Proceedings of the 8" Python in Science Conference (SciPy 2009)

Multiprocess System for Virtual Instruments in Python

Brian D'Urso (dursobr@pitt.edu) — University of Pittsburgh, Department of Physics and Astronomy, 3941 O’'Hara

St., Pittsburgh, PA 15260 US

Programs written for controlling laboratory equip-
ment and interfacing numerical calculations share
the need for a simple graphical user interface (GUI)
frontend and a multithreaded or multiprocess struc-
ture to allow control and data display to remain us-
able while other actions are performed. We intro-
duce Pythics, a system for running ''virtual instru-
ments", which are simple programs typically used
for data acquisition and analysis. Pythics provides
a simple means of creating a virtual instrument and
customizing its appearance and functionality with-
out the need for toolkit specific knowledge. It uti-
lizes a robust, multiprocess structure which sepa-
rates the GUI and the back end of each instrument
to allow for effective usage of system resources with-
out sacrificing functionality.

Python is an attractive language for scientific program-
ming because of the simplicity of expressing mathe-
matical ideas and algorithms within it. However, it is
the broad range of open source libraries available that
enables scientific computing within Python. With the
capabilities of libraries such as Numpy [numpy] and
SciPy [scipy] for numerical processing, SymPy [sympy]
for symbolic manipulation, and Sage [sage] integrating
them together, Python is in a strong position to handle
a wide range of scientific computational problems.
However, in experimental sciences, where computer-
based data acquisition and control is dominated by
a small number of proprietary programming systems,
Python is not such an obvious choice. These pro-
prietary systems often make the task of simple ex-
periment control easy, however they often don’t scale
well to complex experiments because they lack a well-
designed, general purpose programming language. We
present a system starting with a complete program-
ming language, Python, rather than trying to develop
another special purpose language. There are existing,
mature Python libraries for supporting data acquisi-
tion and experiment control; perhaps most critically
PyVISA [pyvisa], which provides a robust bridge to
commercially-supported VISA libraries and the exper-
iment hardware they can control. In practice we also
make use of the Python Imaging Library (PIL) [pil] for
image manipulation, wxPython [wxpython] as a user
interface toolkit, and matplotlib [matplotlib] for plot-
ting.

In addition to being able to communicate with instru-
ments, modern software for data acquisition and con-
trol must be able to present a graphical user interface
(GUI) for display of data as well as providing a means
for the experimenter to interact with an experiment
in progress. GUI toolkits such as wxPython provide a
means to create a GUI, but are not tailored to the re-

quirements of data acquisition, where communication
with instruments often must be proceeding in parallel
with GUI operation. Furthermore, students working
on experiments may have little or no programming ex-
perience, so programming a multithreaded or multi-
process application may be beyond what they can or
want to pursue.

Here we introduce Pythics (PYTHon Instrument Con-
trol System), a multiprocess system designed to make
it straightforward to write software for data acquisi-
tion and control with Python. There are several im-
portant features which expedience has taught us are
needed to produce a successful system. First, the sys-
tem must be cross platform, at least supporting Linux
and Microsoft Windows XP. While many developers
prefer Linux, Windows XP is presently often the sim-
plest choice for interfacing instruments because of the
support provided by the instrument manufacturers.
Second, we want to avoid excessive dependencies that
could make it difficult to install the system and lead
to bloated code; instead we prefer to make modular,
optional, orthogonal features that can be used if the
supporting libraries are available. The system must
provide a simple means of specifying a GUI which does
not require knowledge of the underlying GUI toolkit
and must be easy to understand, even for an inexperi-
enced programmer. Critically, it must be possible for
the GUI to continue to function even when data ac-
quisition or any communication with instruments is in
progress. In most cases, this requires a multithreaded
or multiprocess system. Yet, we do not want to require
the user-programmer to have a thorough understand-
ing of multithreaded programming. So, the system
must handle the multithreaded or multiprocess struc-
ture transparently.

Similar to some commercial software, we call the code
that runs within Pythics a virtual instrument (VI),
and in general multiple VIs may be running within a
single Pythics application. We require that there be
a mechanism for sharing objects between VlIs, for ex-
ample for sharing data between VIs or synchronizing
some operation. An additional requirement is that the
system must be robust. It should be possible to ter-
minate one VI without affecting the others, or at least
to continue without having to restart Pythics.

