
Proceedings of the 8th Python in Science Conference (SciPy 2009)

PaPy: Parallel and distributed data-processing pipelines in Python
Marcin Cieślik (mpc4p@virginia.edu) – University of Virginia, U.S.
Cameron Mura (cmura@virginia.edu) – University of Virginia, U.S.

PaPy, which stands for parallel pipelines in Python,
is a highly flexible framework that enables the con-
struction of robust, scalable workflows for either gen-
erating or processing voluminous datasets. A work-
flow is created from user-written Python functions
(nodes) connected by ’pipes’ (edges) into a directed
acyclic graph. These functions are arbitrarily de-
finable, and can make use of any Python modules
or external binaries. Given a user-defined topology
and collection of input data, functions are composed
into nested higher-order maps, which are transpar-
ently and robustly evaluated in parallel on a sin-
gle computer or on remote hosts. Local and re-
mote computational resources can be flexibly pooled
and assigned to functional nodes, thereby allowing
facile load-balancing and pipeline optimization to
maximimize computational throughput. Input items
are processed by nodes in parallel, and traverse the
graph in batches of adjustable size - a trade-off be-
tween lazy-evaluation, parallelism, and memory con-
sumption. The processing of a single item can be
parallelized in a scatter/gather scheme. The sim-
plicity and flexibility of distributed workflows using
PaPy bridges the gap between desktop -> grid, en-
abling this new computing paradigm to be leveraged
in the processing of large scientific datasets.

Introduction

Computationally-intense fields ranging from astron-
omy to chemoinformatics to computational biology
typically involve complex workflows of data produc-
tion or aggregation, processing, and analysis. Sev-
eral fundamentally different forms of data - se-
quence strings (text files), coordinates (and coor-
dinate trajectories), images, interaction maps, mi-
croarray data, videos, arrays - may exist in dis-
tinct file formats, and are typically processed using
available tools. Inputs/outputs are generally linked
(if at all) via intermediary files in the context of
some automated build software or scripts. The re-
cently exponential growth of datasets generated by
high-throughput scientific approaches (e.g. struc-
tural genomics [TeStYo09]) or high-performance par-
allel computing methods (e.g. molecular dynam-
ics [KlLiDr09]) necessitates more flexible and scal-
able tools at the consumer end, enabling, for in-
stance, the leveraging of multiple CPU cores and com-
putational grids. However, using files to communi-
cate and synchronize processes is generally inconve-
nient and inefficient, particularly if specialized scien-
tific Python modules (e.g., BioPython [CoAnCh09],

PyCogent [Knight07], Cinfony [OBHu08], MMTK
[Hinsen00], Biskit [GrNiLe07]) are to be used.
Many computational tasks fundamentally consist of
chained transformations of collections of data that are
independent, and likely of variable type (strings, im-
ages, etc.). The scientific programmer is required to
write transformation steps, connect them and - for
large datasets to be feasible - parallelize the process-
ing. Solutions to this problem generally can be di-
vided into: (i) Make-like software build tools, (ii)
workflow management systems (WMS), or (iii) grid
engines and frontends. PaPy, which stands for parallel
pipelines in Python, is a module for processing arbi-
trary streams of data (files, records, simulation frames,
images, videos, etc.) via functions connected into di-
rected graphs (flowcharts) like a WMS. It is not a par-
allel computing paradigm like MapReduce [DeGh08]
or BSP [SkHiMc96], nor is it a dependency-handling
build tool like Scons [Knight05]. Neither does it sup-
port declarative programming [Lloyd94]. In a nutshell,
PaPy is a tool that makes it easy to structure proce-
dural workflows into Python scripts. The tasks and
data are composed into nested higher-order map func-
tions, which are transparently and robustly evaluated
in parallel on a single computer or remote hosts.
Workflow management solutions typically provide a
means to connect standardized tasks via a structured,
well-defined data format to construct a workflow. For
transformations outside the default repertoire of the
program, the user must program a custom task with
inputs and outputs in some particular (WMS-specific)
format. This, then, limits the general capability of
a WMS in utilizing available codes to perform non-
standard or computationally-demanding analyses. Ex-
amples of existing frameworks for constructing data-
processing pipelines include Taverna (focused on web-
services; run locally [OiAdFe04]), DAGMan (general;
part of the Condor workload management system
[ThTaLi05]) and Cyrille2 (focused on genomics; run
on SGE clusters [Ham08]). A typical drawback of in-
tegrated WMS solutions such as the above is that,
for tasks which are not in the standard repertoire of
the program, the user has to either develop a custom
task or revert to traditional scripting for parts of the
pipeline; while such an approach offers an immediate
solution, it is not easily sustainable, scalable, or adapt-
able, insofar as the processing logic becomes hardwired
into these script-based workflows.
In PaPy, pipelines are constructed from Python func-
tions with strict call semantics. Most general-purpose
functions to support input/output, databases, inter-
process communication (IPC), serialization, topology,
and mathematics are already a part of PaPy. Domain-
specific functions (e.g. parsing a specific file-format)

