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Cython is a programming language based on Python
with extra syntax to provide static type declarations.
This takes advantage of the benefits of Python while
allowing one to achieve the speed of C. In this paper
we describe the Cython language and show how it
can be used both to write optimized code and to
interface with external C libraries.

Cython - an overview

[Cython] is a programming language based on Python,
with extra syntax allowing for optional static type
declarations. It aims to become a superset of the
[Python] language which gives it high-level, object-
oriented, functional, and dynamic programming. The
source code gets translated into optimized C/C++
code and compiled as Python extension modules. This
allows for both very fast program execution and tight
integration with external C libraries, while keeping
up the high programmer productivity for which the
Python language is well known.

The primary Python execution environment is com-
monly referred to as CPython, as it is written in
C. Other major implementations use Java (Jython
[Jython]), C# (IronPython [[ronPython]) and Python
itself (PyPy [PyPy]). Written in C, CPython has been
conducive to wrapping many external libraries that in-
terface through the C language. It has, however, re-
mained non trivial to write the necessary glue code in
C, especially for programmers who are more fluent in a
high-level language like Python than in a do-it-yourself
language like C.

Originally based on the well-known Pyrex [Pyrex], the
Cython project has approached this problem by means
of a source code compiler that translates Python code
to equivalent C code. This code is executed within the
CPython runtime environment, but at the speed of
compiled C and with the ability to call directly into C
libraries. At the same time, it keeps the original inter-
face of the Python source code, which makes it directly
usable from Python code. These two-fold characteris-
tics enable Cython’s two major use cases: extending
the CPython interpreter with fast binary modules, and
interfacing Python code with external C libraries.
While Cython can compile (most) regular Python
code, the generated C code usually gains major (and
sometime impressive) speed improvements from op-
tional static type declarations for both Python and

C types. These allow Cython to assign C semantics to
parts of the code, and to translate them into very effi-
cient C code. Type declarations can therefore be used
for two purposes: for moving code sections from dy-
namic Python semantics into static-and-fast C seman-
tics, but also for directly manipulating types defined in
external libraries. Cython thus merges the two worlds
into a very broadly applicable programming language.

Installing Cython

Many scientific Python distributions, such as the
Enthought Python Distribution [EPD], Python(x,y)
[Pythonxy], and Sage [Sage], bundle Cython and no
setup is needed. Note however that if your distribu-
tion ships a version of Cython which is too old you
can still use the instructions below to update Cython.
Everything in this tutorial should work with Cython
0.11.2 and newer, unless a footnote says otherwise.
Unlike most Python software, Cython requires a C
compiler to be present on the system. The details of
getting a C compiler varies according to the system
used:

e Linux The GNU C Compiler (gcc) is usu-
ally present, or easily available through the
package system. On Ubuntu or Debian, for
instance, the command sudo apt-get install

build-essential will fetch everything you need.

e Mac OS X To retrieve gcc, one option is to install
Apple’s XCode, which can be retrieved from the Mac
OS X’s install DVDs or from http://developer.
apple.com.

e Windows A popular option is to use the open
source MinGW (a Windows distribution of gec). See
the appendix for instructions for setting up MinGW
manually. EPD and Python(x,y) bundle MinGW,
but some of the configuration steps in the appendix
might still be necessary. Another option is to use Mi-
crosoft’s Visual C. One must then use the same ver-
sion which the installed Python was compiled with.

The newest Cython release can always be downloaded
from http://cython.org. Unpack the tarball or zip
file, enter the directory, and then run:

python setup.py install
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If you have Python setuptools set up on your system,
you should be able to fetch Cython from PyPI and
install it using:

easy_install cython

For Windows there is also an executable installer avail-
able for download.

Building Cython code

Cython code must, unlike Python, be compiled. This
happens in two stages:

e A .pyx file is compiled by Cython to a .c file, con-
taining the code of a Python extension module

e The .c file is compiled by a C compiler to a .so
file (or .pyd on Windows) which can be import-ed
directly into a Python session.

There are several ways to build Cython code:
o Write a distutils setup.py.

e Use pyximport, importing Cython .pyx files as if
they were .py files (using distutils to compile and
build the background).

e Run the cython command-line utility manually to
produce the .c file from the .pyx file, then manually
compiling the .c file into a shared object library
or .d11 suitable for import from Python. (This is
mostly for debugging and experimentation.)

e Use the [Sage] notebook which allows Cython code
inline and makes it easy to experiment with Cython
code without worrying about compilation details
(see figure 1 below).

Currently, distutils is the most common way Cython
files are built and distributed.

Building a Cython module using distutils

Imagine a simple “hello world” script in a file
hello.pyx:

def say_hello_to(name):
print (Hello %s!" % name)

The following could be a corresponding setup.py
script:

from distutils.core import setup

from distutils.extension import Extension

from Cython.Distutils import build_ext

ext_modules = [Extension("hello", ["hello.pyx"1)]

setup(
name = ’Hello world app’,
cmdclass = {’build_ext’: build_ext},
ext_modules = ext_modules

)
To  build, run  python setup.py build_ext
--inplace. Then simply start a Python session
and do from hello import say_hello_to and use
the imported function as you see fit.
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cdef extern from "math.h":
double sin(double)

cdef double f(double x) except *:
return sin(x**2)
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cdef double dx, s = ©
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Figure 1 The Sage notebook allows transparently edit-
ing and compiling Cython code simply by typing
/icython at the top of a cell and evaluate it. Variables
and functions defined in a Cython cell imported into
the running session.