Features

We are willing to accept some loss in GUI design flex-
ibility for the simplicity of programming Pythics that
we require. We looked for a means of specifying a GUI
that would be simple, would layout in a usable manner
across a wide variety of screen and window sizes, and

B. D’Ursoin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 76-81 76

dursobr@pitt.edu

Proceedings of the 8 Python in Science Conference (SciPy 2009)

would grow to handle a VI GUI which might gradually
increase in complexity over time as a VI evolves. We
found inspiration for a solution in the layout of hyper-
text markup language (HTML) used in web browsers,
which has proven to be remarkably flexible over time.
While HTML is primarily oriented towards the lay-
out of text, we primarily require the layout of GUI
elements. Fortunately, we found adequate flexibility
in extensible hypertext markup language (XHTML),
a markup language similar to HTML which also con-
forms to extensible markup language (XML) syntax
requirements. By following the stricter XHTML syn-
tax, the implementation of the Pythics layout engine
can be less forgiving and thus simpler than a modern
web browser. Furthermore, we only support a minimal
subset of XHTML as needed for layout of simple lines
or tables of GUI elements, and a small number of cas-
cading style sheets (CSS) attributes to customize the
appearance of the GUI. In practice, we make exten-
sive use of the object XHTML element to insert GUI
elements.

Using an XHTML-based system for GUI layout al-
ready constrains many features of our layout engine.
Elements (e.g. a button) are generally fixed in height
and may or may not expand in width as the enclos-
ing window is resized. As more elements are added,
the GUI will generally have to be scrolled vertically
for access to all the GUI elements, while horizontal
scrolling is avoided unless necessary to fit in the mini-
mum horizontal size of the GUI elements. It may seem
surprising that a layout system based on a system de-
signed for text (HTML) would be general enough to
specify a GUI, but the adaptability of the world wide
web to new functionality demonstrates the flexibility
of HTML.

In a large and evolving experiment, it is typical to have
an ever-growing number of VIs for data acquisition
and control. To organize multiple VIs running within
Pythics, we again borrow a feature from web browsers:
tabbed browsing. In Pythics, each VI runs within its
own tab, all contained within the same Pythics win-
dow. This help avoid confusion if many windows are
open, and in particular if multiple instances of Pythics
are running, a scenario which is both possible and, in
some cases, desirable.

Pythics maintains a strict separation between the GUI
layout specification and the VI functionality by sepa-
rating the code for a VI into two or more files. The
first file contains the XHTML specification of the GUI
and additional objects which trigger loading of the re-
maining files. These files are pure python, loading any
additional libraries which may be needed and defining
the functions triggered by GUI callbacks.

Multiprocess Structure

The multiprocess structure of Pythics is dictated by
the GUI structure and the requirements of the VlIs.
First, many GUI toolkits (including wxPython) place

E Chart Recorder EEE]

Fle Edit Parameters

Python Instrument Control System Test Chart Recorder (%

Chart Recorder

Status | Actions | Parameters

current (A)
coooooooo
bivapoymio

12 14

\f\/w \/!f\w\a.%/\[b /WM N/q/\ﬂ@:ﬂwf \p

14

o o o o
i n o

temperature (C)

time (s

x-axis span fixed span (points)

O automatic @ fixed g
voltage (1 current (&)

- — - —
coolant temperature (degrees C) clectrolyte temperature (degrees ©)
C— e m—

Actions

l Initialize Instruments l l Start] | Stop |

l Load Data l l Save Data] [Clear Data]

File Entry: [/exportr rsobr/documents/pythi —mstrumsnts/:hartjs(urderjtt]l Browse]

Parameters =1

Figure 1: Screenshot of a Pythics session, showing a
chart recorder VI.

the GUI for all VIs within a single Pythics application
to reside in the same thread of the same process. Since
each VI may have its own tasks to work on while the
GUI is to remain functional, each VI must also have
its own worker thread or process. An early version
of Pythics used a separate thread for each VI, but we
found that the system was excessively fragile, with a
fault in a single VI sometimes ending in a abandoned,
but often still running thread, because of the limited
methods to safely kill a thread in Python. The need for
a more robust system and the appearance of the multi-
processing module in Python 2.6 lead us to a multipro-
cess design, where each VI has its own worker process
which handles data acquisition and data processing.
Furthermore, the use of multiple processes avoids the
Python global interpreter lock (GIL), which could limit
the benefits of using multiple threads alone.