41 M. Cieślik, C. Murain Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 41–48

mpc4p@virginia.edu
cmura@virginia.edu

PaPy: Parallel and distributed data-processing pipelines in Python

must be user-provided, but have no limitations as to
functional complexity, used libraries, called binaries or
web-services, etc. Therefore, as a general pipeline con-
struction tool, PaPy is intentionally lightweight, and
is entirely agnostic of specific application domains.
Our approach with PaPy is a highly modular workflow-
engine, which neither enforces a particular data-
exchange or restricted programming model, nor is tied
to a single, specific application domain. This level
of abstraction enables existing code-bases to be eas-
ily wrapped into a PaPy pipeline and benefit from its
robustness to exceptions, logging, and parallelism.

Architecture and design

PaPy is a Python module “papy” written to enable
the logical design and deployment of efficient data-
processing pipelines. Central design goals were to
make the framework (i) natively parallel, (ii) flexible,
(iii) robust, (iv) free of idiosyncrasies and dependen-
cies, and (v) easily usable. Therefore, PaPy’s modular,
object-oriented architecture utilizes familiar concepts
such as map constructs from functional programming,
and directed acyclic graphs. Parallelism is achieved
through the shared worker-pool model [Sunderam90].
The architecture of PaPy is remarkably simple, yet
flexible. It consists of only four core component classes
to enable construction of a data-processing pipeline.
Each class provides an isolated subset of the func-
tionality [Table1], which together includes facilities for
arbitrary flow-chart topology, execution (serial, par-
allel, distributed), user function wrapping, and run-
time interactions (e.g. logging). The pipeline is a way
of expressing what (functions), where (toplogy) and
how (parallelism) a collection of (potentially interde-
pendent) calculations should be performed.

Table 1: Components (classes) and their roles.

Compo-
nent

Description and function

IMap1 Implements a process/thread pool. Eval-
uates multiple, nested map functions in
parallel, using a mixture of threads or
processes (locally) and, optionally, remote
RPyC servers.

Piper
Worker

Processing nodes of the pipeline created
by wrapping user-defined functions; also,
exception handling, logging, and scatter-
gather functionality.

Dagger Defines the data-flow and the pipeline in the
form of a directed acyclic graph (DAG); al-
lows one to add, remove, connect pipers,
and validate topology. Coordinates the
starting/stopping of IMaps.

Plumber Interface to monitor and run a pipeline; pro-
vides methods to save/load pipelines, mon-
itor state, save results.

Pipelines (see Figure 1) are constructed by connecting
functional units (Piper instances) by directed pipes,
and are represented as a directed acyclic graph data
structure (Dagger instance). The pipers correspond
to nodes and the pipes to edges in a graph. The
topological sort of this graph reflects the input/output
dependencies of the pipers, and it is worth noting
that any valid DAG is a valid PaPy pipeline topology
(e.g., pipers can have multiple incoming and outgo-
ing pipes, and the pipeline can have multiple inputs
and outputs). A pipeline input consists of an iter-
able collection of data items, e.g. a list. PaPy does
not utilize a custom file format to store a pipeline;
instead, pipelines are constructed and saved as exe-
cutable Python code. The PaPy module can be ar-
bitrarily used within a Python script, although some
helpful and relevant conventions to construct a work-
flow script are described in the online documentation.

