
Proceedings of the 22nd

Python in Science Conference

PROCEEDINGS OF THE 22ND PYTHON IN SCIENCE CONFERENCE

Edited by Meghann Agarwal, Chris Calloway, and Dillon Niederhut.

SciPy 2023
Austin, Texas
July 10 - July 16, 2023

Copyright © 2023. The articles in the Proceedings of the Python in Science Conference are copyrighted and owned by their
original authors

This is an open-access publication and is distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

For more information, please see: http://creativecommons.org/licenses/by/3.0/

ISSN:2575-9752
https://doi.org/10.25080/gerudo-f2bc6f59-039

ORGANIZATION

Conference Chairs
ALEXANDRE CHABOT-LECLERC, Enthought, Inc.
JULIE HOLLEK, Mozilla

Program Chairs
PAUL IVANOV, Citadel
MADICKEN MUNK, University of Illinois
GUEN PRAWIROATMODJO, Microsoft Corp

Communications
ARLISS COLLINS, NumFOCUS
JUANITA GOMEZ, Scientific Python
SAMINA TRACHIER, NumFOCUS

Birds of a Feather
ANDREW REID, NIST
MIKE HEARNE, USGS

Proceedings
MEGHANN AGARWAL,
CHRIS CALLOWAY, University of North Carolina
DILLON NIEDERHUT, Novi Labs

Financial Aid
SCOTT COLLIS, Argonne National Laboratory
ERIC MA, Moderna
NADIA TAHIRI, Université de Montréal

Tutorials
TETSUO KOYAMA, ARK Information Systems
LOGAN THOMAS, Enthought, Inc.
SOPHIA YANG, Anaconda

Sprints
TANIA ALLARD, Quansight Labs
ALAN BRAZ, IBM
BRIGITTA SIPŐCZ, Caltech/IPAC

Diversity
SARAH KAISER, Microsoft
BONNY P MCCLAIN, O’Reilly Media

Activities
PAUL ANZEL, Sentry
ED ROGERS, Majesco

Sponsors/Financial/Logistics
JIM WEISS, NumFOCUS

Hybrid
DAVID NICHOLSON, Embedded Intelligence
NEELIMA PULAGAM, Ford Motor Company

Proceedings Reviewers
DAVID NICHOLSON
PUSHKAR SATHE
SHUBHANSHU MISHRA
JONNY SAUNDERS
FERNANDO JULIAN CHAURE
TALHA IRFAN
CHITARANJAN MAHAPATRA
SHASWAT SHAH
ANKIT SHRIVASTAVA
YUANQING WANG
SANHITA JOSHI
MATTHEW FEICKERT
NADIA TAHIRI
HONGSUP SHIN
JIM PIVARSKI
TETSUO KOYAMA
LUIS MEDINA UZCATEGUI
JYOTIKA SINGH
TOLULADE ADEMISOYE
TANYA AKUMU
ADITYA SINGH
OLIVIA DIZON-PARADIS
SAUL SHANABROOK
BRIAN MCDERMOTT
KUNTAO ZHAO
MAXIMILIEN COLANGE
JOHN DEREK MORGAN
KALYAN PRASAD
AMEY AMBADE

ACCEPTED TALK SLIDES

FAST EXPLORATION OF THE MILKY WAY (OR ANY OTHER N-DIMENSIONAL DATASET), Francesc Alted
doi.org/10.25080/gerudo-f2bc6f59-025
BETTER (OPEN SOURCE) HOMES AND GARDENS WITH PROJECT PYTHIA, Drew Camron, and Kevin Tyle
doi.org/10.25080/gerudo-f2bc6f59-026
ACCESSIBILITY BEST PRACTICES FOR AUTHORING JUPYTER NOTEBOOKS, Isabela Presedo-Floyd, and Stephannie Jimenez
Gacha
doi.org/10.25080/gerudo-f2bc6f59-027
GAMMAPY: A PYTHON PACKAGE FOR GAMMA-RAY ASTRONOMY, Axel Donath, and The Gammapy Developer Team
(https://gammapy.org/team.html)
doi.org/10.25080/gerudo-f2bc6f59-028
PYTHON ARRAY API STANDARD: TOWARD ARRAY INTEROPERABILITY IN THE SCIENTIFIC PYTHON ECOSYSTEM,
Aaron Meurer
doi.org/10.25080/gerudo-f2bc6f59-029
BAYES MAPVAR: BAYESIAN STATISTICS WITH PYTHON, NO RESAMPLING NECESSARY, Charles Lindsey
doi.org/10.25080/gerudo-f2bc6f59-02a
NEW CUDA TOOLKIT PACKAGES FOR CONDA, Rick Ratzel, and Thomson Comer, and John Kirkham
doi.org/10.25080/gerudo-f2bc6f59-02b
TAMING BLACK SWANS: LONG-TAILED DISTRIBUTIONS IN THE NATURAL AND ENGINEERED WORLD, Allen B. Downey
doi.org/10.25080/gerudo-f2bc6f59-02c
IN-PROCESS ANALYTICAL DATA MANAGEMENT WITH DUCKDB, Alexander Monahan, and Hannes Mülheisen, and
Mark Raasveldt, and Pedro Holanda
doi.org/10.25080/gerudo-f2bc6f59-02d
DATAJOINT: BRINGING DATABASES BACK INTO DATA SCIENCE, Raphael Guzman, and Dimitri Yatsenko
doi.org/10.25080/gerudo-f2bc6f59-02e
ACCELERATING THE USE OF PUBLIC GEOHYSICAL DATA FOR RECHARGING CALIFORNIA’S GROUNDWATER, Seogi
Kang, and Steve Purves
doi.org/10.25080/gerudo-f2bc6f59-02f
INTERACTIVE EXPLORATION OF LARGE-SCALE DATASETS WITH JUPYTER-SCATTER, Fritz Lekschas
doi.org/10.25080/gerudo-f2bc6f59-030
VAK: A NEURAL NETWORK FRAMEWORK FOR RESEARCHERS STUDYING ANIMAL ACOUSTIC COMMUNICATION , David
Nicholson, and Yarden Cohen
doi.org/10.25080/gerudo-f2bc6f59-031
OPEN FORCE FIELD: NEXT-GENERATION FORCE FIELDS WITH OPEN DATA, OPEN SOFTWARE, AND OPEN SCIENCE,
Jeffrey Wagner
doi.org/10.25080/gerudo-f2bc6f59-032
PANDERA: GOING BEYOND PANDAS DATAFRAME VALIDATION, Niels Bantilan
doi.org/10.25080/gerudo-f2bc6f59-033
TIDY GEOSPATIAL DATA CUBES, Emma Marshall, and Deepak Cherian, and Scott Henderson
doi.org/10.25080/gerudo-f2bc6f59-034
ZARR: COMMUNITY SPECIFICATION OF LARGE, CLOUD-OPTIMISED, N-DIMENSIONAL, TYPED ARRAY STORAGE, San-
ket Verma, and Josh Moore, and John Kirkham
doi.org/10.25080/gerudo-f2bc6f59-035

ACCEPTED POSTERS

UNLEASHING THE POWER OF MODERN PORTFOLIO THEORY: MAXIMIZING RETURNS WHILE MANAGING RISK,
Kalyan Prasad
doi.org/10.25080/gerudo-f2bc6f59-015
DATA ENGINEERING AND ANALYTICS FOR PHOTOLITHOGRAPHY MANUFACTURING PROCESS AT DUPONT - A PRAC-
TICAL APPROACH FROM LAB TO FAB, Avishek Panigrahi, and Stefan J Caporale, and Abhishek Shrivastava, and Sumanth
Sekar
doi.org/10.25080/gerudo-f2bc6f59-016
EEG-TO-FMRI NEUROIMAGING CROSS MODAL SYNTHESIS IN PYTHON, David Calhas
doi.org/10.25080/gerudo-f2bc6f59-017
HAMILTON: SCALABLE, PORTABLE, AND SELF-DOCUMENTING DATAFLOWS IN PYTHON, Stefan Krawczyk, and Elijah
ben Izzy, and Levi Sweet-Breu, and Emily Rexer, and Chris Vernon, and Melissa Allen-Dumas
doi.org/10.25080/gerudo-f2bc6f59-018
ITK-ELASTIX: MEDICAL IMAGE REGISTRATION IN PYTHON, Konstantinos Ntatsis, and Niels Dekker, and Viktor van der
Valk, and Tom Birdsong, and Dženan Zukić, and Stefan Klein, and Marius Staring, and Matthew McCormick
doi.org/10.25080/gerudo-f2bc6f59-019
SPATIAL MICROSIMULATION AND ACTIVITY ALLOCATION IN PYTHON: AN UPDATE ON THE LIKENESS TOOLKIT,
Joseph V. Tuccillo, and James D. Gaboardi
doi.org/10.25080/gerudo-f2bc6f59-01a
MATCHMAKER: A TOOLKIT FOR COMBINING SATELLITE OBSERVATIONS FROM MULTIPLE SENSORS, Greg Quinn
doi.org/10.25080/gerudo-f2bc6f59-01b
PATTERNS AND ANTI-PATTERNS WHEN MEASURING DIVERSITY IN OPEN SOURCE, amanda casari
doi.org/10.25080/gerudo-f2bc6f59-01c

