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Summarizing Complexity in High Dimensional Spaces
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As the need to analyze high dimensional, multi-
spectral data on complex physical systems becomes
more common, the value of methods that glean use-
ful summary information from the data increases.
This paper describes a method that uses information
theoretic based complexity estimation measures to
provide diagnostic summary information from med-
ical images. Implementation of the method would
have been difficult if not impossible for a non expert
programmer without access to the powerful array
processing capabilities provided by SciPy.

Introduction

There is currently an explosion of data provided by
high precision measurements in areas such as cos-
mology, astrophysics, high energy physics and medi-
cal imaging. When faced with analyzing such large
amounts of high dimensional, multi-spectral data the
challenge is to deduce summary information that pro-
vides physical insight into the behavior of the underly-
ing system in a way that allows for generation and/or
refinement of dynamical models.

A major issue facing those trying to analyze this type
of data is the problem of dealing with a “large” number
of dimensions both in the underlying index space (i.e.
space or space-time) as well as the feature or spectral
space of the data. Versions of the curse of dimensional-
ity arise both from trying to generalize the methods of
time series analysis to analysis in space and space-time
as well as for data having a large number of attributes
or features per observation.

It is here argued that information theoretic complex-
ity measures such as those described in [Youngl] can
be used to generate summary information that char-
acterizes fundamental properties of the dynamics of
complex physical and biological systems. The inter-
pretability and utility of this approach is demonstrated
by the analysis of imaging studies of neurodegenera-
tive disease in human brain. One important reason
for considering such an approach is that data is often
generated by a system that is non-stationary in space
and/or time. This may be why statistical techniques
of spatial image or pattern classification, that rely on
assumptions of stationarity, have given inconsistent
results when applied to magnetic resonance imaging
(MRI) data. While various heuristic methods used for
texture analysis have proven fruitful in particular cases
of - for example - image classification, they typically
do not generalize well or provide much physical in-
sight into the dynamics of the system being analyzed.
The methods described in this paper should be par-
ticularly effective in cases like classification of multi-
spectral data from a particular class of physical object,
i.e. for which the data to be analyzed and compared

comes from a restricted class such as brain images from
a set of subjects exhibiting the symptoms of one of a
small class of neurodegenerative disease. The methods
described allow for direct estimation of summary vari-
ables for use in classification of the behavior of physical
systems, without requiring the explicit constructions
described in [Crutch].

Methods

The complexity estimation methods used in this study
were introduced in [Crutch] for time series analysis.
The fundamental question addressed there was how
much model complexity is required to optimally pre-
dict future values of a time series from past values.
In addition a framework was provided for building the
optimal model in the sense of being the minimally com-
plex model required for reliable predictions.

Heuristic arguments and examples provided in
[Youngl] showed that only slight modifications were
required to generalize the formalism for analysis of spa-
tial data and in particular medical image data. Critical
to the definition of complexity is the notion of “state”
which provides the ability to predict observed values
in a time series or image. Simply put, the complexity
of the set of states required to describe a particular
time series or image, is an indication of the complexity
of the system that generated the time series or image.
This in effect provides a linguistic description of the
system dynamics by directly describing the structure
required to infer which measurement sequences can be
observed and which cannot. As described in [Crutch]
to accurately and rigorously characterize the underly-
ing complexity of a system, the set of states must in
fact constitute a minimal set of optimally predictive
states. How those criteria are defined and satisfied by
the constructions outlined in this paper is described in
[Youngl], [Young2]. The simplest notion of complex-
ity that arises from the above considerations involves
a count of the number of states required for making
optimal predictions. Since enumerated states can oc-
cur with varying frequencies during the course of ob-
servations, introducing the notion of state probability
is natural. Shannon’s original criteria for information
[Shan], provides the simplest definition of an additive
quantity associated with the probability distribution
defined over a set of states. Complexity can then be
described as an extensive quantity (i.e. a quantity that
scales with measurement size) defined as the Shannon
information of the probability distribution of the set of
states describing the underlying system. For equally
probable states this definition simply yields the log of
the number of states as a measure of complexity. This
notion of complexity, based on considerations of opti-
mal prediction, is very different from the traditional
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notion of Kolmogorov complexity [Cov], which quan-
tifies series of random values as the most complex,
based on considerations of incompressibility of a se-
quence. Here sequence is interpreted as a “program”
in the context of computation, and data in the context
of data analysis. Both notions of complexity provide
important and complementary measures for character-
izing structure in images. In the following, the optimal
prediction based definition of complexity is the statis-
tical complexity (SC) and the incompressibility based
definition of complexity is entropy (H), since the Kol-
mogorov complexity corresponds, in the case of data
analysis, to what physicists typically refer to as en-
tropy [Cov]. A third quantity is excess entropy (EE),
defined in [Feld]. EE is complementary to SC and H,
and can be shown to provide important additional in-
formation. EE essentially describes the convergence
rate of the entropy H to its asymptotic value as it is
estimated over larger and larger volumes of the index
space. The combination of EE, H and SC gives a ro-
bust characterization of the dynamics of a system.

