
Proceedings of the 8th Python in Science Conference (SciPy 2009)

Editorial
Gael Varoquaux (gael.varoquaux@normalesup.org) – INRIA, Saclay France
Stéfan van der Walt (stefan@sun.ac.za) – University of Stellenbosch, Stellenbosch South Africa
Jarrod Millman (millman@berkeley.edu) – UC Berkeley, Berkeley, CA USA

SciPy 2009 marks our eighth annual Python in Sci-
ence conference and the second edition of the confer-
ence proceedings. The conference and these proceed-
ings highlight the ongoing focus of the community on
providing practical software tools, created to address
real scientific problems.
As in previous years, topics at the conference ranged
from the presentation of tools and techniques for scien-
tific work with the Python language, to reports on sci-
entific achievement using Python. Interestingly, sev-
eral people noticed that something important hap-
pened in the Scientific Python world during the last
year: we are no longer constantly comparing our soft-
ware with commercial packages, nor justifying the
need for Python in Science. Python has now reached
the level of adoption where this sort of justification
is no longer necessary. The exact moment when this
shift in focus occurred is difficult to identify, but that
it happened was apparent during the conference.

Recurring scientific themes

This year the conference spanned two days, and each
day commenced with a keynote address. The first
keynote was delivered by Peter Norvig, the Director
of Research at Google; the second by Jonathan Guyer,
a materials scientist in the Thermodynamics and Ki-
netics Group at the National Institute of Standards
and Technology (NIST).
Peter Norvig’s talk was titled “What to demand from a
Scientific Computing Language—even if you don’t care
about computing or languages”, where he discussed a
number of desired characteristics in a scientific com-
puting environment. Such a platform should have the
ability to share code and data with other researchers
easily, provide extremely fast computations and state-
of-the-art algorithms to researchers in the field, and be
as easy as possible to use in a time-efficient manner.
He also stressed the importance of having code that
read like the mathematical ideas it expressed.
Jonathan Guyer’s keynote centred around “Modeling
of Materials with Python”. He expanded on several
of the above-mentioned characteristics as he discussed
the development of FiPy, a framework for solving par-
tial differential equations based on a finite volume ap-
proach. Jonathan explained how FiPy was created to
provide the most advanced numerical techniques to sci-
entists, so that they could focus on the scientific ques-
tions at hand, while having a standard platform for
sharing codes with colleagues. Importantly, FiPy has
become a critical tool in Jonathan’s research group and

has been adopted by many of their colleagues for both
research as well as teaching.
Both keynote addresses served to outline prominent
themes that were repeated throughout the conference,
as witnessed by the proceedings. These themes in-
clude: the need for software tools that allow scientists
to focus on their research, while taking advantage of
best-of-class algorithms and utilizing the full power of
their computational resources; the need for a high-
level computing environment with an easy—to-write
and read syntax; the usefulness of high-quality soft-
ware tools for teaching and education; and the impor-
tance of sharing code and data in scientific research.
The first several articles address high-level approaches
aimed at improving the performance of numerical code
written in Python. While making better use of in-
creased computation resources, such as parallel pro-
cessors or graphical processing units, many of these
approaches also focus on reducing code complexity and
verbosity. Again, simpler software allows scientists to
focus on the details of their computations, rather than
on administrating their computing resources.
The remaining articles focus on work done to solve
problems in specific research domains, ranging from
numerical methods to biology and astronomy. For the
last several years, using Python to wrap existing li-
braries has been a popular way to provide a scripting
frontend to computational code written primarily in a
more low-level language like C or Fortran. However, as
these proceedings show, Python is increasingly used as
the primary language for large scientific applications.
Python and its stack of scientific tools appears to be
well suited for application areas ranging from database
applications to user interfaces and numerical compu-
tation.

Review and selection process

This year we received 30 abstracts from five differ-
ent countries. The submissions covered a number of
research fields, including bioinformatics, computer vi-
sion, nanomaterials, neutron scattering, neuroscience,
applied mathematics, astronomy, and X-ray fluores-
cence. Moreover, the articles discussed involve a num-
ber of computational tools: these include statistical
modeling, data mining, visualization, performance op-
timization, parallel computing, code wrapping, instru-
ment control, time series analysis, geographic informa-
tion science, spatial data analysis, adaptive interpola-
tion, spectral analysis, symbolic mathematics, finite
element, and virtual reality. Several abstracts also ad-
dressed the role of scientific Python in teaching and
education.

G. Varoquaux, S. van der Walt, J. Millmanin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 2–4 2

gael.varoquaux@normalesup.org
stefan@sun.ac.za
millman@berkeley.edu


Proceedings of the 8th Python in Science Conference (SciPy 2009)

Each abstract was reviewed by both the program
chairs, as well as two members of the program com-
mittee (PC). The PC consisted of 11 members from
five countries, and represented both industry and
academia. Abstracts were evaluated according to the
following criteria:

• Relevance of the contribution, with regard to the
topics and goals of the conference.

• Scientific or technical quality of the work presented.

• Originality and soundness.

We accepted 23 (76%) submission for oral presentation
at the conference. At the closure of the conference, we
invited the presenters to submit their work for publica-
tion in the conference proceedings. These submissions
were reviewed by 11 proceeding reviewers from seven
countries, according to the following criteria:

• Does the paper describe a well-formulated scientific
or technical achievement?

• Is the content of the paper accessible to a compu-
tational scientist with no specific knowledge in the
given field?

• Are the technical and scientific decisions well-
motivated?

• Does the paper reference scientific sources and ma-
terial used?

• Are the code examples (if any) sound, clear, and
well-written?

• Is the paper fit for publication in the SciPy pro-
ceedings? Improvements may be suggested, with or
without a second review.

From the 30 original abstracts, 12(40%) have been ac-
cepted for publication in these proceedings.

Prior to commencing the conference, we had two days
of tutorials with both an introductory and advanced
track. In addition to publishing a selection of the pre-
sented work, we also selected one of this year’s tutorial
presentations for publication.

The proceedings conclude with a short progress report
on the two-year long NumPy and SciPy documentation
project.

The SciPy Conference has been supported since its
inception by the Center for Advanced Computing Re-
search (CACR) at Caltech and Enthought Inc. In ad-
dition, we were delighted to receive funding this year
from the Python Software Foundation to cover the
travel, registration, and accommodation expenses of 10
students. Finally, we are very grateful to Leah Jones
of Enthought and Julie Ponce of the CACR for their
invaluable help in organizing the conference.

3 http://conference.scipy.org/proceedings/SciPy2009/paper_0

http://conference.scipy.org/proceedings/SciPy2009/paper_0

	Editorial
	Recurring scientific themes
	Review and selection process

