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Cython has recently gained popularity as a tool for
conveniently performing numerical computations in
the Python environment, as well as mixing efficient
calls to natively compiled libraries with Python code.
We discuss Cython’s features for fast NumPy array
access in detail through examples and benchmarks.
Using Cython to call natively compiled scientific li-
braries as well as using Cython in parallel computa-
tions is also given consideration. We conclude with
a note on possible directions for future Cython de-
velopment.

Introduction

Python has in many fields become a popular choice
for scientific computation and visualization. Being de-
signed as a general purpose scripting language without
a specific target audience in mind, it tends to scale well
as simple experiments grow to complex applications.
From a numerical perspective, Python and associated
libraries can be regarded mainly as a convenient shell
around computational cores written in natively com-
piled languages, such as C, C++ and Fortran. For in-
stance, the Python-specific SciPy [SciPy] library con-
tains over 200 000 lines of C++4, 60 000 lines of C, and
75 000 lines of Fortran, compared to about 70 000 lines
of Python code.

There are several good reasons for such a workflow.
First, if the underlying compiled library is usable in
its own right, and also has end-users writing code in
MATLAB, C++ or Fortran, it may make little sense to
tie it too strongly to the Python environment. In such
cases, writing the computational cores in a compiled
language and using a Python wrapper to direct the
computations can be the ideal workflow. Secondly, as
we will see, the Python interpreter is too slow to be
usable for writing low-level numerical loops. This is
particularly a problem for computations which can not
be expressed as operations on entire arrays.

Cython is a programming language based on Python,
with additional syntax for optional static type declara-
tions. The Cython compiler is able to translate Cython
code into C code making use of the CPython C API
[CPyAPI], which can in turn be compiled into a mod-
ule loadable into any CPython session. The end-result
can perhaps be described as a language which allows
one to use Python and C interchangeably in the same
code. This has two important applications. First,
it is useful for creating Python wrappers around na-
tively compiled code, in particular in situations where

one does not want a 1:1 mapping between the library
API and the Python API, but rather a higher-level
Pythonic wrapper. Secondly, it allows incrementally
speeding up Python code. One can start out with
a simple Python prototype, then proceed to incre-
mentally add type information and C-level optimiza-
tion strategies in the few locations that really mat-
ter. While being a superset of Python is a goal for
Cython, there is currently a few incompatibilities and
unsupported constructs. The most important of these
is inner functions and generators (closure support).
In this paper we will discuss Cython from a numerical
computation perspective. Code is provided for illus-
tration purposes and the syntax is not explained in
full, for a detailed introduction to Cython we refer to
[Tutorial] and [Docs]. [Wilbers] compares Cython with
similar tools ([f2py], [Weave], [Instant] and [Psyco]).
The comparison is for speeding up a particular numer-
ical loop, and both speed and usability is discussed.
Cython here achieves a running time 1.6 times that
of the Fortran implementation. We note that had the
arrays been declared as contiguous at compile-time,
this would have been reduced to 1.3 times the time
of Fortran. [Ramach] is a similar set of benchmarks,
which compare Pyrex and other tools with a pure
Python/NumPy implementation. Cython is based on
[Pyrex] and the same results should apply, the main
difference being that Cython has friendlier syntax for
accessing NumPy arrays efficiently.

Fast array access

Fast array access, added to the Cython language by
D. S. Seljebotn and R. W. Bradshaw in 2008, was an
important improvement in convenience for numerical
users. The work is based on PEP 3118, which defines a
C API for direct access to the array data of Python ob-
jects acting as array data containers!. Cython is able
to treat most of the NumPy array data types as cor-
responding native C types. Since Cython 0.11.2, com-
plex floating point types are supported, either through
the C99 complex types or through Cython’s own im-
plementation. Record arrays are mapped to arrays of
C structs for efficient access. Some data types are not
supported, such as string/unicode arrays, arrays with
non-native endianness and boolean arrays. The lat-
ter can however be treated as 8-bit integer arrays in
Cython. [Tutorial] contains further details.