PYQTGRAPH - HIGH PERFORMANCE VISUALIZATION FOR ALL PLATFORMS, Ognyan Moore, and Nathan Jessurun,
and Nils Nemitz, and Martin Chase, and Luke Campagnola
doi.org/10.25080/gerudo-f2bc6f59-01d
PYVISTA, Tetsuo Koyama
doi.org/10.25080/gerudo-f2bc6f59-01e
OPENCRUMS: OPEN CLASSIFICATION OF REGIMES IN THE SOUTHEAST USA, Robert Jackson, and Maria Zawadow-
icz, and Die Wang, and Chongai Kuang, and Minnie Park, and Michael Jensen, and Scott Collis
doi.org/10.25080/gerudo-f2bc6f59-01f
ANALYSE THE UNCERTAINTY OF YOUR SYSTEM: SENSITIVITY ANALYSIS IN PYTHON WITH SCIPY.STATS.SOBOL INDICES,
Pamphile T. Roy
doi.org/10.25080/gerudo-f2bc6f59-020
APHYLOGEO-COVID: A WEB INTERFACE FOR REPRODUCIBLE PHYLOGEOGRAPHIC ANALYSIS OF SARS-COV-2
VARIATION USING NEO4J AND SNAKEMAKE, Wanlin Li, and Nadia Tahiri
doi.org/10.25080/gerudo-f2bc6f59-021
MOVING THE EARTH WITH THERMODYNAMICS AND PYTHON, Cian Wilson, and Marc Spiegelman, and Owen Evans,
and Mark Ghiorso, and Lucy Tweed
doi.org/10.25080/gerudo-f2bc6f59-022
TUG-RSE: PULLING STUDENTS INTO RESEARCH SOFTWARE ENGINEERING, Aman Goel
doi.org/10.25080/gerudo-f2bc6f59-023
YORI: A NEW, HIGHLY CUSTOMIZABLE TOOL FOR LEVEL-3 DATA PRODUCTION, Paolo Veglio, and Robert Holz, and
Liam Gumley, and Steve Dutcher, and Greg Quinn, and Bruce Flynn
doi.org/10.25080/gerudo-f2bc6f59-024

SCIPY TOOLS PLENARIES

SCIPY TOOLS PLENARY ON MATPLOTLIB, Elliott Sales de Andrade
doi.org/10.25080/gerudo-f2bc6f59-036
SCIPY TOOLS PLENARY ON SCIPY, Pamphile T. Roy
doi.org/10.25080/gerudo-f2bc6f59-037
ZARR UPDATES FOR SCIPY 2023, Josh Moore
doi.org/10.25080/gerudo-f2bc6f59-038

LIGHTNING TALKS

NUMFOCUS ACADEMIC CONSORTIUM AND OPEN SOURCE PLEDGE, Arliss Collins
doi.org/10.25080/gerudo-f2bc6f59-013
HAMILTON: DROP PROCEDURAL SCRIPTS IN FAVOR OF DECLARATIVE FUNCTIONS, Stefan Krawczyk
doi.org/10.25080/gerudo-f2bc6f59-014

SCHOLARSHIP RECIPIENTS

ARNAUD KAYONGA,
CAITLIN LEWIS,
EMANUEL LIMA,
GAJENDRA DESHPANDE,
MICAELA MATTA,
NOA TAMIR,
TETSUO KOYAMA,
WANLIN LI,

CONTENTS

Using Blosc2 NDim As A Fast Explorer Of The Milky Way (Or Any Other NDim Dataset) 1
Project Blosc, Francesc Alted, Marta Iborra, Oscar Guiñón, David Ibáñez, Sergio Barrachina

Python Array API Standard: Toward Array Interoperability in the Scientific Python Ecosystem 8
Aaron Meurer, Athan Reines, Ralf Gommers, Yao-Lung L. Fang, John Kirkham, Matthew Barber, Stephan Hoyer,
Andreas Müller, Sheng Zha, Saul Shanabrook, Stephannie Jiménez Gacha, Mario Lezcano-Casado, Thomas J. Fan,
Tyler Reddy, Alexandre Passos, Hyukjin Kwon, Travis Oliphant, Consortium for Python Data API Standards
A Modified Strassen Algorithm to Accelerate Numpy Large Matrix Multiplication with Integer Entries 18
Anthony Breitzman

An Accessible Python based Author Identification Process 24
Anthony Breitzman

Biomolecular Crystallographic Computing with Jupyter 32
Blaine H. M. Mooers

Bayesian Statistics with Python, No Resampling Necessary 40
Charles Lindsey

Using Numba for GPU acceleration of Neutron Beamline Digital Twins 46
Coleman J. Kendrick, Jiao Y. Y. Lin, Garrett E. Granroth

EEG-to-fMRI Neuroimaging Cross Modal Synthesis in Python 53
David Calhas

vak: a neural network framework for researchers studying animal acoustic communication 59
David Nicholson, Yarden Cohen

Emukit: A Python toolkit for decision making under uncertainty 68
Andrei Paleyes, Maren Mahsereci, Neil D. Lawrence

MDAKits: A Framework for FAIR-Compliant Molecular Simulation Analysis 76
Irfan Alibay, Lily Wang, Fiona Naughton, Ian Kenney, Jonathan Barnoud, Richard J Gowers, Oliver Beckstein

The Pandata Scalable Open-Source Analysis Stack 85
James A. Bednar, Martin Durant

Spatial Microsimulation and Activity Allocation in Python: An Update on the Likeness Toolkit 93
Joseph V. Tuccillo, James D. Gaboardi

itk-elastix: Medical image registration in Python 101
Konstantinos Ntatsis, Niels Dekker, Viktor van der Valk, Tom Birdsong, Dženan Zukić, Stefan Klein, Marius Staring,
Matthew McCormick

PyQtGraph - High Performance Visualization for All Platforms 106
Ognyan Moore, Nathan Jessurun, Martin Chase, Nils Nemitz, Luke Campagnola

aPhyloGeo-Covid: A Web Interface for Reproducible Phylogeographic Analysis of SARS-CoV-2 Variation using Neo4j and
Snakemake 114
Wanlin Li, Nadia Tahiri

Pandera: Going Beyond Pandas Data Validation 124
Niels Bantilan

libyt: a Tool for Parallel In Situ Analysis with yt 130
Shin-Rong Tsai, Hsi-Yu Schive, Matthew J. Turk

Data Reduction Network 136
Haoyin Xu, Haw-minn Lu, José Unpingco

PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023) 1

Using Blosc2 NDim As A Fast Explorer Of The Milky
Way (Or Any Other NDim Dataset)

Project Blosc‡†, Francesc Alted‡†∗, Marta Iborra‡†, Oscar Guiñón‡†, David Ibáñez‡, Sergio Barrachina§

✦

Abstract—Large multidimensional datasets are widely used in various engi-
neering and scientific applications. Prompt access to the subsets of these
datasets is crucial for an efficient exploration experience. To facilitate this, we
have added support for large dimensional datasets to Blosc2, a compression
and format library. The extension enables effective support for large multidimen-
sional datasets, with a special encoding of zeros that allows for efficient handling
of sparse datasets. Additionally, the new two-level data partition used in Blosc2
reduces the need for decompressing unnecessary data, further accelerating
slicing speed.