The functionality of a piper is defined by user-written
functions, which are Python functions with strict call
semantics. There are no limits as to what a function
does, apart from the requirement that any modules
it utilizes must be available on the remote execution
hosts (if utilizing RPyC). A function can be used by
multiple pipers, and multiple functions can be com-
posed within a single piper. CPU-intensive tasks with
little input data (e.g., MD simulations, collision de-
tection, graph matching) are preferred because of the
high speed-up through parallel execution.
Within a PaPy pipeline, data are shared as Python
objects; this is in contrast to workflow management
solutions (e.g., Taverna) that typically enforce a spe-
cific data exchange scheme. The user has the choice to
use any or none of the structured data-exchange for-
mats, provided the tools for using them are available
for Python. Communicated Python objects need to
be serializable, by default using the standard Pickle
protocol.
Synchronization and data communication between
pipers within a pipeline is achieved by virtue of queues
and locked pipes. No outputs or intermediate results
are implicitly stored, in contrast to usage of temporary
files by Make-like software. Data can be saved any-
where within the pipeline by using pipers for data se-
rialization (e.g. JSON) and archiving (e.g. file-based).
PaPy maintains data integrity in the sense that an
executing pipeline stopped by the user will have no
pending (lost) results.

Parallelism

Parallel execution is a major issue for workflows,
particularly (i) those involving highly CPU-intensive
methods like MD simulations or Monte Carlo sam-
pling, or (ii) those dealing with large datasets (such as
arise in astrophysics, genomics, etc.). PaPy provides

1Note that the IMap class is available as a separate Python
module.

c©2009, M. Cieślik, C. Mura 42

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Figure 1. (A) PaPy pipeline and its (B) computa-
tional resources. The directed graph illustrates the
Dagger object as a container of Piper objects (nodes),
connected by pipes (black arrows; in the upstream
/ downstream sense) or, equivalently, dependency
edges (gray arrows). Pipers are assigned to vari-
ous compute resources as indicated by different col-
ors. The sets of pipes connecting the two processing
streams illustrate the flexible construction of work-
flows. Encapsulation and composition of user-written
functions e.g., f, g into a Worker and Piper object
is represented as P(W(f,g,...)). Resources used by
the sample pipeline are shown in B. Each virtual re-
source is an IMap object, which utilizes a worker pool
to evaluate the Worker on a data item. IMaps are
shared by pipers and might share resources. The re-
sources are: a local pool of 20 threads used by a sin-
gle piper in the pipeline (green); four CPU-cores, of
which at most three are used concurrently (red) and
one dedicated to handle the input/output functions
(yellow); and a pool of Python processes utilizing re-
mote resources exposedby RPyC servers (blue cloud).
Parallelism is achieved by pulling data through the
pipeline in adjustable batches.

support for two levels of parallelism, which adress both
of these scenarios: (1) parallel processing of indepen-
dent input data items, (2) multiple parallel jobs for
a single input item. The first type of parallelism is
achieved by creating parallel pipers - i.e. providing
an IMap instance to the constructor. Pipers within
a pipeline can share an IMap instance or have dedi-
cated computational resources (Fig. 1). The mixing
of serial and parallel pipers is supported; this flexi-
bility permits intelligent pipeline load-balancing and
optimization. Per-item parallel jobs are made possi-
ble by the produce / spawn / consume (Fig. 2) id-
iom within a workflow. This idiom consists of at least
three pipers. The role of the first piper is to produce a
list of N subitems for each input item. Each of those
subitems is processed by the next piper, which needs
to be spawned N times; finally, the N results are con-
sumed by the last piper, which returns a single result.
Multiple spawning pipers are supported. The subitems
are typically independent fragments of the input item
or parameter sets. Per-item parallelism is similar to
the MapReduce model of distributed computing, but
is not restricted to handling only data structured as
(key, value) pairs.

Figure 2. The produce / spawn / consume idiom al-
lows for parallel processing of a single input item in
addition to parallel processing of items (explanation
in text).