1PEP 3118 is only available on Python 2.6 and greater, there-
fore a backwards-compatibility mechanism is also provided to
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To discuss this feature we will start with the example
of naive matrix multiplication. Beginning with a pure
Python implementation, we will incrementally add op-
timizations. The benchmarks should help Cython
users decide how far one wants to go in other cases.
For C = AB the computation is

Cij = p_, AikBy;

where n is the number of columns in A and rows in B.
A basic implementation in pure Python looks like this:
def matmul(A, B, out):
for i in range(A.shape[0]):
for j in range(B.shape[1]):
s =0
for k in range(A.shape[1]):
s += A[i, k] * B[k, j]
out[i,j] = s

For clarity of exposition, this skips the details of sanity
checking the arguments. In a real setting one should
probably also automatically allocate out if not pro-
vided by the caller.
Simply compiling this in Cython results in a about
1.15x speedup over Python. This minor speedup is
due to the compiled C code being faster than Python’s
byte code interpreter. The generated C code still uses
the Python C API, so that e.g. the array lookup A[i,
k] translates into C code very similar to:

tmp = PyTuple_New(2);

if (!'tmp) { err_lineno = 21; goto error; }

Py_INCREF(i);

PyTuple_SET_ITEM(tmp, 0, i);

Py_INCREF (k) ;

PyTuple_SET_ITEM(tmp, 1, k);

A_ik = PyObject_GetItem(A, tmp);

if (!'A_ik) { err_lineno = 21; goto error; }

Py_DECREF (tmp) ;

The result is a pointer to a Python object, which is
further processed with PyNumber_Multiply and so on.

To get any real speedup, types must be added:
import numpy as np
cimport numpy as np
ctypedef np.float64_t dtype_t
def matmul (np.ndarray[dtype_t, ndim=2] A,
np.ndarray[dtype_t, ndim=2] B,
np.ndarray[dtype_t, ndim=2] out=None):
cdef Py_ssize_t i, j, k
cdef dtype_t s
if A is None or B is None:
raise ValueError("Input matrix cannot be None")
for i in range(A.shape[0]):
for j in range(B.shape[1]):
s =0
for k in range(A.shape[1]):
s += A[i, k] * B[k, j]
out[i,j]l = s

In our benchmarks this results in a speedup of be-
tween 180-190 times over pure Python. The exact fac-
tor varies depending on the size of the matrices. If they
are not small enough to be kept in the CPU cache, the
data must be transported repeatedly over the memory

emulate the protocol on older Python versions. This mecha-
nism is also used in the case of NumPy arrays, which do not yet
support PEP 3118, even on Python 2.6.

bus. This is close to equally expensive for Python and
Cython and thus tends to slightly diminish any other
effects. Table 1 has the complete benchmarks, with
one in-cache benchmark and one out-of-cache bench-
mark in every case.

Note however that the speedup does not come without
some costs. First, the routine is now only usable for
64-bit floating point. Arrays containing any other data
type will result in a ValueError being raised. Second,
it is necessary to ensure that typed variables containing
Python objects are not None. Failing to do so can
result in a crash or data corruption if None is passed
to the routine.

The generated C source for the array lookup A[i, k]

now looks like this:

tmp_i = i; tmp_k = k;

if (tmp_i < 0) tmp_i += A_shape_O;

if (tmp_i < O || tmp_i >= A_shape_1) {
PyErr_Format(<...>);
err_lineno = 33; goto error;

}

if (tmp_k < 0) tmp_k += A_shape_1;

if (tmp_k < O || tmp_k >= A_shape_1) {
PyErr_Format(<...>);
err_lineno = 33; goto error;

}
A_ik = *(dtype_t*) (A_data +
tmp_i * A_stride_0 + tmp_k * A_stride_1);

This is a lot faster because there are no API calls in
a normal situation, and access of the data happens
directly to the underlying memory location. The ini-
tial conditional tests are there for two reasons. First,
an if-test is needed to support negative indices. With
the usual Python semantics, A[-1, -1] should refer
to the lower-right corner of the matrix. Second, it is
necessary to raise an exception if an index is out of
bounds.

