
Proceedings of the 8th Python in Science Conference (SciPy 2009)

Exploring the future of bioinformatics data sharing and mining with Pygr
and Worldbase
Christopher Lee (leec@chem.ucla.edu) – Department of Chemistry Biochemistry, UCLA, 611 Charles Young Dr.
East, Los Angeles, CA 90095 USA
Alexander Alekseyenko (alexander.alekseyenko@nyumc.org) – Center for Health Informatics and Bioinformatics,
Department of Medicine, New York University School of Medicine, New York, NY 10016 USA
C. Titus Brown (ctb@msu.edu) – Dept. of Computer Science and Engineering, Dept. of Microbiology and Molecular
Genetics, Michigan State University, East Lansing, Michigan 48824 USA

Worldbase is a virtual namespace for scientific data
sharing that can be accessed via “from pygr import
worldbase“. Worldbase enables users to access, save
and share complex datasets as easily as simply giv-
ing a specific name for a commonly-used dataset
(e.g. Bio.Seq.Genome.HUMAN.hg17 for draft 17 of
the human genome). Worldbase transparently takes
care of all issues of how to access the dataset, what
code must be imported to use it, what dependencies
on other datasets it may have, and how to make use
of its relations with other datasets as specified by
its schema. Worldbase works with a wide variety of
“back-end” storage, including data stored on local
file systems, relational databases such as MySQL,
remote services via XMLRPC, and “downloadable”
resources that can be obtained from the network but
automatically installed locally by Worldbase.

Introduction

One of the most important challenges in bioinformat-
ics is a pure Computer Science problem: making it
easy for different research groups to access, mine and
integrate each other’s datasets, in ways that go beyond
simple web browsing. The problems of bioinformatics
data sharing have grown enormously as the scale and
complexity of datasets have increased. Even expert
bioinformaticians often find it difficult to work with
datasets from outside their specialization; non-expert
users often find it impossible. Such difficulties are one
of the main barriers to delivering the full value of ge-
nomics to all researchers who could benefit from it.
Even when good analysis tools are available, the diffi-
culties of accessing and integrating large datasets often
limit who can do interesting analyses [LI01].
It doesn’t have to be this way. Enabling datasets to
“flow” automatically from one place to another, to
inter-connect through cross-references that work au-
tomatically, and to always bring along the code mod-
ules necessary for working with them - these are all in-
frastructural principles that computer scientists have
solved for other domains [DK76]. Good infrastructure
should be transparent. Like the Domain Name Service
and other technologies that power the web, it should
just work, without being visible to the user.

The need for both computational and human scala-
bility

One major obstacle to easy sharing of bioinformatics
datasets is their sheer scale and complex interdepen-
dencies. Some aspects of this are very simple; for ex-
ample, many prospective users just don’t have enough
disk space on their computer to load their desired data.
In that case, they should be able to access the data
over network protocols transparently; that is, with the
exact same interfaces used if the data were stored lo-
cally. But a deeper problem is the fact that existing
systems for accessing data from other scientists rely on
expertise: “if the user is an expert in how to use this
particular kind of data, s/he’ll figure out how to find,
download, install, and use this dataset”. Since most ex-
perts are inexpert at most things, this approach does
not scale [BITL]. We have therefore developed a simple
but general data-sharing mechanism called worldbase
[Pygr]:

• To use any public dataset, all the user needs to know
is its name.

• Asking for a dataset by name yields a full Python
interface to it, enabling the user to mine it in all the
ways that the original producer of the data could.

• All datasets should be accessible by name from any
networked computer, using the closest available re-
sources, or if the user requests, by automatically
downloading and installing it locally. Just like the
World Wide Web, worldbase seeks to create a fa-
cade of fully integrated data, not just from the user’s
computer or LAN but from the whole world.

• The interface for using that data should be exactly
the same no matter how or where it is actually being
accessed from.

• To use a dataset’s relationships to other datasets,
again all the user needs to know is the name of one of
its attributes that links it to another dataset. If the
user requests such an attribute, the linked dataset(s)
will again be accessed automatically.