The Blosc2 NDim layer enables the creation and reading of n-dimensional
datasets in an extremely efficient manner. This is due to a completely general
n-dim 2-level partitioning, which allows for slicing and dicing of arbitrary large
(and compressed) data in a more fine-grained way. Having a second partition
provides a better flexibility to fit the different partitions at the different CPU cache
levels, making compression even more efficient.

Additionally, Blosc2 can make use of Btune, a library that automatically finds
the optimal combination of compression parameters to suit user needs. Btune
employs various techniques, such as a genetic algorithm and a neural network
model, to discover the best parameters for a given dataset much more quickly.
This approach is a significant improvement over the traditional trial-and-error
method, which can take hours or even days to find the best parameters.

As an example, we will demonstrate how Blosc2 NDim enables fast explo-
ration of the Milky Way using the Gaia DR3 dataset.

Index Terms—explore datasets, n-dimensional datasets, Gaia DR3, Milky Way,
Blosc2, compression

Introduction

The exploration of datasets that are high dimensional is a common
practice in various fields of science. However, exploring such
n-dimensional datasets is challenging when the memory size of
the dataset is extremely large. This can slow down the data
exploration process significantly. In this paper, we demonstrate
how Blosc2 NDim can be used to accelerate the exploration of
huge n-dimensional datasets.

Blosc is a high-performance compressor optimized for binary
data. Its design enables faster transmission of data to the processor
cache than the traditional, non-compressed, direct memory fetch
approach using an OS call to memcpy(). This can be helpful not
only in reducing the size of large datasets on-disk and in-memory,

† These authors contributed equally.
‡ Project Blosc
* Corresponding author: francesc@blosc.org
§ Universitat Jaume I

Copyright © 2023 Project Blosc et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Fig. 1: Speed for summing up a vector of real float32 data (me-
teorological precipitation) using a variety of codecs provided by
Blosc2. Note that the maximum speed is achieved when utilizing the
maximum number of (logical) threads available on the computer (28),
where different codecs are allowing faster computation than using
uncompressed data. Benchmark performed on a Intel i9-10940X CPU,
with 14 physical cores. More info at [2].

but also in accelerating memory-bound computations, which are
typical in big data processing.

Blosc uses the blocking technique [1] to minimize activ-
ity on the memory bus. The technique divides datasets into
blocks small enough to fit in the caches of modern processors,
where compression/decompression is performed. Blosc also takes
advantage of single-instruction multiple-data streams (SIMD),
like SSE2, AVX2, NEON. . . and multi-threading capabilities
in modern multi-core processors to maximize the compres-
sion/decompression speed.

In addition, using the Blosc compressed data can accelerate
memory-bound computations when enough cores are dedicated to
the task. Figure 1 provides a real example of this.

Blosc2 is the latest version of the Blosc 1.x series, which
is used in many important libraries, such as HDF5 [3], Zarr
[4], and PyTables [5]. Its NDim feature excels at reading multi-
dimensional slices, thanks to an innovative pineapple-style par-
titioning technique [6]. This enables fast exploration of general
n-dimensional datasets, including the 3D Gaia array.

2 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 2: Gaia DR3 dataset as a 3D array (Gaia collaboration).

The Milky Way dataset

Figure 2 shows a 3D view of the Milky Way different type of stars.
Each point is a star, and the color of each point represents the star’s
magnitude, with the brightest stars appearing as the reddest points.
Although this view provides a unique perspective, the dimensions
of the cube are not enough to fully capture the spiral arms of the
Milky Way.

One advantage of using a 3D array is the ability to utilize
Blosc2 NDim’s powerful slicing capabilities for quickly exploring
parts of the dataset. For example, we could search for star clusters
by extracting small cubes as NumPy arrays, and counting the
number of stars in each one. A cube containing an abnormally
high number of stars would be a candidate for a cluster. We could
also extract a thin 3D slice of the cube and project it as a 2D image,
where the pixels colors represent the magnitude of the shown stars.
This could be used to generate a cinematic view of a journey over
different trajectories in the Milky Way.

For getting the coordinates of the stars in the Milky Way,
we will be using the Gaia DR3 dataset [7], a catalog containing
information on 1.7 billion stars in our galaxy. For this work, we
extracted the 3D coordinates of 1.4 billion stars (those with non-
null parallax values). When stored as a binary table, the dataset is
22 GB in size (uncompressed).

We converted the tabular dataset into a sphere with a radius of
10,000 light years and framed it into a 3D array of shape (20,000,
20,000, 20,000). Each cell in the array represents a cube of 1 light
year per side and contains the number of stars within it. Given
that the average distance between stars in the Milky Way is about
5 light years, very few cells will contain more than one star (e.g.
the maximum of stars in a single cell in our sphere is 6). This 3D
array contains 0.5 billion stars, which is a significant portion of
the Gaia catalog.

The number of stars is stored as a uint8, resulting in a total
dataset size of 7.3 TB. However, compression can greatly reduce
its size to 2.2 GB since the 3D array is very sparse, and the
Zstandard codec [8] is used. Blosc2 can compress the zeroed parts
almost entirely thanks to a specific algorithm to detect zeros early
in the compression pipeline and encoding them efficiently.

In addition, we store other data about the stars in a separate
table indexed with the position of each star (using PyTables). For
demonstration purposes, we store the distance from Sun, radial
velocity, effective temperature, and G-band magnitude using a
float32 for each field. The size of the table is 10 GB uncompressed,
but it can be compressed to 4.8 GB. Adding another 1.0 GB for
the index brings the total size to 5.8 GB. Therefore, the 3D array

Fig. 3: Blosc2 NDim 2-level partitioning.

Fig. 4: Blosc2 NDim 2-level partitioning is flexible. The dimensions
of both partitions can be specified in any arbitrary way that fits the
expected read access patterns.

is 2.2 GB, and the table with the additional information and its
index are 5.8 GB, making a total of 8.0 GB. This comfortably fits
within the storage capacity of any modern laptop.

Blosc2 NDim

In the plain Blosc and Blosc2 libraries, there are two levels of par-
titioning: the block and the chunk. The block is the smallest unit
of data that can be compressed and decompressed independently.
The chunk is a group of blocks that are compressed together. The
chunk and block sizes are parameters that can be tuned to fit the
different cache levels in modern CPUs. For optimal performance,
it is recommended that the block size should fit in the L1 or
L2 CPU cache, minimizing contention between worker threads
during compression/decompression. The chunk size, on the other
hand, should fit in the L3 CPU cache, in order to minimize data
movement to RAM and speed up decompression.

With Blosc2 NDim, we are taking this feature a step further
and both partitions, known as chunks and blocks, are gaining
multidimensional capabilities. This means that one can split a
dataset (called a "super-chunk" in Blosc2 terminology) into n-
dimensional cubes and sub-cubes. Refer to Figures 3 and 4 to
learn more about how this works and how to set it up.

With these finer-grained cubes, arbitrary n-dimensional slices
can be retrieved faster. This is because not all the data necessary
for the coarser-grained partition has to be decompressed, as is
typically required in other libraries (see Figure 5).

For example, for a 4-d array with a shape of (50, 100, 300,
250) with float64 items, we can choose a chunk with shape (10,
25, 50, 50) and a block with shape (3, 5, 10, 20) which makes
for about 5 MB and 23 KB respectively. This way, a chunk fits

USING BLOSC2 NDIM AS A FAST EXPLORER OF THE MILKY WAY (OR ANY OTHER NDIM DATASET) 3

Fig. 5: Blosc2 NDim can decompress data faster by using double
partitioning, which allows for higher data selectivity. This means that
less data compression/decompression is required in general.

Fig. 6: Speed comparison for reading partial n-dimensional slices
of a 4D dataset. The legends labeled "DIM N" refer to slices taken
orthogonally to each dimension. The sizes for the two partitions have
been chosen such that the first partition fits comfortably in the L3
cache of the CPU (Intel i9 13900K), and the second partition fits in
the L1 cache of the CPU. [6].

comfortably on a L3 cache in most of modern CPUs, and a block
in a L1 cache (we are tuning for speed here). See Figure 6 for a
speed comparison with other libraries supporting just one single
n-dimensional partition.

Finally, Blosc2 NDim supports all data types in NumPy.
This means that, in addition to the typical data types like
signed/unsigned int, single and double-precision floats, bools or
strings, it can also store datetimes (including units), and arbitrarily
nested heterogeneous types. This allows to create multidimen-
sional tables and more.