Such if-tests can bring a large speed penalty, especially
in the middle of the computational loop. It is therefore
possible to instruct Cython to turn off these features
through compiler directives. The following code dis-
ables support for negative indices (wraparound) and
bounds checking;:

cimport cython
Q@cython.boundscheck(False)
@cython.wraparound(False)
def matmul(np.ndarrayl[dtype_t, ndim=2] A,
np.ndarray[dtype_t, ndim=2] B,
np.ndarray [dtype_t, ndim=2] out=None):
< 00>

This removes all the if-tests from the generated code.
The resulting benchmarks indicate around 800 times
speedup at this point in the in-cache situation, 700
times out-of-cache.  Only disabling one of either
wraparound or boundscheck will not have a signifi-
cant impact because there will still be if-tests left.

One trade-off is that should one access the arrays out
of bounds, one will have data corruption or a program
crash. The normal procedure is to leave bounds check-
ing on until one is completely sure that the code is
correct, then turn it off. In this case we are not us-
ing negative indices, and it is an easy decision to turn
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them off. Even if we were, it would be faster to man-
ually add code to calculate the corresponding positive
index. wraparound is mainly enabled by default to re-
duce the number of surprises for casual Cython users,
and one should rarely leave it on.

In addition to per-function level like here, compiler
directives can also be specified globally for the source
file or for individual code blocks. See [directives] for
further information.

80x80  1500x1500
Units: MFLOPS

Optimal layout

Python 0.94 0.98
Cython 1.08 1.12
Added types 179 177
boundscheck/wraparound 770 692
mode="c" /mode="fortran" | 981 787
BLAS ddot (ATLAS) 1282 911
Intel C 2560 1022
gfortran AT B 1113 854
Intel Fortran AT B 2833 1023
NumPy dot 3656 4757
Worst-case layout

Python 0.94 0.97
boundscheck/wraparound 847 175
BLAS ddot (ATLAS) 910 183
gfortran ABT 861 94
Intel Fortran ABT 731 94

Table 1: Matrix multiplication benchmarks on an Intel
Xeon 3.2 GHz, 2 MB cache, SSE2. The smaller data
set fits in cache, while the larger does not. Keep
in mind that different implementations have differ-
ent constant-time overhead, which e.g. explains that
NumPy dot does better for larger dataset.

Caring about memory layout

Both C/C++ and Fortran assume that arrays are
stored as one contiguous chunk in memory. NumPy
arrays depart from this tradition and allows for arbi-
trarily strided arrays. Consider the example of B =
A[::-2,:]. That is, let B be the array consisting of
every other row in A, in reverse order. In many envi-
ronments, the need for representing B contiguously in
memory mandates that a copy is made in such situa-
tions. NumPy supports a wider range of array memory
layouts and can in this situation construct B as a new
view to the same data that A refers to. The bene-
fit of the NumPy approach is that it is more flexible,
and allows avoiding copying of data. This is especially
important if one has huge data sets where the main
memory might only be able to hold one copy at the
time. With choice does however come responsibility.

In order to gain top performance with numerical com-
putations it is in general crucial to pay attention to
memory layout.

In the example of matrix multiplication, the first ma-
trix is accessed row-by-row and the second column-
by-column. The first matrix should thus be stored
with contiguous rows, “C contiguous”, while the sec-
ond should be stored with contiguous columns, “For-
tran contiguous”. This will keep the distance between
subsequent memory accesses as small as possible. In
an out-of-cache situation, our fastest matmul routine
so far does around 700 times better than pure Python
when presented with matrices with optimal layout, but
only around 180 times better with the worst-case lay-
out. See table 1.

