Proceedings of the 8t Python in Science Conference (SciPy 2009)

Parallel Kernels: An Architecture for Distributed Parallel Computing

P. A. Kienzle (pkienzle@nist.gov) — NIST Center for Neutron Research, National Institute of Standards and Tech-

nology, Gaithersburg, Maryland 20899 USA

N. Patel (npateli7@umd.edu) — Department of Materials Science and Engineering, University of Maryland, College

Park, Maryland 20742 USA

M. McKerns (mmckerns@caltech.edu) — Materials Science, California Institute of Technology, Pasadena, California

91125 USA

Global optimization problems can involve huge com-
putational resources. The need to prepare, sched-
ule and monitor hundreds of runs and interactively
explore and analyze data is a challenging problem.
Managing such a complex computational environ-
ment requires a sophisticated software framework
which can distribute the computation on remote
nodes hiding the complexity of the communication
in such a way that scientist can concentrate on the
details of computation. We present PARK, the com-
putational job management framework being devel-
oped as a part of DANSE project, which will offer a
simple, efficient and consistent user experience in a
variety of heterogeneous environments from multi-
core workstations to global Grid systems. PARK
will provide a single environment for developing and
testing algorithms locally and executing them on re-
mote clusters, while providing user full access to
their job history including their configuration and
input/output. This paper will introduce the PARK
philosophy, the PARK architecture and current and
future strategy in the context of global optimization
algorithms.

Introduction

In this paper we present PARK, a flexible job man-
agement and parallel computation framework which is
being developed as a part of DANSE project [Ful09].
PARK is a high level tool written in Python to pro-
vide the necessary tools for parallel and distributed
computing [Bal89]. The heart of the system is yet
another parallel mapping kernel, hiding the details of
communication and freeing the end-user scientist to
concentrate on the computational algorithm. The suc-
cess of environments like Matlab and NumPy show
that using an abstract interface using high level prim-
itives such as vector mathematics, slow interpreted
languages can achieve high performance on numeri-
cal codes. For parallel computations, Google intro-
duced the Map-Reduce algorithm [Dea04], a robust im-
plementation of master-slave parallelism where nodes
could enter into and out of the computation. Indi-
vidual map-reduce programs do not have to deal with
the complexities of managing a reliable cluster envi-
ronment, but can achieve fast robust performance on
distributed database applications. The powerful map
construct can be used equally well in many scientific
computing problems.

A number of Python packages are addressing parts of
this problem. PaPy[Cie09] is based on map constructs
and directed acyclic graphs (DAGs) for scalable work-
flows to process data. Parallel Python[Von09] allows
users to run functions remotely or locally. They pro-
vide code movement facilities to ease the installation
and maintenance of parallel systems. IPython Paral-
lel[Per09] gives users direct control of remote nodes
through an interactive python console. They provide
a load balancing map capability as well as supporting
direct communication between nodes. Pyro [Jon09] is
a python remote object implementation with a name
service to find remote processes. It includes a publish-
subscribe messaging system. PARK uses ideas from
all of these systems.

Concept and architecture

PARK is a user-friendly job management tool that
allows easy interaction with heterogeneous computa-
tional environments.

PARK uses a front end for submitting complex com-
putational jobs to variety of computing environments.
The backend computational service can use a dedi-
cated cluster, or a shared cluster controlled by a batch
queue. The front end allows the user to submit, kill,
resubmit, copy and delete jobs. Like PaPy, jobs will be
able to be composed as workflows. Unlike traditional
batch processing systems, applications can maintain
contact with the running service, receiving notifica-
tion of progress and sending signals to change the flow
of the computation. Communication from services to
the client is handled through a publish-subscribe event
queue, allowing multiple clients to monitor the same
job. The client can signal changes to running jobs
by adding messages to their own queues. Clients can
choose to monitor the job continuously or to poll status
periodically. The emphasis of the system is on early
feedback and high throughput rather than maximum
processing speed of any one job.

Remote jobs run as service components. A service
component contains the full description of a compu-
tational task, including code to execute, input data
for processing, environment set-up specification, post-
processing tasks, output data produced by the appli-
cation and meta-data for bookkeeping. The purpose of
PARK can then be seen as making it easy for end-user
scientist to create, submit and monitor the progress of
services. PARK keeps a record of the services created

P. Kienzle, N. Patel, M. McKernsin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 36-41 36

pkienzle@nist.gov
npatel17@umd.edu
mmckerns@caltech.edu

Proceedings of the 8 Python in Science Conference (SciPy 2009)

and submitted by the user in a persistent job reposi-
tory.

