Proceedings of the 7" Python in Science Conference (SciPy 2008)

unPython: Converting Python Numerical Programs into C

Rahul Garg (gargil@cs.ualberta.ca) — University of Alberta, CANADA
Jose Nelson Amaral (amaral@cs.ualberta.ca) — University of Alberta, CANADA

unPython is a Python-to-C compiler intended for
numerical Python programs. The compiler takes as
input type-annotated Python source and produces
C source code for an equivalent extension module.
The compiler is NumPy-aware and can convert most
NumPy indexing or slicing operations into C array
accesses. Furthermore the compiler also allows an-
notating certain for-loops as parallel and can gen-
erate OpenMP code thus providing an easy way to
take advantage of multicore architectures.

Introduction

Python and NumPy form an excellent environment for
numerical applications. However often performance of
pure Python code is not enough and the user is forced
to rewrite some critical portions of the application in
C. Rewriting in C requires writing glue code, manual
reference count management and knowledge of Python
and NumPy C APIs. This reduces the programmer
productivity substantially. Moreover rewriting a mod-
ule in C obscures the logic of the original Python mod-
ule within a large amount of boilerplate. Thus exten-
sion modules written in C can often become very hard
to maintain.

To relieve the programmer from writing C code, we
present unPython. unPython is a Python to C com-
piler that takes as input annotated Python code and
produces as output C code for an equivalent extension
module. To compile a module with unPython, a pro-
grammer adds annotations, such as type declarations,
to a module. The programmer then invokes unPython
compiler and unPython converts the Python source
into C. Annotations are added in a non-interfering
way such that the annotated Python code still remains
valid Python and thus can still run on CPython inter-
preter giving the same results as the original unanno-
tated Python code.

The distinguishing feature of unPython is that un-
Python is focused on compiling numerical applications
and knows about NumPy arrays. unPython therefore
has knowledge of indexing and slicing operations on
NumPy arrays and converts them into efficient C ar-
ray accesses. The other distinguishing feature of un-
Python is its support for parallel loops. We have in-
troduced a new parallel loop notation thus allowing
Python programmers to take advantage of multicores
and SMPs easily from within Python code. While the
code runs as serial loop on the interpreter, unPython
converts specially marked loops into parallel C loops.
This feature is especially important since CPython has
no built-in support for true concurrency and therefore
all existing solutions for parallelism in Python are pro-
cess based. Moreover since parallel loops are inspired

from models such as OpenMP [openmp], the parallel
loop will be familiar to many programmers and is eas-
ier to deal with than a general thread-and-lock-based
model.

Features

1. unPython is focused on numerical applications and
hence can deal with int, float, double and NumPy
array datatypes. Arbitrary precision arithmetic is
not supported and the basic numeric types are con-
verted into their C counterparts. NumPy array
accesses are converted into C array accesses. Cur-
rently “long” integers are not supported but will
be added after transition to Python 3.

2. To compile a function, a user specifies the type
signature of the function. The type signature is
provided through a decorator. When running on
the interpreter, the decorator simply returns the
decorated function as-is. However when compiled
with the unPython compiler, the decorator takes
on special meaning and is seen as a type decla-
ration. The types of all local variables are auto-
matically inferred. To facilitate type inference, un-
Python requires that the type of a variable should
remain constant. In Python 3, we aim to replace
decorators with function annotations. An example
of the current decorator-based syntax is as follows:

2 types for 2 parameters
last type specified for return type
Qunpython.type(’int’,’int’,’int’)
def f(x,y):
#compiler infers type of temp to be int
temp = x +y
return temp

3. User-defined classes are supported. However mul-
tiple inheritance is not currently supported. The
programmer declares the types of the member vari-
ables as well as member functions. Currently
types of member variables are specified as a string
just before a class declaration. Subclassing builtin
types such as int, float, NumPy arrays, etc. is also
not supported. Dynamic features of Python such
as descriptors, properties, staticmethods, class-
methods, and metaclasses are currently not sup-
ported.

4. unPython does not currently support dynamic fa-
cilities such as exceptions, iterators, generators,
runtime code generation, etc.

5. Arbitrary for-loops are not supported. However
simple for-loops over range or xrange are sup-
ported and are converted into efficient C counter-
parts.