The second issue concerning memory layout is that a
price is paid for the generality of the NumPy approach:
In order to address arbitrarily strided arrays, an extra
integer multiplication operation must be done per ac-
cess. In the matmul implementation above, A[i,k] was
translated to the following C code:

A_ik = *(dtype_t*)(A_data + i * A_stride_O
+ j * A_stride_1);

By telling Cython at compile-time that the arrays are
contiguous, it is possible to drop the innermost stride
multiplication. This is done by using the “mode” ar-
gument to the array type:

def matmul(
np.ndarray[dtype_t, ndim=2, mode="c"] A,
np.ndarray[dtype_t, ndim=2, mode="fortran"] B,
np.ndarray[dtype_t, ndim=2] out=None):
<ol

The in-cache benchmark now indicate a 780x speedup
over pure Python. The out-of-cache improvement is
smaller but still noticeable. Note that no restrictions
is put on the out argument. Doing so did not lead to
any significant speedup as out is not accessed in the
inner loop.

The catch is, of course, that the routine will now re-
ject arrays which does not satisfy the requirements.
This happens by raising a ValueError. One can make
sure that arrays are allocated using the right layout by
passing the “order” argument to most NumPy array
constructor functions, as well as the copy() method
of NumPy arrays. Furthermore, if an array A is C-
contiguous, then the transpose, A.T, will be a Fortran-
contiguous view of the same data.

The number of memory accesses of multiplying two
n x n matrices scale as O(n?), while copying the matri-
ces scale as O(n?). One would therefore expect, given
that enough memory is available, that making a tem-
porary copy pays off once n passes a certain threshold.
In this case benchmarks indicate that the threshold is
indeed very low (in the range of n = 10) and one would
typically copy in all situations. The NumPy functions
ascontiguousarray and asfortranarray are helpful
in such situations.
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Calling an external library

The real world usecase for Cython is to speed up cus-
tom numerical loops for which there are no prior imple-
mentations available. For a simple example like matrix
multiplication, going with existing implementations is
always better. For instance, NumPy’s dot function
is about 6 times faster than our fastest Cython imple-
mentation, since it uses smarter algorithms. Under the
hood, dot makes a call to the dgemm function in the Ba-
sic Linear Algebra Software API ([BLAS], [ATLAS])?.
One advantage of Cython is how easy it is to call native
code. Indeed, for many, this is the entire point of using
Cython. We will demonstrate these features by calling
BLAS for the inner products only, rather than for the
whole matrix multiplication. This allows us to stick
with the naive matrix multiplication algorithm, and
also demonstrates how to mix Cython code and the
use of external libraries. The BLAS API must first be
declared to Cython:

cdef extern from "cblas.h":
double ddot "cblas_ddot" (int N,
double *X, int incX,
double *Y, int incY)

The need to re-declare functions which are already de-
clared in C is unfortunate and an area of possible im-
provement for Cython. Only the declarations that are
actually used needs to be declared. Note also the use
of C pointers to represent arrays. BLAS also accepts
strided arrays and expects the strides passed in the
incX and incY arguments. Other C APIs will often
require a contiguous array where the stride is fixed to
one array element; in the previous section it was dis-
cussed how one can ensure that arrays are contiguous.
The matrix multiplication can now be performed like
this:
ctypedef np.float64_t dtype_t
def matmul (np.ndarray[dtype_t, ndim=2] A,
np.ndarray[dtype_t, ndim=2] B,
np.ndarray[dtype_t, ndim=2] out):
cdef Py_ssize_t i, j
cdef np.ndarray[dtype_t, ndim=1] A_row, B_col
for i in range(A.shape[0]):
A_row = A[i,:]
for j in range(B.shape[1]):
B_col = B[:, jl
out[i,j] = ddot(
A_row.shape[0],
<dtype_t*>A_row.data,
A_row.strides[0] // sizeof(dtype_t),
<dtype_t*>B_col.data,
B_col.strides[0] // sizeof(dtype_t))

This demonstrates how NumPy array data can be
passed to C code. Note that NumPy strides are in
number of bytes, while BLAS expects them in num-
ber of elements. Also, because the array variables are
typed, the “data” attributes are C pointers rather than
Python buffer objects.