In this paper we first describe the current version of
worldbase (Pygr v.0.8.0, Sept. 2009) by illustrating
typical ways of using it. We then discuss some prin-
ciples of scalable data integration that we believe will
prove to be general across many domains of scientific
computing.

C. Lee, A. Alekseyenko, C. Brownin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 62–68 62

leec@chem.ucla.edu
alexander.alekseyenko@nyumc.org
ctb@msu.edu

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Using Worldbase

Retrieving a dataset from Worldbase

Say you want to work with human genome draft 18.
Start Python and type the following:

>>> from pygr import worldbase
>>> hg18 = worldbase.Bio.Seq.Genome.HUMAN.hg18()

That’s it: you now have the human genome dataset,
and can start working. Let’s see how many contigs
it contains, pull out one chromosome, and print a
sequence interval of interest, using standard Python
methods:

>>> len(hg18)
49
>>> chr1 = hg18[’chr1’]
>>> len(chr1)
247249719
>>> ival = chr1[20000000:20000500]
>>> print ival
cctcggcctcccaaagtgctgggattacaggcgtgagccaccgcgcagcc...

worldbase establishes a one-step model for accessing
data: ask for it by name:

• worldbase is an importable namespace for all the
world’s scientific datasets. You simply import the
namespace (in the usual Python way), and ask it to
construct an instance of the dataset that you want
(in the usual Python way).

• Of course, this is a virtual namespace - you don’t ac-
tually have all the world’s datasets sitting on your
computer in a file called worldbase.py! worldbase
connects to a wide variety of data sources (some of
which may be on your computer, and some which
may be on the Internet) to find out the set of avail-
able resources, and then serves them to you.

• worldbase takes advantage of Pygr’s scalable de-
sign. Pygr is first and foremost a a system of rep-
resentation not tied to any fixed assumptions about
storage. Pygr is built around the notion of delayed
and incremental execution, whereby pieces of a com-
plex and large dataset are loaded only as needed,
and in an automatic way that makes this interface
transparent. For example, chr1 represents human
chromosome 1, but does not necessarily mean that
the human chromosome 1 sequence (245 Mb) was
loaded into a Python object). Thus it can work
very naturally with huge datasets, even over a net-
work connection where the actual data is stored on
a remote server. In this case, worldbase is access-
ing hg18 from UCLA’s data server, which is included
by default in worldbase searches (of course, you can
change that).

• To get a dataset, all you need to know is its name in
worldbase. Note that we did not even have to know
what code is required to work with that data, let
alone explicitly import those modules. worldbase
takes care of that for you.

• The call syntax (hg18()) emphasizes that this
acts like a Python constructor: it constructs
a Python object for us (in this case, the de-
sired seqdb.SequenceFileDB object representing
this genome database).

• Note that we did not even have to know how to
construct the hg18 object, e.g. what Python class
to use (seqdb.SequenceFileDB), or even to import
the necessary modules for constructing it.

• Where did this data actually come from? Since
your computer presumably does not contain a lo-
cal copy of this dataset, worldbase accessed it from
UCLA’s public worldbase server over XMLRPC.
Currently, our server provides over 460 standard
datasets for comparative genomics (such as whole
genome sequences, and multigenome alignments),
both for client-server access and automated down-
load and installation of datasets (see below).

Storing data in Worldbase

worldbase saves not just a data file but a complete
Python interface to a dataset, i.e. the capability to
use and mine the data in whatever ways are possible
programmatically. One way of thinking about world-
base is that retrieving data from it is like returning to
the moment in time when those data were originally
saved to worldbase. Anything you could do with the
original data, you can do with the retrieved data.
There are only a few requirements:

• you have your dataset loaded in Python as an object.
When retrieved from worldbase, this dataset will be
usable by the exact same interface as the original
object.

• your object must be picklable. Worldbase can store
any object that is compatible with standard Python
pickling methods. Thus, worldbase is not restricted
to Pygr data - but most Pygr classes are of course
designed to be stored in worldbase.

• your object must have a docstring, i.e. a __doc__
attribute. This should give a simple explanatory de-
scription so people can understand what this dataset
is.

