the lead up to the 1.1.0
release, it became apparent that we needed to become
more disciplined in our use of release version number-
ing. Our current release versioning uses three numbers,
separated by periods <major.minor.bugfix>.1 De-
velopment code for a new release appends an alphanu-
meric string to the upcoming release numbers, which
designate that status (e.g., alpha, beta) of the devel-
opment code. For example, here is a key to the current
minor 1.2.x release series:

• 1.2.0dev5627 — development version 5627

• 1.2.0a1 - first alpha release

• 1.2.0b2 — second beta release

• 1.2.0rc1 — first release candidate

• 1.2.0 — first stable release

• 1.2.1 — first bug-fix release

http://conference.scipy.org/proceedings/SciPy2008/paper_1 6

http://conference.scipy.org/proceedings/SciPy2008/paper_1


Proceedings of the 7th Python in Science Conference (SciPy 2008)

According to this numbering scheme, the NumPy 2.0.0
release will be the first in this series to allow us to make
more significant changes, which would require large-
scale API breaks. The idea being that a major release
might require people rewriting code where a minor re-
lease would require a no more than a small amount
of refactoring. Bug-fix releases will not require any
changes to code depending on our software.
Buildbot. Albert Strasheim and Stéfan van der Walt
set up a buildbot for numpy shortly before last year’s
SciPy conference. The buildbot is an automated sys-
tem for building and testing. This allows the devel-
opers and release manager to better track the ongoing
evolution of the software.

Community Involvement

The level of community involvement in the project has
seen solid growth over the last year. There were nu-
merous coding sprints, training sessions, and confer-
ence events. We also held a number of documentation
and bug-fix days. And Gaël Varoquaux set up a SciPy
blog aggregator early in 2008, which currently has al-
most fifteen subscribers:

http://planet.scipy.org/

Sprints. Sprints have become popular coding activi-
ties among many open-source projects. As the name
implies, sprints are essentially short, focused coding
periods where project members work together in the
same physical location. By bringing developers in
same location for short-periods of time allows them
to socialize, collaborate, and communicate more ef-
fectively than working together remotely. While the
SciPy community has had sprints for a number of
years, this year saw a marked increase. Here is a list
of a few of them:

• August 2007 — SciPy 2007 post-conference sprint

• December 2007 — SciPy sprint at UC Berkeley

• February 2008 — SciPy/SAGE sprint at Enthought

• March 2008 — NIPY/IPython sprint in Paris

• April 2008 — SciPy sprint at UC Berkeley

• July 2008 — Mayavi sprint at Enthought

Conferences. In addition to the SciPy 2008 confer-
ence, SciPy has had a major presence in several other
conferences this year:

• PyCon 2008 — Travis Oliphant and Eric Jones
taught a tutorial session titled “Introduction to
NumPy” and another titled “Tools for Scientific
Computing in Python”. While, John Hunter taught
a session titled “Python plotting with matplotlib
and pylab”.

• 2008 SIAM annual meeting — Fernando Perez and
Randy LeVeque organized a 3-part minisymposium
entitled “Python and Sage: Open Source Scientific
Computing”, which were extremely well received
and chosen for the conference highlights page.

• EuroSciPy 2008 — The first ever EuroSciPy confer-
ence was held in Leipzig, Germany on Saturday and
Sunday July 26-27, 2008. Travis Oliphant delivered
the keynote talk on the history of NumPy/SciPy.
There were about 45 attendees.

The Larger Ecosystem

The NumPy and SciPy packages form the basis for a
much larger collection of projects and tools for scien-
tific computing in Python. While many of the core de-
velopers from this larger ecosystem will be discussing
recent project developments during the conference, we
want to selectively highlight some of the exciting de-
velopments in the larger community.
Major Releases. In addition to releases of NumPy
and SciPy, there have been a number of important re-
leases.

• matplotlib 0.98 — Matplotlib is a core component of
the stack, and the 0.98 release contains a rewrite of
the transforms code. It also features mathtext with-
out the need of LaTeX installed, and a 500-pages-
long user-guide.

• ETS 3 — The Enthought Tool Suite (ETS) is a col-
lection of components developed by Enthought and
their partners. The cornerstone on which these tools
rest is the Traits package, which provides explicit
type declarations in Python; its features include ini-
tialization, validation, delegation, notification, and
visualization of typed attributes.

• Mayavi 2 — This Mayavi release is a very important
one, as Mayavi 2 now implements all the features of
the original Mayavi 1 application. In addition, it is
a reusable library, useful as a 3D visualization com-
ponent in the SciPy ecosystem.

• IPython 0.9 — This release of IPython marks the
integration of the parallel computing code with the
core IPython interactive shell.