Unfortunately, this results in a slowdown for moder-
ate n. This is due to the slice operations. Operations

2BLAS is an API with many implementations; the bench-
marks in this paper is based on using the open-source ATLAS
implementation, custom-compiled on the host by Sage [Sage].

like A_row = A[i,:] is a Python operation and re-
sults in Python call overhead and the construction of
several new objects. Cython is unlikely to ever opti-
mize slicing of np.ndarray variables because it should
remain possible to use subclasses of ndarray with a dif-
ferent slicing behaviour®. The new memory view type,
discussed below, represents a future solution to this
problem. Another solution is to do the slice calcula-
tions manually and use C pointer arithmetic:

out[i,j] = ddot(
A.shape[1],
<dtype_t*>(A.data + i*A.strides[0]),
A.strides[1] // sizeof (dtype_t),
<dtype_t*>(B.data + j*B.strides[1]),
B.strides[0] // sizeof (dtype_t))

This version leads to over 1300 times speedup over pure
Python in the optimal, in-cache situation. This is due
to BLAS using the SSE2 instruction set, which enables
doing two double-precision floating point multiplica-
tions in one CPU instruction. When non-contiguous
arrays are used the performance drops to 970 times
that of pure Python (in-cache) as SSE2 can no longer
be used.

For more advanced array data passing, Cython makes
it easy to make use of NumPy’s C API. Consider for
instance a custom C library which returns a pointer
to some statically allocated data, which one would like
to view as a NumPy array. Using Cython and the
NumPy C API this is easily achieved:

cimport numpy as np
cdef extern from "mylib.h":
cdef int get_my_data(double** out_data,
int* out_size)
def my_data_as_ndarray():
cdef np.npy_intp* shape = [0]
cdef int arr_length
cdef double* arr_ptr
if get_my_data(&arr_ptr, &arr_length) != 0O:
raise RuntimeError("get_my_data failed")
shape[0] = arr_length
return np.PyArray_SimpleNewFromData(l, shape,
np.NPY_DOUBLE, <void*>arr_ptr)

SSE and vectorizing C compilers

What about using SSE directly in a Cython program?
One possibility is to use the SSE API of the C com-
piler. The details varies according to the C compiler
used, but most C compilers offers a set of special func-
tions which corresponds directly to SSE instructions.
These can be used as any other C function, also from
Cython code. In general, such code tends to be some-
what more complicated, as the first element in every
loop must be treated as a special case (in case the el-
ements involved are not aligned on 128-bit boundaries
in memory, as required by SSE). We have not included
code or benchmarks for this approach.

3This principle has of course already been violated, as one
could change the behaviour of the element indexing in a sub-
class as well. The policy is however not to go further in this
direction. Note also that only indexing with typed integer vari-
ables is optimized; A[i, some_untyped_ var] is not optimized as
the latter index could e.g. point to a Python slice object.

(©2009, D. Seljebotn
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Another popular approach to SSE is to use a “vectoriz-
ing” C compiler. For instance both Intel’s C compiler,
[ICC], and the GNU C compiler, [GCC], can recognize
certain loops as being fit for SSE optimization (and
other related optimizations). Note that this is a non-
trivial task as multiple loop iterations are combined,
and the loop must typically be studied as a whole. Un-
fortunately, neither ICC v. 11 nor GCC v. 4.3.3 man-
aged to vectorize the kind of code Cython outputs by
default. After some manual code massaging we man-
aged to have ICC compile a vectorized version which
is included in the benchmarks. We did not manage to
get GCC to vectorize the kind of sum-reduce loop used
above.

It appears that Cython has some way to go to be able
to benefit from vectorizing C compilers. Improving
Cython so that the generated C code is more easily
vectorizable should be possible, but has not been at-
tempted thus far. Another related area of possible
improvement is to support generating code containing
the C99 restrict modifier, which can be used to provide
guarantees that arrays do not overlap. GCC (but not
ICC) needs this to be present to be able to perform
vectorization.

Linear time: Comparisons with NumPy

We turn to some examples with linear running time.
In all cases the computation can easily be expressed in
terms of operations on whole arrays, allowing compar-
ison with NumPy.