Data types in Cython

Cython is a Python compiler. This means that it can
compile normal Python code without changes (with
a few obvious exceptions of some as-yet unsupported
language features). However, for performance-critical
code, it is often helpful to add static type declarations,
as they will allow Cython to step out of the dynamic
nature of the Python code and generate simpler and
faster C code - sometimes faster by orders of magni-
tude.

It must be noted, however, that type declarations can
make the source code more verbose and thus less read-
able. It is therefore discouraged to use them with-
out good reason, such as where benchmarks prove that
they really make the code substantially faster in a per-
formance critical section. Typically a few types in the
right spots go a long way. Cython can produce an-
notated output (see figure 2 below) that can be very
useful in determining where to add types.

All C types are available for type declarations: integer
and floating point types, complex numbers, structs,
unions and pointer types. Cython can automatically
and correctly convert between the types on assign-
ment. This also includes Python’s arbitrary size in-
teger types, where value overflows on conversion to a
C type will raise a Python OverflowError at runtime.
The generated C code will handle the platform depen-
dent sizes of C types correctly and safely in this case.

Faster code by adding types

Consider the following pure Python code:
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2: include "interrupt.pxi® # ctrl-c interrupt block support

3: include "stdsage.pxi® # ctrl-c interrupt block support

4:

5: include "cdefs.pxi"

6: cdef extern from "math.h":

7 double sin(double)

8:

9: cdef double f(double x) except *:

10: return sin(x*+2)

11:

12: def integrate(double a, double b, int N):

13 cdef int 1

14 cdef double dx, s = 0

15: dx = (b-a)/N

1% for 1 in range(N):

For (_ppe t 1=8 _pyxtl<_pyxv W _pprt lel) {
= _pprt

17: s += f(a+i*dx)

18: return s * dx
[Done [

Figure 2 Using the -a switch to the cython command
line program (or following a link from the Sage note-
book) results in an HTML report of Cython code
interleaved with the generated C code. Lines are col-
ored according to the level of “typedness” - white
lines translates to pure C without any Python API
calls. This report is invaluable when optimizing a
function for speed.

from math import sin

def f(x):
return sin(x**2)

def integrate_f(a, b, N):
s =0
dx = (b-a)/N
for i in range(N):
s += f(at+i*dx)
return s * dx

Simply compiling this in Cython merely gives a 5%
speedup. This is better than nothing, but adding some
static types can make a much larger difference.

With additional type declarations, this might look like:

from math import sin

def f(double x):
return sin(x**2)

def integrate_f(double a, double b, int N):
cdef int i
cdef double s, dx
s =0
dx = (b-a)/N
for i in range(N):
s += f(at+ixdx)
return s * dx

Since the iterator variable i is typed with C semantics,
the for-loop will be compiled to pure C code. Typing a,
s and dx is important as they are involved in arithmetic
withing the for-loop; typing b and N makes less of a
difference, but in this case it is not much extra work
to be consistent and type the entire function.

This results in a 24 times speedup over the pure
Python version.

cdef functions

Python function calls can be expensive, and this is
especially true in Cython because one might need to
convert to and from Python objects to do the call. In
our example above, the argument is assumed to be a
C double both inside f() and in the call to it, yet a
Python float object must be constructed around the
argument in order to pass it.

Therefore Cython provides a syntax for declaring a C-
style function, the cdef keyword:

cdef double f(double) except *:
return sin(x**2)

Some form of except-modifier should usually be added,
otherwise Cython will not be able to propagate excep-
tions raised in the function (or a function it calls).
Above except * is used which is always safe. An ex-
cept clause can be left out if the function returns a
Python object or if it is guaranteed that an exception
will not be raised within the function call.

A side-effect of cdef is that the function is no longer
available from Python-space, as Python wouldn’t know
how to call it. Using the cpdef keyword instead of
cdef, a Python wrapper is also created, so that the
function is available both from Cython (fast, passing
typed values directly) and from Python (wrapping val-
ues in Python objects).

Note also that it is no longer possible to change f at
runtime.

Speedup: 45 times over pure Python.

Calling external C functions

It is perfectly OK to do from math import sin to
use Python’s sin() function. However, calling C’s
own sin() function is substantially faster, especially
in tight loops. It can be declared and used in Cython

as follows:
cdef extern from "math.h":
double sin(double)

cdef double f(double x):
return sin(x*x)

At this point there are no longer any Python wrapper
objects around our values inside of the main for loop,
and so we get an impressive speedup to 219 times the
speed of Python.

Note that the above code re-declares the function from
math.h to make it available to Cython code. The C
compiler will see the original declaration in math.h at
compile time, but Cython does not parse “math.h” and
requires a separate definition.

When calling C functions, one must take care to link
in the appropriate libraries. This can be platform-

specific; the below example works on Linux and Mac
0OS X:
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from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules=[
Extension("demo",
["demo.pyx"],
libraries=["m"]) # Unix-like specific

]

setup(
name = "Demos",
cmdclass = {"build_ext": build_ext},
ext_modules = ext_modules

)

If one uses the Sage notebook to compile Cython code,
one can use a special comment to tell Sage to link in
libraries:

#clib: m

Just like the sin() function from the math library, it
is possible to declare and call into any C library as long
as the module that Cython generates is properly linked
against the shared or static library. A more extensive
example of wrapping a C library is given in the section
Using C libraries.

