Proceedings of the 7** Python in Science Conference (SciPy 2008)

Analysis and Visualization of Multi-Scale Astrophysical Simulations Using

Python and NumPy

Matthew Turk (mturk@slac.stanford.edu) — KIPAC / SLAC / Stanford, USA

The study the origins of cosmic structure requires
large-scale computer simulations beginning with
well-constrained, observationally-determined, initial
conditions. We use Adaptive Mesh Refinement
to conduct multi-resolution simulations spanning
twelve orders of magnitude in spatial dimensions and
over twenty orders of magnitude in density. These
simulations must be analyzed and visualized in a
manner that is fast, accurate, and reproducible. |
present "yt," a cross-platform analysis toolkit writ-
ten in Python. "yt" consists of a data-management
layer for transporting and tracking simulation out-
puts, a plotting layer, a parallel analysis layer for
handling mesh-based and particle-based data, as
well as several interfaces. | demonstrate how the
origins of cosmic structure — from the scale of clus-
ters of galaxies down to the formation of individ-
ual stars — can be analyzed and visualized using a
NumPy-based toolkit. Additionally, | discuss efforts
to port this analysis code to other adaptive mesh
refinement data formats, enabling direct compari-
son of data between research groups using different
methods to simulate the same objects.

Analysis of Adaptive Mesh Refinement
Data

I am a graduate student in astrophysics, studying the
formation of primordial stars. These stars form from
the collapse of large gas clouds, collapsing to higher
densities in the core of extended star-forming regions.
Astrophysical systems are inherently multi-scale, and
the formation of primordial stars is the best exam-
ple. Beginning with cosmological-scale perturbations
in the background density of the universe, one must
follow the evolution of gas parcels down to the mass
scale of the moon to have any hope of resolving the
inner structure and thus constrain the mass scale of
these stars.

In order to do this, I utilize a code designed to in-
sert higher-resolution elements within a fixed mesh, via
a technique called adaptive mesh refinement (AMR).
Enzo [ENZ] is a freely-available, open source AMR
code originally written by Greg Bryan and now devel-
oped through the Laboratory for Computational As-
trophysics by a multi-institution team of developers.
Enzo is a patch-based multi-physics AMR/N-body hy-
brid code with support for radiative cooling, multi-
species chemistry, radiation transport, and magneto-
hydrodynamics. Enzo has been used to simulate a
wide range of astrophysical phenomena, such as pri-
mordial star formation, galaxy clusters, galaxy forma-
tion, galactic star formation, black hole accretion and

jets from gamma ray bursts. Enzo is able to insert up
to 42 levels of refinement (by factors of two) allowing
for a dynamic range between cells of up to 2%2. On
the typical length scale of primordial star formation,
this allows us to resolve gas parcels on the order of a
hundred miles, thus ensuring the simulations fully re-
solve at all times the important hydrodynamics of the
collapse.

A fundamental but missing aspect of our analysis
pipeline was an integrated tool that was transparently
parallelizable, easily extensible, freely distributable,
and built on open source components, allowing for full
inspection of the entire pipeline. My research advisor,
Prof. Tom Abel of Stanford University, suggested I
undertake the project of writing such a tool and ap-
proach it from the standpoint of attacking the problem
of extremely deep hierarchies of grid patches.
Initially, yt was written to be a simple interface be-
tween AMR data and the plotting package “Hippo-
Draw,” which was written by Paul Kunz at the Stan-
ford Linear Accelerator Center [HIP]. As time passed,
however, it moved more toward a different mode of in-
teraction, and it grew into a more fully-featured pack-
age, with limited data management, more abstract ob-
jects, and a full GUI and display layer built on wx-
Python [WX] and Matplotlib [MPL], respectively. Uti-
lizing commodity Python-based packages, I present a
fully-featured, adaptable and versatile means of ana-
lyzing large-scale astrophysical data. It is based pri-
marily on the library NumPy [NPY], it is mostly writ-
ten in Python, and it uses Matplotlib, and optionally
PyTables and wxPython for various sub-tasks. Addi-
tionally, several pieces of core functionality have been
moved out to C for fast numerical computation, and a
TVTK-based [TVTK] visualization component is be-
ing developed.

