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land

This paper presents the Python implementation of
an interval system in the extended real set that is
closed under arithmetic operations. This system
consists of the lattice generated by union and inter-
section of closed intervals, with operations defined
by image closure of their real set counterparts. The
effects of floating-point rounding are accounted for
in the implementation. Two applications will be dis-
cussed: (1) estimating the precision of numerical
computations, and (2) solving non-linear equations
(possibly with multiple solutions) using an interval
Newton-Raphson algorithm.

Introduction

Consider the following function, an adaptation [R1] of
a classic example by Rump [R2]:

f(x, y) =(333.75− x2)y6 + x2(11x2y2 − 121y4 − 2)

+ 5.5y8 + x/(2y)

Implementing this function in Python is straightfor-
ward:

>>> def f(x,y):
... return (
... (333.75 - x**2)* y**6 + x**2 *
... (11* x**2 * y**2 - 121 * y**4 - 2)
... + 5.5 * y**8 + x/(2*y))

Evaluating f(77617, 33096) yields
>>> f(77617.0, 33096.0)
1.1726039400531787

Since f is a rational function with rational coefficients,
it is possible in fact to carry out this computation by
hand (or with a symbolic mathematical software), thus
obtaining

f(77617, 33096) = −54767
66192

= −0.827396 . . .

Clearly, the former result, 1.1726... is completely
wrong: sign, order of magnitude, digits. It is exactly
to address the problems arising from the cascading ef-
fects of numerical rounding that interval arithmetic
was brought to the attention of the computing com-
munity. Accordingly, this paper presents the Python
implementation [R4] of an interval class that can be
used to provide bounds to the propagation of round-
ing error:

>>> from interval import interval
>>> print f(interval(77617.0), interval(33096.0))
interval([-3.54177486215e+21, 3.54177486215e+21])

This result, with a spread of approximately 7 × 1021,
highlights the total loss of significance in the result.
The original motivations for interval arithmetic do not

exhaust its possibilities, though. A later section of this
papers presents the application of interval arithmetic
to a robust non-linear solver finding all the discrete
solutions to an equation in a given interval.

Multiple Precision

One might be led into thinking that a better result in
computing Rump’s corner case could be achieved sim-
ply by adopting a multiple precision package. Unfortu-
nately, the working precision required by an arbitrary
computation to produce a result with a given accuracy
goal is not obvious.
With gmpy [R3], for instance, floating-point values can
be constructed with an arbitrary precision (specified
in bits). The default 64 bits yield:

>>> from gmpy import mpf
>>> f(mpf(77617, 64), mpf(33096, 64))
mpf(’-4.29496729482739605995e9’,64)

This result provides absolutely no indication on its
quality. Increasing one more bit, though, causes a
rather dramatic change:

>>> f(mpf(77617, 65), mpf(33096, 65))
mpf(’-8.2739605994682136814116509548e-1’,65)

One is still left wandering whether further increasing
the precision would produce completely different re-
sults.
The same conclusion holds when using the decimal
package in the standard library.

>>> from decimal import Decimal, getcontext
>>> def fd(x,y):
... return (
... (Decimal(’333.75’)-x**2)* y**6 + x**2 *
... (11* x**2 * y**2 - 121*y**4 - 2)
... + Decimal(’5.5’) * y**8 + x/(2*y))

The default precision still yields meaningless result:
>>> fd(Decimal(77617), Decimal(33096))
Decimal("-999999998.8273960599468213681")

In order to get a decently approximated result, the
required precision needs to be known in advance:

>>> getcontext().prec = 37
>>> fd(Decimal(77617), Decimal(33096))
Decimal("-0.827396059946821368141165095479816292")

Just to prevent misunderstandings, the purpose of
this section is not to belittle other people’s work
on multiple-precision floating-point arithmetic, but to
warn of a possibly naive use to tackle certain issues of
numerical precision loss.
Clearly, very interesting future work can be envisaged
in the integration of multiple-precision floating-point
numbers into the interval system presented in this pa-
per.
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Functions of intervals