For example, say we want to add the hg17
(release 17 of the human genome sequence) as
“Bio.Seq.Genome.HUMAN.hg17” (the choice of name
is arbitrary, but it’s best to choose a good convention
and follow it consistently):

from pygr import seqdb, worldbase
Open the human genome sequence
hg17 = seqdb.SequenceFileDB(’hg17’)
Documentation is required to store in worldbase
hg17.__doc__ = ’human genome sequence draft 17’
Store in worldbase as this name
worldbase.Bio.Seq.Genome.HUMAN.hg17 = hg17
worldbase.commit()

63 http://conference.scipy.org/proceedings/SciPy2009/paper_10

http://conference.scipy.org/proceedings/SciPy2009/paper_10

Exploring the future of bioinformatics data sharing and mining with Pygr and Worldbase

Note that you must call the function
worldbase.commit() to complete the transac-
tion and save all pending data resources (i.e. all
those added since your last worldbase.commit()
or worldbase.rollback()). In particular, if
you have added data to worldbase during a given
Python interpreter session, you should always call
worldbase.commit() or worldbase.rollback()
prior to exiting from that session.
In any subsequent Python session, we can now access
it directly by its worldbase name:

from pygr import worldbase
hg17 = worldbase.Bio.Seq.Genome.HUMAN.hg17()

You should think of worldbase not as a conventional
database (a container for storing a large set of a spe-
cific kind of data) but rather as a metadata database,
i.e. a container for storing metadata describing vari-
ous datasets (which are typically stored in other, stan-
dard databases). By “metadata” we mean information
about the content of a particular dataset (this is what
allows worldbase to reload it automatically for the
user, without the user having to know what classes to
import or how to construct the object correctly), and
about its relations with other datasets. Throughout
this paper, we will use the term “metabase” to refer
to this concept of a “metadata database”. Whereas a
database actually stores an entire dataset, a metabase
merely stores a small amount of metadata pointing to
that database and describing its relations with other
datasets.

Worldbase automatically captures dataset depen-
dencies

What if you wanted to save a dataset that in
turn requires many other datasets? For example,
a multigenome alignment dataset is only useful if
you also have the genome datasets that it aligns.
worldbase is smart about figuring out data resource
dependencies. For example, you could just save a 17-
genome alignment in a single step as follows:

from pygr import cnestedlist, worldbase
nlmsa = cnestedlist.NLMSA(’/loaner/ucsc17’)
nlmsa.__doc__ = ’UCSC 17way multiz alignment, on hg17’
worldbase.Bio.MSA.UCSC.hg17_multiz17way = nlmsa
worldbase.commit()

This works, even though using this 17-genome align-
ment (behind the scenes) involves accessing 17 seqdb.
SequenceFileDB sequence databases (one for each of
the genomes in the alignment). Because the alignment
object (NLMSA) references the 17 seqdb.Sequence
FileDB databases, worldbase automatically saves in-
formation about how to access them too.
However, it would be a lot smarter to give those
databases worldbase resource names too:

from pygr import cnestedlist, worldbase
nlmsa = cnestedlist.NLMSA(’/loaner/ucsc17’)
for resID, genome in nlmsa.seqDict.prefixDict.items():

1st save the genomes
genome.__doc__ = ’genome sequence ’ + resID
worldbase.add_resource(’Bio.Seq.Genome.’ + resID,

genome)
nlmsa.__doc__ = ’UCSC 17way multiz alignment, on hg17’
now save the alignment
worldbase.MSA.Bio.UCSC.hg17_multiz17way = nlmsa
worldbase.commit()

This has several advantages. First, we can now access
other genome databases using worldbase too:

from pygr import worldbase
get the mouse genome
mm7 = worldbase.Bio.Seq.Genome.mm7()

But more importantly, when we try to load the
ucsc17 alignment on another machine, if the genome
databases are not in the same directory as on our
original machine, the first method above would fail,
whereas in the second approach worldbase now will au-
tomatically figure out how to load each of the genomes
on that machine.