73 R. Garg, J. Amaral: Proc. SciPy 2008, G. Varoquaux, T. Vaught, J. Millman (Eds), pp. 73-77

unPython: Converting Python Numerical Programs into C

6. Parallel loops are supported. Parallel loops are
loops where each iteration of the loop can be exe-
cuted independently and in any order. Thus such
a loop can be speeded up if multiple cores are
present. To support parallel loops, we introduce
a function called prange. prange is just a normal
Python function which behaves exactly like xrange
on the interpreter. However, when compiling with
unpython, the compiler treats it as a parallel range
declaration and treats each iteration of the cor-
responding loop as independent. A parallel loop
is converted into corresponding OpenMP declara-
tions. OpenMP is a parallel computing industry
standard supported by most modern C compilers
on multicore and SMP architectures. An example
of a parallel loop:

#assume that x is a NumPy array
#the following loop will execute in parallel

for i in unpython.prange(100):
x[i] = x[i] + 2

Under some conditions, prange loops cannot be
converted to parallel C code because CPython is
not thread safe. For example, if a method call is
present inside a parallel loop body, then the loop is
currently not parallelized and is instead compiled
to a serial loop. However prange loops contain-
ing only operations on scalar numeric datatypes
or NumPy arrays can usually be parallelized by
the compiler.

7. Preliminary support for homogeneous lists, tuples,
and dictionaries is present.

Implementation

unPython is a modular compiler implemented as mul-
tiple separate components. The compiler operates as
follows:

1. A Python script uses CPython’s compiler mod-
ule to read a Python source file and converts the
source file into an Abstract Syntax Tree (AST).
AST, as the name implies, is a tree-based rep-
resentation of source code. unPython uses AST
throughout the compiler as the primary method
of representing code.

2. The AST formed is preprocessed and dumped into
a temporary file.

3. The temporary file is then read back by the core
of the compiler. The core of the compiler is im-
plemented in Java and Scala. To read the tempo-
rary file, the compiler uses a parser generated by
ANTLR. The parser reads the temporary file and
returns the AST read from the file.

4. Now the compiler walks over the AST to check
the user-supplied type information and adds type
information to each node.

5. The typed AST undergoes several transformations.
The objective of each transformation is to either
optimize the code represented by the AST or to
convert the AST to a representation closer to C
source code. Each phase is called a “lowering” of
the AST because with each transformation, the
AST generally becomes closer to low-level C code
than high-level Python code. The term “lower-
ing” is inspired from the Open64 [open64] com-
piler which also uses a tree like structure as the
intermediate representation.

6. A final code generation pass takes the simplified
AST and generates C code. We are looking to fur-
ther split this phase so that the compiler will first
generate a very low level representation before gen-
erating C code. Splitting the final code generation
into two phases will allow us to easily add new
backends.

Most of the compiler is implemented in Java and Scala
[scala]. Scala is a statically-typed hybrid functional
and object-oriented language that provides facilities
such as type inference, pattern matching and higher
order functions not present in Java. Scala compiles
to JVM bytecodes and provides easy interoperability
with Java. The choice of implementation language
was affected by several factors. First, by using lan-
guages running on the JVM, we were able to utilize
the standard JVM libraries like various data struc-
tures as well as third party libraries such as ANTLR
and FreeMarker. Second, distribution of compiler bi-
naries is simplified since binaries run on the JVM and
are platform independent. Further, both Java and
Scala usually perform much faster than Python. Fi-
nally, Scala provides language features such as pattern
matching which were found to considerably simplify
the code.

Experimental Results

The platform for our evaluations was AMD Phenom
x4 9550 with 2 GB RAM running 32-bit Linux. GCC
4.3 was used as the backend C compiler and “-O2 -
fopenmp” flags were passed to the compiler unless oth-
erwise noted. The test codes are available at http:
//www.cs.ualberta.ca/“gargl/scipy08/

Recursive benchmark : Compiled vs Interpreted

The programming language shootout [shootout] is a
popular benchmark suite often used to get a quick
overview of speed of simple tasks in a programming
language. We chose integer and floating point ver-
sions of Fibonacci and Tak functions from “recursive”
benchmark as a test case. The inputs to the func-
tions were the same as the inputs in the shootout.
We chose a simple Python implementation and mea-
sured the time required by the Python interpreter to
complete the benchmark. Then type annotations were

http://conference.scipy.org/proceedings/SciPy2008/paper_17

74

http://www.cs.ualberta.ca/~garg1/scipy08/
http://www.cs.ualberta.ca/~garg1/scipy08/
http://www.cs.ualberta.ca/~garg1/scipy08/
http://conference.scipy.org/proceedings/SciPy2008/paper_17

Proceedings of the 7*® Python in Science Conference (SciPy 2008)

then added and the code was compiled to C using un-
Python.

The interpreted version finished the benchmark in
113.9 seconds while the compiled version finished in
0.77 seconds thus giving a speedup of 147x.

Matrix multiplication : Serial vs Parallel

We present experimental evaluation of the parallel loop
construct “prange”. We wrote a simple matrix multi-
plication function in Python to multiply two numpy
arrays of doubles. The function was written as a 3-
level loop nest with the outer loop parallelized using
prange while the inner two loops were xrange.

We measured the performance of C + OpenMP code
generated by unPython. For each matrix size, the
number of threads was varied from 1 to 4 to obtain
the execution time. The execution times for each ma-
trix size were then divided by the execution time of 1
thread for that particular matrix size. The resulting
speedups are shown in the following plot.