The estimation and use of H, SC, and EE for classifi-
cation of images, proceeds in 4 stages:
1. choice of an appropriate feature space (e.g. in a medical
image analysis some combination of co-registered structural
MRI, diffusion images,spectroscopic images, PET images, or
other modalities).
2. segmentation (clustering) of feature space, i.e. clustering in
the space of features without regard to coordinates (analogous
to standard image segmentation for a single feature).
3. mapping of the clustered values back to the original coordi-
nate grid and generation of estimates of H, SC, and EE from
the image of clustered values.
4. classification of the data sets (e.g. images) based on the
complexity estimates (e.g. via supervised or unsupervised
learning algorithms)

The software implementation of the above methods is
an open source package written in Python using SciPy
and the Rpy [More] package to provide access to the
statistical and graphical capabilities of the R statisti-
cal language [RDev] and supplemental libraries. The
cluster and e1071 [Dimi] R packages were used for clus-
tering and the AnalyzeFMRI [March] package for MR
image processing. Image analysis was performed us-
ing this package on a 46 processor Beowulf cluster us-
ing the PyPAR [Niel] Python wrapper for the message
passing interface (MPI). Complete (fully automated)
processing of a single subject takes on the order of 40
minutes on a single 3 GHz processor.

Some important questions for future developments of
the package include whether enough statistical capa-
bility will or should be provided directly in SciPy to
obviate the need for inclusion of Rpy and R and how
easy it will be to incorporate Ipython as a base plat-
form for distributed processing.

In the next section I describe an illustrative analysis
of structural MRI images from 23 cognitively normal
(CN) subjects, 24 patients diagnosed with Alzheimer’s
disease (AD) and 19 patients diagnosed with frontal
temporal dementia (FTD). The analysis and data are
described in [Young3]. In brief: our feature space was

the segmentation of each MRI image into gray matter,
white matter and cerebrospinal fluid; we then applied
a template of neighbouring voxels (2 neighboring vox-
els, compared to the next two voxels in the same line)
to generate a local co-occurrence matrix of the three
tissue classes, centered at each voxel; we applied the
complexity metrics to this matrix, giving us an H, EE
and SC measure at each voxel of each scan. We can
then use regional or global summary statistics from
these voxel-wise measures to classify scans according
to diagnostic group.

Results

The variability of the three complexity measures in
different brain regions is illustrated in Figure (1), sep-
arately for single representative CN, AD, and FTD
subjects.
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Figure 1
Simultaneous variability of entropy (H), excess en-
tropy (EE) and statistical complexity (SC) of differ-
ent brain regions in a single control subject, a single
subject diagnosed with AD, and a single subject di-
agnosed with FTD, represented in an additive red-
green-blue (RGB) color space.

An additive red-green-blue (RGB) color space is used
to represent simultaneous values of H, EE, and SC. In
this color space the value of H is represented on the
red axis, EE on the green axis and SC on the blue
axis. In this representation, a higher saturation of red
represents a higher value of H, implying lack of corre-
lation of structural patterns in an image region. Sim-
ilarly, a higher saturation of green represents a higher
value of EE, implying increased long range correlations
of structural patterns and a higher saturation of blue
represents a higher value of SC, implying an increase
of locally correlated patterns. Accordingly, a simulta-
neous increase/decrease of all three complexity mea-
sures results in brighter/darker levels of gray. The
most prominent effects in the AD subject compared
to the CN and FTD subjects as seen in this represen-
tation are decreased correlation in the hippocampus
(faint red regions, yellow arrows in columns 1 and 2)
and diminished long range correlations of structural
patterns in superior parietal lobe regions (faint green
regions, arrows in column 6). In contrast, the most
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prominent effect in the FTD subject compared with
the CN and AD subjects is greater long range cor-
relation in medial frontal lobe and anterior cingulum
(intense green regions, arrows in columns 5 and 6).
An important practical question is whether the H, EE,
and SC measures are able to distinguish between di-
agnostic groups as well as the current standard, which
is to use local measures of cortical gray matter vol-
ume and thickness. In the following, we use logistical
regression to classify scans, comparing performance us-
ing different measures.