Development Philosophy

From its beginning, yt has been exclusively free and
open source software, and I have made the decision
that it will never require components that are not open
source and freely available. This enables it to be dis-
tributed, not be dependent on licensing servers, and
to make available to the broader community the work
put forth by me, the other developers, and the broader
contributing community toward approachable analysis
of the data. The development has been driven, and
will continue to be driven, by my needs, and the needs
of other developers.

Furthermore, no feature that I, or any other member
of the now-budding development team, implement will
be hidden from the community at large. This philoso-
phy has served the toolkit well already; it has already

M. Turk: Proc. SciPy 2008, G. Varoquaux, T. Vaught, J. Millman (Eds), pp. 46-51 46

Proceedings of the 7*® Python in Science Conference (SciPy 2008)

been examined and minor bugs have been found and
corrected.

In addition to these commitments, I also sought the
ability to produce publication-quality plots and to re-
duce the difficulty of multi-step operations. The user
should be presented with a consistent, high-level, inter-
face to the data, which will have the side-effect of en-
abling different entry points to the toolkit as a whole.
The development of yt takes place in a publicly acces-
sible subversion repository with a Trac frontend [YT].
Sphinx-based documentation is available, and auto-
matically updated from the subversion repository as
it is checked in. In order to ease the process of in-
stallation, a script is included to install the entire set
of dependencies along with the toolkit; furthermore,
installations of the toolkit are maintained at several
different supercomputing centers, and a binary version

for Mac OS X is provided.

Organization

To provide maximum flexibility, as well as a concep-
tual separation of the different components and tasks
to which components can be directed, yt is packaged
into several sub-packages.

The analysis layer, 1lagos, provides several features be-
yond mere data access, including extensive analytical
capabilities. At its simplest level, lagos is used to
access the parameters and data in a given time-based
output from an AMR simulation. However, on top
of that, different means of addressing collections of
data are provided, including from an intuitive object-
oriented perspective, where objects are described by
physical shapes and orientations.

The plotting layer, raven, has capabilities for plotting
one-, two- and three-dimensional histograms of quan-
tities, allowing for weighting and binning of those re-
sults. A set of pixelization routines have been written
in C to provide a means of taking a set of variable-size
pixels and constructing a uniform grid of values, suit-
able for fast plotting in Matplotlib - including cases
where the plane is not axially perpendicular, allow-
ing for oblique slices to be plotted and displayed with
publication-quality rendering. Callbacks are available
for overlaying analytic solutions, grid-patch bound-
aries, vectors, contours and arbitrary annotation.
Additionally, several other sub-packages exist that ex-
tend the functionality in various different ways. The
deliverator package is a Turbogears-based [TG] im-
age gallery that listens for SOAP-encoded information
about images on the web, fido stores and retrieves
data outputs, and reason is the wxPython-based [WX]
GUL

Object Design and Protocol

One of the difficulties in dealing with rectilinear adap-
tive mesh refinement data is the fundamental discon-
nect between the geometries of the grid structure and

the objects described by the simulation. One does not
expect galaxies to form and be shaped as rectangular
prisms; as such, access to physically-meaningful struc-
tures must be provided. To that end, yt provides the
following:

e Sphere

e Rectangular prism

e Cylinder / disk

o “Extracted” regions based on logical operations
e Topologically-connected sets of cells

Each of these regional descriptors is presented to the
user as a single object, and when accessed the data is
returned at the finest resolution available; all overlap-
ping coarse grid cells are removed transparently. This
was first implemented as physical structures resem-
bling spheres were to be analyzed, followed by disk-like
structures, each of which needed to be characterized
and studied as a whole. By making available these in-
tuitive and geometrically meaningful data selections,
the underlying physical structures that they trace be-
come more accessible to analysis and study.
The objects are designed so that code snippets such as
the following are possible:

>>> sp = amr_hierarchy.sphere(

.. center, radius)

>>> print sp["Density"].min()

>>> L_vec = sp.quantities["AngularMomentumVector"] ()

>>> my_disk = amr_hierarchy.disk(center,

. L_vec, radius, radius/100.0)

>>> print my_disk["Density"].min()
The abstraction layer is such that there are several
means of interacting with these three-dimensional ob-
jects, each of which is conceptually unified, and which
respects a given set of data protocols. Due to the flex-
ibility of Python, as well as the versatility of NumPy,
this functionality has been easily exposed in the form
of multiple returned arrays of data, which are fast and
easily manipulated. Above can be seen the calcula-
tion of the angular momentum vector of a sphere, and
then the usage of that vector to construct a disk with
a height relative to the radius.
These objects handle cell-based data fields natively,
but are also able to appropriately select and return
particles contained within them. This has facilitated
the inclusion of an off-the-shelf halo finder, which al-
lows users to quantify the clustering of particles within
a region.
In addition to the object model, a flexible interface to
derived data fields has been implemented. All fields,
including derived fields, are allowed to be defined by
either a component of a data file, or a function that
transforms one or more other fields, thus allowing mul-
tiple layers of definition to exist, and allowing the user
to extend the existing field set as needed. Furthermore,
these fields can rely on the cells from neighboring grid
patches - which will be generated automatically by yt
as needed - which enables the creation of fields that
rely on finite-difference stencils.

47

http://conference.scipy.org/proceedings/SciPy2008/paper_11

http://conference.scipy.org/proceedings/SciPy2008/paper_11

Analysis and Visualization of Multi-Scale Astrophysical Simulations Using Python and NumPy

1.00e+01

1.00e+00

1.00e-01

1.00e-02

(®)

1.00e-03

Temperature
CellMassMsun (M)

1.00e-04

1.00e-05

1.00e-06

mllo'21 10 10° 10 107 10" 10° 10" 107 107
Density (g/en’)
A two-dimensional phase diagram of the distribution
of mass in the Density-Temperature plane for a col-

lapsing gas cloud

The combination of derived fields, physically-
meaningful data objects and a unique data-access pro-
tocol enables yt to construct essentially arbitrary rep-
resentations of arbitrary collections of data. For in-
stance, the user is able to take arbitrary profiles of data
objects (radial profiles, probability distribution func-
tions, etc) in one, two and three dimensions. These
can be plotted from within the primary interface, and
then output in a publication-ready format.

Two-Dimensional Data Representations

In order to make images and plots, yt has several
different classes of two-dimensional data representa-
tions, all of which can be turned into images. Each
of these objects generates a list of variable-resolution
points, which are then passed into a C-based pix-
elization routine that transforms them into a fixed-
resolution buffer, defined by a width, a height, and
physical boundaries of the source data.

The simplest means of examining data is through the
usage of axially-parallel slices through the dataset.
This has several benefits - it is easy to calculate which
grids and which cells are required to be read off disk
(and most data formats allow for easy “striding” of
data off disk, which reduces this operation’s 10 over-
head) and it is easy to automate the process to step
through a given dataset.

However, at some length scales in star formation prob-
lems, gas is likely to collapse into a disk, which is often
not aligned with the axes of the simulation. By slicing
along the axes, patterns such as spiral density waves
could be missed, and ultimately go unexamined. In
order to better visualize off-axis phenomena, I imple-
mented a means of creating an image that is misaligned
with the axes.

le-09

le-10

le-11

(g/em

Density

le-12

le-13

le-14

An oblique slice through the center of a star forma-
tion simulation. The image plane is normal to the
angular momentum vector.