Extension types (aka. cdef classes)

To support object-oriented programming, Cython sup-
ports writing normal Python classes exactly as in
Python:

class MathFunction(object):
def __init__(self, name, operator):
self.name = name
self.operator = operator

def __call__(self, *operands):
return self.operator (*operands)

Based on what Python calls a “built-in type”, how-
ever, Cython supports a second kind of class: exten-
sion types, sometimes referred to as “cdef classes” due
to the keywords used for their declaration. They are
somewhat restricted compared to Python classes, but
are generally more memory efficient and faster than
generic Python classes. The main difference is that
they use a C struct to store their fields and meth-
ods instead of a Python dict. This allows them to
store arbitrary C types in their fields without requir-
ing a Python wrapper for them, and to access fields
and methods directly at the C level without passing
through a Python dictionary lookup.

Normal Python classes can inherit from cdef classes,
but not the other way around. Cython requires to
know the complete inheritance hierarchy in order to
lay out their C structs, and restricts it to single in-
heritance. Normal Python classes, on the other hand,
can inherit from any number of Python classes and ex-
tension types, both in Cython code and pure Python
code.

So far our integration example has not been very useful
as it only integrates a single hard-coded function. In

order to remedy this, without sacrificing speed, we will
use a cdef class to represent a function on floating point

numbers:
cdef class Function:
cpdef double evaluate(self, double x) except *:
return 0

Like before, cpdef makes two versions of the method
available; one fast for use from Cython and one slower
for use from Python. Then:

cdef class SinOfSquareFunction(Function):
cpdef double evaluate(self, double x) except *:
return sin(x**2)

Using this, we can now change our integration exam-
ple:

def integrate(Function f, double a, double b, int N):
cdef int i
cdef double s, dx
if £ is None:
raise ValueError("f cannot be None")
s =0
dx = (b-a)/N
for i in range(N):
s += f.evaluate(a+i*dx)
return s * dx

print (integrate (SinOfSquareFunction(), 0, 1, 10000))

This is almost as fast as the previous code, however
it is much more flexible as the function to integrate
can be changed. It is even possible to pass in a new
function defined in Python-space. Assuming the above
code is in the module integrate.pyx, we can do:

>>> import integrate
>>> class MyPolynomial(integrate.Function):
def evaluate(self, x):
return 2*x*x + 3*x - 10

>>> integrate.integrate(MyPolynomial(), 0, 1, 10000)
-7.8335833300000077

This is about 20 times slower than SinOfSquareFunc-
tion, but still about 10 times faster than the origi-
nal Python-only integration code. This shows how
large the speed-ups can easily be when whole loops
are moved from Python code into a Cython module.

Some notes on our new implementation of evaluate:

e The fast method dispatch here only works because
evaluate was declared in Function. Had evaluate
been introduced in Sin0fSquareFunction, the code
would still work, but Cython would have used the
slower Python method dispatch mechanism instead.

e In the same way, had the argument £ not been typed,
but only been passed as a Python object, the slower
Python dispatch would be used.

e Since the argument is typed, we need to check
whether it is None. In Python, this would have re-
sulted in an AttributeError when the evaluate
method was looked up, but Cython would instead
try to access the (incompatible) internal structure
of None as if it were a Function, leading to a crash
or data corruption.

http://conference.scipy.org/proceedings/SciPy2009/paper_1
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There is a compiler directive nonecheck which turns on
checks for this, at the cost of decreased speed. Here’s
how compiler directives are used to dynamically switch

on or off nonecheck:
#cython: nonecheck=True
# 77 Turns on nonecheck globally

import cython

# Turn off nonecheck locally for the function
Qcython.nonecheck(False)
def func():
cdef MyClass obj = None
try:
# Turn nonecheck on again for a block
with cython.nonecheck(True):
print obj.myfunc() # Raises exception
except AttributeError:
pass
print obj.myfunc() # Hope for a crash!

Attributes in cdef classes behave differently from at-
tributes in regular classes:

e All attributes must be pre-declared at compile-time

e Attributes are by default only accessible from
Cython (typed access)

e Properties can be declared to expose dynamic at-
tributes to Python-space

cdef class WaveFunction(Function):
# Not available in Python-space:
cdef double offset
# Available in Python-space:
cdef public double freq
# Available in Python-space:
property period:
def __get__(self):
return 1.0 / self. freq
def set__(self, value):

self. freq = 1.0 / value
<...>

pxd files

In addition to the .pyx source files, Cython uses .pxd
files which work like C header files - they contain
Cython declarations (and sometimes code sections)
which are only meant for sharing C-level declarations
with other Cython modules. A pxd file is imported
into a pyx module by using the cimport keyword.
pxd files have many use-cases:

1. They can be used for sharing external C declara-
tions.

2. They can contain functions which are well suited
for inlining by the C compiler. Such functions
should be marked inline, example:

cdef inline int int_min(int a, int b):
return b if b < a else a

3. When accompanying an equally named pyx file,
they provide a Cython interface to the Cython
module so that other Cython modules can com-
municate with it using a more efficient protocol
than the Python one.