For simplicity, we provide only a single thread in a
single process for the work of each VI, although each
V1 is in principle free to use and manage multiple pro-
cesses or threads as needed. Since wxPython restricts
the GUI to a single process and thread, we are pushed
towards one particular process structure: each VI has
its own worker process which communicates with a sin-
gle shared GUI process. If multiple GUI processes are
desired, multiple instances of Pythics can be running
simultaneously, although there is no support for com-
munication between VIs in different Pythics instances.
For the rest of the description here, we assume there
is only a single running Pythics instance.

The multiprocess structure of Pythics is illustrated in

7

http://conference.scipy.org/proceedings/SciPy2009/paper_12

http://conference.scipy.org/proceedings/SciPy2009/paper_12

Multiprocess System for Virtual Instruments in Python

VI process 1
main thread

Frequest

main (GUI) process e

main thread timer thread 1

(wxPython event loop) queue

GUI event

GUI reply <

VI process 2
main thread

¥

request

queue watcher thread

wx.CallAfter()

timer thread 1

Figure 2: The multiprocess structure of Pythics.

Figure 2. Each VI worker process communicates back
and forth with the single GUI process by placing mes-
sages in queues. There are three routes for commu-
nication between the worker processes and the GUI
process. First, the GUI may want to trigger a call-
back function in response to an action, for example
a button being pressed. Each worker process has a
queue for callback requests, and each worker process
waits for a request on this queue when it is idle. Next,
a worker process, typically within a callback function,
may want the GUI to respond in some way or may want
to get some other information from the GUI, for exam-
ple reading the value of a parameter from within a box
in the GUI panel. The GUI process has a thread which
watches a single queue where requests from all worker
processes are funneled. This thread waits for a request
to be appear in the queue, and when one arrives, the
thread transfers the request to the wxPython main
thread with a call to wx.CallAfter. The GUI process
then answers the request by placing the response in
the response queue for the requesting worker process.
Finally, the worker process receives the response and
continues with its task.

In practice, the Pythics user-programmer does not
have to worry about the inter-process message pass-
ing and queue structure. The execution of callback
functions is handled automatically. Requests to and
responses from the GUI process are handled by GUI
control proxy objects, essentially encapsulating all of
the multiprocess and queue structure. We will go into
further details in later sections.

GUI Specification

The GUI layout engine, which allows the arrangement
of GUI elements within a VI GUI tab, was inspired by,
and originally based on, the wxPython HtmIWindow.

This wxPython widget can layout HTML text mixed
with GUI elements such as buttons. We eventually
wrote a replacement XHTML renderer for Pythics so
it could gracefully handle exceptions in the process of
creating controls. If a Python exception is encoun-
tered while creating a GUI element in our renderer,
the element is replaced by a red box which displays
the exception, making debugging much easier.
The GUI specification or markup language is XML,
and is essentially a subset of XHTML. The style of the
text elements, the background color, etc. are specified
with a simplified cascading style sheets (CSS) system,
also similar to typical XHTML or HTML files. Our
specification must have many GUI elements that are
not common for XHTML, so we make extensive use
of the XHTML object element. Within the object
element, we use the classid attribute to specify the
GUI element class (e.g. Button), and the id attribute
to specify a name for the GUI element which becomes
the name of the object in Python. Other parameters
for the GUI elements are specified with param elements
within the object element.
An example GUI, here for a “Hello World” VI in
Pythics, illustrates how a GUI is specified:

<html>

<head><title>Hello World</title></head>
<body>

<hi>Hello World</hi>

<object classid=’Button’ width=’200’>
<param name=’label’ value=’Run’/>

<param name=’action’ value=’hello_world.run’/>

</object>

<object classid=’TextBox’ id=’result’ width=’200’>

</object>

<object classid=’ScriptLoader’ width=’100%’>

<param name=’filename’ value=’hello_world’/>

</object>

</body>
</html>

In the <head> element, the <title> element gives a
title to the VI which appears on the tab containing the
VI in the Pythics GUI. There is then a printed title
within the <h1> element, followed by the primary GUI
elements, a button and a text box. Note the param
element with name=’action’ within the button object.
This specifies the callback function which is executed
when the button is pressed. We have also given the
text box a name, through its id attribute. We will use
this to access the text box for displaying a message
later.