The parallelism of an IMap instance is defined by
the number of local and remote worker processes or
threads, and the “stride” argument (Fig. 3), if it pro-
cesses multiple tasks. The “stride” is the number of
input items of task N processed before task N+1 com-
mences. Tasks are cycled until all input items have
been processed. In a PaPy pipeline pipers can share
a computational resource; they are different tasks of a
single IMap instance. The “stride” can also be con-
sidered as the number of input items processed by
pipers in consecutive rounds, with the order defined
by a topological sort of the graph. Therefore, the data
traverses the pipeline in batches of “stride” size. A
larger “stride” means that potentially more temporary
results will have to be held in memory, while a smaller
value may result in idle CPUs, as a new task cannot
start until the previous one finishes its “stride”. This
adjustable memory/parallelism trade-off allows PaPy
pipelines to process data sets with temporary results

43 http://conference.scipy.org/proceedings/SciPy2009/paper_6

http://conference.scipy.org/proceedings/SciPy2009/paper_6

PaPy: Parallel and distributed data-processing pipelines in Python

too large to fit into memory (or to be stored as files),
and to cope with highly variable execution times for in-
put items (a common scenario on a heterogenous grid,
and which would arise for certain types of tasks, such
as replica-exchange MD simulations).

Figure 3. The stride as a trade-off between memory
consumption and parallelism of execution. Rectan-
gular boxes represent graph traversal in batches. The
pipers involved (N-1, N, N+2) are shown on the right
(explanation in text).

Inter-process communication

A major aspect - and often bottleneck - of parallel
computing is inter-process communication (IPC; Fig.
4) [LiYa00]. In PaPy, IPC occurs between parallel
pipers connected in a workflow. The communication
process is two-stage and involves a manager process
- i.e, the local Python interpreter used to start the
workflow (Fig. 4). A coordinating process is neces-
sary because the connected nodes might evaluate func-
tions in processes with no parent/child relationship. If
communication occurs between processes on different
hosts, an additional step of IPC (involving a local and
a remote RPyC process) is present. Inter-process com-
munication involves data serialization (i.e. representa-
tion in a form which can be sent or stored), the actual
data-transmission (e.g. over a network socket) and,
finally, de-serialization on the recipient end. Because
the local manager process is involved in serializing (de-
serializing) data to (from) each parallel process, it can
clearly limit pipeline performance if large amounts of
data are to be communicated.

Figure 4. Inter-process communication (IPC) between
pipers (p1, p2). The dashed arrow illustrates possible
direct IPC. Communication between the local and
remote processes utilizes RPyC (explanation in text).

PaPy provides functionality for direct communication

of producer and consumer processes, thereby mostly
eliminating the manager process from IPC and allevi-
ating the bottleneck described above. Multiple serial-
ization and transmission media are supported. In gen-
eral, the producer makes data available (e.g. by serial-
izing it and opening a network socket) and sends only
information needed by the consumer end to locate the
data (e.g. the host and port of the network socket) via
the manager process. The consumer end receives this
information and reads the data. Direct communication
comes at the cost of losing platform-independence, as
the operating system(s) have to properly support the
chosen transmission medium (e.g. Unix pipes). Table
2 summarizes PaPy’s currently available options.

Table 2: Direct inter-process communication meth-
ods.2

Method
OS Remarks

socket all Communication between hosts con-
nected by a network.

pipe UNIX-
like

Communication between processes on
a single host.

file all The storage location needs to be ac-
cessible by all processes - e.g over NFS
or a SAMBA share.

shm POSIX Shared memory support is provided by
the posix_shm library; it is an alter-
native to communication by pipes.

database all Serialized data can be stored as (key,
value) pairs in a database. The keys
are semi-random. Currently SQLite
and MySQL are supported, as pro-
vided by mysql-python and sqlite3.

Note that it is possible to avoid some IPC by logically
grouping processing steps within a single piper. This
is done by constructing a single piper instance from a
worker instance created from a tuple of user-written
functions, instead of constructing multiple piper in-
stances from single function worker instances. A
worker instance is a callable object passed to the con-
structor of the Piper class. Also, note that any linear,
non-branching segment of a pipeline can be collapsed
into a single piper. This has the performance advan-
tage that no IPC occurs between functions within a
single piper, as they are executed in the same process.

Additional features and notes

Workflow logging

PaPy provides support for detailed workflow logging
and is robust to exceptions (errors) within user-written

2Currently supported serialization algorithms: pickle, mar-
shall, JSON

c©2009, M. Cieślik, C. Mura 44

Proceedings of the 8th Python in Science Conference (SciPy 2009)

functions. These two features have been a major de-
sign goal. Robustness is achieved by embedding calls
to user functions in a try ... except clause. If an
exception is raised, it is caught and does not stop the
execution of the workflow (rather, it is wrapped and
passed as a placeholder). Subsequent pipers ignore
and propagate such objects. Logging is supported via
the logging module from the Python standard library.
The papy and IMap packages emit logging statements
at several levels of detail, i.e. DEBUG, INFO, ER-
ROR; additionally, a function to easily setup and save
or display logs is included. The log is written real-
time, and can be used to monitor the execution of a
workflow.