Worldbase schema automatically connects datasets
for you

One major advantage of worldbase is that it explic-
itly captures and automatically applies schema infor-
mation about relationships and interconnections be-
tween different datasets. By “schema” we mean the
precise connections between two or more collections of
data. Such inter-relations are vital for understand-
ing and mining scientific datasets. For example “a
genome has genes, and genes have exons”, or “an exon
is connected to another exon by a splice”. Let’s say
we have two databases from worldbase, exons and
splices, representing exons in a genome, and splices
that connect them, and a mapping splicegraph that
stores the many-to-many connections between exons
(via splices). We can add splicegraph to worldbase
and more importantly save its schema information:

splicegraph.__doc__ = ’graph of exon:splice:exon links’
worldbase.Bio.Genomics.ASAP2.hg17.splicegraph = splicegraph
worldbase.schema.Bio.Genomics.ASAP2.hg17.splicegraph = \

metabase.ManyToManyRelation(exons, exons, splices,
bindAttrs=(’next’,’previous’,’exons’))

worldbase.commit()

This tells worldbase that splicegraph is a many-
to-many mapping from the exons database onto it-
self, with “edge” information about each such map-
ping stored in the splices database. Concretely,
this means that for each exon1 to exon2 connection
splice, then splicegraph[exon1][exon2]=splice.
Furthermore, the bindAttrs option says that we wish
to bind this schema as named attributes to all items
in those databases. Concretely, for any object exon1
from the exons database, it makes exon1.next equiv-
alent to splicegraph[exon1]. That means a user can
find all the exons that exon1 splices to, by simply typ-
ing:

c©2009, C. Lee, A. Alekseyenko, C. Brown 64

Proceedings of the 8th Python in Science Conference (SciPy 2009)

for exon2,splice in exon1.next.items():
do something...

Note how much this simplifies the user’s task. The
user doesn’t even need to know about (or understand)
the splicegraph database, nor indeed do anything
to load splicegraph or its dependency splices. Con-
sistent with the general philosophy of worldbase, to
use all this, the user only needs to know the name
of the relevant attribute (i.e. exons have a next at-
tribute that shows you their splicing to downstream
exons). Because worldbase knows the explicit schema
of splicegraph, it can automatically load splicegraph
and correctly apply it, whenever the user attempts
to access the next attribute. Note also that neither
splicegraph nor splices will actually be loaded (nor
will the Python module(s) need to construct them be
loaded), unless the user specifically accesses the next
attribute.

Controlling where Worldbase searches and saves
data

worldbase checks the environment variable
WORLDBASEPATH for a list of locations to search;
but if it’s not set, worldbase defaults to the following
path:

~,.,http://biodb2.bioinformatics.ucla.edu:5000

which specifies three locations to be searched (in or-
der): your home directory; your current directory; the
UCLA public XMLRPC server. Worldbase currently
supports three ways of storing metabases: in a Python
shelve file stored on-disk; in a MySQL database table
(this is used for any metabase path that begins with
“mysql:”); in an XMLRPC server (this is used for any
metabase path that begins with “http:”).

Worldbase can install datasets for you locally

What if you want to make worldbase download the
data locally, so that you could perform heavy-duty
analysis on them? The examples above all accessed the
data via a client-server (XMLRPC) connection, with-
out downloading all the data to our computer. But if
you want the data downloaded to your computer, all
you have to do is add the flag download=True. For ex-
ample, to download and install the entire yeast genome
in one step:

yeast = \
worldbase.Bio.Seq.Genome.YEAST.sacCer1(download=True)

We can start using it right away, because worldbase
automates several steps:

• worldbase first checked your local resource lists to
see if this resource was available locally. Failing that,
it obtained the resource from the remote server,
which basically tells it how to download the data.

• worldbase unpickled the Bio.Seq.Genome.YEAST.
sacCer1 seqdb.SequenceFileDB ob-
ject, which in turn requested the
Bio.Seq.Genome.YEAST.sacCer1.fasta text
file (again with download=True).

• this is a general principle. If you request a re-
source with download=True, and it in turn depends
on other resources, they will also be requested with
download=True. I.e. they will each either be ob-
tained locally, or downloaded automatically. So if
you requested the 44 genome alignment dataset, this
could result in up to 45 downloads (the alignment
itself plus the 44 genome sequence datasets).