Support for multiple codecs, filters, and other compression
features

Blosc2 is not only a compression library, but also a framework for
creating efficient compression pipelines. A compression pipeline
is composed of a sequence of filters, followed by a compression
codec. A filter is a transformation that is applied to the data
before compression, and a codec is a compression algorithm that is
applied to the filtered data. Filters can lead to better compression
ratios and improved compression/decompression speeds.

Blosc2 supports a variety of codecs, filters, and other com-
pression features. In particular, it supports the following codecs
out-of-the-box:

Fig. 7: The Blosc2 filter pipeline. During compression, the first
function applied is the prefilter (if any), followed by the filter pipeline
(with a maximum of six filters), and finally, the codec. During
decompression, the order is reversed: first the codec, then the filter
pipeline, and finally the postfilter (if any).

• BloscLZ (fast codec, the default),
• LZ4 (a very fast codec),
• LZ4HC (high compression variant of LZ4),
• Zlib (the Zlib-NG variant of Zlib),
• Zstd (high compression), and
• ZFP (lossy compression for n-dimensional datasets of

floats).

It also supports the following filters out-of-the-box:

• Shuffle (groups equal significant bytes together, useful for
ints/floats),

• Shuffle with bytedelta (same than shuffle, but storing deltas
of consecutive same significant bytes),

• Bitshuffle (groups equal significant bits together, useful for
ints/floats), and

• Truncation (truncates precision, useful for floats; lossy).

Blosc2 utilizes a pipeline architecture that enables the chaining
of different filters [9] followed by a compression codec. Addition-
ally, it allows for pre-filters (user code meant to be executed before
the pipeline) and post-filters (user code meant to be executed after
the pipeline). This architecture is highly flexible and minimizes
data copies between the different steps, making it possible to
create highly efficient pipelines for a variety of use cases. Figure
7 illustrates how this works.

Furthermore, Blosc2 supports user-defined codecs and filters,
allowing one to create their own compression algorithms and use
them within Blosc2 [9]. These user-defined codecs and filters
can also be dynamically loaded [10], registered globally within
Blosc2, and installed via a Python wheel so that they can be used
seamlessly from any Blosc2 application (whether in C, Python, or
any other language that provides a Blosc2 wrapper).

Automatic tuning of compression parameters

Finding the right compression parameters for the data is probably
the most difficult part of using a compression library. Which
combination of code and filters would provide the best com-
pression ratio? Which one would provide the best compres-
sion/decompression speed?

Btune is an AI tool for Blosc2 that automatically finds the
optimal combination of compression parameters to suit user needs.
It uses a neural network trained on representative datasets to be
compressed to predict the best compression parameters based
on the given tradeoff between compression ratio and compres-
sion/decompression speed.

4 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Tradeoff Most predicted Cratio Cspeed Dspeed

0.0 blosclz-nofilter-5 786.51 106.86 91.04
0.1 blosclz-nofilter-5 786.51 106.86 91.04
0.2 blosclz-nofilter-5 786.51 106.86 91.04
0.3 blosclz-nofilter-5 786.51 106.86 91.04
0.4 blosclz-nofilter-5 786.51 106.86 91.04
0.5 blosclz-nofilter-5 786.51 106.86 91.04
0.6 zstd-nofilter-9 8959.6 8.79 59.13
0.7 zstd-nofilter-9 8959.6 8.79 59.13
0.8 zstd-nofilter-9 8959.6 8.79 59.13
0.9 zstd-bitshuffle-9 10789.6 3.41 12.78
1.0 zstd-bitshuffle-9 10789.6 3.41 12.78

TABLE 1: Btune prediction of the best compression parameters for
decompression speed for the 3D Gaia array, depending on a tradeoff
value between compression ratio and decompression speed. It can
be seen that BloscLZ with compression level 5 is the most predicted
category when decompression speed is preferred, whereas Zstd with
compression level 9 + BitShuffle is the most predicted one when the
specified tradeoff is towards optimizing for the compression ratio.
Speeds are in GB/s.

Tradeoff Most predicted Cratio Cspeed Dspeed

0.0 blosclz-shuffle-5 2.09 14.47 48.93
0.1 blosclz-shuffle-5 2.09 14.47 48.93
0.2 blosclz-shuffle-5 2.09 14.47 48.93
0.3 blosclz-shuffle-5 2.09 14.47 48.93
0.4 zstd-bytedelta-1 3.30 17.04 21.65
0.5 zstd-bytedelta-1 3.30 17.04 21.65
0.6 zstd-bytedelta-1 3.30 17.04 21.65
0.7 zstd-bytedelta-1 3.30 17.04 21.65
0.8 zstd-bytedelta-1 3.30 17.04 21.65
0.9 zstd-bytedelta-1 3.30 17.04 21.65
1.0 zstd-bytedelta-9 3.31 0.07 11.40

TABLE 2: Btune prediction of the best compression parameters for
decompression speed for another dataset (cancer imaging). It can
be seen that BloscLZ with compression level 5 + Shuffle is the most
predicted category when decompression speed is preferred, whereas
Zstd (either compression level 1 or 9) + Shuffle + ByteDelta is the
most predicted one when the specified tradeoff is towards optimizing
for the compression ratio. Speeds are in GB/s.

For example, Table 1 displays the results for the predicted
compression parameters tuned for decompression speed of the
3D Gaia array. This table can be provided to the Btune plugin
so that it can choose the best tradeoff value for user’s needs (0
means favoring speed only, and 1 means favoring compression
ratio only).

Of course, results will be different for another dataset. For
example, Table 2 displays the results for the predicted compression
parameters tuned for decompression speed for a dataset coming
from cancer imaging. Curiously, in this case fast decompression
does not necessarily imply fast compression.

On the other hand, there are also situations where data have
to be compressed at a high speed (e.g. consolidating data from
high bandwidth detectors). Table 3 shows an example of predicted
compression parameter tuned this time for compression speed and
ratio on yet another dataset for this scenario (in this case, images
coming from synchrotron facilities).

Tradeoff Most predicted Cratio Cspeed Dspeed

0.0 lz4-bitshuffle-5 3.41 21.78 32.0
0.1 lz4-bitshuffle-5 3.41 21.78 32.0
0.2 lz4-bitshuffle-5 3.41 21.78 32.0
0.3 lz4-bitshuffle-5 3.41 21.78 32.0
0.4 lz4-bitshuffle-5 3.41 21.78 32.0
0.5 lz4-bitshuffle-5 3.41 21.78 32.0
0.6 lz4-bitshuffle-5 3.41 21.78 32.0
0.7 lz4-bitshuffle-5 3.41 21.78 32.0
0.8 zstd-bytedelta-1 3.98 9.41 18.8
0.9 zstd-bytedelta-1 3.98 9.41 18.8
1.0 zstd-bytedelta-9 4.06 0.15 14.1

TABLE 3: Btune prediction of the best compression parameters for
compression speed (synchrotron imaging). It can be seen that LZ4 with
compression level 5 + Bitshuffle is the most predicted category when
compression speed is preferred, whereas Zstd (either compression
level 1 or 9) + Shuffle + ByteDelta is the most predicted one when the
specified tradeoff is leveraged towards the compression ratio. Speeds
are in GB/s.

Fig. 8: Speed of obtaining multiple multidimensional slices of the
Gaia dataset along different axes, for different codecs, filters and
different number of threads. The speed is measured in GB/s, so a
higher value is better.

After training the neural network, the Btune plugin can auto-
matically tune the compression parameters for a given dataset.
During inference, the user can set the preferred tradeoff by
setting the BTUNE_TRADEOFF environment variable to a floating
point value between 0 and 1. A value of 0 favors speed only,
while a value of 1 favors compression ratio only. This setting
automatically selects the compression parameters most suitable to
the current data chunk whenever a new Blosc2 data container is
being created.

Results on the Gaia dataset

We will use the training results above to compress the big 3D
Gaia array so that it can be explored more quickly. Figure 8
displays the speed that can be achieved when getting multiple
multidimensional slices of the dataset along different axes, using
the most efficient codecs and filters for various tradeoffs.

