
Proceedings of the 7th Python in Science Conference (SciPy 2008)

Converting Python Functions to Dynamically Compiled C
Ilan Schnell (ilanschnell@gmail.com) – Enthought, USA

Applications written in Python often suffer from the
lack of speed, compared to C and other languages
which can be compiled to native machine code. In
this paper we discuss ways to write functions in pure
Python and still benefit from the speed provided by
C code compiled to machine code. The focus is to
make it as easy as possible for the programmer to
write these functions.

Motivation

There are various tools (SWIG, Pyrex, Cython, boost,
ctypes, an others) for creating and/or wrapping C
functions into Python code. The function is either
written in C or some special domain-specific language,
other than Python. What these tools have in common
are several inconvenience for the scientific programmer
who quickly wants to accomplish a certain task:

• Learning the tool, although there are excellent ref-
erences and tutorials online, the overhead (in partic-
ular for the casual programmer) is still significant.

• Dealing with additional files.

• The source code becomes harder to read, because
the function which needs some speedup is no longer
in the same Python source.

• If the application need to be deployed, there is usu-
ally an extra build step.

Overview of CPython

Firstly, when referring to Python, we refer to the
language not the implementation. The most-widely
used implementation of the Python programming lan-
guage is CPython (Classic Python, although some-
times also referred to as C Python, since implemented
in C). CPython consists of several components, most
importantly a bytecode compiler and a bytecode in-
terpreter. The bytecode compiler translates Python
source code into Python bytecode. Python bytecode
consists of a set of instructions for the bytecode inter-
preter. The bytecode interpreter (also called Python
virtual machine) is executing bytecode instructions.
Python bytecode is really an implementation detail of
CPython, and the instruction set is not stable, i.e. the
bytecode changes with every major Python version.
One could perfectly write a Python interpreter which
does not use bytecode at all. However, there are at
least two good reasons for having bytecode as an in-
termediate step.

• Speed: A Python program only needs to be trans-
lated to bytecode when it is first loaded into the
interpreter.

• Design: Having bytecode as an internal intermediate
step simplifies the design of the (entire) interpreter,
since each component (bytecode compiler and byte-
code interpreter) can be individually maintained, de-
bugged and tested.

The PyPy project

In this section, we give a brief overview of the PyPy
project. The project started by writing a Python byte-
code interpreter in Python itself, and grew to imple-
ment an entire Python interpreter in Python. Com-
pared to the CPython implementation, Python takes
the role of the C Code. The clear advantage of this
approach is that the description of the interpreter is
shorter and simpler to read, as many implementation
details vanish. The obvious drawback of this approach
is that this interpreter will be unbearably slow as long
as it is run on top of CPython. To get to a more use-
ful interpreter again, the PyPy project translates the
high-level description of Python to a lower level one.
This is done by translating the Python implementa-
tion on the Python interpreter to C source. In order
to translate Python to C, the PyPy virtual machine
is written in RPython. RPython is a restricted subset
of Python, and the PyPy project includes a RPython
translator, which can produce output in C, LLVM, and
other languages.

Using the PyPy translator

The following piece of Python code shows how the
translator in PyPy can be used to create a compile
decorator, i.e. a decorator functions which lets the
programmer easily compile a Python function:

I. Schnell: Proc. SciPy 2008, G. Varoquaux, T. Vaught, J. Millman (Eds), pp. 70–73 70

http://www.swig.org/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://cython.org/
http://www.boost.org/
http://codespeak.net/pypy/dist/pypy/doc/home.html


Proceedings of the 7th Python in Science Conference (SciPy 2008)

from pypy.translator.interactive import Translation

class compdec:
def __init__(self, func):

self.func = func
self.argtypes = None

def __call__(self, *args):
argtypes = tuple(type(arg) for arg in args)
if argtypes != self.argtypes:

self.argtypes = argtypes
t = Translation(self.func)
t.annotate(argtypes)
self.cfunc = t.compile_c()

return self.cfunc(*args)

@compdec
def is_prime(n):

if n < 2:
return False

for i in xrange(2, n):
if n%i == 0:

return False
return True

print sum(is_prime(n) for n in xrange(100000))

There are several things to note about this code:

• A decorator is only syntactic sugar.

• The decorator function is in fact a class which upon
initialization receives the function to be compiled.

• When the compiled function is called, the special
__call__ method of the instance is invoked.

• A decorated function is only compiled when invoked
with a new set of arguments types.

• The function which is compiled, (is_prime in the ex-
ample) must restrict it’s features to RPython, e.g. it
can not contain dynamic features like Python’s eval
function.

In the above decorator example all the hard work is
done by PyPy. Which includes:

• The translation of the RPython function to C.

• Invoking the C compiler to create a C extension
module.

• Importing the compiled function back into the
Python interpreter.