In our integration example, we might break it up into
pxd files like this:

1. Add a cmath.pxd function which defines the C
functions available from the C math.h header file,
like sin. Then one would simply do from cmath
import sin in integrate.pyx.

2. Add a integrate.pxd so that other modules
written in Cython can define fast custom func-
tions to integrate.

cdef class Function:
cpdef evaluate(self, double x)
cpdef integrate(Function f, double a,
double b, int N)

Note that if you have a cdef class with attributes,
the attributes must be declared in the class dec-
laration pxd file (if you use one), not the pyx file.
The compiler will tell you about this.

Using Cython with NumPy

Cython has support for fast access to NumPy arrays.
To optimize code using such arrays one must cimport
the NumPy pxd file (which ships with Cython), and
declare any arrays as having the ndarray type. The
data type and number of dimensions should be fixed
at compile-time and passed. For instance:

import numpy as np

cimport numpy as np

def myfunc(np.ndarray[np.float64_t, ndim=2] A):
<.olu>

myfunc can now only be passed two-dimensional ar-
rays containing double precision floats, but array in-
dexing operation is much, much faster, making it suit-
able for numerical loops. Expect speed increases well
over 100 times over a pure Python loop; in some cases
the speed increase can be as high as 700 times or more.
[Seljebotn09] contains detailed examples and bench-
marks.

Fast array declarations can currently only be used
with function local variables and arguments to def-
style functions (not with arguments to cpdef or cdef,
and neither with fields in cdef classes or as global vari-
ables). These limitations are considered known defects
and we hope to remove them eventually. In most cir-
cumstances it is possible to work around these limi-
tations rather easily and without a significant speed
penalty, as all NumPy arrays can also be passed as
untyped objects.

Array indexing is only optimized if exactly as many
indices are provided as the number of array dimen-
sions. Furthermore, all indices must have a native in-
teger type. Slices and NumPy “fancy indexing” is not
optimized. Examples:

(©2009, S. Behnel, R. Bradshaw, D. Seljebotn
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def myfunc(np.ndarray[np.float64_t, ndim=1] A):
cdef Py_ssize_t i, j
for i in range(A.shape[0]):
print A[i, O] # fast

j o= 2%
print A[i, j] # fast
k = 2x%i

print A[i, k] # slow, k is not typed
print A[i][j] # slow
print A[i,:] # slow

Py_ssize_t is a signed integer type provided by
Python which covers the same range of values as is
supported as NumPy array indices. It is the preferred
type to use for loops over arrays.

Any Cython primitive type (float, complex float and
integer types) can be passed as the array data type.
For each valid dtype in the numpy module (such as
np.uint8, np.complex128) there is a correspond-
ing Cython compile-time definition in the cimport-ed
NumPy pxd file with a _t suffix!. Cython structs are
also allowed and corresponds to NumPy record arrays.
Examples:

cdef packed struct Point:
np.float64_t x, y

def £():
cdef np.ndarray[np.complex128_t, ndim=3] a = \
np.zeros((3,3,3), dtype=np.complex128)
cdef np.ndarray[Point] b = np.zeros(10,
dtype=np.dtype([(’x’, np.float64),
(’y’, np.float64)1))

<oo0>
Note that ndim defaults to 1. Also note that NumPy
record arrays are by default unaligned, meaning data
is packed as tightly as possible without considering
the alignment preferences of the CPU. Such unaligned
record arrays corresponds to a Cython packed struct.
If one uses an aligned dtype, by passing align=True
to the dtype constructor, one must drop the packed
keyword on the struct definition.
Some data types are not yet supported, like boolean
arrays and string arrays. Also data types describing
data which is not in the native endian will likely never
be supported. It is however possible to access such
arrays on a lower level by casting the arrays:

cdef np.ndarray[np.uint8, cast=True] boolarr
cdef np.ndarray[np.uint32, cast=True] values
np.arange (10, dtype=’>i4’)

x <y
\

Assuming one is on a little-endian system, the values
array can still access the raw bit content of the array
(which must then be reinterpreted to yield valid results
on a little-endian system).

Finally, note that typed NumPy array variables in
some respects behave a little differently from untyped
arrays. arr.shape is no longer a tuple. arr.shape[0]
is valid but to e.g. print the shape one must do print
(<object>arr) .shape in order to “untype” the vari-
able first. The same is true for arr.data (which in
typed mode is a C data pointer).

There are many more options for optimizations to con-
sider for Cython and NumPy arrays. We again refer
the interested reader to [Seljebotn09].

In Cython 0.11.2, np.complex64_t and np.complex128_t

Using C libraries

Apart from writing fast code, one of the main use cases
of Cython is to call external C libraries from Python
code. As seen for the C string decoding functions
above, it is actually trivial to call C functions directly
in the code. The following describes what needs to be
done to use an external C library in Cython code.
Imagine you need an efficient way to store integer val-
ues in a FIFO queue. Since memory really matters,
and the values are actually coming from C code, you
cannot afford to create and store Python int objects
in a list or deque. So you look out for a queue imple-
mentation in C.