Speedups on Matrix Multiplication
Code compiled using unPython

35
3
25 W 1 thread
Q2 2 B 2 threads
= [3 threads
o 15
o ® 4 threads
w 1
05
0
512 768 1024
Matrix sizes

We also measured the execution time of a purely serial
version of matrix multiplication with no parallel loops
to measure the overhead of OpenMP on single thread
performance. We found that the difference in execu-
tion time of the serial version and 1-thread OpenMP
version was nearly zero in each case. Thus in this case
we found no parallelization overhead over a serial ver-
sion.

Related Work

Several other Python compilers are under develop-
ment. Cython [cython] is a fork of Pyrex [pyrex| com-
piler. Cython takes as input a language similar to
Python but with optional type declarations in a C
like syntax. Pyrex/Cython produces C code for exten-
sion modules. Cython is a widely used tool and sup-
ports more Python features than unPython. Cython
recently added support for efficient access to NumPy
arrays using the Python buffer interface. Cython does
not support parallel loops currently.

Shedskin [shedskin] is a Python to C++ compiler
which aims to produce C++ code from Python code
without any linking to Python interpreter. Shedskin
relies on global type inference. Shedskin does not di-
rectly support numpy arrays but instead provides more
efficient support for list datatype.

PyPy [pypy] is a project to implement Python in
Python. PyPy project also includes a RPython to C
compiler. RPython is a restricted statically typable
subset of Python. PyPy has experimental support for
NumPy.

Future Work

unPython is a young compiler and a work in progress.
Several important changes are expected over the next
year.

1. Broader support for NumPy is under development.
We intend to support most methods and functions
provided by the NumPy library. Support for user
defined ufuncs is also planned.

2. Lack of support for exceptions is currently the
weakest point of unPython. However exception
support for Python is quite expensive to imple-
ment in terms of performance.

NumPy array accesses can throw out-of-bounds
exceptions. Similarly core datatypes, such as lists,
can also throw many exceptions. Due to the dy-
namic nature of Python, even an object field access
can throw an exception. Thus we are searching for
a solution to deal with exceptions in a more se-
lective manner where the user should be able to
trade-off safety and performance. We are looking
at prior work done in languages such as Java.

3. We intend to continue our work on parallel com-
puting in three major directions. First we intend
to investigate generation of more efficient OpenMP
code. Second, we will investigate compilation to
GPU architectures. Finally research is also being
done on more general parallel loop support.

4. Support for the Python standard library module
ctypes is also planned. ctypes allows constructing
interfaces to C libraries in pure Python.

5. Research is also being conducted on more sophis-
ticated compiler analysis such as dependence anal-
ysis.

Conclusion

The paper describes unPython, a modern compiler
infrastructure for Python. unPython is a relatively
young compiler infrastructure and has not yet reached
its full potential. unPython has twin goals of great

75

http://conference.scipy.org/proceedings/SciPy2008/paper_17

http://conference.scipy.org/proceedings/SciPy2008/paper_17

unPython: Converting Python Numerical Programs into C

performance and easily accessible parallel comput-
ing. The compiler has a long way to go but we be-
lieve with community participation, the compiler will
achieve its goals over the next few years and will be-
come a very important tool for the Python commu-
nity. unPython is made available under GPLv3 at
http://code.google.com/p/unpython.

References

[cython] http://cython.org

[open64] http://www.open64.net
[openmp] http://openmp.org
[
[

pPyDYy] http://codespeak.net/pypy

pyrex] http://wuw.cosc.canterbury.ac.nz/greg.
ewing/python/Pyrex/

[scala] http://www.scala-lang.org

[shedskin] http://code.google.com/p/shedskin
[shootout] http://shootout.alioth.debian.org

http://conference.scipy.org/proceedings/SciPy2008/paper_17

76

http://code.google.com/p/unpython
http://code.google.com/p/unpython
http://code.google.com/p/unpython
http://cython.org
http://cython.org
http://cython.org
http://www.open64.net
http://www.open64.net
http://www.open64.net
http://openmp.org
http://openmp.org
http://openmp.org
http://codespeak.net/pypy
http://codespeak.net/pypy
http://codespeak.net/pypy
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://code.google.com/p/shedskin
http://code.google.com/p/shedskin
http://code.google.com/p/shedskin
http://shootout.alioth.debian.org
http://shootout.alioth.debian.org
http://shootout.alioth.debian.org
http://conference.scipy.org/proceedings/SciPy2008/paper_17

	unPython: Converting Python Numerical Programs into C
	Introduction
	Features
	Implementation
	Experimental Results
	Recursive benchmark : Compiled vs Interpreted
	Matrix multiplication : Serial vs Parallel

	Related Work
	Future Work
	Conclusion
	References