First, we consider finding elements with a given value
in a one-dimensional array. This operation can be per-
formed in NumPy as:

haystack = get_array_data()
result = np.nonzero(haystack == 20)

This results in a array of indices, listing every element
equal to 20. If the goal is simply to extract the first
such element, one can instead use a very simple loop in
Cython. This avoids constructing a temporary array
and the result array. A simple Cython loop then per-
formed about five times faster than the NumPy code in
our benchmarks. The point here is merely that Cython
allows easily writing code specifically tailored for the
situation at hand, which sometimes can bring speed
benefits.
Another example is that of operating on a set of array
elements matching some filter. For instance, consider
transforming all 2D points within a given distance from
Zero:

Point_dtype = np.dtype([(’x’, np.float64),

(’y’, np.float64)])

points = load_point_data(filename, Point_dtype)

radius = 1.2

tmp = points[’x’]*x2

tmp += points[’y’]**2

pointset = tmp < radius**2

points[’x’] [pointset] *= 0.5

points[’y’] [pointset] *= 0.3

This code uses a number of temporary arrays to per-
form the calculation. In an in-cache situation, the
overhead of constructing the temporary Python arrays
becomes noticeable. In an out-of-cache situation, the
data has to be transported many times over the mem-
ory bus. The situation is worsened by using a record
array (as more data is transported over the bus in to-
tal, and less cache becomes available). Using separate
arrays for x and y results in a small speedup; both
array layouts are included in the benchmarks.

A Cython loop is able to do the operation in a single
pass, so that the data is only transported once:

cdef packed struct Point:
np.float64_t x, y

def transform_within_circle(np.ndarray[Point] points,
np.float64_t radius):
cdef Py_ssize_t i
cdef Point p
cdef np.float64_t radius_sq = radius**2
for i in range(points.shape[0]):
p = points[i]
if p.x**2 + p.y**2 < radius_sq:
p.x *= 0.5
p.y *= 0.3
points[i] = p

This is 10 times faster than the NumPy code for a large
data set, due to the heavily reduced memory bus traf-
fic. NumPy also uses twice as much memory due to the
temporaries. If the data set is several gigabytes, then
the additional memory used by NumPy could mean
the difference between swapping and not swapping to
disk. For Cython, operating on separate x and y arrays
is slightly slower. See table 2.

Finally, it would have been possible to separate the
filter and the transform by passing a callback to be
called in each iteration in the loop. By making use
of Cython extension type classes, which have faster
method dispatches than Python classes, the penalty of
such an approach is only around 20-25%. [Tutorial]
demonstrates such callbacks.

Million elements processed per second
2 x 107 element test set

Records Seperate

Python loop 0.028 0.069

NumPy 9.5 10

Cython plain 95 79

Cython optimized 110 100

Cython w/callback 79 73

Table 2: Benchmarks for operating on points within
a circle. The optimized Cython version and the
callback version both has boundscheck/wraparound
turned off and mode=’c’ specified. All benchmarks
on an Intel Xeon 3.2 GHz, 2 MB cache. All points
were within the circle in the test data set.
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Parallel computation

When discussing parallel computation there is an im-
portant distinction between shared-memory models
and message passing models. We start with discussing
the shared memory case. A common approach in par-
allel numerical code is to use OpenMP. While not diffi-
cult to support in principle, OpenMP is currently not
available in Cython. Instead, Python threads must be
used. This comes with some problems, but they can
be worked around.

Threads is a problem with CPython because every op-
eration involving a Python object must be done while
holding the Global Interpreter Lock (GIL). The result
is that pure Python scripts are typically unable to uti-
lize more than one CPU core, even if many threads
are used. It should be noted that for many computa-
tional scripts this does not matter. If the bulk of the
computation happens in wrapped, native code (like in
the case of NumPy or SciPy) then the GIL is typ-
ically released during the computation. For Cython
the situation is worse. Once inside Cython code, the
GIL is by default held until one returns to the Python
caller. The effect is that threads doesn’t switch at all.
Whereas a pure Python script will tend to switch be-
tween threads on a single CPU core, a Cython program
will by default tend to not switch threads at all.

