
Proceedings of the 7th Python in Science Conference (SciPy 2008)

Matplotlib Solves the Riddle of the Sphinx
Michael Droettboom (mdboom@gmail.com) – Space Telescope Science Institute, USA

This paper shares our experience converting mat-
plotlib’s documentation to use Sphinx and will hope-
fully encourage other projects to do so. Matplotlib’s
documentation serves as a good test case, because
it includes both narrative text and API docstrings,
and makes use of automatically plotted figures and
mathematical expressions.

Introduction

Sphinx [Bra08] is the official documentation tool for
future versions of Python and uses reStructuredText
[Goo06] as its markup language. A number of projects
in the scientific Python community (including IPython
and NumPy) have also converged on Sphinx as a doc-
umentation tool. This standardization, along with
the ease-of-use of reStructuredText, should encourage
more people to contribute to documentation efforts.

History

Before moving to Sphinx, matplotlib’s [Hun08] docu-
mentation toolchain was a homegrown system consist-
ing of:

• HTML pages written with the YAPTU templating
utility [Mar01], and a large set of custom functions
for automatically generating lists of methods, FAQ
entries, generating screenshots etc.

• Various documents written directly in LATEX, for
which only PDF was generated.

• pydoc [Yee01] API documentation, only in HTML.

• A set of scripts to build everything.

Moving all of these separate formats and silos of in-
formation into a single Sphinx-based build provides a
number of advantages over the old approach:

• We can generate printable (PDF) and on-line
(HTML) documentation from the same source.

• All documentation is in a single format, reStruc-
turedText, and in plain-text files or docstrings.
Therefore, there is less need to copy-paste-and-
reformat information in multiple places and risk di-
verging.

• There are no errors related to manually editing
HTML or LATEX syntax, and therefore the barrier
to new contributers is lower.

• The output is more attractive, since the Sphinx de-
velopers have HTML/CSS skills that we lack. Also,
the docstrings now contain rich formatting, which
improves readability over pydoc’s raw monospaced
text. (See Figures at the end of this paper).

• The resulting content is searchable, indexed and
cross-referenced.

Perhaps most importantly, by moving to a standard
toolchain, we are able to share our improvements and
experiences, and benefit from the contributions of oth-
ers.

Built-in features

Search, index and cross-referencing

Sphinx includes a search engine that runs completely
on the client-side. It does not require any features
of a web server beyond serving static web pages. This
also means that the search engine works with a locally-
installed documentation tree.
Sphinx also generates an index page. While docstrings
are automatically added to the index, manually index-
ing important keywords is inherently labor-intensive so
matplotlib hasn’t made use of it yet. However, this is a
problem we’d like to solve in the long term, since many
of the questions on the mailing list arise from not being
able to find information that is already documented.

autodoc

Unlike tools like pydoc and epydoc [Lop08], Sphinx
isn’t primarily a tool for fully-automatic API and code
documentation. Instead, its focus is on narrative doc-
umentation, meant to be read in a particular order.
This difference in bias is not accidental. Georg Brandl,
the author of Sphinx, wrote1:

One of Sphinx’ goals is to coax people into writing good docs,
and that unfortunately involves writing in many instances :)
This is not to say that API docs don’t have their value; but
when I look at a new library’s documentation and only see
autogenerated API docs, I’m not feeling encouraged.

However, Sphinx does provide special directives to ex-
tract and insert docstrings into documentation, collec-
tively called the autodoc extension. For example, one
can do the following:

.. automodule:: matplotlib.pyplot
:members:
:show-inheritance:

This creates an entry for each class, function, etc. in
the matplotlib.pyplot module.
There are a number of useful features in epydoc that
aren’t currently supported by Sphinx including:

1In a message on the sphinx-dev mailing list on August 4, 2008: http://groups.google.com/group/sphinx-dev/msg/
9d173107f7050e63

29 M. Droettboom: Proc. SciPy 2008, G. Varoquaux, T. Vaught, J. Millman (Eds), pp. 29–33

http://groups.google.com/group/sphinx-dev/msg/9d173107f7050e63
http://groups.google.com/group/sphinx-dev/msg/9d173107f7050e63
http://groups.google.com/group/sphinx-dev/msg/9d173107f7050e63


Matplotlib Solves the Riddle of the Sphinx

• Linking directly to the source code.

• Hierarchical tables of modules, classes, methods etc.
(Though documented objects are inserted into an al-
phabetized master index.) This shortcoming is par-
tially addressed by the inheritance diagram exten-
sion.

• A summary table with only the first line of each
docstring, that links to the complete versions.