These results indicate that the fastest compression is achieved
with BloscLZ (compression level 5, no filters), closely followed by
Zstd (compression level 9, no filters), exactly as the neural network
model predicted. Also, note how the fastest decompression codecs,
BloscLZ and also Zstd, are not affected very much by the number
of threads used, which means that they are not CPU-bound, so

USING BLOSC2 NDIM AS A FAST EXPLORER OF THE MILKY WAY (OR ANY OTHER NDIM DATASET) 5

Fig. 9: Slicing a section of the Gaia dataset with BloscLZ using
different libraries. Note how using one single thread is still quite
effective for Blosc2 NDim and BloscLZ.

Fig. 10: Compressing the Gaia dataset with BloscLZ and Zstd using
different libraries. Blosc2 provides significantly better compression
ratios than using Blosc1 . Also, note how Zstd compresses much better
than BloscLZ.

small computers or laptops with low core counts will be able to
reach good speeds.

Now, let’s compare the figures above with other libraries that
can handle multidimensional data. Figure 9 shows the slicing
speed of the 3D array when applying BloscLZ, the best predicted
codec for speed, and we compare that speed against other libraries
using the same codec but with the previous Blosc1 generation
(Zarr and h5py), and also against Blosc2 via the hdf5plugin [11]
and h5py. Results show that the data can be explored significantly
faster using Blosc2 NDim with the BloscLZ codec. It is also
interesting to note that the speed of Blosc2 NDim with BloscLZ
is not much affected by the number of threads used, which is
a welcome surprise, and probably an indication that the internal
zero-suppression mechanism inside Blosc2 works efficiently with-
out the need of multi-threading.

Regarding compression ratio, Figure 10 shows the results of
compressing the Gaia dataset with Blosc2 NDim with BloscLZ
and Zstd, and we compare that ratio against other libraries using
the same codec but with the previous Blosc1 generation (Zarr
and h5py), and also against Blosc2 via the hdf5plugin and h5py.
Results show that the data can be compressed significantly better
using Blosc2. This is because Blosc2 comes with a new and
powerful zero-detection mechanism that is able to efficiently
handle and compress the many zeros that are present in the Gaia
dataset.

Ingesting and processing data of Gaia

The raw data of Gaia is stored in CSV files. The coordinates
are stored in the gaia_source directory (http://cdn.gea.esac.esa.int/
Gaia/gdr3/gaia_source/). These can be easily parsed and ingested
as Blosc2 files with the following code:
def load_rawdata(out="gaia.b2nd"):

dtype = {"ra": np.float32,
"dec": np.float32,
"parallax": np.float32}

barr = None
for file in glob.glob("gaia-source/*.csv*"):

Load raw data
df = pd.read_csv(

file,
usecols=["ra", "dec", "parallax"],
dtype=dtype, comment='#')

Convert to numpy array and remove NaNs
arr = df.to_numpy()
arr = arr[~np.isnan(arr[:, 2])]
if barr is None:

Create a new Blosc2 file
barr = blosc2.asarray(

arr,
chunks=(2**20, 3),
urlpath=out,
mode="w")

else:
Append to existing Blosc2 file
barr.resize(

(barr.shape[0] + arr.shape[0], 3))
barr[-arr.shape[0]:] = arr

return barr

Once we have the raw data in a Blosc2 container, we can select
the stars in a radius of 10 thousand light years using this function:
def convert_select_data(fin="gaia.b2nd",

fout="gaia-ly.b2nd"):
barr = blosc2.open(fin)
ra = barr[:, 0]
dec = barr[:, 1]
parallax = barr[:, 2]
1 parsec = 3.26 light years
ly = ne.evaluate("3260 / parallax")
Remove ly < 0 and > 10_000
valid_ly = ne.evaluate(

"(ly > 0) & (ly < 10_000)")
ra = ra[valid_ly]
dec = dec[valid_ly]
ly = ly[valid_ly]
Cartesian x, y, z from spherical ra, dec, ly
x = ne.evaluate("ly * cos(ra) * cos(dec)")
y = ne.evaluate("ly * sin(ra) * cos(dec)")
z = ne.evaluate("ly * sin(dec)")
Save to a new Blosc2 file
out = blosc2.zeros(mode="w", shape=(3, len(x)),

dtype=x.dtype, urlpath=fout)
out[0, :] = x
out[1, :] = y
out[2, :] = z
return out

Finally, we can compute the density of stars in a 3D grid with this
script:
R = 1 # resolution of the 3D cells in ly
LY_RADIUS = 10_000 # radius of the sphere in ly
CUBE_SIDE = (2 * LY_RADIUS) // R
MAX_STARS = 1000_000_000 # max number of stars to load

b = blosc2.open("gaia-ly.b2nd")
x = b[0, :MAX_STARS]
y = b[1, :MAX_STARS]
z = b[2, :MAX_STARS]

Create 3d array.
Be sure to have enough swap memory (around 8 TB!)

6 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 11: Stars in the vicinity of our Sun (cube of 50 light years). Each
point represents a star, and its size represents the number of stars in
that location (a cube of 1 x 1 x 1 light year). The maximum amount
of stars in a single location for this view is 3 (triple star systems are
common).

a3d = np.zeros((CUBE_SIDE, CUBE_SIDE, CUBE_SIDE),
dtype=np.float32)

for i, coords in enumerate(zip(x, y, z)):
x_, y_, z_ = coords
a3d[(np.floor(x_) + LY_RADIUS) // R,

(np.floor(y_) + LY_RADIUS) // R,
(np.floor(z_) + LY_RADIUS) // R] += 1

Save 3d array as Blosc2 NDim file
blosc2.asarray(a3d,

urlpath="gaia-3d.b2nd", mode="w",
chunks=(250, 250, 250),
blocks=None,
)

With that, we have a 3D array of shape 20,000 x 20,000 x 20,000
with the number of stars with a 1 light year resolution. We can
visualize the vicinity of our Sun with Plotly [12] making use of
the following code:

import blosc2
import numpy as np
import plotly.express as px

nstars_path = '$HOME/Gaia/gaia-3d-windows-int8.b2nd'
b3d = blosc2.open(nstars_path)
data = b3d[9_975:10_025, 9_975:10_025, 9_975:10_025]
idx = np.indices(data.shape)
fig = px.scatter_3d(x=idx[0, :, :, :].flatten(),

y=idx[1, :, :, :].flatten(),
z=idx[2, :, :, :].flatten(),
size=data[...].flatten())

fig.show()

Figure 11 displays an interactive 3D view of the stars within
a 50 x 50 x 50 light-year cube centered around our Sun. This
visualization was generated using the code above.

In [13] you can find the final version of the scripts above,
including optimized versions that do not require a machine with
more than 32 GB of virtual memory to run.

Conclusions

Working with large, multi-dimensional data cubes can be challeng-
ing due to the costly data handling involved. In this document,
we demonstrate how the two-partition feature in Blosc2 NDim
can help reduce the amount of data movement required when
retrieving thin slices of large datasets. Additionally, this feature
provides a foundation for leveraging cache hierarchies in modern
CPUs.

Blosc2 supports a variety of compression codecs and filters,
making it easier to select the most appropriate ones for the dataset
being explored. It also supports storage in either memory or
on disk, which is crucial for large datasets. Another important
feature is the ability to store data in a container format that
can be easily shared across different programming languages.
Furthermore, Blosc2 has special support for sparse datasets, which
greatly improves the compression ratio in this scenario.

We have also shown how the Btune plugin can be used to
automatically tune the compression parameters for a given dataset.
This is especially useful when we want to compress data efficiently
for a tradeoff between compression or decompression speed and
compression ratio, but we do not know the best compression
parameters beforehand.

In conclusion, we have shown how to utilize the Blosc2 library
for storing and processing the Gaia dataset. This dataset serves as
a prime example of a large, multi-dimensional dataset that can be
efficiently stored and processed using Blosc2 NDim.

Acknowledgments

Jordi Portell, member of the Gaia Collaboration, has been very
helpful in answering many questions about the Gaia dataset, and
has also proposed possible explorations of it.

NumFOCUS, a non-profit organization with a mission to
promote open practices in research, data, and scientific computing.
They have provided steady funds to the Blosc Development Team
over the past years.

Huawei, a high-tech company that made a significant and
selfless donation to the Blosc project.

Sergio Barrachina, associate professor at University Jaume I,
has provided many advice and code during the development of the
Btune project.

This work has made use of data from the European
Space Agency (ESA) mission Gaia (https://www.cosmos.esa.
int/gaia), processed by the Gaia Data Processing and Anal-
ysis Consortium DPAC (https://www.cosmos.esa.int/web/gaia/
dpac/consortium). Funding for the DPAC has been provided by
national institutions, in particular the institutions participating in
the Gaia Multilateral Agreement.