Without the final object element, Pythics would not
know where to find the callback function specified by
the button object. The ScriptLoader object func-
tions similar to the Python import statement, loading
a file which typically contains callback functions. This
object can be used multiple times to import multiple
files. This object also shows up in the GUI as a line of

©2009, B. D’Urso

78

Proceedings of the 8 Python in Science Conference (SciPy 2009)

text to show that it is there. The resulting GUI, which
appears within a tab in Pythics, is shown in Figure 3.

Hello World

‘ Run ‘

ScriptLoader: hello_world

Figure 3: Screenshot of example GUI window for the
“Hello World” example.

Other GUI elements that are available within Pythics
include images, many kinds of buttons, file dialogs, nu-
meric input/output boxes, spreadsheets, sliders, em-
bedded Python shells, and plots (using wxPython or
matplotlib).

Callback Functions

Our “Hello World” example doesn’t yet have any func-
tionality. To make it respond to pressing the button,
we need to introduce callback functions within Pythics.
We want the structure of callback functions in Pythics
to be as unconstrained as possible, but they do need
some way to access the GUI elements. We do not intro-
duce a formal event object, since this adds complexity
that is unnecessary in most VIs. If a callback function
needs information about the event that triggered it, it
should get that information by addressing the appro-
priate GUI element.

In order give callback functions access to the GUI ele-
ments, we introduce a simple calling convention. The
callback function is called with all of the GUI elements
which have an id attribute in the XML specification
file, which we will call named elements, as keyword
arguments. There are no other arguments passed to
callback functions. Thus, a callback function could re-
ceive all the named elements as a dictionary using the
Python **kwargs syntax, or it can separate out the
named elements it will use as individual arguments
and group the unused named elements together with
the *xkwargs syntax.

The completion of our “Hello World” example clarifies
the use of callback functions. Here is the entire Python
file for our example:

def run(result, **kwargs):
result.value = "Hello, world!"

Note that the callback function receives the one named
element, result, as a keyword argument, and any
other named elements (there are none in this case)
would be grouped into kwargs as a dictionary. Thus,

more GUI elements can be added without breaking
this callback function. We display the message “Hello,
world!” within the text box in the GUI with a sim-
ple call to to the GUI element proxy, by setting its
value attribute. Clearly, no knowledge of the multi-
process structure and message passing within Pythics
is needed. In most cases, these proxy objects have a
fairly high level interface within Pythics, so most ex-
changes with the GUI within the callback functions
require only a small number of commands using the
GUI element proxies.

Other than our callback function calling convention,
the files that contain the callback functions are stan-
dard, pure Python files. Additional functions can be
defined, and packages can be imported as needed.
Pythics itself does not require any imports within the
callback function files, making it easy to maintain a
clean namespace.

Additional Features

There are several other features of Pythics which make
it more useful for making functional VIs. Most of these
are implemented as additional or modified GUI con-
trols, so they fit easily into the framework described
above. These include:

e The values entered into a VI’'s GUI controls can be
stored in a parameters file. This includes support for
default parameters, which are automatically loaded
when a VI is started. It also allows for alternative
sets of parameters which can be saved and recalled.

e Global namespaces are available for sharing data be-
tween VIs. This uses the Python multiprocessing
Namespace object, so almost arbitrary objects can
be shared.

e Optional display of images in the GUI with shared
memory instead of message passing. With one op-
tion in the GUI specification, the image display
proxy will pass data to its control using shared mem-
ory to allow for much more rapid updates. In the
current implementation, the maximum size of the
image must be given in the GUI specification if
shared memory is used.

e Timer elements are available for executing a func-
tion at regular intervals in time. To the user-
programmer, a timer looks like any other GUI el-
ement, such as a button, which calls its action call-
back at regular intervals. Timers actually oper-
ate completely in the worker process through their
proxy object, but within a separate thread from
the callback function execution. This structure
eliminates the overhead of message passing for fre-
quently executed callbacks when no GUI interaction
is needed. Timers are implemented with Python
threading Event objects, so they can be interrupted
at any time. A single VI may have many timers.