The solution is to use Cython language constructs to
manually release the GIL. One can then achieve proper
multi-threading on many cores. The catch is that no
Python operations are allowed when the GIL is re-
leased; for instance, all variables used must be typed
with a C type. Optimized NumPy array lookups are
allowed. The Cython compiler will help enforce these
rules. Example:

Qcython.boundscheck(False)
def find_first(np.ndarray[np.int64_t] haystack,
np.int64_t needle):
cdef Py_ssize_t i, ret = -1

with nogil:
for i from O <= i < haystack.shape[0]:
if haystack[i] == needle:

ret = i; break
return ret

Without nogil, invocations from separate threads
would be serialized. Returning the result is a Python
operation, so that has to be put outside of the nogil
block . Furthermore, boundscheck must be turned
off as raising an IndexError would require the GIL?.
[Docs] contains further information on the various
primitives for managing the GIL (search for “nogil”).

The message passing case is much simpler. Several
Python interpreters are launched, each in its own pro-
cess, so that the GIL is not an issue. A popular ap-
proach is mpidpy [mpidpy], together with an MPT im-
plementation (such as OpenMPI [OpenMPI]). mpidpy
very conveniently allows passing full Python objects
between computational nodes through Python pick-
ling®. It is also possible to efficiently pass NumPy

4Finally, a different for loop syntax must be used, but this
restriction will disappear in Cython 0.12.

arrays. mpidpy is itself written in Cython, and ships
with the Cython compile-time definitions necessary to
communicate directly with the underlying MPI C API.
It is thus possible to use both interchangeably:

from mpi4py import MPI

from mpi4py cimport MPI

from mpi4py cimport mpi_c

cdef MPI.Comm comm = MPI.COMM_WORLD

if comm.Get_rank() ==
# High-level send of Python object
comm.send({’a’: any_python_object, ’b’:
to=1)
for <...a lot of small C-typed messages...>:
# Fast, low-level send of typed C data
mpi_c.MPI_Send(<...>, comm.ob_mpi)
elif ...

other},

This is useful e.g. in situations where one wants to
pass typed Cython variables and does not want to
bother with conversion back and forth to Python ob-
jects. This also avoids the overhead of the Python
call to mpidpy (although in practice there is likely to
be other, larger bottlenecks). While contrived, this
example should demonstrate some of the flexibility of
Cython with regards to native libraries. mpidpy can
be used for sending higher-level data or a few big mes-
sages, while the C API can be used for sending C data
or many small messages.

The same principle applies to multi-threaded code:
It is possible, with some care, to start the threads
through the Python API and then switch to e.g. native
OS thread mutexes where any Python overhead would
become too large. The resulting code would however
be platform-specific as Windows and Unix-based sys-
tems have separate threading APIs.

Conclusions and future work

While the examples shown have been simple and in
part contrived, they explore fundamental properties of
loops and arrays that should apply in almost any real-
world computation. For computations that can only
be expressed as for-loops, and which is not available in
a standard library, Cython should be a strong candi-
date. Certainly, for anything but very small amounts
of data, a Python loop is unviable. The choice stands
between Cython and other natively compiled technolo-
gies. Cython may not automatically produce quite as
optimized code as e.g. Fortran, but we believe it is fast
enough to still be attractive in many cases because of
the high similarity with Python. With Cython and
NumPy, copying of non-contiguous arrays is always
explicit, which can be a huge advantage compared to
some other technologies (like Fortran) when dealing
with very large data sets.

5In addition to normal Python classes, Cython supports a
type more efficient classes known as “extension types”. For effi-
ciency reasons these need explicit implementations provided for
pickling and unpickling. See “Pickling and unpickling extension
types” in [CPyPickle].
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For the algorithms which are expressible as NumPy
operations, the speedup is much lower, ranging from
no speedup to around ten times. The Cython code
is usually much more verbose and requires more deci-
sions to be made at compile-time. Use of Cython in
these situations seems much less clear cut. A good ap-
proach is to prototype using pure Python, and, if it is
deemed too slow, optimize the important parts after
benchmarks or code profiling.

