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Although Python is well-known for its ease of use, it
lacks the performance that is often necessary for
numerical applications. As a result, libraries like
NumPy and SciPy implement their core operations
in C for better performance. CorePy represents an
alternative approach in which an assembly language
is embedded in Python, allowing direct access to
the low-level processor architecture. We present
the CoreFunc framework, which utilizes CorePy to
provide an environment for applying element-wise
arithmetic operations (such as addition) to arrays
and achieving high performance while doing so. To
evaluate the framework, we develop and experiment
with several ufunc operations of varying complexity.
Our results show that CoreFunc is an excellent tool
for accelerating NumPy-based applications.

Python is well-known for its ease of use, and has an
excellent collection of libraries for scientific computing
(e.g., NumPy, SciPy). However, Python does not have
the performance that is necessary for numerical appli-
cations. Many Python libraries work around this by
implementing performance-critical functionality in an-
other language. NumPy for example implements many
of its operations in C for better performance. Fur-
thermore, modern processor architectures are adding
functionality (e.g. SIMD vector extensions, highly spe-
cialized instructions) that cannot be easily exploited in
existing languages like C or Python.

CorePy is a tool (implemented as a Python library)
aimed at providing direct access to the processor archi-
tecture so that developers can write high-performance
code directly in Python.

To make CorePy more accessible to scientific applica-
tions, we have developed a framework for implement-
ing NumPy ufunc operations (element-wise arithmetic
operations extended to arrays) using CorePy. Al
though some performance gains can be had for the ex-
isting ufunc operations, we have found that our frame-
work (referred to as CoreFunc) is most useful for devel-
oping custom ufuncs that combine multiple operations
and take advantage of situation-specific optimizations
to obtain better performance. To evaluate our frame-
work, we use examples ranging from addition, to vector
normalization, to a particle simulation kernel.

Accelerated NumPy Ufuncs

NumPy is a Python library built around an advanced
multi-dimensional array object. Simple arithmetic
such as addition and multiplication are supported as
element-wise operations over the array class; these op-
erations are referred to as ufuncs. Ufunc operations are

implemented in C and invoked directly from Python.
Although ufuncs are a powerful and convenient tool
for working with data in arrays, they incur significant
performance overhead: computational kernels are built
using many ufunc calls, each of which makes a pass
over its input arrays and sometimes allocates a new
temporary array to pass on to later operations. When
the input/output arrays do not fit entirely into cache,
data must be transferred multiple times to and from
memory, creating a performance bottlneck.

The Numexpr library [Numexpr]|, part of the SciPy
project, addresses this problem by evaluating an arith-
metic expression (e.g. a + b ¢) expressed as a string.
The arrays to be processed are broken down into
smaller blocks which fit entirely into the processor’s
cache. An optimized loop is generated (in C) to per-
form the complete operation on one block before mov-
ing on to the next. A limitation of this approach
however, is that Numexpr relies on a compiler to take
advantage of advanced processor features (e.g., SIMD
vector extections). Although modern compilers are al-
ways improving, this approach does not give the user
the opportunity to introduce their own optimizations
that a compiler may not be capable of implementing.
To address the shortcomings of these existing ap-
proaches, we developed the CoreFunc framework, in
which CorePy is used as a backend for writing custom
ufunc operations. Our primary goal in developing this
framework was to create a system not just for accel-
erating the existing ufunc operations, but also to al-
low arbitrary custom operations to be defined to fully
optimize performance. By using CorePy, the Core-
Func framework makes the entire processor architec-
ture (e.g., vector SIMD instructions) available for use
in a ufunc operation. Furthermore, we take advan-
tage of multi-core functionality in recent processors by
splitting work across multiple threads. Each thread
runs in parallel, invoking the ufunc operation over a
sub-range of the arrays.