• the compressed file was downloaded and unzipped.

• the seqdb.SequenceFileDB object initialized itself,
building its indexes on disk.

• worldbase then saved this local resource to your
local worldbase index (on disk), so that when you
request this resource in the future, it will simply use
the local resource instead of either accessing it over
a network (the slow client-server model) or down-
loading it over again.

Some scalability principles of data Integra-
tion

We and many others have used worldbase heavily
since its release (in Pygr 0.7, Sept. 2007). For some
examples of large-scale analyses based on worldbase
and Pygr, see [AKL07] [Kim07] [ALS08].
We have found worldbase to be a work pattern that
scales easily, because it enables any number of people,
anywhere, to use with zero effort a dataset constructed
by an expert via a one-time effort. Furthermore, it
provides an easy way (using worldbase schema bind-
ings) to integrate many such datasets each contributed
by different individuals; these schema relations can be
contributed by yet other individuals. In the same way
that many software distribution and dependency sys-
tems (such as CRAN or fink) package code, worldbase
manages data and their schema. Attempts to encap-
sulate data into a global distribution system are made
in CRAN [CRAN], but limited to example datasets
for demonstrating the packaged code. Unlike CRAN,
worldbase’s focus is primarily on data sharing and in-
tegration.
Based on these experiences we identify several princi-
ples that we believe are generally important for scal-
able data integration and sharing in scientific comput-
ing:

• Encapsulated persistence: we coin this term to
mean that saving or retrieving a dataset requires
nothing more than its name in a virtual names-
pace. Moreover, its dependencies should be saved
/ retrieved automatically by the same principle, i.e.

65 http://conference.scipy.org/proceedings/SciPy2009/paper_10

http://conference.scipy.org/proceedings/SciPy2009/paper_10

Exploring the future of bioinformatics data sharing and mining with Pygr and Worldbase

simply by using their names. This simple principle
makes possible innumerable additional layers of au-
tomation, because they can all rely on obtaining a
given dataset simply requesting its name.

• Interface means representation, not storage:
the public interface for working with worldbase
datasets must provide a powerful representation of
its data types, that can work transparently with
many different back-end storage protocols. For ex-
ample, the back-end might be an XMLRPC client-
server connection across a network, or a MySQL
database, or specially indexed files on local disk.
By using this transparent interface, user applica-
tion code will work with any back-end; moreover,
users should be able to request the kind of back-end
scalability they want trivially (e.g. by specifying
download=True).

• Scalability is paramount: in all of our work,
scalability has been a primary driving concern -
both computational scalability and human scalabil-
ity. Scientists will only mine massive datasets using
a high-level language like Python (whose high-level
capabilities made worldbase possible) when this re-
tains high performance. Fortunately, elegant solu-
tions such as Pyrex [Pyrex] and Cython [Cython]
make this entirely feasible, by enabling those com-
ponents that are truly crucial for performance to be
coded in optimized C.

• Metabases are the glue: we coin the
term “metabase” to mean a metadata database.
worldbase is not intended to be a database in which
you actually store data. Instead it is only intended
to store metadata about data that is stored else-
where (in disk files; in SQL databases; in network
servers, etc.). Broadly speaking these metadata for
each resource include: what kind of data it is; how
to access it; its relations with other data (schema
and dependencies). Metabases are the heart of
worldbase.

• Provide multiple back-ends for 3 standard
scalability patterns: Users most often face three
different types of scalability needs: I/O-bound,
data should be worked with in-memory to the extent
possible; memory-bound, data should be kept on-
disk to the extent possible; CPU-bound or disk-
space bound, data should be accessed remotely via
a client-server protocol, as there is either no benefit
or no space for storing them locally. As an example,
worldbase has been used so far mainly with Pygr,
a framework of bioinformatics interfaces and back-
ends. For each of its application categories (e.g. se-
quences; alignments; annotations), Pygr provides all
three kinds of back-ends, with identical interfaces.