Notation-wise, the set of all closed intervals with end-
points in a set X is denoted as

IX = {[a, b] | a, b ∈ X}

The symbols R and R∗ denote the set of the real
numbers and the extended set of real numbers, R∗ =
R ∪ {−∞,+∞}. Let f([a, b]) be the image of the
closed interval [a, b] under the function f . Real anal-
ysis teaches that if the interval is bounded and the
function is continuous over the interval, then f([a, b])
is also a closed, bounded interval, and, more signifi-
cantly,

f([a, b]) =
[

min
x∈[a,b]

f(x), max
x∈[a,b]

f(x)
]

(1)

Computing the minimum and maximum is trivial if
the function is monotonic (see Figure 1), and also for
the non-monotonic standard mathematical functions
(even-exponent power, cosh, sin, cos...) these are rela-
tively easy to determine.
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Figure 1. The image f([a, b]) for a continuous monotonic func-
tion: [f(a), f(b)] for a non-decreasing f (left), and [f(b), f(a)]
for a non-increasing f (right).

Equation (1) no longer holds if the interval is un-
bounded – e.g., tanh([0,+∞]) = [0, 1), which is not
closed on the right – or the function is not continu-
ous over the whole interval – e.g., the inverse func-
tion inv(x) = 1/x yields inv([−1,+1]) = (−∞,−1] ∪
[+1,+∞), two disjoint intervals (see Figure 2).
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Figure 2. The image f([a, b]), with f(x) = 1/x, is the union
of two disjoint intervals.

Both limitations can be overcome by means of two gen-
eralizations: 1) using the image closure instead of the
image, and 2) looking at the lattice generated by IR?

instead of IR?.

The image closure is defined for any subset K ⊆ R∗ as

f̄(K) =
{

lim
n→∞

f(xn)
∣∣∣ lim

n→∞
xn ∈ K

}
(2)

Equation (2) is a generalization of equation (1), in the
sense that if f is continuous over K and K is a closed,
bounded interval, equations (1) and (2) yield the same
result, i.e.:

f ∈ C0([a, b]) =⇒ f̄([a, b]) = f([a, b])

The lattice generated by the intervals in the extended
real set, L(IR∗), is the smallest family of sets contain-
ing IR∗ that is closed under union and intersection –
this extension accommodates the fact that, in general,
the union of two intervals is not an interval. The sets
in the lattice can always be written as the finite union
of closed intervals in R∗. In Python,

>>> k = interval([0, 1], [2, 3], [10, 15])

represents the the union [0, 1]∪[2, 3]∪[10, 15] ∈ L(IR∗).
The intervals [0, 1], [2, 3], and [10, 15] constitute the
connected components of k. If the lattice element con-
sists of only one component it can be written, e.g., as

>>> interval[1, 2]
interval([1.0, 2.0])

signifying the interval [1, 2], not to be confused with
>>> interval(1, 2)
interval([1.0], [2.0])

which denotes {1} ∪ {2}. When referring to a lattice
element consisting of one degenerate interval, say {1},
both following short forms yield the same object:

>>> interval(1), interval[1]
(interval([1.0]), interval([1.0]))

The empty set is represented by an interval with no
components:

>>> interval()
interval()

The state of the art on interval arithmetic [R5] is at
present limited to considering either intervals of the
form [a, b] with a, b ∈ R∗ or to pairs [−∞, a] ∪ [b,∞],
as in the Kahan-Novoa-Ritz arithmetic [R6]. The more
general idea of taking into consideration the lattice
generated by the closed intervals is, as far as the author
knows, original.
Note that equation (2) provides a consistent definition
for evaluating a function at plus or minus infinity:

f̄({+∞}) =
{

lim
n→∞

f(xn)
∣∣∣ lim

n→∞
xn = +∞

}
f̄({−∞}) =

{
lim

n→∞
f(xn)