Table (1) compares results using the structural com-
plexity estimation against results on use of gray
matter (GM) cortical thickness estimation using the
FreeSurfer software on the same set of subjects.

Metric / AD/CN FTD/CN AD/FTD
groups (%) (%) (%)
Parietal 95+4 81+7 85 +6
GM volume
Parietal 96 + 3 82+6 86+ 6
GM thick-
ness
3  region | 9241 87+1 91+1
complexity

Table 1: logistical regression classification using Freesurfer and
complexity metrics

In the table, comparisons are between classification ac-
curacy based on structural complexity estimation and
classification accuracy based on tissue volume and cor-
tical thickness estimation (the parietal lobes provided
the best separation between AD and CN subjects and
the only significant separation between AD and FTD
subjects for the volume and thickness estimates). For
each, complexity or FreeSurfer, the regions providing
the best separation between the groups are listed: for
complexity the hippocampus, parietal lobe, precuneus,
and Heschl’s gyrus are taken together; for FreeSurfer
we took measures of the thickness of parietal lobe gray
matter (GM). This shows that structural complexity
measures slightly outperformed volume and cortical
thickness measures for the differential classification be-
tween AD and FTD as well as between FTD and CN.
For the classification between AD and CN, volume and
cortical thickness estimation achieved slightly higher
classifications than structural complexity estimation.
Note that the classification results above may be close
to the practical limit; clinician diagnosis of both AD
and FTD does not have perfect agreement with post-
mortem diagnosis from pathology, with errors in the
same order as those reported here.

The results above compared pairwise between groups
(CN vs AD, CN vs FTD, AD vs FTD). We can also
assess prediction accuracy when trying to separate all
three 3 groups at once, using linear discriminant anal-
ysis (LDA). This is illustrated graphically in Figures

(2a), (2b), and (2c) which depict the projections onto
the first two linear discriminants (labeled LD1 and
LD2 in the Figures) from the LDA corresponding to
the region selections for complexity estimation. This
shows the expected result that group separation promi-
nently increased with the use of focal measures, such
as each of the 13 regions, as compared to global mea-
sures, such as whole brain.
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Figure 2 (a)

Results of linear discriminant analysis (LDA) using
structural complexity estimates with x and y axes
representing projections of complexity estimates onto
the 1st and 2nd linear discriminants for the whole
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Figure 2 (b)
Results of linear discriminant analysis (LDA) using
structural complexity estimates with x and y axes
representing projections of complexity estimates onto
the 1st and 2nd linear discriminants for the hip-
pocampus, subiculum, and precuneus.
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Figure 2 (c)
Results of linear discriminant analysis (LDA) using
structural complexity estimates with x and y axes
representing projections of complexity estimates onto
the 1st and 2nd linear discriminants for all 13 regions.

Conclusion

This paper provides two main results. First, despite
their simplicity and automated nature, use of struc-
tural complexity estimates is effective at capturing sys-
tematic differences on brain MRIs. They appear to
be able to capture a variety of effects such as cor-
tical volume loss and thinning. A second result is
that complexity estimates can achieve similar classifi-
cation separation between controls, AD and FTD pa-
tients, to that obtainable by highly specialized mea-
sures of cortical thinning. The classification accuracy
provided by all of these methods is at or near the limit
of the ability to reliably diagnose subjects during life,
so further comparisons between methods will require
improved clinical diagnosis, post-mortem diagnosis, or
larger samples.

Though the complexity estimation results were promis-
ing, a number of issues remain before the methods can
provide a concrete, interpretable tool suitable for clini-
cal use. Future work will extend structural complexity
estimation to multimodal imaging ([Youngl]) in order
to study neurodegenerative disease. This approach
may be particularly effective as it does not depend
on spatially confined effects in the different modalities
for its classification power, as is the case for standard
multivariate linear model image analysis. It also pro-
vides a more general and interpretable approach to un-
derstanding structural image properties than methods
such as fractal and texture analysis.

Information theory based structural complexity esti-
mation shows promise for use in the study and clas-
sification of large multivariate, multidimensional data
sets including those encountered in imaging studies of
neurodegenerative disease.
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