• Standard data models: containers and map-
pings. In Pygr and worldbase, data divide into two
categories: containers (a dictionary interface whose

keys are identifiers and whose values are the data ob-
jects) and mappings that map items from one con-
tainer (dataset) onto another. In particular, Pygr
(the Python Graph database framework) generalizes
from simple Python mappings (which store a one-to-
one relation) to graphs (many-to-many relations).
By following completely standard Python interfaces
[Python] for containers, mappings and graphs (and
again providing three different kinds of back-ends
for each, to cover all the usual scalability patterns),
Pygr makes worldbase’s simple schema and de-
pendency capabilities quite general and powerful.
For example, since Pygr’s mapping classes support
Python __invert__() [Python], worldbase can au-
tomatically bind schema relations both forwards and
backwards.

• Schema is explicit and dynamic: We have de-
fined schema as the metadata that describe the con-
nections between different datasets. When schema
information is not available as data that can be
searched, transmitted, and analyzed at run-time,
programmers are forced either to hard-wire schema
assumptions into their code, or write complex rules
for attempting to guess the schema of data at run-
time. These are one-way tickets to Coding Hell.
worldbase is able to solve many data-sharing prob-
lems automatically, because it stores and uses the
schema as a dynamic graph structure. For exam-
ple, new schema relations can be added between ex-
isting datasets at any time, simply by adding new
mappings.

• The web of data interconnects transparently:
These schema bindings make it possible for data
to appear to interconnect as one seamless “virtual
database” (in which all relevant connections are
available simply by asking for the named attributes
that connect to them), when in reality the datasets
are stored separately, accessed via many different
protocols, and only retrieved when user code specif-
ically requests one of these linked attributes. This
can give us the best of both worlds: an interface that
looks transparent, built on top of back-ends that are
modular. In fact, one could argue that this princi-
ple is the programmatic interface analogue of the
hyperlink principle that drove the success of the hy-
pertext web: a facade of completely inter-connected
data, thanks to a transparent interface to indepen-
dent back-ends. From this point of view one might
consider worldbase to be a logical extension of the
“semantic web” [BHL01], but reoriented towards the
scalability challenges of massive scientific computing
datasets. We think this transparent interconnection
of data is gradually becoming a general principle in
scientific computing. For example, the Comprehen-
sive R Archive Network like worldbase provides a
uniform environment for accessing packages of code
+ data that can be installed with automatic links to
their dependencies, albeit with a very different in-
terface reflecting the limitations of its language en-

c©2009, C. Lee, A. Alekseyenko, C. Brown 66

Proceedings of the 8th Python in Science Conference (SciPy 2009)

vironment (R instead of Python).

Current limitations and plan for future de-
velopment

• Currently, worldbase supplies no mechanism for
global “name resolution” analogous to the DNS. In-
stead, the user simply designates a list of worldbase
servers to query via the WORLDBASEPATH environ-
ment variable; if not specified it defaults to include
the main (UCLA) worldbase server. This simple
approach lets users easily control where they will
access data from; for example, a user will typically
give higher precedence to local data sources, so that
worldbase requests will be obtained locally if possi-
ble (rather than from a remote server). This lack of
centralization is both a vice and a virtue. On the one
hand users are free to develop and utilize resources
that best suit their research needs. On the other
hand, such lack of centralization may often result in
duplication of effort, where two research would work
on the same data transformation without knowing
of each other’s efforts. We believe that these prob-
lems should be solved by a centralized mechanism
similar to the DNS, i.e. that enables data producers
to publish data within “domains” in the name space
that they “own”, and transparently resolves name
requests to the “closest” location that provides it.

• Since worldbase uses Python pickling, the well-
known security concerns about Python unpickling
also apply to worldbase. These must be resolved
prior to expanding worldbase from a user-supplied
“access list” to a DNS-like global service. We be-
lieve that in a public setting, pickle data should be
authenticated by secure digital signatures and net-
works of trust using widely deployed standards such
as GnuPG [GnuPG].

Future developments:
• Support for novel and emerging data types, for ex-

ample:

– Genome-wide association study (GWAS) data.
– Next-generation sequencing datasets, such as

RNA-seq, allele specific variation, ChIP-seq, and
microbiomic diversity data.