REFERENCES

[1] Francesc Alted, “Why Modern CPUs Are Starving and What Can Be
Done About It,” Computing in Science and Engineering, vol. 12, pp.
68–71, 2010, https://doi.org/10.1109/MCSE.2010.51.

[2] ——. (2018) Breaking Down Memory Walls.
Https://www.blosc.org/posts/breaking-memory-walls/.

[3] The HDF Group. (1997-2023) Hierarchical Data Format, version 5.
Https://www.hdfgroup.org/HDF5/.

[4] Zarr Developers. (2017-2023) An implementation of chunked, com-
pressed, N-dimensional arrays for Python. https://doi.org/10.5281/
zenodo.7971911.

[5] PyTables developers. (2002-2023) A Python package to manage ex-
tremely large amounts of data. Http://www.pytables.org.

USING BLOSC2 NDIM AS A FAST EXPLORER OF THE MILKY WAY (OR ANY OTHER NDIM DATASET) 7

[6] Francesc Alted and Oscar Guiñón. (2023) Introducing Blosc2 NDim.
Https://www.blosc.org/posts/blosc2-ndim-intro/.

[7] European Space Agency (ESA) and Gaia Data Processing and Analysis
Consortium (DPAC). (2023) Gaia Data Release 3. Documentation release
1.2. Https://gea.esac.esa.int/archive/documentation/GDR3/.

[8] Yann Collet et al. (2023) Zstandard - Fast real-time compression algo-
rithm. Https://github.com/facebook/zstd.

[9] Marta Iborra. (2022) User Defined Pipeline for Python-Blosc2.
Https://www.blosc.org/posts/python-blosc2-pipeline/.

[10] Marta Iborra and Francesc Alted. (2023) Dynamic Plugins in C-Blosc2.
Https://www.blosc.org/posts/dynamic-plugins/.

[11] Silx maintainers. (2023) Set of compression filters for h5py.
Https://github.com/silx-kit/hdf5plugin.

[12] Plotly Technologies Inc. (2015) Collaborative data science. Montreal,
QC. Https://plot.ly.

[13] The Blosc Development Team. (2023) Scripts for "A Fast Explorer Of
The Milky Way" talk. Https://github.com/Blosc/exploring-milky-way.git.

8 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Python Array API Standard: Toward Array
Interoperability in the Scientific Python Ecosystem

Aaron Meurer‡†∗, Athan Reines‡†, Ralf Gommers‡†, Yao-Lung L. Fang§†, John Kirkham§†, Matthew Barber‡†, Stephan
Hoyer¶, Andreas Müller∥, Sheng Zha∗∗, Saul Shanabrook, Stephannie Jiménez Gacha‡, Mario Lezcano-Casado‡,

Thomas J. Fan‡, Tyler Reddy††, Alexandre Passos, Hyukjin Kwon‡‡, Travis Oliphant‡, Consortium for Python Data API
Standards

✦

Abstract—The Python array API standard specifies standardized application
programming interfaces (APIs) and behaviors for array and tensor objects
and operations as commonly found in libraries such as NumPy [1], CuPy [2],
PyTorch [3], JAX [4], TensorFlow [5], Dask [6], and MXNet [7]. The estab-
lishment and subsequent adoption of the standard aims to reduce ecosystem
fragmentation and facilitate array library interoperability in user code and among
array-consuming libraries, such as scikit-learn [8] and SciPy [9]. A key benefit
of array interoperability for downstream consumers of the standard is device
agnosticism, whereby previously CPU-bound implementations can more readily
leverage hardware acceleration via graphics processing units (GPUs), tensor
processing units (TPUs), and other accelerator devices.

In this paper, we first introduce the Consortium for Python Data API Stan-
dards and define the scope of the array API standard. We then discuss the
current status of standardization and associated tooling (including a test suite
and compatibility layer). We conclude by outlining plans for future work.

Index Terms—Python, Arrays, Tensors, NumPy, CuPy, PyTorch, JAX, Tensor-
flow, Dask, MXNet

Introduction

Python users have a wealth of choices for libraries and frame-
works for numerical computing [10][1][9][2][6][11][12][13],
data science [14][15][16][17], machine learning [8], and deep
learning [7][3][5][18]. New frameworks pushing forward the
state of the art appear every year. One consequence of all
this activity has been fragmentation in the fundamental build-
ing blocks—multidimensional arrays [19] (also known as ten-
sors)—that underpin the scientific Python ecosystem (hereafter
referred to as "the ecosystem").

This fragmentation comes with significant costs, from reinven-
tion and re-implementation of arrays and associated application

† These authors contributed equally.
* Corresponding author: asmeurer@quansight.com
‡ Quansight
§ NVIDIA Corporation
¶ Google
|| Microsoft
** Amazon
†† LANL
‡‡ Databricks

Copyright © 2023 Aaron Meurer et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

programming interfaces (APIs) to siloed technical stacks targeting
only one array library to the proliferation of user guides providing
guidance on how to convert between libraries. The APIs of each
library are largely similar, but each have enough differences that
end users have to relearn and rewrite code in order to work with
multiple libraries. This process can be very painful as the transition
is far from seamless and creates barriers for libraries wanting to
support multiple array library backends.

The Consortium for Python Data API Standards (hereafter
referred to as "the Consortium" and "we") aims to address this
problem by standardizing a fundamental array data structure and
an associated set of common APIs for working with arrays, thus
facilitating interchange and interoperability.

Paper Overview

This paper is written as an introduction to the Consortium and the
array API standard. The aim is to provide a high-level overview
of the standard and its continued evolution and to solicit further
engagement from the Python community.

After providing an overview of the Consortium, we first
discuss standardization methodology. We then discuss the current
status of the array API standard and highlight the main stan-
dardization areas. Next, we introduce tooling associated with the
standard for testing compliance and shimming incompatible array
library behavior. We conclude by outlining open questions and
opportunities for further standardization. Links to the specification
and all current repository artifacts, including associated tooling,
can be found in the bibliography.

Consortium Overview

History

While the Python programming language was not explicitly de-
signed for numerical computing, the language gained popularity
in scientific and engineering communities soon after its release.
The first array computing library for numerical and scientific
computing in Python was Numeric, developed in the mid-1990s
[20][1]. To better accommodate this library and its use cases,
Python’s syntax was extended to include indexing syntax [21].

In the early 2000s, Numarray introduced a more flexible data
structure [22]. Numarray had faster operations for large arrays, but

PYTHON ARRAY API STANDARD: TOWARD ARRAY INTEROPERABILITY IN THE SCIENTIFIC PYTHON ECOSYSTEM 9

slower operations for small arrays. Subsequently, both Numeric
and Numarray coexisted to satisfy different use cases.

In early 2005, the NumPy library unified Numeric and Nu-
marray as a single array package by porting Numarray’s features
to Numeric [1]. This effort was largely successful and resolved
the fragmentation at the time. For roughly a decade, NumPy was
the only widely used array library. Building on NumPy, pandas
was subsequently introduced in 2008 in order to address the need
for a high performance, flexible tool for performing quantitative
analysis on labeled tabular data [23].

Over the past 10 years, the rise of deep learning and the
emergence of new hardware has led to a proliferation of new
libraries and a corresponding fragmentation within the PyData
array and dataframe ecosystem. These libraries often borrowed
concepts from, or entirely copied, the APIs of older libraries, such
as NumPy, and then modified and evolved those APIs to address
new needs and use cases. Although the communities of each
library individually discussed interchange and interoperability,
no general coordination arose among libraries to avoid further
fragmentation and to arrive at a common set of API standards
until the founding of the Consortium.

The genesis for the Consortium grew out of many conversa-
tions among maintainers during 2019–2020. During those conver-
sations, it quickly became clear that any attempt to create a new
reference library to address fragmentation was infeasible. Unlike
in 2005, too many different use cases and varying stakeholders
now exist. Furthermore, the speed of innovation of both hardware
and software is simply too great.

In May 2020, an initial group of maintainers and industry
stakeholders1 assembled to form the Consortium for Python Data
API Standards and began drafting a specification for array APIs,
which could then be adopted by existing array libraries and their
dependents and by any new libraries which arise.

