
Proceedings of the 7th Python in Science Conference (SciPy 2008)

Pysynphot: A Python Re-Implementation of a Legacy App in Astronomy
Victoria G. Laidler (laidler@stsci.edu) – Computer Sciences Corporation, Space Telescope Science Institute, 3700
San Martin Drive, Baltimore, MD 21218 USA
Perry Greenfield (perry@stsci.edu) – Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD
21218 USA
Ivo Busko (busko@stsci.edu) – Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218
USA
Robert Jedrzejewski (rij@stsci.edu) – Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD
21218 USA

Pysynphot is a package that allows astronomers to
model, combine, and manipulate the spectra of stars
or galaxies in simulated observations. It is being de-
veloped to replace a widely used legacy application,
SYNPHOT. While retaining the data-driven philos-
ophy of the original application, Pysynphot’s archi-
tecture and improved algorithms were developed to
address some of its known weaknesses. The lan-
guage features available in Python and its libraries,
including numpy, often enabled clean solutions to
what were messy problems in the original appli-
cation, and the interactive graphics capabilities of
matplotlib/pylab, used with a consistent set of ex-
posed object attributes, eliminated the need to write
special-purpose plotting methods. This paper will
discuss these points in some detail, as well as pro-
viding an overview of the problem domain and the
object model.

Introduction

One of the things that astronomers need to do is to
simulate how model stars and galaxies would look if
observed through a particular telescope, camera, and
filter. This is useful both for planning observations
(“How long do I need to observe in order to get good
signal to noise?”), and for comparing actual observa-
tions with theoretical models (“Does the real obser-
vation of this galaxy prove that my theoretical model
of galaxies is correct?”). This general procedure is re-
ferred to as “synthetic photometry”, because it effec-
tively performs photometric, or brightness, measure-
ments on synthetic (simulated) data with synthetic in-
struments.
This is a difficult problem to solve in generality. In ad-
dition to the intrinsic properties of a star or galaxy that
determine its spectrum (the amount of light emitted
as a function of wavelength), effects such as redshift
and dimming by interstellar dust will also affect the
spectrum when it arrives at the telescope. Real spec-
tra are noisy with limited resolution; model spectra
are smooth with potentially unlimited resolution. The
response function of a telescope/instrument combina-
tion is a combination of the response of all the optical
elements. And astronomers are notorious for using id-
iosyncratic units; in addition to the SI and cgs units,
there are a variety of ways to specify flux as a function
of wavelength; then there are a set of magnitude units

which involve a logarithmic transformation of the flux
integrated over wavelength.
A software package, SYNPHOT [Bushouse], was writ-
ten in the 1980s as part of the widely-used Image Re-
duction and Analysis Facility, IRAF [Tody], using its
proprietary language SPP. Additionally, SYNPHOT
essentially has its own mini-language, in which users
specify the particular combination of spectrum, band-
pass, units, and functions that should be applied to
construct the desired spectrum.

Motivation

As with many legacy applications, maintenance issues
were a strong motivation in deciding to port to a mod-
ern language. As an old proprietary language, SPP
both lacks the features of modern languages and is
difficult to use with modern development tools. This
raised the cost of adding new functionality; so did the
rigid task-oriented architecture.
It had also become clear over the years that certain de-
ficiencies existed in SYNPHOT at a fairly basic level:

• float arithmetic was implemented in single precision

• poor combination of wavelength tables at different
resolutions

• applying redshifts sometimes lost data

• no memory caching; files used for all communica-
tions

Re-implementing SYNPHOT in Python gave us the
opportunity to address these and other deficiencies.
Rather than describe Pysynphot in detail, we will pro-
vide a high-level overview of the object model, and
then take a close-up look at four areas that illustrate
how Python, with its object-oriented capabilities and
available helper packages, made it easier for us to solve
some problems, simplify others, and make a great deal
of progress very quickly.