In the matplotlib documentation, this last shortcoming
is painfully felt by the pyplot module, where over one
hundred methods are documented at length. There is
currently no way to easily browse what methods are
available.
Note that Sphinx development progresses rather
quickly, and some or all of these shortcomings may
be resolved very soon.

Extended features

As Sphinx is written in Python, it is quite easy to write
extensions. Extensions can:

• add new builders that, for example, support new
output formats or perform actions on the parsed
document trees.

• add code triggered by certain events during the build
process.

• add new reStructuredText roles and directives, ex-
tending the markup. (This is primarily a feature of
docutils, but Sphinx makes it easy to include these
extensions in your configuration).

Most of the extensions built for matplotlib are of this
latter type.
The matplotlib developers have created a number of
Sphinx extensions that may be generally useful to the
Scientific Python community. Where applicable, these
features have been submitted upstream for inclusion
in future versions of Sphinx.

Automatically generated plots

Any matplotlib plot can be automatically rendered and
included in the documentation. The HTML version of
the documentation includes a PNG bitmap and links to
a number of other formats, including the source code
of the plot. The PDF version of the documentation
includes a fully-scalable version of the plot that prints
in high quality.
This functionality is very useful for the matplotlib
docs, as we can now easily include figures that demon-
strate various methods. For example, the following re-
StructuredText directive inserts a plot generated from
an external Python script directly into the document:

.. plot:: ../mpl_examples/xcorr_demo.py

See Figures for a screenshot of the result.

Inheritance diagrams

Given a list of classes or modules, inheritance diagrams
can be drawn using the graph layout tool graphviz
[Gan06]. The nodes in the graph are hyperlinked to
the rest of the documentation, so clicking on a class
name brings the user to the documentation for that
class.

The reStructuredText directive to produce an inheri-
tance diagram looks like:

.. inheritance-diagram:: matplotlib.patches
matplotlib.lines
matplotlib.text

:parts: 2

which produces:

Mathematical expressions

Matplotlib has built-in rendering for mathematical ex-
pressions that does not rely on external tools such as
LATEX, and this feature is used to embed math directly
in the Sphinx HTML output.

This rendering engine was recently rewritten by port-
ing a large subset of the TEXmath layout algorithm
[Knu86] to Python2. As a result, it supports a number
of new features:

• radicals, eg., 3
√

x

• nested expressions, eg.,
√

x+ 1
3

x+1

• wide accents, eg., x̂yz

• large delimiters, eg.,
(

δx
δy

)
bzc

• support for the STIX math fonts [STI08], giving ac-
cess to many more symbols than even TEX itself,
and a more modern-looking sans-serif math mode.

http://conference.scipy.org/proceedings/SciPy2008/paper_6 30

http://conference.scipy.org/proceedings/SciPy2008/paper_6


Proceedings of the 7th Python in Science Conference (SciPy 2008)

The following figure shows a complex fictional mathe-
matical expression rendered using the three supported
font sets, Computer Modern, STIX and STIX sans
serif.

The use of this extension in the matplotlib documen-
tation is primarily a way to test for regressions in our
own math rendering engine. However, it is also use-
ful for generating math expressions on platforms that
lack a LATEX installation, particularly on Microsoft
Windows and Apple OS-X machines, where LATEX is
harder to install and configure.
There are also other options for rendering math ex-
pressions in Sphinx, such as mathpng.py3, which uses
LATEX to perform the rendering. There are plans to
add two new math extensions to Sphinx itself in a fu-
ture version: one will use jsmath [Cer07] to render
math using JavaScript in the browser, and the other
will use LATEX and dvipng for rendering.

Syntax-highlighting of IPython sessions

Sphinx on its own only knows how to syntax-highlight
the output of the standard python console. For mat-
plotlib’s documentation, we created a custom docutils
formatting directive and pygments [Bra08b] lexer to
color some of the extra features of the ipython con-
sole.

Framework

These new extensions are part of a complete turnkey
framework for building Sphinx documentation geared
specifically to Scientific Python applications. The
framework is available as a subproject in matplotlib’s
source code repository4 and can be used as a starting
point for other projects using Sphinx.

This template is still in its early stages, but we hope it
can grow into a project of its own. It could become a
repository for the best ideas from other Sphinx-using
projects and act as a sort of incubator for future fea-
tures in Sphinx proper. This may include the web-
based documentation editor currently being used by
the Numpy project.

Future directions

intersphinx

Sphinx recently added “intersphinx” functionality,
which allows one set of documentation to reference
methods and classes etc. in another set. This opens
up some very nice possibilities once a critical mass of
Scientific Python tools standardize on Sphinx. For in-
stance, the histogram plotting functionality in mat-
plotlib could reference the underlying methods in
Numpy, or related methods in Scipy, allowing the user
to easily learn about all the options available without
risk of duplicating information in multiple places.