Usage notes

A started parallel piper consumes a sequence of N in-
put items (where N is defined by the “stride” argu-
ment), and produces a sequence of N resultant items.
Pipers are by default “ordered”, meaning that an in-
put item and its corresponding result item have the
same index in both sequences. The order in which re-
sult items become available may differ from the order
input items are submitted for parallel processing. In a
pipeline, result items of an upstream piper are input
items for a downstream piper. The downstream piper
can process input items only as fast as result items are
produced by the upstream piper. Thus, an inefficency
arises if the upstream piper does not return an avail-
able result because it is out of order. This results in
idle processes, and the problem can be addressed by
using a “stride” larger then the number of processes,
or by allowing the upstream piper to return results in
the order they become available. The first solution re-
sults in higher memory consumption, while the second
irreversibly abolishes the original order of input data.

Figure 5. A screenshot of the PaPy GUI written in
Tkinter. Includes an interactive Python console and
an intuitive canvas to construct workflows.

Graphical interface

As a Python package, PaPy’s main purpose is to sup-
ply and expose an API for the abstraction of a par-
allel workflow. This has the advantage of flexibility
(e.g. usage within other Python programs), but re-
quires that the programmer learn the API. A graphical
user interface (GUI) is currently being actively devel-
oped (Fig. 5). The motivation for this functionality
is to allow a user to interactively construct, execute
(e.g. pause execution), and monitor (e.g. view logs)
a workflow. While custom functions will still have to
be written in Python, the GUI liberates the user from
knowing the specifics of the PaPy API; instead, the
user explores the construction of PaPy workflows by
connecting objects via navigation in the GUI.

Workflow construction example

The following code listing illustrates steps in the con-
struction of a distributed PaPy pipeline. The first of
the two nodes evaluates a function (which simply de-
termines the host on which it is run), and the second
prints the result locally. The first piper is assigned
to a virtual resource combining local and remote pro-
cesses. The scripts take two command line arguments:
a definition of the available remote hosts and a switch
for using TCP sockets for direct inter-process commu-
nication between the pipers. The source code uses
the imports decorator. This construct allows import
statements to be attached to the code of a function. As
noted earlier, the imported modules must be available
on all hosts on which this function is run.
The pipeline is started, for example, via:

$ python pipeline.py \
--workers=HOST1:PORT1#2,HOST2:PORT1#4

which uses 2 processes on HOST1 and 4 on HOST2,
and all locally-available CPUs. Remote hosts can be
started (assuming appropriate firewall settings) by:

$ python RPYC_PATH/servers/classic_server.py \
-m forking -p PORT

This starts a RPyC server listening on the specified
PORT, which forks whenever a client connects. A fork-
ing server is capable of utilizing multiple CPU cores.
The following example (in expanded form) is provided
as part of PaPy’s online documentation.:

45 http://conference.scipy.org/proceedings/SciPy2009/paper_6

http://conference.scipy.org/proceedings/SciPy2009/paper_6

PaPy: Parallel and distributed data-processing pipelines in Python

#!/usr/bin/env python
Part 0: import the PaPy infrastructure.
papy and IMap are separate modules
from papy import Plumber, Piper, Worker
from IMap import IMap, imports
from papy import workers

Part 1: Define user functions
@imports([’socket’, ’os’, ’threading’])
def where(inbox):

result = "input: %s, host:%s, parent %s, \
process:%s, thread:%s" % \

(inbox[0], \
socket.gethostname(), \
the host name as reported by the OS
os.getppid(), \ # get parent process id
os.getpid(), \ # get process id
threading._get_ident())
unique python thread identifier
return result