After some web search, you find the C-algorithms li-
brary [CAlg] and decide to use its double ended queue
implementation. To make the handling easier, how-
ever, you decide to wrap it in a Python extension type
that can encapsulate all memory management.

The C API of the queue implementation, which is de-
fined in the header file 1ibcalg/queue.h, essentially
looks like this:

typedef struct _Queue Queue;
typedef void *QueueValue;

Queue *queue_new(void) ;
void queue_free(Queue *queue);

int queue_push_head(Queue *queue, QueueValue data);
QueueValue queue_pop_head(Queue *queue);
QueueValue queue_peek_head(Queue *queue);

int queue_push_tail(Queue *queue, QueueValue data);
QueueValue queue_pop_tail(Queue *queue);
QueueValue queue_peek_tail (Queue *queue);

int queue_is_empty(Queue *queue);

To get started, the first step is to redefine the C API
in a .pxd file, say, cqueue.pxd:

cdef extern from "libcalg/queue.h":
ctypedef struct Queue:
pass
ctypedef void* QueueValue

Queue* new_queue()
void queue_free(Queue* queue)

int queue_push_head(Queue* queue, QueueValue data)
QueueValue queue_pop_head(Queuex queue)
QueueValue queue_peek_head(Queue* queue)

int queue_push_tail(Queue* queue, QueueValue data)
QueueValue queue_pop_tail(Queue* queue)
QueueValue queue_peek_tail (Queuex* queue)

bint queue_is_empty(Queue* queue)

Note how these declarations are almost identical to
the header file declarations, so you can often just copy
them over. One exception is the last line. The return
value of the queue_is_empty method is actually a C
boolean value, i.e. it is either zero or non-zero, indicat-
ing if the queue is empty or not. This is best expressed

does not work and one must write complex or double complex
instead. This is fixed in 0.11.3. Cython 0.11.1 and earlier does
not support complex numbers.

http://conference.scipy.org/proceedings/SciPy2009/paper_1
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by Cython’s bint type, which is a normal int type
when used in C but maps to Python’s boolean values
True and False when converted to a Python object.
Another difference is the first line. Queue is in this
case used as an opaque handle; only the library that is
called know what is actually inside. Since no Cython
code needs to know the contents of the struct, we do
not need to declare its contents, so we simply provide
an empty definition (as we do not want to declare the
_Queue type which is referenced in the C header)?.

Next, we need to design the Queue class that should
wrap the C queue. Here is a first start for the Queue

class:
cimport cqueue
cimport python_exc

cdef class Queue:
cdef cqueue.Queue _c_queue
def cinit__(self):

self._c_queue = cqueue.new_queue()

Note that it says __cinit__ rather than __init__.
While __init__ is available as well, it is not guaran-
teed to be run (for instance, one could create a sub-
class and forget to call the ancestor constructor). Be-
cause not initializing C pointers often leads to crashing
the Python interpreter without leaving as much as a
stack trace, Cython provides __cinit__ which is al-
ways called on construction. However, as __cinit__
is called during object construction, self is not fully
constructed yet, and one must avoid doing anything
with self but assigning to cdef fields.

Note also that the above method takes no parame-
ters, although subtypes may want to accept some. Al-
though it is guaranteed to get called, the no-arguments
__cinit__() method is a special case here as it does
not prevent subclasses from adding parameters as they
see fit. If parameters are added they must match those
of any declared __init__ method.

Before we continue implementing the other methods,
it is important to understand that the above imple-
mentation is not safe. In case anything goes wrong in
the call to new_queue (), this code will simply swallow
the error, so we will likely run into a crash later on.
According to the documentation of the new_queue()
function, the only reason why the above can fail is
due to insufficient memory. In that case, it will return
NULL, whereas it would normally return a pointer to
the new queue.

The normal way to get out of this is to raise an excep-
tion, but allocating a new exception instance may actu-
ally fail when we are running out of memory. Luckily,
CPython provides a function PyErr_NoMemory () that
raises the right exception for us. We can thus change
the init function as follows:

2There’s a subtle difference between cdef struct Queue:
pass and ctypedef struct Queue: pass. The former declares
a type which is referenced in C code as struct Queue, while the
latter is referenced in C as Queue. This is a C language quirk
that Cython is not able to hide. Most modern C libraries use
the ctypedef kind of struct.

def __cinit__(self):
self._c_queue = cqueue.new_queue()
if self._c_queue is NULL:
python_exc.PyErr_NoMemory ()

The next thing to do is to clean up when the Queue is
no longer used. To this end, CPython provides a call-
back that Cython makes available as a special method
__dealloc__(). In our case, all we have to do is to
free the Queue, but only if we succeeded in initialising
it in the init method:

def __dealloc__(self):

if self._c_queue is not NULL:
cqueue.queue_free(self._c_queue)

At this point, we have a compilable Cython module
that we can test. To compile it, we need to configure
a setup.py script for distutils. Based on the exam-
ple presented earlier on, we can extend the script to
include the necessary setup for building against the
external C library. Assuming it’s installed in the nor-
mal places (e.g. under /usr/lib and /usr/include
on a Unix-like system), we could simply change the
extension setup from

ext_modules = [Extension("hello", ["hello.pyx"])]

to

ext_modules = [
Extension("hello", ["hello.pyx"],
libraries=["calg"])

]

If it is not installed in a 'normal’ location, users can
provide the required parameters externally by passing
appropriate C compiler flags, such as:

CFLAGS="-I/usr/local/otherdir/calg/include" \
LDFLAGS="-L/usr/local/otherdir/calg/lib" \
python setup.py build_ext -i

Once we have compiled the module for the first time,
we can try to import it:

PYTHONPATH=. python -c ’import queue.Queue as Q; Q(O)’

However, our class doesn’t do much yet so far, so let’s
make it more usable.