A seconday goal of the framework is to reduce the ef-
fort needed to implement optimized ufunc operations.
A CoreFunc user needs only to write code specific to
their operation. This is a distinct advantage over us-
ing a C module (and perhaps inline assembly) to im-
plement custom ufunc operations, in which case a user
must also implement and debug a significant amount
of auxiliary code, distracting from the task at hand.
The CoreFunc framework interface consists of only two
functions. The first, gen_ufunc, generates the code to
perform a ufunc operation on a specific datatype. We
require that a separate code segment be generated for
each data type the ufunc should support. The imple-
mentation of the operation can vary greatly from type
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to type due to varying processor capabilities and avail-
able instructions. Three code segments are needed for
a ufunc operation. The first is a vector/unrolled loop
body, which operates on multiple elements per loop it-
eration, and performs the majority of the work. When
fewer elements need to be processed than are handled
by a single iteration of the vector loop body, a second
scalar loop body is used to process one element per ier-
ation. Lastly, a reduction operation is needed, and is
usually just a single instruction. gen_ufunc generates
the surrounding loop initialization, flow control code,
ands atomic reduction operations to support multi-
core parallelism. A synthetic program is returned that
can be invoked directly by NumPy to perform an op-
eration on a specific array and data type.

Once the code for a ufunc operation has been gener-
ated, the create_ufunc is used to create a complete
ufunc object. Synthetic programs for each data type to
be supported by the ufunc are combined into a single,
invocable ufunc object. Rather than calling synthetic
programs directly, a C-based wrapper function is in-
troduced to split work among multiple threads to run
on multiple cores.

Ufuncs created using the CoreFunc framework behave
very similarly to NumPy’s built-in ufuncs. The fol-
lowing example shows the use of both the NumPy and
CoreFunc addition implementations:

>>> import numpy
>>> import corefunc

>>> a
>>> b

numpy . arange (5, dtype=numpy.int32)
numpy . arange (5, dtype=numpy.int32)

# NumPy ufunc
>>> numpy.add(a, b)

array([ 0, 2, 4, 6, 8], dtype=int32)

# CorePy ufunc
>>> corefunc.add(a, b)

array([ 0, 2, 4, 6, 8], dtype=int32)

Reduction works in the same way, too:

>>> corefunc.add.reduce(a)
10

CorePy

Before evaluating applications of the CoreFunc frame-
work, an a brief introduction to CorePy is necessary.
The foundation of CorePy is effectively an object-
oriented assembler embedded in Python; more ad-
vanced and higher-level abstractions are built on top
of this to assist with software development. Assembly-
level elements such as Instructions, registers, and other
processor resources are represented as first-class ob-
jects. These objects are combined and manipulated
by a developer to generate and transform programs on
the fly at run-time. Machine-level code is synthesized
directly in Python; no external compilers or assemblers
are required.

The following is a simple example that defines a syn-
thetic program to compute the sum 31411 and returns

the correct result:
# Create a simple synthetic program
>>> prgm = x86_env.Program()
>>> code = prgm.get_stream()

# Synthesize assembly code

>>> code += x86.mov(prgm.gp_return, 31)
>>> code += x86.add(prgm.gp_return, 11)
>>> prgm += code

# Execute the synthetic program
>>> proc = Processor()

>>> result = proc.execute(prgm)
>>> print result

42

The first line of the example creates an empty
Program object. Program objects manage resources
such as register pools, label names, and the code it-
self. The code in a synthetic program consists of
a sequence of one or more InstructionStream ob-
jects, created using the Program’s get_stream factory
method. InstructionStream objects (effectively code
segments) are containers for instructions and labels.
The x86 mov instruction is used to load the value 31
into the special gp_return register. CorePy returns
the value stored in this register after the generated pro-
gram is executed. Next, and add instruction is used
to add the value 11 to the return register. With code
generation completed, the instruction stream is added
into the program. Finally, a Processor object is cre-
ated and used to execute the generated program. The
result, 42, is stored and printed.

CorePy is more than just an embedded assembler; a
number of abstractions have been developed to make
programming easier and faster. Synthetic Expressions
[CEMO6] overload basic arithmetic operators such that
instead of executing the actual arithmetic operation,
assembly code representing the operation is gener-
ated and added to an instruction stream. Similarly,
synthetic iterators [CEMO6] can be used to generate
assembly-code loops using Python iterators and for-
loop syntax. Specialized synthetic iterators can auto-
matically unroll, vectorize, or parallelize loop bodies
for better performance.