Overview of Pysynphot Objects

A Spectrum is the basic class; a Spectrum always has
a wavelength table and a corresponding fluxtable in a
standard internal set of units. Waveunits and Fluxu-
nits are also associated with spectra for representation
purposes. Subclasses support spectra that are created

V. Laidler, P. Greenfield, I. Busko, R. Jedrzejewski: Proc. SciPy 2008, G. Varoquaux, T. Vaught, J. Millman (Eds), pp. 36–3936



Proceedings of the 7th Python in Science Conference (SciPy 2008)

from a file, from arrays, and from analytic functions
such as a black body or a Gaussian.
A Bandpass, or SpectralElement, has a wavelength ta-
ble and a corresponding dimensionless throughput ta-
ble. Subclasses support bandpasses that are created
from a file, from arrays, from analytic functions such
as a box filter, and from a specified observing configu-
ration of a telescope/instrument combination.
Spectrum objects can be combined with each other and
with Bandpasses to produce a CompositeSpectrum.
WaveUnits and FluxUnits are created from string rep-
resentations of the desired unit in the shorthand used
by SYNPHOT. All the unit conversion machinery is
packaged in these objects.
A Spectrum and Bandpass collaborate to produce an
Observation, which is a special-purpose subclass of
Spectrum used to simulate observing the Spectrum
through the Bandpass.
A Spectrum also collaborates with Bandpass and Unit
objects to perform renormalization (“What would this
spectrum have to look like in order to have a flux of
value F in units U when observed through bandpass
B?”).
As is evident from the above definitions, most of the
objects in pysynphot have array attributes, and thus
rely heavily on the array functionality provided by
numpy. When Spectrum or Bandpass objects are read
from or written to files, these are generally FITS files,
so we also rely significantly on PyFITS. Use of these
two packages is sufficiently widespread that they don’t
show up in any of the following closeups, but they are
critical to our development effort.
There are a few other specialty classes and a number
of other subclasses, but this overview is enough to il-
lustrate the rest of the paper.

Closeup #1: Improved wavelength han-
dling

When SYNPHOT is faced with the problem of combin-
ing spectra that are defined over different wavelength
sets, it creates an array using a default grid, defined
as 10000 points covering the wavelength range where
the calculated passband or spectrum is non-zero. The
wavelengths are spaced logarithmically over this range,
such that:

log10(lambda_i) = log10(lambda_min) + (i-1)*delta

where:

• lambda_i is the ith wavelength value

• delta = (log10 (max) -log10 (min)) / (N-1)

• lambda_min = wavelength of first non-zero flux

• lambda_max = wavelength of last non-zero flux

• N = 10000

This is completely insensitive to the wavelength spac-
ing associated with each element; the spacing in the
final wavelength set is determined entirely by the total
range covered. Narrow spectral features can be en-
tirely lost when they fall entirely within one of these
bins.
Pysynphot does not use a pre-determined grid like this
one. Instead, a CompositeSpectrum knows about the
wavelength tables of each of its components. It con-
structs its own wavelength table by taking the union
of the points in the wavelength tables in the individ-
ual components, thus preserving the original spacing
around narrow features.

Closeup #2: Units

As mentioned above, astronomers use a variety of id-
iosyncratic units, and need to be able to convert be-
tween them. Wavelength can be measured in microns
or Angstroms (10^-8 m), or as frequency in Hz. Many
of the supported fluxunits are, strictly speaking, flux
densities, which represent flux per wavelength per time
per area; thus the units of the flux depend on the units
of the wavelength, as shown in the list below. The flux
itself may be represented in photons or ergs. Magni-
tudes, still commonly in use by optical and infrared
astronomers, are typically
−2.5 ∗ log10(F ) + ZP

where F is the flux integrated over wavelength, and the
zeropoint depends on which magnitude system you’re
using. To compare directly to observations, you need
the flux in counts, which integrates out not only the
wavelength distribution but also the effective area of
the telescope’s light-collecting optics.

• fnu = ergs s^-1 cm^-2 Hz^-1

• flam = ergs s^-1 cm^-2 Ang^-1

• photnu = photons s^-1 cm^-2 Hz^-1

• photlam = photons s^-1 cm^-2 Ang^-1

• jy = 10^-23 ergs s^-1 cm^-2 Hz^-1

• mjy = 10^-26 ergs s^-1 cm^-2 Hz^-1

• abmag = -2.5 log10(FNU) - 48.60

• stmag = -2.5 log10(FLAM)- 21.10

• obmag = -2.5 log10(COUNTS)

• vegamag = -2.5 log10(F/ F(VEGA))

• counts = detected counts s^-1

The SYNPHOT code includes several lengthy case
statements (or the equivalent thereof), to convert from
the internal units to the desired units in which a par-
ticular computation needs to be performed, and then
sometimes back to the internal units.
Pysynphot’s OO architecture has several benefits here.
Firstly, the unit conversion code is localized within the

37 http://conference.scipy.org/proceedings/SciPy2008/paper_8

http://conference.scipy.org/proceedings/SciPy2008/paper_8


Pysynphot: A Python Re-Implementation of a Legacy App in Astronomy

relevant Unit classes. Secondly, the internal represen-
tation of a spectrum always exists in the internal units
(of Angstroms and Photlam), so there’s never a need to
convert back to it. Finally, Unit classes know whether
they are flux densities, magnitudes, or counts, which
simplifies the tests needed in the various conversions.