Before implementing the public interface of this class,
it is good practice to look at what interfaces Python
offers, e.g. in its 1ist or collections.deque classes.
Since we only need a FIFO queue, it’s enough to pro-
vide the methods append(), peek() and pop(), and
additionally an extend () method to add multiple val-
ues at once. Also, since we already know that all val-
ues will be coming from C, it’s better to provide only
cdef methods for now, and to give them a straight C
interface.

In C, it is common for data structures to store data
as a void* to whatever data item type. Since we only
want to store int values, which usually fit into the
size of a pointer type, we can avoid additional memory
allocations through a trick: we cast our int values to
void* and vice versa, and store the value directly as
the pointer value.

(©2009, S. Behnel, R. Bradshaw, D. Seljebotn
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Here is a simple implementation for the append()
method:

cdef append(self, int value):
cqueue.queue_push_tail(self._c_queue, <void*>value)

Again, the same error handling considerations as for
the __cinit__() method apply, so that we end up
with this implementation:

cdef append(self, int value):
if not cqueue.queue_push_tail(self._c_queue,
<voidx*>value) :
python_exc.PyErr_NoMemory ()

Adding an extend() method should now be straight

forward:
cdef extend(self, int* values, Py_ssize_t count):
"""Append all ints to the queue.

nun

cdef Py_ssize_t i
for i in range(count):
if not cqueue.queue_push_tail(
self._c_queue, <void*>values[i]):
python_exc.PyErr_NoMemory ()

This becomes handy when reading values from a
NumPy array, for example.

So far, we can only add data to the queue. The next
step is to write the two methods to get the first ele-
ment: peek() and pop(), which provide read-only and
destructive read access respectively:

cdef int peek(self):
return <int>cqueue.queue_peek_head(self._c_queue)

cdef int pop(self):
return <int>cqueue.queue_pop_head(self._c_queue)

Simple enough. Now, what happens when the queue
is empty? According to the documentation, the func-
tions return a NULL pointer, which is typically not a
valid value. Since we are simply casting to and from
ints, we cannot distinguish anymore if the return value
was NULL because the queue was empty or because the
value stored in the queue was 0. However, in Cython
code, we would expect the first case to raise an excep-
tion, whereas the second case should simply return 0.
To deal with this, we need to special case this value,
and check if the queue really is empty or not:

cdef int peek(self) except? O:
cdef int value = \
<int>cqueue.queue_peek_head(self._c_queue)
if value
# this may mean that the queue is empty, or
# that it happens to contain a 0 value
if cqueue.queue_is_empty(self._c_queue):
raise IndexError("Queue is empty")
return value

The except? O declaration is worth explaining. If
the function was a Python function returning a Python
object value, CPython would simply return NULL in-
stead of a Python object to indicate a raised excep-
tion, which would immediately be propagated by the
surrounding code. The problem is that any int value
is a valid queue item value, so there is no way to ex-
plicitly indicate an error to the calling code.

The only way CPython (and Cython) can deal with
this situation is to call PyErr_Occurred() when re-
turning from a function to check if an exception was
raised, and if so, propagate the exception. This obvi-
ously has a performance penalty. Cython therefore al-
lows you to indicate which value is explicitly returned
in the case of an exception, so that the surrounding
code only needs to check for an exception when receiv-
ing this special value. All other values will be accepted
almost without a penalty.
Now that the peek() method is implemented, the
pop () method is almost identical. It only calls a dif-
ferent C function:
cdef int pop(self) except? O:
cdef int value = \
<int>cqueue.queue_pop_head(self._c_queue)
if value
# this may mean that the queue is empty, or
# that it happens to contain a 0 value
if cqueue.queue_is_empty(self._c_queue):
raise IndexError("Queue is empty")
return value

Lastly, we can provide the Queue with an emptiness
indicator in the normal Python way:

def __nonzero__(self):

return not cqueue.queue_is_empty(self._c_queue)

Note that this method returns either True or False
as the return value of the queue_is_empty function is
declared as a bint.

Now that the implementation is complete, you may
want to write some tests for it to make sure it works
correctly. Especially doctests are very nice for this
purpose, as they provide some documentation at the
same time. To enable doctests, however, you need a
Python API that you can call. C methods are not
visible from Python code, and thus not callable from
doctests.

A quick way to provide a Python API for the class
is to change the methods from cdef to cpdef. This
will let Cython generate two entry points, one that is
callable from normal Python code using the Python
call semantics and Python objects as arguments, and
one that is callable from C code with fast C semantics
and without requiring intermediate argument conver-
sion from or to Python types.

The following listing shows the complete implementa-
tion that uses cpdef methods where possible. This
feature is obviously not available for the extend()
method, as the method signature is incompatible with
Python argument types.