Part 2: Define the topology
def pipeline(remote, use_tcp):

this creates a IMap instance which uses
#’remote’ hosts.
imap_ = IMap(worker_num=0, worker_remote=remote)
this defines the communication protocol i.e.
it creates worker instances with or without
explicit load_item functions.
if not use_tcp:

w_where = Worker(where)
w_print = Worker(workers.io.print_)

else:
w_where = Worker((where, workers.io.dump_item), \

kwargs=({}, {’type’:’tcp’}))
w_print = Worker((workers.io.load_item, \

workers.io.print_))
the instances are combined into a piper instance
p_where = Piper(w_where, parallel=imap_)
p_print = Piper(w_print, debug=True)
piper instances are assembled into a workflow
(nodes of the graph)
pipes = Plumber()
pipes.add_pipe((p_where, p_print))
return pipes

Part 3: execute the pipeline
if __name__ == ’__main__’:

get command-line arguments using getopt
following part of the code is not PaPy specific
and has the purpose of interpreting commandline
arguments.
import sys
from getopt import getopt
args = dict(getopt(sys.argv[1:], ’’, [’use_tcp=’, \

’workers=’])[0])
parse arguments
use_tcp = eval(args[’--use_tcp’]) # bool
remote = args[’--workers’]
remote = worker_remote.split(’,’)
remote = [hn.split(’#’) for hn in remote]
remote = [(h, int(n)) for h, n in remote]
create pipeline (see comments in function)
pipes = pipeline(remote, use_tcp)
execution
the input to the function is a list of 100
integers.
pipes.start([range(100)])
this starts the pipeline execution
pipes.run()
wait until all input items are processed
pipes.wait()
pause and stop (a running pipeline cannot
be stopped)
pipes.pause()
pipes.stop()
print execution statistics
print pipes.stats

Discussion and conclusions

In the context of PaPy, the factors dictating the com-
putational efficiency of a user’s pipeline are the nature
of the individual functions (nodes, pipers), and the na-
ture of the data linkages between the constituent nodes
in the graph (edges, pipes). Although distributed
and parallel computing methods are becoming ubiq-
uitous in many scientific domains (e.g., biologically
meaningful usec-scale MD simulations [KlLiDrSh09]),
data post-processing and analysis are not keeping pace,
and will become only increasingly difficult on desktop
workstations.
It is expected that the intrinsic flexibility underly-
ing PaPy’s design, and its easy resource distribution,
could make it a useful component in the scientist’s
data-reduction toolkit. It should be noted that some
data-generation workflows might also be expressible as
pipelines. For instance, parallel tempering / replica-
exchange MD [EaDe05] and multiple-walker metady-
namics [Raiteri06] are examples of intrinsically par-
allelizable algorithms for exploration and reconstruc-
tion of free energy surfaces of sufficient granularity. In
those computational contexts, PaPy could be used to
orchestrate data generation as well as data aggregation
/ reduction / analysis.
In conclusion, we have designed and implemented
PaPy, a workflow-engine for the Python programming
language. PaPy’s features and capabilities include: (1)
construction of arbitrarily complex pipelines; (2) flex-
ible tuning of local and remote parallelism; (3) specifi-
cation of shared local and remote resources; (4) versa-
tile handling of inter-process communication; and (5)
an adjustable laziness/parallelism/memory trade-off.
In terms of usability and other strengths, we note that
PaPy exhibits (1) robustness to exceptions; (2) grace-
ful support for time-outs; (3) real-time logging func-
tionality; (4) cross-platform interoperability; (5) ex-
tensive testing and documentation (a 60+ page man-
ual); and (6) a simple, object-oriented API accompa-
nied by a preliminary version of a GUI.

Availability

PaPy is distributed as an open-source, platform- in-
dependent Python (CPython 2.6) module at http:
//muralab.org/PaPy, where extensive documenta-
tion also can be found. It is easily installed
via the Python Package Index (PyPI) at http://
pypi.python.org/pypi/papy/ using setuptools by
easy_install papy.

Acknowledgements

We thank the University of Virginia for start-up funds
in support of this research.

c©2009, M. Cieślik, C. Mura 46

http://muralab.org/PaPy
http://muralab.org/PaPy
http://muralab.org/PaPy
http://muralab.org/PaPy
http://pypi.python.org/pypi/papy/
http://pypi.python.org/pypi/papy/
http://pypi.python.org/pypi/papy/
http://pypi.python.org/pypi/papy/

Proceedings of the 8th Python in Science Conference (SciPy 2009)

References

[TeStYo09] Terwilliger TC, Stuart D, Yokoyama
S “Lessons from structural genomics”
Ann.Rev. Biophys. (2009), 38, 371-83.