The PARK API is designed for both the needs of inter-
active Graphical User Interfaces (GUI) and for scripted
or Command Line Interfaces (CLI). A service in PARK
is constructed from a set of components. All services
are required to have an application component and
a backend component, which define respectively the
software to be run and the computational resources
to be used. A client can connect to multiple back-
ends at the same time, one of which will be the client
machine. Services have input and output data com-
ponents which are used during service execution. The
overall PARK architecture is illustrated in figure 1.
PARK monitors the evolution of submitted services
and categorizes them into submitted, waiting, sched-
uled, running, completed, failed or killed states. All
service objects are stored in a job repository database
and the input and output files associated with the ser-
vices are stored in file workspace. Both job repository
and the file workspace may be in a local file system or
on a remote server.

Client

lou | [cu]

PARK Core
repository
Tob Tob \
Management Monitoring

s] LN e e
74N S NN

Local host Multi-core
Interface Interface

Torque
Interface

Cluster
Interface

Persistent data store

Local host
processer

Multi-core Toryue Dedicated
Pprocessor haich cluster

......

The client interacts with PARK via the Graphical
User Interface (GUI) or via Command Line Interface
(CLI). All jobs are stored in the persistent data store.

PARK interface

The client initiates the connection to PARK through
a connect object, with the URL of the resource as a
parameter. Different resources may use different con-
nection and authentication and transport protocols,
but the returned connection object provides a unified
interface. The connection may be to the local ma-
chine or a remote cluster. Client can submit their
jobs through this connect object to respective compu-
tational resources and also retrieve the results of jobs.
PARK provides functions for executing jobs, retrieving
the results of finished jobs, checking the status of the
jobs and controlling the jobs. The functions provided
by PARK are independent of various computational
resources so that a client may write a single program

that will run on any platform with minor changes in
interface.

The connect function creates a new connection object
associated with specified computational resources. If
no connection is established, then the job will be run
on the client machine. The example below connects to
the cluster at compufans.ncnr.nist.gov:

compufans = park.connect (‘compufans.ncnr.nist.gov’)

The submit function creates a job and submits it to the
compufans job queue. This function returns immedi-
ately. It returns job id back to the client with which
client can control the job. The executable can be a
script or a function. If executable is a function, the
modules argument specify what modules are required

to execute the function:
job_id = compufans.submit(executable,
input_data=None, modules=())

The get_result_id function returns the result of the
submitted job after it is completed, or None if it is not
completed:

result = compufans.get_result_id(job_id=None)

The get_ status function returns a python dictionary
with keys specifying the current status of all the three
queues (waiting, running and finished) and values as
number of jobs in each queues:

status_dict = compufans.get_status(tag)

Job management architecture

The job management components include job creator,
job scheduler and job launcher. Its architecture is
shown on figure 2.

Local Job Manager

Job
scheduler
Job
launcher

Tob
creator

Drata store

Client

Job
EXECUtion

Local worker 1

Job
execution

Local workcer 2

Figure 2: Job management architecture. In this
case client connects to a local system and PARK au-
tomatically identifies the number of cores present in
the system and spawns that many workers to run job.
The job communicates back to the client through a
publish-subscribe event queue.

The job creator receives information on the jobs from
the client either through GUI or through CLI. The

37

http://conference.scipy.org/proceedings/SciPy2009/paper_5

http://conference.scipy.org/proceedings/SciPy2009/paper_5

Parallel Kernels: An Architecture for Distributed Parallel Computing

job creator assigns an job identifier to every job and
returns this to the client. The combination of job man-
ager URL and job id is unique.

The job scheduler is the core scheduling component
which decides which jobs to run when. The scheduler is
responsible for maintaining enough information about
the state of the jobs to make good decisions about
job placement. All the resources are allocated to the
jobs by job priority. This ensures that high-priority
jobs are added at the front of the queue. If jobs have
equal priority, resources are allocated to the job that
was submitted first. The job scheduler also supports
backfill. This ensures that a resource-intensive appli-
cation will not delay other applications that are ready
to run. The job scheduler will schedule a lower-priority
job if a higher-priority job is waiting for resources to
become available and the lower-priority job can be fin-
ished with the available resources without delaying the
start time of the higher-priority job.

The job launcher’s function is to accept the jobs and
launch them. Job launcher contains the logic required
to initiate execution on the selected platform for the
selected network configuration. The job launcher re-
ceives messages sent by the job scheduler. When
receiving an execution request, it will create a new
thread in order to allow asynchronous job execution.
After getting a job identifier (i.e. the handle to the job
at the server side) as the response, the job launcher will
send it to the corresponding thread of the job sched-
uler. The job handle will be used to monitor the job
status and control the job.