General code optimization is possible using an instruc-
tion scheduler transformation [AWF10] (currently only
available for Cell SPU architecture). In addition to
optimizing individual instruction streams, the instruc-
tion scheduler can be used to interleave and optimize
multiple independent streams. For example, the sine
and cosine functions are often called together (e.g., in
a convolution algorithm). The code for each function
can be generated separately, then combined and op-
timized to achieve far better performance. A similar
approach can be used for optimizing and interleaving
multiple iterations of an unrolled loop body.
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Evaluation

To evaluate the effectiveness of the CoreFunc frame-
work we consider two ufunc operations, addition and
vector normalization. In addition, we implement the
computational kernel portion of an existing particle
simulation as a single ufunc operation.

Addition Ufunc

We implemented the addition ufunc to provide a direct
comparison to an existing NumPy ufunc and demon-
strate how the framework is used. Below is the Core-
Func implementation for 32-bit floating point addition:

def gen_ufunc_add_float32():
def vector_fn(prgm, r_args):
code = prgm.get_stream()

code += x86.movaps(xmm0, MemRef (r_args[0]))
code += x86.addps(xmm0, MemRef (r_args[1]))
code += x86.movntps(MemRef (r_args[2]), xmmO)
return code

def scalar_fn(prgm, r_args):
code = prgm.get_stream()

code += x86.movss(xmm0, MemRef (r_args[0]))
code += x86.addss(xmm0, MemRef (r_args[1]))
code += x86.movss(MemRef (r_args[2]), xmmO)
return code

return gen_ufunc(2, 1, vector_fn, scalar_fn, 4,
x86.addss, ident_xmm_0, XMMRegister, 32)

First, note that very little code is needed in addition
to the instructions that carry out the actual operation.
The CoreFunc framework abstracts away unnecessary
details, leaving the user free to focus on implementing
their ufunc operations.

SIMD (Single-Instruction Multiple-Data) instructions
simultaneously perform one operation on multiple val-
ues (four 32-bit floating point values in this case).
x86 supports SIMD instructions using SSE (Streaming
SIMD Extensions). In the above example, the movaps
and movntps instructions load and store four contigu-
ous floating point values to/from a single SIMD reg-
ister. The addps instruction then performs four addi-
tions simultaneously. scalar_fn uses scalar forms of
the same instructions to process one element at a time,
and is used when there is not enough work remaining
to use the vector loop. The gen_ufunc call generates
and returns the CorePy synthetic program, which is
later passed to create_ufunc.

Timings were taken applying the ufuncs to varying
array sizes. The average time to execute a varying
number of iterations (80 to 10, scaling with the ar-
ray length) at each array size was used to compute
the number of ufunc operations completed per second.
The system used contains two 1.86GHz Intel quad-
core processors with 4mb cache and 16gb of ram, run-
ning Redhat Enterprise Linux 5.2. Python v2.6.2 and
NumPy v1.3.0 were used.

Below, we compare the performance of NumPy’s addi-
tion ufunc to the CoreFunc implementation using vary-
ing numbers of cores. Higher results are better.

10000

1000

100

=
o

Throughput (Mops/sec)

NumPy ——
CorePy 1 core g
CorePy 2 cores
CorePy 4 cores .
. CorePy 8 cores =

1000 10000 100000 1le+06 1e+07
Array length (elements)

0.1

10 100 1e+08

Single-core performance using CoreFunc is highly simi-
lar to NumPy-a simple operation like addition is mem-
ory bound, so computational differences in implemen-
tation have little impact. Due to vector size and align-
ment requirements, multiple threads/cores are not
used for array sizes less than 32 elements. We believe
the performance gain realized using multiple cores is
due to effectively having a larger processor cache for
the array data and increased parallelism in memory
requests, rather than additional compute cycles.
NumPy supports reduction as a special case of a nor-
mal ufunc operation in which one of the input arrays
and the output array are the same, and are one element
long. Thus the same loop is used for both normal op-
erations and reductions. CoreFunc generates code to
check for the reduction case and execute a separate
loop in which the accumulated result is kept in a reg-
ister during the operation. If multiple cores are used,
each thread performs the reduction loop on a sepa-
rate part of the input array, then atomically updates
a shared accumulator with its part of the result. The
performance comparison is below.
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Vector Normalization Ufunc