∣∣∣ lim
n→∞

xn = −∞
}

For instance, in the case of the hyperbolic tangent one
has that tanh({+∞}) = {1}. More generally, it can
be proved that if f is discontinuous at most at a finite
set of points, then

∀K ∈ L(IR∗), f̄(K) ∈ L(IR∗) (3)
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The expression in equation (3) can be computed by
expressing K as a finite union of intervals, and then
by means of the identity

f̄ (
⋃

h[ah, bh]) =
⋃

h f̄([ah, bh])

For the inverse function, one has that

inv (
⋃

h[ah, bh]) =
⋃

h inv([ah, bh])

with

inv([a, b]) =[b−1, a−1] if 0 6∈ [a, b]

[−∞, inv−(a)] ∪ [inv+(b),+∞] if 0 ∈ [a, b]

where inv−(0) = −∞, inv+(0) = +∞, and inv−(x) =
inv+(x) = 1/x if x 6= 0.
In Python,:

>>> interval[0].inverse()
interval([-inf], [inf])
>>> interval[-2,+4].inverse()
interval([-inf, -0.5], [0.25, inf])

Interval arithmetic

The definition of image closure can be immediately ex-
tended to a function of two variables. This allows sum
and multiplication in L(IR∗) to be defined as

H + K =
{

lim
n→∞

(xn + yn)
∣∣∣ lim

n→∞
xn ∈ H, lim

n→∞
yn ∈ K

}
H ×K =

{
lim

n→∞
xnyn

∣∣∣ lim
n→∞

xn ∈ H, lim
n→∞

yn ∈ K
}

Since sum and multiplication are continuous in R×R
the limits need to be calculated only when at least one
of the end-points is infinite. Otherwise the two oper-
ations can be computed component-by-component us-
ing equation (1). Subtraction and division are defined
as

H −K = H + {−1} ×K

H ÷K = H × inv(K)

These definitions provide a consistent generalization of
the real-set arithmetic, in the sense that for any real
numbers x and y

x ∈ H, y ∈ K =⇒ x � y ∈ H �K

whenever x�y is defined, with � representing one of the
arithmetic operations. Additionally, this arithmetic is
well-defined for infinite end-points and when dividing
for intervals containing zero.
In conclusion, the lattice of intervals in the real ex-
tended set is closed under the arithmetic operations as
defined by image closure of their real counterparts.
In Python, the arithmetic operations are input us-
ing the usual +, -, * and / operators, with integer-
exponent power denoted by the ** operator. Addi-
tionally, intersection and union are denoted using the
& and | operators, respectively.

Dependency

One may not always want to find the image closure of
a given function on a given interval. Even for a simple
function like f(x) = x2−x one might wish to compute
f([0, 2]) by interpreting the expression x2 − x using
interval arithmetic. Interestingly, whereas

∀x ∈ R, x2 − x = x(x− 1) = (x− 1/2)2 − 1/4

the three expressions lead to different results when ap-
plied to intervals:

>>> (lambda x: x**2 - x)(interval[0,2])
interval([-2.0, 4.0])
>>> (lambda x: x*(x - 1))(interval[0,2])
interval([-2.0, 2.0])
>>> (lambda x: (x - 0.5)**2 - 0.25)(interval[0,2])
interval([-0.25, 2.0])