Distribution. While the quantity and quality of
the many scientific Python package has been one the
strengths of our community, a mechanism to easily
and simply install all these packages has been a weak-
ness. While package distribution is an area that still
needs improvement, the situation has greatly improved
this year. For years the major Linux distributions
have provided official packages of the core scienti-
tific Python projects including NumPy, SciPy, mat-
plotlib, and IPython. Also starting with version 10.5

1The NumPy 1.0.3.1 and SciPy 0.5.2.1 releases being an aberration from this numbering scheme. In retrospect, those releases
should have been numbered 1.0.4 and 0.5.3 respectively.

7 http://conference.scipy.org/proceedings/SciPy2008/paper_1

http://conference.scipy.org/proceedings/SciPy2008/paper_1


The State of SciPy

“Leopard”, Mac OS X ships with NumPy 1.0.1 pre-
installed. Also, as mentioned above, the NumPy and
SciPy projects have worked to provide better binary
installers for Windows and Mac. This year has also
seen a number of exciting efforts to provide a one stop
answer to scientific Python software distribution:

• Python Package Index — While there are still many
issues involving the wide-spread adoption of setup-
tools, an increasing number of projects are providing
binary eggs on the Python Packaging Index. This
means an increasing number of scientists and engi-
neers can easily install scientific Python packages
using easy_install.

• Python(x,y) — www.pythonxy.com

• EPD — Enthought Python Distribution,
www.enthought.com/epd

• Sage — Sage is a Python-based system which aims
at providing an open source, free alternative to exist-
ing proprietary mathematical software and does so
by integrating multiple open source projects, as well
as providing its own native functionality in many ar-
eas. It includes by default many scientific packages
including NumPy, SciPy, matplotlib, and IPython.

Cool New Tools. There were also several useful
tools:

• Sphinx — Documentation-generation tool.

• Cython — New Pyrex: mixing statically-typed,
compiled code with dynamically-typed code, with
a Python-like syntax.

Future: Where are we going?

What will the future hold? - Improved release manage-
ment. - More regular releases. - Clear policy on API
and ABI changes. - Better unification of the existing
projects.
In the broader view, our ecosystem would benefit from
more project cohesion and common branding, as well
as an IDE (integrated development environment), an
end-user application that would serve as an entry point
to the different technologies.

NumPy and SciPy packages

NumPy 1.2 and SciPy 0.7 are on track to be released
by the end of this month. This is the first synchronous
release since NumPy last August. SciPy 0.7 will re-
quire NumPy 1.2 and both releases require Python 2.4
or greater and feature:

• Sphinx-based documentation — This summer saw
the first NumPy Documentation Marathon, during
which many thousands of lines of documentation
were written. In addition, a web framework was de-
veloped which allows the community to contribute

docstrings in a wiki-like fashion, without needing ac-
cess to the source repository. The new reference
guide, which is based on these contributions, was
built using the popular Sphinx tool. While the doc-
umentation coverage is now better than ever, there
is still a lot of work to be done, and we encourage
interested parties to register and contribute further.

• Guide to NumPy — Travis Oliphant released his
“Guide to NumPy” for free and checked it into the
trunk. Work has already begun to convert it to the
ReST format used by Sphinx.

• Nose-based testing framework — The NumPy test
framework now relies on the nose testing framework
version 0.10 or later.

In addition, SciPy 0.7 includes a whole host of new
features and improvements including:

• Major sparse matrices improvements —

• Sandbox removed — The sandbox was originally in-
tended to be a staging ground for packages that were
undergoing rapid development during the port of
SciPy to NumPy. It was also a place where bro-
ken code could live. It was never intended to stay in
the trunk this long and was finally removed.

• New packages and modules — Several new packages
and modules have been added including constants,
radial basis functions, hierarchical clustering, and
distance measures.

Python 3.0. Python 2.6 and 3.0 should be released
before the end of the year. Python 3.0 is a new major
release that breaks backward compatibility with 2.x.
The 2.6 release is provided to ease forward compatibil-
ity. We will need to keep supporting Python 2.x for the
at least the near future. If needed, once released we
will provide bug-fix releases to the current releases of
NumPy and SciPy to ensure that they run on Python
2.6. We don’t currently have a time-frame for Python
3.0 support, but we would like to have a Python 3.0
compatible releases before next year’s SciPy confer-
ence. The [PEP3000] recommends:

1. You should have excellent unit tests with close to
full coverage.

2. Port your project to Python 2.6.

3. Turn on the Py3k warnings mode.

4. Test and edit until no warnings remain.

5. Use the 2to3 tool to convert this source code to 3.0
syntax. Do not manually edit the output!

6. Test the converted source code under 3.0.

7. If problems are found, make corrections to the 2.6
version of the source code and go back to step 3.

8. When it’s time to release, release separate 2.6 and
3.0 tarballs (or whatever archive form you use for
releases).

http://conference.scipy.org/proceedings/SciPy2008/paper_1 8

http://conference.scipy.org/proceedings/SciPy2008/paper_1


Proceedings of the 7th Python in Science Conference (SciPy 2008)