The second operation we examine is 2-D vector nor-
malization, which was chosen as a more complex oper-
ation to experiment with how custom ufunc operations
can achieve higher performance. The idea is that we
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can combine operations to eliminate temporary arrays,
and create opportunities for optimizations to better
utilize the processor. Using NumPy, vector normaliza-
tion is implemented in the following manner:

def vector_normalize(x, y):
1 = numpy.sqrt(x**2 + y**2)
return (x / 1, y / 1)

Two arrays are taken as input, containing the respec-
tive x and y components for the vectors. Two arrays
are output with the same data organization.

In the figure below, we compare the NumPy imple-
mentation, a C implementation (compiled using full
optimizations with GCC 4.0.2), and the CoreFunc im-
plementation with progressive stages of optimization.
A single core is used for the CoreFunc results in this
example. We believe the NumPy and CoreFunc im-
plementations incur an overhead due to Python-level
function calls to invoke the ufuncs, as well as type/size
checking performed by NumPy. Otherwise, the C and
CoreFunc scalar implementations are highly similar.
NumPy is slightly slower due to additional overhead-
-each NumPy ufunc operation makes a pass over its
entire input arrays and creates a new temporary ar-
ray to pass to the next operation(s), rather than doing
all the processing for one element (or a small set of
elements) before moving on to the next.
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We took advantage of CorePy’s wide open processor
access to progressively optimize the CoreFunc imple-
mentation. The scalar implementation shown in the
figure is very similar to the assembly generated by the
C code. SSE is used, but only scalar instructions--
the code does not take advantage of SIMD vectoriza-
tion. The CoreFunc vector implementation does how-
ever, resulting in significant performance gains. The
same instruction sequence as the scalar implementa-
tion was used; we merely switched to the vector forms
of the same instructions. Finally, we optimized the
instruction sequence itself by taking advantage of the
SSE reciprocal square-root function. This instruction
is significantly less accurate than the square-root in-
struction, so we implemented a single iteration of the
Newton-Raphson algorithm as suggested in [AMDO09]
section 9.11 to increase accuracy. [AMDO09] suggests
that this approach is not IEEE-754 compliant, but that
the results are acceptable for most applications. Not

only is this approach quicker than a single square-root
instruction, we can also take advantage of the recipro-
cal square-root to convert the two division operations
to multiplication for even more performance.

Particle Simulation

A particle simulation application has been used in pre-
vious work [CEMO6b] to show how CorePy can be
used to obtain speedups over a NumPy-based com-
putational kernel. To experiment with using the Core-
Func framework to implement an entire kernel inside a
single ufunc operation, we revisited the particle simu-
lation application. Below is a screenshot of the running
application:
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The window forms a bounding box in which particles
are subjected to gravity and air resistance. If a par-
ticle collides with any of the sides, its velocity in the
appropriate axis is reversed, creating a bouncing ef-
fect. Particles are created interactively by moving the
mouse pointer inside the window; their initial veloc-
ity is determined based on the velocity of the mouse
movement.

A set of four arrays is used to represent the particles.
Two arrays contain the x and y components of the par-
ticle positions, while the other two arrays contain the
2 and y components of the particle velocities. A fixed
length for the arrays limits the number of particles on
the screen; when the maximum number of particles is
reached, the oldest particle is replaced.