Incidentally, graphic inspection (see Figure 3) imme-
diately reveals that f̄([0, 2]) = [−1/4, 2]. The three
interval functions

f1 : X ∈ L(IR∗) 7→ X2 −X

f2 : X ∈ L(IR∗) 7→ X(X − 1)

f3 : X ∈ L(IR∗) 7→ (X − 1/2)2 − 1/4

(4)

differ because interval arithmetic handles reoccur-
rences of the same variables as independent instances
of the same interval. Only in the case of f3, where X
occurs only once, one has that f3(X) = f̄(X). For the
other two cases, given,

g1 : (x, y) ∈ R× R 7→ x2 − y

g2 : (x, y) ∈ R× R 7→ x(y − 1)

one has that f1(X) = ḡ1(X, X) and f2(X) = ḡ2(X, X).
This phenomenon, called dependency, causes f2 and
f3 to yield in general wider intervals (or the union
thereof) than what is returned by the image closure.

x

y

0 2

−1/4

2

Figure 3. f([0, 2]) for f(x) = x2 − x.

The idea of a function g on the interval lattice return-
ing “wider” results than needed is captured by saying
that g is an interval extension of f :

g ∈ ext(f) ⇐⇒ ∀X ∈ L(IR∗), f̄(X) ⊆ g(X)

Referring to the example of equation (4), f1, f2, and
f3 are all interval extensions of f . Interval extensions

http://conference.scipy.org/proceedings/SciPy2008/paper_3 18

http://conference.scipy.org/proceedings/SciPy2008/paper_3


Proceedings of the 7th Python in Science Conference (SciPy 2008)

can be partially ordered by their sharpness: given
two extensions g, h ∈ ext(f), g is sharper than h on
X ∈ L(IR∗) if g(X) ⊂ h(X).

The extensions f1, f2 are not as sharp as f3 because
of dependency. A second source of sharpness loss is
rounding, as it will be shown in the following.

Reals and floats

Floating-point numbers, or floats in short, form a finite
subset F ⊂ R∗. It is assumed that floats are defined
according to the IEEE 754 standard [R7]. Rounding is
the process of approximating an arbitrary real number
with some float. It is worth noting that rounding is a
necessity because for an arbitrary real function f and
an arbitrary float x ∈ F, f(x) is generally not a float.
Of the four rounding techniques defined in the stan-
dard, relevant for the following are rounding toward
−∞, or down, defined as

↓(x) = max{p ∈ F | p ≤ x}

and rounding towards +∞, or up, defined as

↑(x) = min{p ∈ F | p ≥ x}

The interval I(x) = [↓(x), ↑(x)] is the float enclo-
sure of x, i.e., the smallest interval containing x with
end-points in F. The enclosure degenerates to the
single-element set {x} whenever x ∈ F. Similarly,
for an interval [a, b], its float enclosure is given by
I([a, b]) = [↓(a), ↑(b)]. Note that the enclousure of
an interval extension f is also an interval extension, at
best as sharp as f .

Also for any of the arithmetic operations, again repre-
sented by �, it can happen that for any two arbitrary
H,K ∈ L(IF), H � K 6∈ L(IF). It is therefore neces-
sary to use the float enclosure of the interval arithmetic
operations:

H ⊕K = I(H + K) H 	K = I(H −K)
H ⊗K = I(H ×K) H �K = I(H ÷K)

In Python, the effect of the float enclosure on the arith-
metic operations is easily verifiable:

>>> interval[10] / interval[3]
interval([3.333333333333333, 3.3333333333333339])

Controlling the rounding mode of the processor’s
floating-point unit ensures that arithmetic operations
are rounded up or down. In the Python implemen-
tation presented here, ctypes provides the low-level
way to access the standard C99 functions as declared
in fenv.h [R8], falling back to the Microsoft C runtime
equivalents if the former are not present. A lambda ex-
pression emulates the lazy evaluation that is required
by the primitives in the interval.fpu module:

>>> from interval import fpu
>>> fpu.down(lambda: 1.0/3.0)
0.33333333333333331
>>> fpu.up(lambda: 1.0/3.0)
0.33333333333333337

Unfortunately, common implementations of the C
standard mathematical library do not provide the
means of controlling how transcendental functions are
rounded. For this work it was thus decided to use CR-
libm, the Correctly Rounded Mathematical Library
[R9], which makes it possible to implement the float
enclosure of the image closures for the most common
transcendental functions.