This “cutting plane” is an arbitrarily-aligned plane
that transforms the intersected points into a new co-
ordinate system such that they can be pixelized and
made into a publication-quality plot. This technique
required a new pixelization routine, in order to ensure
that the correct voxels were taken and placed on the
plot, which required an additional set of checks to de-
termine if the voxel intersected with the image plane.
The nature of adaptive mesh refinement is such that
one often wishes to examine either the sum of values
along a given sight-line or a weighted-average along a
given sight-line. yt provides an algorithm for gener-
ating line integrals in an adaptive fashion, such that
every returned (z,y,v,dz, dy) point does not contain
data from any points where dx < dx,, or dy < dy,,.
We do this in a multi-step process, operating on each
level of refinement in turn. Overlap between grids
is calculated, such that, along the axis of projection,
each grid is associated with a list of grids that it over-
laps with on at least one cell. We then iterate over
each level of refinement, starting with the coarsest,
constructing lists of both “further-refinable” cells and
“fully-refined” cells. A combination step is conducted,
to combine overlapping cells from different grids; all
“further-refinable” cells are passed to the next level as
input to the overlap algorithm, and we continue re-
cursing down the level hierarchy. The final projection
object, with its variable-resolution cells, is returned to
the user.

Once this process is completed, the projection object
respects the same data protocol, and can be plotted in
the same way, as an ordinary slice.

Contour Finding

Ofttimes, one needs to identify collapsing objects by
finding topologically-connected sets of cells. The na-
ture of adaptive mesh refinement, where in a given
set cells may be connected across grid and refinement
boundaries, requires sophisticated means for such iden-
tification.

http://conference.scipy.org/proceedings/SciPy2008/paper_11

48

http://conference.scipy.org/proceedings/SciPy2008/paper_11

Proceedings of the 7*® Python in Science Conference (SciPy 2008)

Unfortunately, while locating topologically-connected
sets inside a single-resolution grid is a straightforward
but non-trivial problem in recursive programming, ex-
tending this in an efficient way to hierarchical datasets
can be problematic. To that end, the algorithm imple-
mented in yt checks on a grid-by-grid basis, retrieving
an additional set of cells at the grid boundary. Any
contour that crosses into these ’ghost zones’ mandates
a reconsideration of all grids that intersect with the
currently considered grid. This process is expensive,
as it operates recursively, but ensures that all contours
are automatically joined.

Once contours are identified, they are split into indi-
vidual derived objects that are returned to the user.
This presents an integrated interface for generating
and analyzing topologically-connected sets of related
cells. In the past, yt has been used to conduct this
form of analysis and to study fragmentation of col-
lapsing gas clouds, specifically to examine the gravi-
tational boundedness of these clouds and the scales at
which fragmentation occurs.

Parallel Analysis

As the capabilities of supercomputers grow, the size of
datasets grows as well. In order to meet these chang-
ing needs, I have been undertaking an effort to par-
allelize yt to run on multiple independent processing
units. Specifically, I have been utilizing the Message
Passing Interface (MPI) via the MPI4Py [MPI] mod-
ule, a lightweight, NumPy-native wrapper that enables
natural access to the C-based routines for interprocess
communication. My goal has been to preserve at all
times the API, such that the user can submit an un-
changed serial script to a batch processing queue, and
the toolkit will recognize it is being run in parallel and
distribute tasks appropriately.

The tasks in yt that require parallel analysis can be di-
vided into two different broad categories: those tasks
that can act on data in an unordered, uncorrelated
fashion, and those tasks that act on a decomposed im-
age plane.

To parallelize the unordered analysis, a set of iterators
have been implemented utilizing an initialize/finalize
structure. Upon initialization of the iterator, it calls
a method that determines which sets of data will be
processed by which processors in the MPI group. The
iteration proceeds as normal, and then, before the Sto-
plteration exception is raised, it finalizes by broad-
casting the final result to every processor. The un-
ordered nature of the analysis allows the grids to be
ordered such that disk access is minimized; on high-
performance file systems, this results in close-to-ideal
scaling of the analysis step.