Objectives

Standardization efforts must maintain a balance between codifying
what already exists and maintaining relevance with respect to
future innovation. The latter aspect is particularly fraught, as rel-
evance requires anticipating future needs, technological advances,
and emerging use cases. Accordingly, if a standard is to remain
relevant, the standardization process must be conservative in its
scope, thorough in its consideration of current and prior art, and
have clearly defined objectives against which success is measured.

To this end, we established four objectives for the array API
standard. 1) Allow array-consuming libraries to accept and operate
on arrays from multiple different array libraries. 2) Establish a
common set of standardized APIs and behaviors, enabling more
sharing and code reuse. 3) For new array libraries, offer a concrete
API that can be adopted as-is. 4) Minimize the learning curve and
friction for users as they switch between array libraries.

We explicitly omitted three notable possible objectives. 1)
Make array libraries identical for the purpose of merging them.
Different array libraries have different strengths (e.g., performance
characteristics, hardware support, and tailored use cases, such as
deep learning), and merging them into a single array library is

1. Direct stakeholders include the maintainers of Python array and dataframe
libraries and organizations which sponsor library development. Indirect stake-
holders include maintainers of libraries which consume array and dataframe
objects ("consuming libraries"), developers of compilers and runtimes with
array- and dataframe-specific functionality, and end users, such as data scien-
tists and application developers.

neither practical nor realistic. 2) Implement a backend or runtime
switching system in order to switch from one array library to
another via a single setting or line of code. While potentially
feasible, array consumers are likely to need to modify code in
order to ensure optimal performance and behavior. 3) Support
mixing multiple array libraries in a single function call. Mixing
array libraries requires defining hierarchies and specifying rules
for device synchronization and data localization. Such rules are
likely to be specific to individual use cases.

Design Principles

In order to define the contours of the standardization process, we
established the following design principles:

Functions. The standardized API should consist primarily of
standalone functions. Function-based API design is the dominant
pattern among array libraries, both in Python and in other fre-
quently used programming languages supporting array computa-
tion, such as MATLAB [24] and Julia [25]. While method chaining
and the fluent interface design pattern are also relatively common,
especially among array libraries supporting deferred execution and
operator fusion, function-based APIs are generally preferred. This
mirrors design patterns used in underlying implementations, such
as those written in C/C++ and Fortran, and more closely matches
written mathematical notation.

Minimal array object. The standard should not require that
an array object have any attributes or methods beyond what is
necessary for inspection (e.g., shape, data type, and device) or for
supporting operator overloading (i.e., magic methods).2

No dependencies. The standard and its implementations
should not require any dependencies outside of Python itself.

Accelerator support. Standardized APIs and behaviors
should be possible to implement for both central processing
units (CPUs) and hardware-accelerated devices, such as graphics
processing units (GPUs), tensor processing units (TPUs), and
field-programmable gate arrays (FPGAs).

Compiler support. Standardized APIs and behaviors should
be amenable to just-in-time (JIT) and ahead-of-time (AOT) compi-
lation and graph-based optimization techniques, such as those used
by PyTorch [3], JAX [4], and TensorFlow [5]. APIs and behaviors
not amenable to compilation, such as APIs returning arrays having
data-dependent output shapes or polymorphic return types, should
either be omitted or specified as optional.3 In general, the shape,
data type, and device of the return value from any function should
be predictable from its input arguments.

Distributed support. Standardized APIs and behaviors should
be amenable to implementation in array libraries supporting dis-
tributed computing (e.g., Dask [6]).

Consistency. Except in scenarios involving backward compat-
ibility concerns, naming conventions and design patterns should
be consistent across standardized APIs.

Extensibility. Conforming array libraries may implement
functionality which is not included in the array API standard. Ar-
ray consumers thus bear responsibility for ensuring that their API
usage is portable across specification-conforming array libraries.

Deference. Where possible, the array API standard should
defer to existing, widely-used standards. For example, the accu-

2. Notably, array strides should be considered an implementation detail and
should not be required as a public Python attribute.

3. Copy-view mutation semantics, such as those currently supported by
NumPy, should be considered an implementation detail and, thus, not suitable
for standardization.

10 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

racy and precision of numerical functions should not be specified
beyond the guidance included in IEEE 754 [26].

Universality. Standardized APIs and behaviors should reflect
common usage among a wide range of existing array libraries.
Accordingly, with rare exception, only APIs and behaviors having
existing implementations and broad support within the ecosystem
may be considered candidates for standardization.

Methodology

A foundational step in technical standardization is articulating
a subset of established practices and defining those practices in
unambiguous terms. To this end, the standardization process must
approach the problem from two directions: design and usage.

The former direction seeks to understand both current imple-
mentation design (APIs, names, signatures, classes, and objects)
and semantics (calling conventions and behavior). The latter di-
rection seeks to quantify API consumers (who are the downstream
users of a given API?), usage frequency (how often is an API
consumed?), and consumption patterns (which optional arguments
are provided and in what context?). By analyzing both design
and usage, we sought to ground the standardization process and
specification decisions in empirical data and analysis.

Design

To understand API design of array libraries within the ecosystem,
we first identified a representative sample of commonly used
array libraries. This sample included NumPy, CuPy, PyTorch,
JAX, TensorFlow, Dask, and MXNet. Next, we extracted public
APIs for each library by analyzing module exports and scraping
public web documentation. The following APIs for computing the
arithmetic mean provide an example of extracted API data:

numpy.mean(a, axis=None, dtype=None, out=None,
keepdims=<no value>)

cupy.mean(a, axis=None, dtype=None, out=None,
keepdims=False)

torch.mean(input, dim, keepdim=False, out=None)
jax.numpy.mean(a, axis=None, dtype=None, out=None,

keepdims=False)
tf.math.reduce_mean(input_tensor, axis=None,

keepdims=False, name=None)
dask.array.mean(a, axis=None, dtype=None, out=None,

keepdims=False, split_every=None)
mxnet.np.mean(a, axis=None, dtype=None, out=None,

keepdims=False)

We determined commonalities and differences by analyzing the
intersection, and its complement, of available APIs across each
array library. From the intersection, we derived a subset of
common APIs suitable for standardization based on prevalence
and ease of implementation. The common API subset included
function names, method names, attribute names, and positional
and keyword arguments. As an example of a derived API, consider
the common API for computing the arithmetic mean:

mean(a, axis=None, keepdims=False)

To assist in determining standardization prioritization, we lever-
aged usage data (discussed below) to confirm API need and to
inform naming conventions, supported data types, and optional
arguments. We have summarized findings and published tooling
[27] for additional analysis and exploration, including Jupyter
notebooks [17], as public artifacts available on GitHub.

Usage

To understand usage patterns of array libraries within the ecosys-
tem, we first identified a representative sample of commonly
used Python libraries ("downstream libraries") which consume
the aforementioned array libraries. The sample of downstream
libraries included SciPy [9], pandas [23], Matplotlib [14], xarray
[12], scikit-learn [8], statsmodels [16], and scikit-image [11],
among others. Next, we ran downstream library test suites with
runtime instrumentation enabled. We recorded input arguments
and return values for each API invocation by inspecting the
bytecode stack at call time [28]. From the recorded data, we
generated inferred signatures for each function based on provided
arguments and associated types, noting which downstream library
called which empirical API and at what frequency. We organized
the API results in human-readable form as type definition files
and compared the inferred API to the publicly documented APIs
obtained during design analysis.

The following is an example of two inferred API signatures for
numpy.mean, with the docstring indicating the number of lines
of code which invoked the function for each downstream library
when running library test suites. Based on the example, we can
infer that invoking the function with an array input argument is
a more common usage pattern among downstream libraries than
invoking the function with a list of floats.

@overload
def mean(a: numpy.ndarray):

"""
usage.dask: 21
usage.matplotlib: 7
usage.scipy: 26
usage.skimage: 36
usage.sklearn: 130
usage.statsmodels: 45
usage.xarray: 1
"""

@overload
def mean(a: List[float]):

"""
usage.networkx: 6
usage.sklearn: 3
usage.statsmodels: 9
"""

As a final step, we ranked each API according to relative usage
using the Dowdall positional voting system [29] (a variant of the
Borda count [30] that favors candidate APIs having high relative
usage). From the rankings, we assigned standardization priorities,
with higher ranking APIs taking precedence over lower ranking
APIs, and extended the analysis to aggregated API categories
(e.g., array creation, manipulation, statistics, etc.). All source code,
usage data, and analysis are publicly available on GitHub [28][27].