11
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cimport cqueue
cimport python_exc

cdef class Queue:
cdef cqueue.Queue* _c_queue
def __cinit__(self):
self._c_queue = cqueue.queue_new()
if self._c_queue is NULL:
python_exc.PyErr_NoMemory ()
def __dealloc__(self):
if self._c_queue is not NULL:
cqueue.queue_free(self._c_queue)

cpdef append(self, int value):
if not cqueue.queue_push_tail(self._c_queue,
<void*>value) :
python_exc.PyErr_NoMemory ()

cdef extend(self, int* values, Py_ssize_t count):
cdef Py_ssize_t i
for i in range(count):
if not cqueue.queue_push_tail(
self._c_queue, <void*>values[i]):
python_exc.PyErr_NoMemory ()

cpdef int peek(self) except? O:

cdef int value = \
<int>cqueue.queue_peek_head(self._c_queue)

if value ==
# this may mean that the queue is empty,
# or that it happens to contain a 0 value
if cqueue.queue_is_empty(self._c_queue):

raise IndexError("Queue is empty")
return value

cpdef int pop(self) except? O:

cdef int value = \
<int>cqueue.queue_pop_head(self._c_queue)

if value ==
# this may mean that the queue is empty,
# or that it happens to contain a O value
if cqueue.queue_is_empty(self._c_queue):

raise IndexError("Queue is empty")
return value

def __nonzero__(self):

return not cqueue.queue_is_empty(self._c_queue)

As a quick test with numbers from 0 to 9999 indicates,
using this Queue from Cython code with C int values
is about five times as fast as using it from Cython code
with Python values, almost eight times faster than us-
ing it from Python code in a Python loop, and still
more than twice as fast as using Python’s highly op-
timised collections.deque type from Cython code
with Python integers.

Unicode and passing strings

Similar to the string semantics in Python 3, Cython
also strictly separates byte strings and unicode strings.
Above all, this means that there is no automatic con-
version between byte strings and unicode strings (ex-
cept for what Python 2 does in string operations). All
encoding and decoding must pass through an explicit
encoding/decoding step.

It is, however, very easy to pass byte strings between C
code and Python. When receiving a byte string from a

C library, you can let Cython convert it into a Python

byte string by simply assigning it to a Python variable:
cdef char* c_string = c_call_returning_a_c_string()
py_string = c_string

This creates a Python byte string object that holds a
copy of the original C string. It can be safely passed
around in Python code, and will be garbage collected
when the last reference to it goes out of scope.

To convert the byte string back into a C char*, use
the opposite assignment:

cdef char* other_c_string = py_string

This is a very fast operation after which
other_c_string points to the byte string buffer
of the Python string itself. It is tied to the life time of
the Python string. When the Python string is garbage
collected, the pointer becomes invalid. It is therefore
important to keep a reference to the Python string as
long as the charx is in use. Often enough, this only
spans the call to a C function that receives the pointer
as parameter. Special care must be taken, however,
when the C function stores the pointer for later use.
Apart from keeping a Python reference to the string,
no manual memory management is required.

The above way of passing and receiving C strings is
as simple that, as long as we only deal with binary
data in the strings. When we deal with encoded text,
however, it is best practice to decode the C byte strings
to Python Unicode strings on reception, and to encode
Python Unicode strings to C byte strings on the way
out.

With a Python byte string object, you would normally
just call the .decode() method to decode it into a
Unicode string:

ustring = byte_string.decode(’UTF-8’)

You can do the same in Cython for a C string, but the
generated code is rather inefficient for small strings.
While Cython could potentially call the Python C-API
function for decoding a C string from UTF-8 to Uni-
code (PyUnicode_DecodeUTF8()), the problem is that
this requires passing the length of the C string, which
Cython cannot know at compile time nor runtime. So
it would have to call strlen() first, although the user
code will already know the length of the string in al-
most all cases. Also, the encoded byte string might
actually contain null bytes, so this isn’t even a safe so-
lution. It is therefore currently recommended to call

the API functions directly:
# .pxd file that comes with Cython
cimport python_unicode

cdef char* c_string = NULL
cdef Py_ssize_t length = 0

# get pointer and length from a C function
get_a_c_string(&c_string, &length)

# decode the string to Unicode
ustring = python_unicode.PyUnicode_DecodeUTF8(
c_string, length, ’strict’)

(©2009, S. Behnel, R. Bradshaw, D. Seljebotn
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It is common practice to wrap this in a dedicated func-
tion, as this needs to be done whenever receiving text

from C. This could look as follows:
cimport python_unicode

cimport stdlib
cdef extern from "string.h":
size_t strlen(char *s)

cdef unicode tounicode(char* s):
return python_unicode.PyUnicode_DecodeUTF8(
s, strlen(s), ’strict’)

cdef unicode tounicode_with_length(
char* s, size_t length):
return python_unicode.PyUnicode_DecodeUTFS(
s, length, ’strict’)

cdef unicode tounicode_with_length_and_free(
char* s, size_t length):
try:
return python_unicode.PyUnicode_DecodeUTF8(
s, length, ’strict’)
finally:
stdlib.free(s)
Most likely, you will prefer shorter function names in
your code based on the kind of string being handled.
Different types of content often imply different ways of
handling them on reception. To make the code more
readable and to anticipate future changes, it is good
practice to use separate conversion functions for differ-
ent types of strings.
The reverse way, converting a Python unicode string to
a C charx, is pretty efficient by itself, assuming that
what you actually want is a memory managed byte
string:
py_byte_string = py_unicode_string.encode(’UTF-87)
cdef char* c_string = py_byte_string

As noted above, this takes the pointer to the byte
buffer of the Python byte string. Trying to do the
same without keeping a reference to the intermediate

byte string will fail with a compile error:
# this will not compile !
cdef char* c_string = py_unicode_string.encode(’UTF-8’)

Here, the Cython compiler notices that the code takes
a pointer to a temporary string result that will be
garbage collected after the assignment. Later access
to the invalidated pointer will most likely result in a
crash. Cython will therefore refuse to compile this
code.