Constraints of Scale

In order to manage simulations consisting of multiple
hundreds of thousands of discrete grid patches - as well

as their attendant grid cell values - I have undertaken
optimization using the cProfile module to locate and
eliminate as many bottlenecks as possible. To that
end, I am currently in the process of reworking the ob-
ject instantiation to rely on the Python feature ’slots,’
which should speed the process of generating hundreds
of thousands of objects. Additionally, the practice of
storing data about simulation outputs between instan-
tiation of the Python objects has been extended; this
speeds subsequent startups, and enables a more rapid
response time.

Enzo data is written in one of three ways, the most
efficient -and prevalent- way being via the Hierarchi-
cal Data Format (HDF5) [HDF] with a single file per
processor that the simulation was run on. To limit the
effect that disk access has on the process of loading
data, hand-written wrappers to the HDF5 have been
inserted into the code. These wrappers are lightweight,
and operate on a single file at a time, loading data in
the order it has been written to the disk. The package
PyTables was used for some time, but the instantia-
tion of the object hierarchy was found to be too much
overhead for the brief and well-directed access desired.

Frontends and Interfaces

yt was originally intended to be used from the com-
mand line, and images to be viewed either in a web
browser or via an X11 connection that forwarded the
output of an image viewer. However, a happy side-
effect of this attitude - as well as the extraordinarily
versatile Matplotlib “Canvas” interface - is that the yt
API, designed to have an a single interface to analysis
tasks, is easily accessed and utilized by different inter-
faces. By ensuring that this API is stable and flexible,
GUIs, web-interfaces, and command-line scripts can be
constructed to perform common tasks.

11111

11111

A typical session inside the GUI

For scientific computing as a whole, such flexibility is
invaluable. Not all environments have access to the
same level of interactivity; for large-scale datasets, be-
ing able to interact with the data through a script-
ing interface enables submission to a batch process-
ing queue, which enables appropriate allocation of re-
sources. For smaller datasets, the process of interac-
tively exploring datasets via graphical user interfaces,

49

http://conference.scipy.org/proceedings/SciPy2008/paper_11

http://conference.scipy.org/proceedings/SciPy2008/paper_11

Analysis and Visualization of Multi-Scale Astrophysical Simulations Using Python and NumPy

exposing analytical techniques not available to an of-
fline interface, is extremely worthwhile, as it can be
highly immersive.

The canonical graphical user interface is written in wx-
Python, and presents to the user a hierarchical listing
of data objects: static outputs from the simulation, as
well as spatially-oriented objects derived from those
outputs. The tabbed display pane shows visual rep-
resentations of these objects in the form of embedded
Matplotlib figures.

Recently an interface to the Matplotlib 'pylab’ inter-
face has been prepared, which enables the user to in-
teractively generate plots that are thematically linked,
and thus display an uniform spatial extent. Further
enhancements to this IPython interface, via the pro-
file system, have been targeted for the next release.
Knoboo [KBO] has been identified as a potential web-
based interface, in the same style as Sage. It is a
lightweight software package designed to display ex-
ecuted Python code in the browser but to conduct the
execution on the backend. With a disjoint web-server
and execution kernel model, it enables the frontend to
communicate with a remote kernel server where the
data and analysis packages would reside. Because of
its flexibility in execution model, I have already been
able to conduct analysis remotely using Knoboo as my
user interface. I intend to continue working with the
Knoboo developers to enhance compatibility between
yt and Knoboo, as web-based interfaces are a powerful
way to publish analysis as well as to enable collabora-
tion on analysis tasks.

Generalization

As mentioned above, yt was designed to handle and
analyze data output from the AMR code Enzo. Dr.
Jeff Oishi of Berkeley is leading the process of convert-
ing the toolkit to work equally well with data from
other AMR codes; however, different codes make sep-
arate sets of assumptions about outputted data, and
this must be generalized to be non-Enzo specific.

In this process, we are having to balance a desire for
generalization with a desire for both simplicity and
speed. To that extent, we are attempting to make min-
imally invasive changes where possible, and rethinking
aspects of the code that were not created in the most
general fashion.