The job monitor is used to monitor the submitted jobs.
Information about the remote execution site, queue
status and successful termination are collected. The
job manager maintains a connection to the running job
so that the client can steer the job if necessary. For
example, a fitting service may allow the user to change
the range of values for a fit parameter. This level of
control will not be possible on some architectures, such
as TeraGRID nodes that do not allow connections back
to the event server.

Job execution workflow

In order to simplify the complexity of job management,
various operations of job management are organized
as a workflow. Within the workflow the job can be
deleted or modified at any time. PARK manages three
job queues namely the waiting, running and finished
queues and jobs are stored in one of the three queues
based on their status. The waiting queue keeps the
un-scheduled jobs. The running queue keeps running
jobs and the finished queue keeps finished jobs which
are either completed successfully or failed. After the
job is created, it is put on the waiting queue. When all
dependencies are met the job description is submitted
to the job launcher and the job is moved to the run-
ning queue. On job completion, a completion event
is published on the job event queue. The job moni-
tor subscribes to this queue, and moves the job to the

Client

F
Waiting
guele Finished
CUELE

Job
scheduler

Job
finished

Job
execution

! Local worker

Eunning
cuETE

Job
launcher

Figure 3: Job lifetime. The normal execution se-
quence complete separates the client from the compu-
tational resources, allowing users to disconnect when
the job is started and reconnect to get the results.

finished queue when it receives the completion event.
After the job reaches the finished queue, the results
are ready to be retrieved by the client (see figure 3).
All the logging and error messages are automatically
saved. At the client side, multiple jobs can be defined
at the same time, so there may exist more than one
job workflow in the system. All jobs are independent
of each other and identified by either job ID or client
tags. Future versions will support workflow conditions,
only launching a new job when the dependent jobs are
complete.

Parallel mapper

map (fn, [v1,v2, .7
Mapper .| Service
[fn(w1), fn(v2),...]
fi,w; (v,
A
Worker Worker Worker
1 2 3

Figure 4: Mapper workflow architecture. fn is the
function to be mapped and v__i are the inputs. The
function should be stateless, with output depending
only on the current input v_i, not on the previous
inputs.

(©2009, P. Kienzle, N. Patel, M. McKerns

38

Proceedings of the 8 Python in Science Conference (SciPy 2009)

A running service has many facilities available. It can
use a data store or file system for data retrieval. A
service can use Mapper which applies a function to a
set of inputs. Mapper acts like the built-in ‘map’ func-
tion of Python, but the work is completed in parallel
across the available computing nodes. Mapper keeps
tracks of all map requests from various running service
and handles any issues like node failure or nested maps
and infinite loops in a functions. Mapper can be ex-
cellent resource for data parallelism where same code
runs concurrently on different data elements. Mapper
workflow is described in figure 4, in which running ser-
vice sends map request to Mapper via service handler.
Mapper queues individual function-value pairs. Work-
ers pull from this queue, returning results to Mapper.
After all results are complete, Mapper orders them and
sends them back to the service.

Global optimization

We are using PARK to construct a global optimization
framework. The basic algorithm for optimization is as

follows:
optimizer.configure()
population = optimizer.start(function.parameters)
while True:
cost = map(function, population)
optimizer.update (population)
if converged():
break
post_progress_event ()
population = optimizer.next()

This algorithm applies equally to pure stochastic op-
timizers like differential evolution and genetic algo-
rithms as well as deterministic methods such as branch
and bound, and even quasi-Newton methods where
multiple evaluations are required to estimate the de-
scent direction.

In order to implement this algorithm in PARK, we
need to define a Fit service which accepts an optimizer,
some convergence conditions and the function to be
optimized. The Fit service first registers the function
with Mapper. Workers who participate in the map
evaluation are first configured with the function, and
then called repeatedly with members of the popula-
tion. Since the configuration cost is incurred once per
worker, we can handle problems with a significant con-
figuration cost. For example a fit to a 100Mb dataset
requires the file to be transferred to each worker node
once at the beginning rather than each time the fitness
function is evaluated. This mechanism also supports a
dynamic worker pool, since new workers can ask Map-
per for the function when they join the pool.