Acknowledgments

John Hunter, Darren Dale, Eric Firing and all the
other matplotlib developers for their hard work on this
documentation project.

2The license for TEX allows this, as long as we don’t call it “TEX ”.
3https://trac.fysik.dtu.dk/projects/ase/browser/trunk/doc/mathpng.py
4http://matplotlib.svn.sourceforge.net/viewvc/matplotlib/trunk/py4science/examples/sphinx_template/

31 http://conference.scipy.org/proceedings/SciPy2008/paper_6

https://trac.fysik.dtu.dk/projects/ase/browser/trunk/doc/mathpng.py
https://trac.fysik.dtu.dk/projects/ase/browser/trunk/doc/mathpng.py
https://trac.fysik.dtu.dk/projects/ase/browser/trunk/doc/mathpng.py
http://matplotlib.svn.sourceforge.net/viewvc/matplotlib/trunk/py4science/examples/sphinx_template/
http://matplotlib.svn.sourceforge.net/viewvc/matplotlib/trunk/py4science/examples/sphinx_template/
http://matplotlib.svn.sourceforge.net/viewvc/matplotlib/trunk/py4science/examples/sphinx_template/
http://conference.scipy.org/proceedings/SciPy2008/paper_6


Matplotlib Solves the Riddle of the Sphinx

Figures

The HTML output of the acorr docstring.

References

[Bra08] G. Brandl. 2008. Sphinx: Python Documenta-
tion Generator. http://sphinx.pocoo.org/

[Bra08b] G. Brandl. 2008. Pygments: Python syntax
highlighter. http://pygments.org

[Cer07] D. P. Cervone. 2007. jsMath: A Method of
Including Mathematics in Web Pages. http:
//jsmath.sourceforge.net/

[Gan06] E. Gansner, E. Koustsofios, and S. North.
2006. Drawing graphs with dot. http://www.
graphviz.org/Documentation/dotguide.pdf

[Goo06] D. Goodger. 2006. reStructuredText: Markup
Syntax and Parser Component of Docutils.
http://docutils.sourceforge.net/rst.html

[Hun08] J. Hunter, et al. 2008. matplotlib: Python
2D plotting library. http://matplotlib.
sourceforge.net/

[Knu86] D. E. Knuth. 1986. Computers and Typesetting,
Volume B: TeX: The Program. Reading, MA:
Addison-Wesley.

[Lop08] E. Loper. 2008. Epydoc: Automatic API Doc-
umentation Generation for Python. http://
epydoc.sourceforge.net/

[Mar01] A. Martelli. 2001. Recipe 52305:
Yet Another Python Templating Util-
ity (YAPTU). From Python Cookbook.
<http://code.activestate.com/recipes/52305/>

[STI08] STI Pub Companies. 2008. STIX Font Set
Project. http://www.stixfonts.org

[Yee01] K.-P. Yee. 2001. pydoc: Python documenta-
tion generator and online help system. http:
//lfw.org/python/pydoc.html & http://www.
python.org/doc/lib/module-pydoc.html.

http://conference.scipy.org/proceedings/SciPy2008/paper_6 32

http://sphinx.pocoo.org/
http://sphinx.pocoo.org/
http://sphinx.pocoo.org/
http://pygments.org
http://pygments.org
http://pygments.org
http://jsmath.sourceforge.net/
http://jsmath.sourceforge.net/
http://jsmath.sourceforge.net/
http://www.graphviz.org/Documentation/dotguide.pdf
http://www.graphviz.org/Documentation/dotguide.pdf
http://www.graphviz.org/Documentation/dotguide.pdf
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://epydoc.sourceforge.net/
http://epydoc.sourceforge.net/
http://epydoc.sourceforge.net/
http://www.stixfonts.org
http://www.stixfonts.org
http://www.stixfonts.org
http://lfw.org/python/pydoc.html
http://lfw.org/python/pydoc.html
http://lfw.org/python/pydoc.html
http://www.python.org/doc/lib/module-pydoc.html
http://www.python.org/doc/lib/module-pydoc.html
http://www.python.org/doc/lib/module-pydoc.html
http://conference.scipy.org/proceedings/SciPy2008/paper_6

	Matplotlib Solves the Riddle of the Sphinx
	Introduction
	History

	Built-in features
	Search, index and cross-referencing
	autodoc

	Extended features
	Automatically generated plots
	Inheritance diagrams
	Inheritance diagrams
	Mathematical expressions
	Syntax-highlighting of IPython sessions

	Framework
	Future directions
	intersphinx

	Acknowledgments
	Figures
	References