By providing a unified interface to multiple, often com-
peting, AMR codes, we will be able to utilize similar -
if not identical - analysis scripts and algorithms, which
will enable direct comparison of results between groups
and across methods.

Future Directions

As the capabilities of yt expand, the ability to ex-
tend it to perform new tasks extend as well. Recently,
the beginnings of a TVTK-based frontend were im-
plemented, allowing for interactive, physically-oriented

3D visualization. This relies on the vtkCompositeDat-
aPipeline object, which is currently weakly supported
across the VIK codebase. However, the power of

TVTK as an interface to VTK has significant promise,
and it is a direction we are targeting.

A visualization within yt, usngt e K toolkit to
create 3D isocontours and cutting planes.

Work has begun on simulated observations from large-
scale simulations. The first step toward this is simu-
lating optically thin emissions, and then utilizing an
analysis layer that operates on 2D image buffers.

By publishing yt, and generalizing it to work on mul-
tiple AMR codebases, I hope it will foster collabora-
tion and community efforts toward understanding as-
trophysical problems and physical processes, while fur-
thermore enabling reproducible research.

Acknowledgments

I’d like to acknowledge the guidance of, first and fore-
most, my PhD advisor Prof. Tom Abel, who inspired
me to undertake this project in the first place. Addi-
tionally, I'd like to thank Jeff Oishi, a crucial member
of the development team, and Britton Smith and Brian
O’Shea, both of whom have been fierce advocates for
the adoption of yt as a standard analysis toolkit.
Much of this work was conducted at Stanford Univer-
sity and the Kavli Institute for Particle Astrophysics
and Cosmology, and was supported (in part) by U.S.
Department of Energy contract DE-AC02-76SF00515.

References

[ENZ] http://lca.ucsd.edu/projects/enzo

[HIP] http://www.slac.stanford.edu/grp/ek/
hippodraw/

[WX] http://wxpython.org/

[MPL] http://matplotlib.sf.net/

[NPY] http://numpy.scipy.org/

[TVTK] http://svn.enthought.com/enthought/wiki/
TVTK

[YT] http://yt.enzotools.org/

[TG] http://turbogears.org/

[MPI] http://mpidpy.scipy.org/

[HDF] http://hdfgroup.org/

[KBO] http://knoboo.com/

http://conference.scipy.org/proceedings/SciPy2008/paper_11

50

http://lca.ucsd.edu/projects/enzo
http://lca.ucsd.edu/projects/enzo
http://lca.ucsd.edu/projects/enzo
http://www.slac.stanford.edu/grp/ek/hippodraw/
http://www.slac.stanford.edu/grp/ek/hippodraw/
http://www.slac.stanford.edu/grp/ek/hippodraw/
http://wxpython.org/
http://wxpython.org/
http://wxpython.org/
http://matplotlib.sf.net/
http://matplotlib.sf.net/
http://matplotlib.sf.net/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://svn.enthought.com/enthought/wiki/TVTK
http://svn.enthought.com/enthought/wiki/TVTK
http://svn.enthought.com/enthought/wiki/TVTK
http://yt.enzotools.org/
http://yt.enzotools.org/
http://yt.enzotools.org/
http://turbogears.org/
http://turbogears.org/
http://turbogears.org/
http://mpi4py.scipy.org/
http://mpi4py.scipy.org/
http://mpi4py.scipy.org/
http://hdfgroup.org/
http://hdfgroup.org/
http://hdfgroup.org/
http://knoboo.com/
http://knoboo.com/
http://knoboo.com/
http://conference.scipy.org/proceedings/SciPy2008/paper_11

	Analysis and Visualization of Multi-Scale Astrophysical Simulations Using Python and NumPy
	Analysis of Adaptive Mesh Refinement Data
	Development Philosophy
	Organization
	Object Design and Protocol
	Two-Dimensional Data Representations
	Contour Finding
	Parallel Analysis
	Constraints of Scale
	Frontends and Interfaces
	Generalization
	Future Directions
	Acknowledgments
	References