• Increased support for using worldbase within com-
mon cluster computing systems. This seems like a
natural way of being able to seamlessly scale up an
analysis from initial prototyping to large-scale clus-
ter computations (very different environments where
often data resources cannot be accessed in exactly
the same way), by pushing all data access issues into
a highly modular solution such as worldbase.

• Optimized graph queries.

• Data visualization techniques.
• Ability to push code objects along with the data, so

that class hierarchy and appropriate access methods

may be installed on the fly. In the context of dig-
itally signed code and networks of trust, this could
greatly increase the convenience and ease with which
scientists can explore common public datasets.

Acknowledgments

We wish to thank the Pygr Development team, in-
cluding Marek Szuba, Namshin Kim, Istvan Alberts,
Jenny Qian and others, as well as the many valuable
contributions of the Pygr user community. We are
grateful to the SciPy09 organizers, and to the Google
Summer of Code, which has supported 3 summer stu-
dents working on the Pygr project. This work was also
supported from grants from the National Institutes of
Health (U54 RR021813; SIB training grant GM008185
from NIGMS), and the Department of Energy (DE-
FC02-02ER63421).

References

[LI01] C. Lee, K. Irizarry, The GeneMine system for
genome/proteome annotation and collaborative
data-mining. IBM Systems Journal 40: 592-603,
2001.

[DK76] F. Deremer and H.H. Kron, Programming In the
Large Versus Programming In the Small. IEEE
Transactions On Software Engineering, 2(2), pp.
80-86, June 1976.

[BITL] D.S. Parker, M.M. Gorlick, C. Lee, Evolving
from Bioinformatics in the Small to Bioinfor-
matics in the Large. OMICS, 7, 34-48, 2003.

[Pygr] The Pygr Consortium, Pygr: the Python Graph
Database Framework, 2009, http://pygr.org.

[AKL07] A.V. Alekseyenko, N. Kim, C.J. Lee, Global
analysis of exon creation vs. loss, and the role
of alternative splicing, in 17 vertebrate genomes.
RNA 13:661-670, 2007.

[Kim07] N. Kim, A.V. Alekseyenko, M. Roy, C.J. Lee,
The ASAP II database: analysis and compara-
tive genomics of alternative splicing in 15 an-
imal species. Nucl. Acids Res. 35: D93-D98,
2007.

[ALS08] A.V. Alekseyenko, C.J. Lee, M.A. Suchard,
Wagner and Dollo: a stochastic duet by compos-
ing two parsimonious solos. Systematic Biology
57: 772-784, 2008.

[CRAN] The Comprehensive R Archive Network, from
http://cran.r-project.org/.

[Pyrex] G. Ewing, Pyrex - a Language for Writing
Python Extension Modules. http://www.cosc.
canterbury.ac.nz/greg.ewing/python/Pyrex.

[Cython] S. Behnel, R. Bradshaw, D.S. Seljebotn, Cython:
C Extensions for Python. http://www.cython.
org.

[Python] G. van Rossum and F.L. Drake, Jr., Python Tu-
torial, 2009, http://www.python.org.

[BHL01] T. Berners-Lee, J. Hendler, O. Lassila, The Se-
mantic Web. Sci. Am. May 2001.

[GnuPG] GNU Privacy Guard, http://www.gnupg.org/

67 http://conference.scipy.org/proceedings/SciPy2009/paper_10

http://pygr.org
http://pygr.org
http://cran.r-project.org/
http://cran.r-project.org/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex
http://www.cython.org
http://www.cython.org
http://www.cython.org
http://www.cython.org
http://www.python.org
http://www.python.org
http://www.gnupg.org/
http://www.gnupg.org/
http://conference.scipy.org/proceedings/SciPy2009/paper_10

	Exploring the future of bioinformatics data sharing and mining with Pygr and Worldbase
	Introduction
	The need for both computational and human scalability

	Using Worldbase
	Retrieving a dataset from Worldbase
	Storing data in Worldbase
	Worldbase automatically captures dataset dependencies
	Worldbase schema automatically connects datasets for you
	Controlling where Worldbase searches and saves data
	Worldbase can install datasets for you locally

	Some scalability principles of data Integration
	Current limitations and plan for future development
	Acknowledgments
	References