79

http://conference.scipy.org/proceedings/SciPy2009/paper_12

http://conference.scipy.org/proceedings/SciPy2009/paper_12

Multiprocess System for Virtual Instruments in Python

e There is a SubWindow element which can embed an
entire second VI within a box inside the GUI of the
first VI, allowing for modularization of GUIs as well
as functions. There are methods to pass data be-
tween the fist and second VI, although both run in
the same thread and process.

Future

Pythics is still evolving very quickly, and we antic-
ipate continuing to add features, primarily driven by
the needs of our laboratory or the needs of other groups
that may start to use Pythics. The highest priority
item is documentation, which will be necessary for
the Pythics community to grow. As a more tech-
nically challenging direction, we may pursue operat-
ing Pythics over a network, with the GUI and worker
processes on different machines communicating over
the network. There is already support for this in the
Python multiprocessing module.

We plan continued expansion and improvement in the
graphics display controls available within Pythics. One
significant required feature is the ability to plot data
in near real time, as it is being acquired. Simple,
fast, line plots are available now in Pythics, but more
complex plots require matplotlib, which is often too
slow for keeping up with incoming data when most
of the available processor time is used acquiring and
processing data. We are investigating alternative plot-
ting libraries which could be easily used within wx-
Python. Another graphics feature we would like to add
to Pythics is simple three-dimensional display capabil-
ity, similar to VPython [vpython]. This could make
Pythics an attractive system to use for teaching intro-
ductory computational physics classes, both for data
acquisition and for simple models and calculations.
We also plan to improve the GUI layout design tools
available for Pythics, to make it easier to write the
XML GUI specification. One possibility would be to

have a graphical editor for the GUI interfaces, and
perhaps a graphical HTML or XML editor could be
adapted to this purpose. An alternative possibility,
which is inspired by the reStructuredText format [rest)
commonly used for Python documentation, would be
to have an “ASCII art” layout description. In this
case, we would develop a more readable text format
for specifying and placing GUI elements, then trans-
late that format to the XML format actually used by
Pythics. In principle, there is no reason not to support
both of these options.

We currently release Pythics under the GNU Gen-
eral Public License (GPL), and it is free to download
[pythics]. We hope to attract the interest of other re-
searchers and students, and that they will contribute
to the success of Pythics. Ultimately, Pythics could
become a center for free exchange of code, instrument
drivers, and data analysis tools.

References

T. Oliphant et al., NumPy, http://numpy.
scipy.org/

[numpy]

[scipy] E. Jones, T. Oliphant, P. Peterson, et al.
SciPy http://www.scipy.org/

[sympy] Development Team (2008). SymPy: Python
library for symbolic mathematics http://
code.google.com/p/sympy/

[sage] W. Stein et al., Sage Mathematics Software,
http://www.sagemath.org/

[pyvisa] http://pyvisa.sourceforge.net/

[pi]] http://www.pythonware.com/products/
pil/

[wxpython| http://www.wxpython.org/

[matplotlib] J.D. Hunter. Matplotlib: A 2D graphics
environment. Computing in Science and
Engineering. (2007) 9: 90-95. http://
matplotlib.sourceforge.net

[vpython] http://vpython.org/

[rest] http://docutils.sourceforge.net/rst.
html

[pythics] http://code.google.com/p/pythics/

©2009, B. D’Urso

80

http://numpy.scipy.org/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://code.google.com/p/sympy/
http://code.google.com/p/sympy/
http://code.google.com/p/sympy/
http://code.google.com/p/sympy/
http://www.sagemath.org/
http://www.sagemath.org/
http://pyvisa.sourceforge.net/
http://pyvisa.sourceforge.net/
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/
http://www.wxpython.org/
http://www.wxpython.org/
http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://vpython.org/
http://vpython.org/
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://code.google.com/p/pythics/
http://code.google.com/p/pythics/

	Multiprocess System for Virtual Instruments in Python
	Features
	Multiprocess Structure
	GUI Specification
	Callback Functions
	Additional Features
	Future
	References