The transcendental functions are packaged in the
interval.imath module:

>>> from interval import imath
>>> imath.exp(1)
interval([2.7182818284590451, 2.7182818284590455])
>>> imath.log(interval[-1, 1])
interval([-inf, 0.0])
>>> imath.tanpi(interval[0.25, 0.75])
interval([-inf, -1.0], [1.0, inf])

A more compact output for displaying intervals is pro-
vided by the to_s() method, whereby a string is re-
turned that highlights the common prefix in the dec-
imal expansion of the interval’s endpoints. For in-
stance, some of the examples above can be better dis-
played as:

>>> (1 / interval[3]).to_s()
’0.3333333333333333(1,7)’
>>> imath.exp(1).to_s()
’2.718281828459045(1,5)’

Solving nonlinear equations

Let f be a smooth function in [a, b], i.e., therein contin-
uous and differentiable. Using the mean-value theorem
it can be proved that if x∗ ∈ [a, b] is a zero of f , then

∀ξ ∈ [a, b], x∗ ∈ N̄({ξ}, [a, b])

where N is the Newton iteration function,

N(ξ, η) = ξ − f(ξ)/f ′(η) (5)

If f(x) = 0 has more than one solutions inside [a, b],
then, by Rolle’s theorem, the derivative must vanish
somewhere in [a, b]. This in turn nullifies the denom-
inator in equation (5), which causes N̄({ξ}, [a, b]) to
possibly return two disjoint intervals, in each of which
the search can continue. The complete algorithm is
implemented in Python as a method of the interval
class:
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def newton(self, f, p, maxiter=10000):
def step(x, i):

return (x - f(x) / p(i)) & i
def some(i):

yield i.midpoint
for x in i.extrema.components:

yield x
def branch(current):

for n in xrange(maxiter):
previous = current
for anchor in some(current):

current = step(anchor, current)
if current != previous:

break
else:

return current
if not current:

return current
if len(current) > 1:

return self.union(branch(c) for
c in current.components)

return current
return self.union(branch(c) for

c in self.components)

In this code, step implements an interval extension
of equation (4), with the additional intersection with
the current interval to make sure that iterations are
not widening the interval. Function some selects ξ:
first the midpoint is tried, followed by each of the end-
points. The arguments f and p represent the func-
tion to be nullified and its derivative. The usage of
the Newton-Raphson solver is straightforward. For in-
stance, the statement required to find the solutions to
the equation

(x2 − 1)(x− 2) = 0 x ∈ [−100,+100]

simply is

>>> interval[-100, 100].newton(
... lambda x: (x**2 - 1)*(x - 2),
... lambda x: 3*x**2 - 4*x -1)
interval([-1.0], [1.0], [2.0])

Figure 4 shows the iterations needed to solve the same
equation in the smaller interval [−1.5, 3]. The non-
linear solver can be used with non-algebraic equations
as well:

>>> interval[-100, 100].newton(
... lambda x: imath.exp(x) + x,
... lambda x: imath.exp(x) + 1).to_s()
’-0.567143290409783(95,84)’

solves the equation

ex + x = 0 x ∈ [−100,+100]

and:
>>> print interval[-10, 10].newton(
... lambda x: imath.cospi(x/3) - 0.5,
... lambda x: -imath.pi * imath.sinpi(x/3) / 3)
interval([-7.0, -7.0], [-5.0, -5.0], [-1.0, -1.0],

[1.0, 1.0], [5.0, 5.0], [7.0, 7.0])

solves the equation

cos
(πx

3

)
=

1
2

x ∈ [−10,+10]
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Figure 4. Solving (x2 − 1)(x− 2) = 0 in [−100, +100]. An it-
eration producing an empty interval is marked as ∅, whereas
the checkmark denotes an iteration producing a fixed-point.
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