The simulation is organized into a series of timesteps
in which each particle’s velocity and position is up-
dated. A single timestep consists of one execution of
the computational kernel at the core of the simulation.
First, the particles’ velocities are updated to account
for forces imposed by gravity and air resistance. The
updated velocity is then used to update each particle’s
position. Next, collision detection is performed. If any
particle has moved past the boundaries of the window,
its velocity component that is normal to the crossed
boundary is negated. Bounces off the bottom edge,
or floor, are dampened by scaling the value of the ve-
locity y component. Implementation of the simulation
in NumPy is straightforward; ufuncs and supporting
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functions (e.g., where for conditionals) are used. Tem-
porary arrays are avoided when possible by using out-
put arguments to NumPy functions.

Our CoreFunc-based implementation moves all of the
particle update calculations into a ufunc operation; we
do this to evaluate whether this approach is a viable so-
lution for developing high-performance computational
kernels. The main loop uses SSE instructions to up-
date four particles at a time in parallel. The four
arrays are read and written only once per timestep;
temporary values are stored in registers. Collision de-
tection requires conditional updating of particle val-
ues. We achieved this without branches by using SSE
comparison and bitwise arithmetic instructions. The
following code performs collision detection for the left
wall using NumPy:

1t = numpy.where (numpy.less(pos_x, 0), -1, 1)
numpy .multiply(vel_x, 1lt, vel_x)

An optimized equivalent using SSE instructions looks
like the following;:

x86.xorps (r_cmp, r_cmp)
x86.cmpnltps(r_cmp, r_pos_x)
x86.andps (r_cmp, FP_SIGN_BIT)
x86.orps(r_vel_x, r_cmp)

The first instruction above clears the temporary com-
parison register by performing an exclusive-OR against
itself (this is a common technique for initializing reg-
isters to zero on x86). The next instruction compares,
in parallel, the z components of the positions of four
particles against zero. If zero is mot less than the x
component, all 1 bits are written to the part of the
comparison register corresponding to the x component.
Otherwise, 0 bits are written. To make the particles
bounce off the wall, the x velocity component needs to
be forced to a positive value. However, only those par-
ticles that have crossed the wall should be modified.
The ’truth mask’ generated by the compare instruc-
tion is bitwise AND’d with a special constant with only
the most significant bit (the floating point sign bit) of
each value set. This way, only those particles whose
direction needs to be changed are updated; particles
that have not crossed the boundary will have a cor-
responding value of zero in the temporary comparison
register. A bitwise OR operation then forces the sign
bit of the velocity x component to positive for only
those particles which have crossed the wall. Similar
code sequences are used for the other three walls.
Implementing the simulation using CoreFunc proved
to be straightforward, although getting the sequence
of bit-wise operations right for collision detection took
some creative thought and experimentation. The as-
sembly code has surprisingly direct mapping from the
NumPy code: this suggests that developing a set of
abstractions for generating code analogous to common
NumPy functions (i.e., where) would likely prove use-
ful. We compare the performance of the two imple-
mentations in the following chart:
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Timings were obtained by executing 100 timesteps in
a loop. The display code was disabled so that only
the simulation kernel was benchmarked. The sys-
tem used was a 2.33GHz Intel quad-core processor
with 4Mb cache. The operating system was Ubuntu
9.04; distribution-provided builds of Python 2.5.2 and
NumPy 1.1.1 were used. Lower results indicate better
performance.

Both implementations scale linearly with the number
of particles, but the CoreFunc implementation is as
much as two orders of magnitude (100x) faster. Even
though the CoreFunc effort took more time to imple-
ment, this time pays off with a significant speedup. We
conclude that our approach is suitable for development
of simple to fairly complex computational kernels.

Conclusion

We have introduced the CoreFunc framework, which
leverages CorePy to enable the development of highly
optimized ufunc operations. Our experimentation
with ufuncs of varying complexity shows that our
framework is an effective tool for developing custom
ufunc operations that implement significant portions
of a computational kernel. Results show that the most
effective optimizations are realized by combining sim-
ple operations together to make more effective use of
low-level hardware capabilities.

Complete source code for CorePy, the CoreFunc frame-
work, and a collection of sample ufunc implementa-
tions (including addition, vector normalization, and
particle simulation) are available via anonymous Sub-
version at www.corepy.org. Code is distributed under
BSD license.
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