Caveats

Since Cython mixes C and Python semantics, some
things may be a bit surprising or unintuitive. Work al-
ways goes on to make Cython more natural for Python
users, so this list may change in the future.

e 10**x-2 == 0, instead of 0.01 like in Python.

e Given two typed int variables a and b, a % b has
the same sign as the first argument (following C se-
mantics) rather then having the same sign as the
second (as in Python). This will change in Cython
0.12.

o Care is needed with unsigned types. cdef unsigned
10; print(range(-n, n)) will print an empty
list, since -n wraps around to a large positive integer
prior to being passed to the range function.

n =

e Python’s float type actually wraps C double val-
ues, and Python’s int type wraps C long values.

Further reading

The main documentation is located at http://docs.
cython.org/. Some recent features might not have
documentation written yet, in such cases some notes
can usually be found in the form of a Cython Enhance-
ment Proposal (CEP) on http://wiki.cython.org/
enhancements.

[Seljebotn09] contains more information about Cython
and NumPy arrays. If you intend to use Cython code
in a multi-threaded setting, it is essential to read up on
Cython’s features for managing the Global Interpreter
Lock (the GIL). The same paper contains an explana-
tion of the GIL, and the main documentation explains
the Cython features for managing it.

Finally, don’t hesitate to ask questions (or post re-
ports on successes!) on the Cython users mailing
list [UserList]. The Cython developer mailing list,
[DevList], is also open to everybody. Feel free to use
it to report a bug, ask for guidance, if you have time
to spare to develop Cython, or if you have suggestions
for future development.

Related work

Pyrex [Pyrex] is the compiler project that Cython was
originally based on. Many features and the major de-
sign decisions of the Cython language were developed
by Greg Ewing as part of that project. Today, Cython
supersedes the capabilities of Pyrex by providing a
higher compatibility with Python code and Python
semantics, as well as superior optimisations and bet-
ter integration with scientific Python extensions like
NumPy.

ctypes [ctypes] is a foreign function interface (FFI) for
Python. It provides C compatible data types, and al-
lows calling functions in DLLs or shared libraries. It
can be used to wrap these libraries in pure Python
code. Compared to Cython, it has the major ad-
vantage of being in the standard library and being
usable directly from Python code, without any addi-
tional dependencies. The major drawback is its per-
formance, which suffers from the Python call overhead
as all operations must pass through Python code first.
Cython, being a compiled language, can avoid much of
this overhead by moving more functionality and long-
running loops into fast C code.

SWIG [SWIG] is a wrapper code generator. It makes
it very easy to parse large API definitions in C/C++
header files, and to generate straight forward wrapper
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code for a large set of programming languages. As op-
posed to Cython, however, it is not a programming
language itself. Thin wrappers are easy to generate,
but the more functionality a wrapper needs to pro-
vide, the harder it gets to implement it with SWIG.
Cython, on the other hand, makes it very easy to write
very elaborate wrapper code specifically for the Python
language. Also, there exists third party code for pars-
ing C header files and using it to generate Cython def-
initions and module skeletons.

ShedSkin [ShedSkin] is an experimental Python-to-
C++ compiler. It uses profiling information and very
powerful type inference engine to generate a C++ pro-
gram from (restricted) Python source code. The main
drawback is has no support for calling the Python/C
API for operations it does not support natively, and
supports very few of the standard Python modules.

Appendix: Installing MinGW on Windows

1. Download the MinGW installer from http://
mingw.org. (As of this writing, the download link
is a bit difficult to find; it’s under “About” in the
menu on the left-hand side). You want the file en-
titled “Automated MinGW Installer” (currently
version 5.1.4).

2. Run it and install MinGW. Only the basic pack-
age is strictly needed for Cython, although you
might want to grab at least the C++ compiler as
well.

3. You need to set up Windows’ “PATH” en-
vironment variable so that includes e.g.
“c:\mingw\bin” (if you installed MinGW to
“c:\mingw”). The following web-page describes
the procedure in Windows XP (the Vista proce-
dure is similar): http://support.microsoft.
com/kb/310519

4. Finally, tell Python to use MinGW as the default
compiler (otherwise it will try for Visual C). If
Python is installed to “c:\Python26”, create a file
named “c:\Python26\Lib\distutils\distutils.cfg”
containing:

[build]
compiler = mingw32

The [Winlnst] wiki page contains updated informa-
tion about this procedure. Any contributions towards

making the Windows install process smoother is wel-
comed; it is an unfortunate fact that none of the regu-
lar Cython developers have convenient access to Win-
dows.
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