Release Management

While we were able to greatly improve the quality of
our releases this year, the release process was a much
less than ideal. Features and API-changes continually
creep in immediately before releases. Release sched-
ules repeatedly slipped. And the last SciPy release is
out of date compared to the trunk. Obviously these
problems are not unique to our project. Software de-
velopment is tricky and requires balancing many dif-
ferent factors and a large distributed project like ours
has the added complexity of coordinating the activ-
ity of many different people. During the last year,
we had several thoughtful conversations about how to
improve the situation. A major opportunity for our
project this year will be trying to improve the quality
of our release management. In particular, we will need
to revisit issues involving release management, version
control, and code review.
Time Based Releases. Determining when and how
to make a new release is a difficult problem for software
development projects. While there are many ways to
decide when to release code, it is common to think in
terms of feature- and time-based releases:

[Feature-based]
A release cycle under this model is driven by
deciding what features will be in the next re-
lease. Once all the features are complete, the
code is stabilized and finally a release is made.
Obviously this makes it relatively easy to pre-
dict what features will be in the next release,
but extremely difficult to determine when the
release will occur.

[Time-based]
A release cycle under this model is driven by
deciding when the next release will be. This, of
course, makes predicting when the release will
be out extremely easy, but makes it difficult to
know exactly what features will be included in
the release.

Over the last several years, many large, distributed,
open-source projects have moved to time-based release
management. There has been a fair amount of in-
terest among the SciPy development community to
move in this direction as well. Time-based releases
are increasingly seen as an antidote to the issues as-
sociated with more feature driven development in dis-
tributed, volunteer development projects (e.g., lack of
planning, continual release delays, out of date soft-
ware, bug reports against old code, frustration among
developers and users). Time-based releases also allows
“a more controlled development and release process in
projects which have little control of their contributors
and therefore contributes to the quality of the output”
[Mic07]. It also moves the ‘release when it’s ready’ pol-
icy down to the level of specific features rather than
holding the entire code base hostage.
A major objective of time-based releases is regular
releases with less time between releases. This rapid

pace of regular releases, in turn, enables more effi-
cient developer coordination, better short and long
term planning, and more timely user feedback, which
is more easily incorporated into the development pro-
cess. Time-based releases promote more incremental
development, while they discourage large-scale modifi-
cations that exceed the time constraints of the release
cycle.
An essential feature of moving to time-based releases is
determining the length of the release cycle. With a few
notable exceptions (e.g., Linux kernel), most projects
have followed the GNOME 6-month release cycle, orig-
inally proposed by Havoc Pennington [Pen02]. In or-
der to ensure that the project will succeed at meeting a
6-month time frame requires introducing new policies
and infrastructure to support the new release strat-
egy. And the control mechanisms established by those
policies and infrastructure have to be enforced.
In brief, here is a partial list of issues we will need
to address in order to successfully move to time-based
release schedule:

• Branching — In order to be able to release on
schedule requires that the mainline of development
(the trunk) is extremely stable. This requires that
a significant amount of work being conducted on
branches.

• Reviewing — Another important way to improve the
quality of project and keep the trunk in shape is to
require peer code review and consensus among the
core developers on which branches are ready to be
merged.

• Testing — A full test suite is also essential for being
able to regularly release code.

• Reverting — Sticking to release schedule requires
occasionally reverting commits.

• Postponing — It also requires postponing branch
merges until the branch is ready for release.

• Releasing — Since time-based release management
relies on a regular releases, the cost of making a re-
lease needs to be minimized. In particular, we need
to make it much, much easier to create the packages,
post the binaries, create the release notes, and send
out the announcements.

An important concern when using time-based releases
in open-source projects is this very ability to work rel-
atively “privately” on code and then easily contribute
it back to the trunk when it is finally ready.
Given how easy it is for developers to create their own
private branches and independently work on them us-
ing revision control for as long as they wish, it is impor-
tant to provide social incentives to encourage regular
collaboration and interaction with the other members
of the project. Working in the open is a core value of
the open-source development model. Next we will look
at two mechanisms for improving developer

9 http://conference.scipy.org/proceedings/SciPy2008/paper_1

http://conference.scipy.org/proceedings/SciPy2008/paper_1


The State of SciPy

Proposals. Currently there is no obvious mecha-
nism for getting new features accepted into NumPy or
SciPy. Anyone with commit access to the trunk may
simply start adding new features. Often, the person
developing the new feature, will run the feature by the
list. While this has served us to this point, the lack of
a formal mechanism for feature proposals is less than
ideal.
Python has addressed this general issue by requiring
proposals for new features conform to a standard de-
sign document called a Python Enhancement Proposal
(or “PEP”). During the last year, several feature pro-
posals were written following this model:

• A Simple File Format for NumPy Arrays [NEP1]

• Implementing date/time types in NumPy

• Matrix Indexing

• Runtime Optimization

• Solvers Proposal

Code Review. We also lack a formal mechanism for
code review. Developers simply commit code directly
to the trunk. Recently there has been some interest in
leveraging the Rietveld Code Review Tool developed
by Guido van Rossum [Ros08]. Rietveld provides web-
based code review for subversion projects. Another
option would be to use bzr and the code review func-
tionality integrated with Launchpad.
Code review provides a mechanism for validating de-
sign and implementation of patches and/or branches.
It also increases consistency in design and coding style.
Distributed Version Control. While subversion
provides support for branching and merging, it is not
its best feature. The difficult of branch tracking and
merging under subversion is pronounced enough that
most subversion users shy away from it. Since there is
a clear advantage to leverage branch development with
time-based releases, we will want to consider using ver-
sion control mechanisms that provide better branching
support.
Distributed Version Control Systems (DVCS), unlike
centralized systems such as subversion, have no tech-
nical concept of a central repository where everyone
in the project pulls and pushes changes. Under DVCS
every developer typically works on his own local repos-
itory or branch. Since everyone has their own branch,
the mechanism of code sharing is merging. Given that
with DVCS, branching and merging are essential activ-
ities, they are extremely well-supported. This makes
working on branches and then merging the code in the
trunk only once it is ready extremely simple and easy.
DVCS also have the advantage that they can be used
off-line. Since anyone can create their own branch from
the project trunk, it potentially lowers the barrier to
project participation. This has the potential to cre-
ate a greater culture of meritocracy than traditional
central version control systems, which require poten-
tial project contributors to acquire “committer” status
before gaining the ability to commit code changes to
the repository. Finally, DVCS makes it much easier

to do private work—allowing you to use revision con-
trol for preliminary work that you may not want to
publish.
Proposed Release Schedule. Assuming we (1)
agree to move to a time-based release, (2) figure out
how to continuously keep the trunk in releasable con-
dition, and (3) reduce the manual effort required to
make both stable and development releases, we should
be able to increase the frequencies of our releases con-
siderably.

Devel Stable
Oct 1.3.0b1 1.2.1
Nov 1.3.0rc1
Nov 1.3.0
Jan 1.4.0a1 1.3.1
Mar 1.4.0b1 1.3.2
Apr 1.4.0rc1
May 1.4.0rc1 1.3.3

subsystem maintainers, release conference calls, irc
meetings, synchronized releases of NumPy and SciPy.

Getting involved

• Documentation

• Bug-fixes

• Testing

• Code contributions

• Active Mailing list participation

• Start a local SciPy group

• Code sprints

• Documentation/Bug-fix Days

• Web design

Acknowledgements

• For reviewing... Stéfan van der Walt

• The whole community...

References

[PEP8] http://www.python.org/dev/peps/pep-0008/
[Mic07] Michlmayr, M. (2007). Quality Improvement

in Volunteer Free and Open Source Software
Projects: Exploring the Impact of Release
Management. PhD dissertation, University of
Cambridge.

[Pen02] http://mail.gnome.org/archives/gnome-hackers/
2002-June/msg00041.html

[NEP1] http://svn.scipy.org/svn/numpy/trunk/
numpy/doc/npy-format.txt

[Ros08] http://code.google.com/appengine/
articles/rietveld.html

[PEP3000] http://www.python.org/dev/peps/pep-3000/

http://conference.scipy.org/proceedings/SciPy2008/paper_1 10

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://mail.gnome.org/archives/gnome-hackers/2002-June/msg00041.html
http://mail.gnome.org/archives/gnome-hackers/2002-June/msg00041.html
http://mail.gnome.org/archives/gnome-hackers/2002-June/msg00041.html
http://svn.scipy.org/svn/numpy/trunk/numpy/doc/npy-format.txt
http://svn.scipy.org/svn/numpy/trunk/numpy/doc/npy-format.txt
http://svn.scipy.org/svn/numpy/trunk/numpy/doc/npy-format.txt
http://code.google.com/appengine/articles/rietveld.html
http://code.google.com/appengine/articles/rietveld.html
http://code.google.com/appengine/articles/rietveld.html
http://www.python.org/dev/peps/pep-3000/
http://www.python.org/dev/peps/pep-3000/
http://www.python.org/dev/peps/pep-3000/
http://conference.scipy.org/proceedings/SciPy2008/paper_1

	The State of SciPy
	Past: Where we have been
	Present: Where we are
	NumPy and SciPy packages
	Community Involvement
	The Larger Ecosystem

	Future: Where are we going?
	NumPy and SciPy packages
	Release Management
	Getting involved

	Acknowledgements
	References