The advantage of the above approach is that the em-
bedded function uses Python syntax and is therefore
an internal part of the application. Moreover, a func-
tion can be written without even having PyPy in mind,
and the compile decorator can be applied later when
necessary.

A faster numpy.vectorize

Using the PyPy translator, we have implemented a
function called fast_vectorize. It is designed to be-
have as NumPy’s vectorize function, i.e. create a
generic function object (ufunc) from a Python func-
tion. The argument types (signature) of the function
need to be provided, and it is possible to provides sev-
eral signatures for the same function. For each sig-
nature, the PyPy translator is invoked, to generate
a C version of the function for the given signature.
The UFunc object is created using the function PyU-
Func_FromFuncAndData available through NumPy’s
C-API, the support code necessary to put all the pieces
together is generated, and at the end scipy.weave is
used to create the UFunc object. The figure gives a
high level overview of fast_vectorize internals.

Here are some benchmarks in which the simple func-
tion is evaluated for a numpy array of size 10 Million
using different methods:

def f(x):
return 4.2 * x*x - x + 6.3

These benchmarks were obtained on a 2.4GHz Linux
system:

Method Runtime
(sec)

Speed
vs.

1 numpy.vectorize8.674 69.9
2 x as

numpy.array
0.467 3.8

3 fast_vectorize 0.124 1.0
4 inlined 0.076 0.61

Remarks:

1. numpy.vectorize is slow, everything is imple-
mented in Python, and no UFunc object is created.

2. When x is used as the array itself, the calculation
is more memory-intensive, since for every step in
the calculation a copy of the array is being made.
For example, first 4.2 is multiplied to the array
x, which results in a new array (tmp = 4.2 * x)
which is then multiplied with the array x, which
again results in a new array, and so on.

3. Here, the function f is translated to a Ufunc ob-
ject which performs all steps of the calculation in
compiled C code. Also worth noting is that the
(inner) loop over 10 Million elements is a C loop.

4. In this example, the C function has been inlined
into the inner C loop. For simplicity and clarity,
this has been available in fast_vectorize. Also, if
the function is more complicated than the one in
the benchmark, the performance increase will be
less significant.

71 http://conference.scipy.org/proceedings/SciPy2008/paper_16

http://scipy.org/Numpy_Example_List_With_Doc#vectorize
http://conference.scipy.org/proceedings/SciPy2008/paper_16


Converting Python Functions to Dynamically Compiled C

When caluculation the simple quadratic function as
a numpy array (2), it is also possible to rewrite the
function in such a way that fewer arrays are created
by doing some operations in-place, however this only
created a modest speedup to 10%. A more signifi-
cant speedup is achieved by rewriting the function as
f(x) = (a*x + b) * x + c. It should be mentioned
that whenever one is trying to optimize some numer-
ical code one should always try to first optimize the
mathematical expression or the algorithms being used
before trying to optimize the execution of some partic-
ular piece of code.
There are many interesting applications for the PyPy
translator, apart from the generation of UFunc objects.
I encourage everyone interested in this subject to take
a closer look at the PyPy project.

Note I am working on putting the fast_vectorize function in
SciPy.

Acknowledgments

The author would like to thank SciPy community and
Enthought for offering suggestions, assistance, and for

making this work possible. In particular, I would like
to thank Travis Oliphant for questioning me about how
including compiled functions into Python can be done
is an easy manner, and his support throughout this
project. Also, I would like to thank Eric Jones for
sharing his knowledge about weave. Thanks to Gael
Varoquaux for suggesting the name fast_vectorize.

References

• PyPy: http://codespeak.net/pypy/dist/pypy/
doc/home.html

• SWIG: http://www.swig.org/

• Pyrex: http://www.cosc.canterbury.ac.nz/
greg.ewing/python/Pyrex/

• Cython: http://cython.org/

• boost: http://www.boost.org/

• vectorize: http://scipy.org/Numpy_Example_
List_With_Doc#vectorize

http://conference.scipy.org/proceedings/SciPy2008/paper_16 72

http://codespeak.net/pypy/dist/pypy/doc/home.html
http://codespeak.net/pypy/dist/pypy/doc/home.html
http://codespeak.net/pypy/dist/pypy/doc/home.html
http://codespeak.net/pypy/dist/pypy/doc/home.html
http://www.swig.org/
http://www.swig.org/
http://www.swig.org/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://cython.org/
http://cython.org/
http://cython.org/
http://www.boost.org/
http://www.boost.org/
http://www.boost.org/
http://scipy.org/Numpy_Example_List_With_Doc#vectorize
http://scipy.org/Numpy_Example_List_With_Doc#vectorize
http://scipy.org/Numpy_Example_List_With_Doc#vectorize
http://conference.scipy.org/proceedings/SciPy2008/paper_16

	Converting Python Functions to Dynamically Compiled C
	Motivation
	Overview of CPython
	The PyPy project
	Using the PyPy translator
	A faster numpy.vectorize
	Acknowledgments
	References