[KlLiDr09] Klepeis JL, Lindorff-Larsen K, Dror RO,
Shaw DE “Long-timescale molecular dy-
namics simulations of protein structure
and function” Current Opinions in Struc-
tural Biology (2009), 19(2), 120-7.

[CoAnCh09] Cock PJ, Antao T, Chang JT, et al.
“Biopython: freely available Python tools
for computational molecular biology and
bioinformatics” Bioinformatics (2009),
25(11), 1422-3.

[Knight07] Knight, R et al. “PyCogent: a toolkit for
making sense from sequence” Genome Bi-
ology (2007), 8(8), R171

[OBHu08] O’Boyle NM, Hutchison GR “Cinfony -
combining Open Source cheminformat-
ics toolkits behind a common interface”
Chemistry Central Journal (2008), 2, 24.

[Hinsen00] Hinsen K “The Molecular Modeling
Toolkit: A New Approach to Molecu-
lar Simulations” Journal of Computational
Chemistry (2000), 21, 79-85.

[GrNiLe07] Grünberg R, Nilges M, Leckner J “Biskit-
-a software platform for structural bioin-
formatics” Bioinformatics (2007), 23(6),
769-70.

[OiAdFe04] Oinn T, Addis M, Ferris J, et al. “Taverna:
a tool for the composition and enactment
of bioinformatics workflows” Bioinformat-
ics (2004), 20(17), 3045-54.

[ThTaLi05] Thain D, Tannenbaum T, Livny M, “Dis-
tributed Computing in Practice: The Con-
dor Experience” Concurrency and Compu-
tation: Practice and Experience (2005),

17, 2-4, 323-356.
[Ham08] Fiers MW, van der Burgt A, Datema E, de

Groot JC, van Ham RC “High-throughput
bioinformatics with the Cyrille2 pipeline
system” BMC Bioinformatics (2008), 9,
96.

[DeGh08] Dean J, Ghemawat S “MapReduce: Sim-
plified Data Processing on Large Clusters”
Comm. of the ACM (2008), 51, 107-113.

[EaDe05] Earl, D. J. and M. W. Deem “Parallel tem-
pering: Theory, applications, and new per-
spectives” Phys. Chem. Chem. Phys.
(2005) 7(23), 3910-3916.

[Raiteri06] Raiteri P, Laio A, Gervasio FL, Micheletti
C, Parrinello M. J J Phys Chem B. (2006),
110(8), 3533-9.

[LiYa00] Liu, P., Yang, C. “Locality-Preserving Dy-
namic Load Balancing for Data-Parallel
Applications on Distributed-Memory Mul-
tiprocessors.”“ (2000)

[SkHiMc96] Skillicorn, D. B., Hill, J. M. D. & Mccoll,
W. F. ”Questions and answers about BSP“
(1996).

[Knight05] Knight S, ”Building Software with SCons,“
Computing in Science and Engineering
(2005), 7(1), 79-88.

[Lloyd94] Lloyd JW, ”Practical advantages of declar-
ative programming“ (1994)

[Sunderam90] Sunderam V.S. ”PVM: A framework for
parallel distributed computing“ Concur-
rency: Practice and Experience (1990), 2,
4, 315-339

[KlLiDrSh09] Klepeis JL, Lindorff-Larsen K, Dror RO,
Shaw DE ”Long-timescale molecular dy-
namics simulations of protein structure
and function“ Curr. Opin. Struc. Biol.
(2009), 19(2), 120-7.

47 http://conference.scipy.org/proceedings/SciPy2009/paper_6

http://conference.scipy.org/proceedings/SciPy2009/paper_6

	PaPy: Parallel and distributed data-processing pipelines in Python
	Introduction
	Architecture and design
	Table 1: Components (classes) and their roles.
	Table 1: Components (classes) and their roles.
	Parallelism
	Inter-process communication
	Table 2: Direct inter-process communication methods.2
	Additional features and notes
	Workflow logging
	Usage notes
	Graphical interface

	Workflow construction example

	Discussion and conclusions
	Availability
	Acknowledgements
	References