We have generalized convergence conditions. Rather
than building convergence into each optimizer, the Fit
service keeps track of the values of the population,
the best fit, the number of iterations, the number of
function calls and similar parameters that are used to
control the optimizer. To write a new optimizer for
PARK, users will need to subclass from Optimizer as
follows:

class Optimizer:
def configure(self):
"prepare the optimizer"
def start(self, parameters):
"generate the initial population"
def update(self, population):
"record results of last population"
def next(self):
"generate the next population"

Each cycle the optimizer has the option of informing
the client of the progress of the fit. If the fit value
has improved or if a given percentage of the maximum
number of iterations is reached then a message will
be posted to the event stream associated with the fit
job. If the cluster cannot connect to the event queue
(which will be the case when running on TeraGRID
machines), or if the client is not connected then this
event will be ignored.

The assumption we are making is that the cost of func-
tion evaluations is large compared to the cost of gener-
ating the next population and sending it to the work-
ers. These assumptions are not implicit to the global
optimization problem; in some cases the cost of eval-
uating the population members is cheap compared to
processing the population. In a dedicated cluster we
can hide this problem by allowing several optimiza-
tion problems to be run at the same time on the same
workers, thus when one optimizer is busy generating
the next population, the workers can be evaluating the
populations from the remaining optimizers. A solution
which can exploit all available parallelism will require
dedicated code for each optimizer and more communi-
cation mechanisms than PARK currently provides.

Conclusions and future work

A robust job management and optimization system is
essential for harnessing computational potential of var-
ious heterogeneous computing resources. In this paper
we presented an overview of the architecture of PARK
distributed parallel framework and its various features
which makes running single job across various hetero-
geneous platform almost painless.

The PARK framework and the global optimizer are
still under active development and not yet ready for
general use. We are preparing for an initial public
release in the next year.

In future we would like to implement new scheduling
scheme for optimizing resource sharing. We will add
tools to ease the monitoring of jobs and administer-
ing a cluster. We are planning various forms of fault
tolerance features to PARK, making it robust against
failure of any nodes, including the master node via
checkpoint and restore. Security is also an important
issue, further work being needed to improve the exist-
ing security features. Using the high level map prim-
itive, ambitious users can implement PARK applica-
tions on new architectures such as cloud computing,
BOINC[And04], and TeraGrid by specializing the map
primitive for their system. The application code will
remain the same.

39

http://conference.scipy.org/proceedings/SciPy2009/paper_5

http://conference.scipy.org/proceedings/SciPy2009/paper_5

Parallel Kernels: An Architecture for Distributed Parallel Computing

Acknowledgments

This work is supported by National Science Founda-
tion as a part of the DANSE project, under grant
DMR-0520547.

References

[And04] D. P. Anderson. BOINC: A system for public-

[Balg9]

[Cie09]

resource computing and storage, in R. Buyya, ed-
itor, 5th International Workshop on Grid Com-
puting (GRID 2004), 8 November 2004, Pitts-
burgh, PA, USA, Proceedings, pages 4-10. IEEE
Computer Society, 2004.

H. E. Bal, J. G. Steiner, and A. S. Tanenbaum.
Programming languages for distributed computing
systems ACM computing Surveys, 21(3):261-322,
September 1989.

M. Cieslik, PaPy: Parallel and distributed data-
processing pipelines in Python, in Proceedings

[Dea04]

[Ful09]

[Jon09)

[Per09]

[Van09]

of the 8th Python in Science Conference (SciPy
2009)

J. Dean and S. Ghemawat, MapReduce: Simpli-
fied Data Processing on Large Clusters, OSDI’04:
Sixth Symposium on Operating System Design
and Implementation, San Francisco, CA, Decem-
ber, 2004.

B. Fultz, et al.: DANSE: Distributed data anal-
ysis for meutron scattering experiments, http://
danse.us/ (Accessed Aug. 2009)

I. de Jong: Pyro - Python Remote Objects,
http://pyro.sourceforge.net/ (Accessed Aug.
2009)

F. Perez and B. Granger: [Python: a system
for interactive scientific computing, Computing
in Science & Engineering 9(3) 21-29, 2007

V. Vanovschi: Parallel Python, http://wuw.
parallelpython.com/ (Accessed Aug. 2009)

(©2009, P. Kienzle, N. Patel, M. McKerns

40

http://danse.us/
http://danse.us/
http://danse.us/
http://danse.us/
http://pyro.sourceforge.net/
http://pyro.sourceforge.net/
http://www.parallelpython.com/
http://www.parallelpython.com/
http://www.parallelpython.com/
http://www.parallelpython.com/

	Parallel Kernels: An Architecture for Distributed Parallel Computing
	Introduction
	Concept and architecture
	PARK interface
	Job management architecture
	Job execution workflow
	Parallel mapper

	Global optimization
	Conclusions and future work
	Acknowledgments
	References