Cython remains in active development. Because of
the simple principles involved, new features are often
easy to add, and are often the result of personal itch-
scratching. Sometimes the experience has been that
it is quicker to add a feature to Cython than to re-
peatedly write code to work around an issue. Some
highlights of current development:

e Support for function-by-function profiling through
the Python cProfile module was added in 0.11.3.

e Inner functions (closures) are maturing and will be
released soon.

e Cython benefited from two Google Summer of Code
[GSoC] projects over summer of 2009, which will
result in better support for calling C++ and Fortran
code.

One important and often requested feature for numer-
ical users is template support. This would make it
possible to make a single function support all array
data types, without code duplication. Other possible
features are improved parallel programming support,
like OpenMP primitives. While no work is currently
going on in these areas, the Cython developers remain
conscious about these shortcomings.
One important future feature for numerical users is
the new memory view type. K. W. Smith and D. S.
Seljebotn started work on this in summer 2009 as part
of Smith’s Google Summer of Code.
The new Python buffer protocol based on PEP 3118
promise a shift in focus for array data. In Python 2.6
and greater, any Python object can export any array-
like data to natively compiled code (like Cython code)
in an efficient and standardized manner. In some re-
spects this represents adoption of some NumPy func-
tionality into the Python core. With this trend, it
seems reasonable that Cython should provide good
mechanisms for working with PEP 3118 buffers inde-
pendently of NumPy. Incidentally, this will also pro-
vide a nice unified interface for interacting with C and
Fortran arrays in various formats. Unlike NumPy,
PEP 3118 buffers also supports pointer indirection-
style arrays, sometimes used in C libraries.
With this new feature, the matrix multiplication rou-
tine could have been declared as:

def matmul(doublel[:,:] A,

doublel[:,:] B,
doublel[:,:] out):

Using this syntax, a buffer is acquired from the ar-
guments on entry. The interface of the argument vari-
ables are entirely decided by Cython, and it is not pos-
sible to use Python object operations. NumPy array
methods like A.mean() will therefore no longer work.
Instead, one will have to call np.mean(A) (which will
work once NumPy supports PEP 3118). The advan-
tage is that when Cython defines the interface, further
optimizations can be introduced. Slices and arithmetic
operations are not currently subject for optimization
because of polymorphism. For instance, it would cur-
rently be impossible for Cython to optimize the mul-
tiplication operator, as it means different things for
ndarray and its subclass matrix.

A nice benefit of the chosen syntax is that individual
axis specifications becomes possible:

def matmul(doublel:,::contig] A,
doublel[::contig,:] B,
doublel[:,:] out):

< 00>

Here, A is declared to have contiguous rows, without
necessarily being contiguous as a whole. For instance,
slicing along the first dimension (like A[: :3,:]) would
result in such an array. The matmul function can still
benefit from the rows being declared as contiguous. Fi-
nally, we contemplate specific syntax for automatically
making contiguous copies:

def matmul(in doublel[:,::contig] A,
in doublel[::contig,:] B,
doublel[:,:] out):

<ol

This is particularly convenient when interfacing with
C or Fortran libraries which demand such arrays.
Once basic memory access support is supported, it be-
comes possible to add optimizations for whole-array
“vectorized” operations. For instance, this example
could be supported:

cdef extern from "math.h":
double sqrt(double)

def func(double[:] x, double[:] y):
return sqrt(x**2 + y*x*2)

This would translate into a loop over the elements of
x and y. Both a naive translation to C code, SSE
code, GPU code, and use of BLAS or various C++
linear algebra libraries could eventually be supported.
Whether Cython will actually move in this direction
remains an open question. For now we simply note
that even the most naive implementation of the above
would lead to at least a 4 times speedup for large arrays
over the corresponding NumPy expression; again due
to NumPy’s need for repeatedly transporting the data
over the memory bus.
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