Closeup #3: From command language to
OO UI

A significant portion of the SYNPHOT codebase is
devoted to parsing and interpreting the mini-language
in which users specify a command. These specifica-
tions can be quite long, because they can include mul-
tiple filenames of spectra to be arithmetically com-
bined. This command language also presents a sig-
nificant learning curve to new users, to whom it is not
immediately obvious that the command

rn(z(spec(qso_template.fits),2.0),
box(10000.0,1.0),1.00E-13,flam)

means
Read a spectrum from the file qso_template.fits, then apply a
redshift of z=2. Then renormalize it so that, in a 1 Angstrom
box centered at 10000 Angstroms, the resulting spectrum has
a flux of 1e^-13 ergs cm^-2 s^-1 A^-1.

Choosing an object-oriented user interface entirely
eliminated the need for a command parser (except
temporarily, for backwards compatibility). Instead of
learning a command language to specify complex con-
structs, users work directly with the building blocks
and do the construction themselves. Although this is
less concise, it gives users more direct control over the
process, which itself allows for easier extensibility. The
learning curve is also much shallower, as the class and
method names are fairly intuitive.:

qso=S.FileSpectrum(’qso_template.fits’)
qso_z=qso.redshift(2.0)
bp=S.Box(10000,1)
qso_rn=qso_z.renorm(1e-13,’flam’,bp)

Closeup #4: Pylab gave us graphics for free

The SYNPHOT package includes several specialized
tasks to provide graphics capability. These tasks have
lengthy parameter lists to allow the user to specify

characteristics of the plot (limits, line type, and over-
plotting), as well as the usual parameters with which
to specify the spectrum.
The availability of matplotlib, and particularly its py-
lab interface, meant that we have been able to provide
quite a lot of graphics capability to our users without,
as yet, having to write a single line of graphics-related
code. We have tuned the user interface to provide
consistent attributes that are useful for plotting and
annotating plots.
As the user interface develops, we will likely develop
some functions to provide “standard” annotations such
as labels, title, and legend. But this is functional sugar;
almost all the plotting capability provided by the SYN-
PHOT tasks is available out of the box, and pylab pro-
vides much more versatility and control. Most of our
test users are coming to pysynphot and to pylab at
the same time; their reaction to the plotting capabili-
ties has been overwhelmingly positive.

Conclusion

The need to port this legacy application became
an opportunity to improve it, resulting in a re-
implementation with improved architecture rather
than a direct port. Python’s OO features and available
packages made the job much easier, and Python’s abil-
ity to support functional-style programming is impor-
tant in lowering the adoption barrier by astronomers.
Development and testing of pysynphot are actively on-
going, with a major milestone planned for spring 2009,
when it will be used by the Exposure Time Calculators
during the next observing cycle for the Hubble. We are
aiming for a version 1.0 release in summer 2009.

References

[Bushouse] H. Bushouse, B. Simon, “The
IRAF/STSDAS Synthetic Photometry
Package”, Astronomical Data Analy-
sis Software and Systems III, A.S.P.
Conference Series, Vol. 61, 1994

[Tody] D. Tody, “The IRAF Data Reduction and
Analysis System”, Instrumentation in
astronomy VI, 1986

http://conference.scipy.org/proceedings/SciPy2008/paper_8 38

http://astropy.scipy.org/astropy/astrolib/
http://conference.scipy.org/proceedings/SciPy2008/paper_8

	Pysynphot: A Python Re-Implementation of a Legacy App in Astronomy
	Introduction
	Motivation
	Overview of Pysynphot Objects
	Closeup #1: Improved wavelength handling
	Closeup #2: Units
	Closeup #3: From command language to OO UI
	Closeup #4: Pylab gave us graphics for free
	Conclusion
	References