Array API Standard

The Python array API standard specifies standardized APIs and
behaviors for array and tensor objects and operations. The scope of
the standard includes defining, but is not limited to, the following:
1) a minimal array object; 2) semantics governing array interac-
tion, including type promotion and broadcasting; 3) an interchange
protocol for converting array objects originating from different
array libraries; 4) a set of required array-aware functions; and 5)
optional extensions for specialized APIs and array behaviors. We
discuss each of these standardization areas in turn.

PYTHON ARRAY API STANDARD: TOWARD ARRAY INTEROPERABILITY IN THE SCIENTIFIC PYTHON ECOSYSTEM 11

Single element

x[1,2]

0 1 2
3 4 5
6 7 8
9 10 11

b Indexing

Single axis slice

x[:,0]

0 1 2
3 4 5
6 7 8
9 10 11

x[0,:]

0 1 2
3 4 5
6 7 8
9 10 11

x[1::2,::2]

0 1 2
3 4 5
6 7 8
9 10 11

Multiple axis slices

x[1:3,1:]

0 1 2
3 4 5
6 7 8
9 10 11

x[x > 9]

0 1 2
3 4 5
6 7 8
9 10 11

Boolean mask

c Vectorization

0 1
2 3
4 5
6 7

+

1 1
1 1
1 1
1 1

1 2
3 4
5 6
7 8

d Broadcasting

2
4
6
8

2 3

×

4 6
8 16
12 18
16 24

0 1 2
3 4 5
6 7 8

e Reduction

3
12
21

9 12 15 36

sum

axis 1

sum

axis 0

sum

axis (0,1)

x =

1 20
3 4 5
6 7 8
9 10 11

a Data structure array

dtype
shape

device

data type

shape

device

0 1 2 3 4 5 6 7 8 9 10 11
data storage

Fig. 1: The array data structure and fundamental concepts. a) An array data structure and its associated metadata fields. b) Indexing an array.
Indexing operations may access individual elements or sub-arrays. Applying a boolean mask is an optional indexing behavior and may not be
supported by all conforming libraries. c) Vectorization obviates the need for explicit looping in user code by applying operations to multiple
array elements. d) Broadcasting enables efficient computation by implicitly expanding the dimensions of array operands to equal sizes. e)
Reduction operations act along one or more axes. In the example, summation along a single axis produces a one-dimensional array, while
summation along two axes produces a zero-dimensional array containing the sum of all array elements.

Array Object

An array object is a data structure for efficiently storing and
accessing multidimensional arrays [19]. Within the context of the
array API standard, the data structure is opaque—libraries may
or may not grant direct access to raw memory—and includes
metadata for interpreting the underlying data, notably "data type",
"shape", and "device" (Fig. 1a).

An array data type ("dtype") describes how to interpret a single
array element (e.g., integer, real- or complex-valued floating-point,
boolean, or other). A conforming array object has a single dtype.
To facilitate interoperability, conforming libraries must support
and provide a minimal set of dtype objects (e.g., int8, int16,
int32, float32, and float64). To ensure portability, data
type objects must be provided by name in the array library
namespace (e.g., xp.bool).

An array shape specifies the number of elements along each
array axis (also referred to as "dimension"). The number of axes
corresponds to the dimensionality (or "rank") of an array. For ex-
ample, the shape (3, 5) corresponds to a two-dimensional array
whose inner dimension contains five elements and whose outer
dimension contains three elements. The shape () corresponds to
a zero-dimensional array containing a single element.

An array device specifies the location of array memory allo-
cation. A conforming array object is assigned to a single logical
device. To support array libraries supporting execution on different
device types (e.g., CPUs, GPUs, TPUs, etc.), conforming libraries
must provide standardized device APIs in order to coordinate
execution location. The following example demonstrates how an

array-consuming library might use standardized device APIs to
ensure execution occurs on the same device as the input.

def some_function(x):
Retrieve a standard-compliant namespace
xp = x.__array_namespace__()

Allocate a new array on the same device as x
y = xp.linspace(0, 2*xp.pi, 100, device=x.device)

Perform computation (on device)
return xp.sin(y) * x

To interact with array objects, one uses "indexing" to access sub-
arrays and individual elements, "operators" to perform logical
and arithmetic operations (e.g., +, -, *, /, and @), and array-
aware functions (e.g., for linear algebra, statistical reductions,
and element-wise computation). Array indexing semantics extend
built-in Python sequence __getitem__() indexing semantics
to support element access across multiple dimensions (Fig. 1b).4

Indexing an array using a boolean array (also known as "masking")
is an optional standardized behavior.5 The result of a mask oper-
ation is data-dependent and thus difficult to implement in array
libraries relying on static analysis for graph-based optimization.

4. The array API standard includes support for in-place operations via
__setitem__(); however, behavior is undefined if an in-place operation
would affect arrays other than the target array (e.g., in array libraries supporting
multiple "views" of the same underlying memory).

5. While not currently supported, integer array indexing may be included in
a future revision of the array API standard.

12 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Array Interaction

The Python array API standard further specifies rules governing
expected behavior when an operation involves two or more array
operands. For operations in which the data type of a resulting
array object is resolved from operand data types, the resolved
data type must follow type promotion semantics. Importantly, type
promotion semantics are independent of array shape or contained
values (including when an operand is a zero-dimensional array).
For example, when adding one array having a float32 data type
to another array having a float64 data type, the data type of the
resulting array should be the promoted data type float64.
>>> x1 = xp.ones((2, 2), dtype=xp.float32)
>>> x2 = xp.ones((2, 2), dtype=xp.float64)
>>> y = x1 + x2
>>> y.dtype == xp.float64
True

In addition to type promotion, the array API standard specifies
rules governing the automatic (and implicit) expansion of array
dimensions to be of equal sizes (Fig. 1d). Standardized broadcast-
ing semantics are the same as those popularized by NumPy [1].

Interchange Protocol

We expect that array library consumers will generally prefer to
use a single array "type" (e.g., a NumPy ndarray, PyTorch
Tensor, or Dask array) and will thus need a standardized
mechanism for array object conversion. For example, suppose
a data visualization library prefers to use NumPy internally but
would like to extend API support to any conforming array ob-
ject type. In such a scenario, the library would benefit from a
reliable mechanism for accessing and reinterpreting the memory
of externally provided array objects without triggering potential
performance cliffs due to unnecessary copying of array data. To
this end, the Python array API standard specifies an interchange
protocol describing the memory layout of a strided, n-dimensional
array in an implementation-independent manner.

The basis of this protocol is DLPack, an open in-memory
structure for sharing tensors among frameworks [31]. DLPack is
a standalone protocol with an ABI stable, header-only C imple-
mentation with cross hardware support. The array API standard
builds on DLPack by specifying Python APIs for array object
data interchange [32]. Conforming array objects must support
__dlpack__ and __dlpack_device__ magic methods for
accessing array data and querying the array device. A standardized
from_dlpack() API calls these methods to construct a new
array object of the desired type using zero-copy semantics when
possible. The combination of DLPack and standardized Python
APIs thus provides a stable, widely adopted, and efficient means
for array object interchange.

Array Functions

To complement the minimal array object, the Python array API
standard specifies a set of required array-aware functions for
arithmetic, statistical, algebraic, and general computation. Where
applicable, required functions must support vectorization (Fig.
1d), which obviates the need for explicit looping in user code
by applying operations to multiple array elements. Vectorized
abstractions confer two primary benefits: 1) implementation-
dependent optimizations leading to increased performance and 2)
concise expression of mathematical operations. For example, one
can express element-wise computation of z-scores in a single line.

def z_score(x):
return (x - xp.mean(x)) / xp.stdev(x)

In addition to vectorized operations, the array API standard in-
cludes, but is not limited to, functions for creating new arrays,
with support for explicit device allocation, reshaping and manipu-
lating existing arrays, performing statistical reductions across one,
multiple, or all array axes (Fig. 1e), and sorting array elements.
Altogether, these APIs provide a robust and portable foundation
for higher-order array operations and general array computation.

Optional Extensions

While a set of commonly used array-aware functions is sufficient
for many array computation use cases, additional, more special-
ized, functionality may be warranted. For example, while most
data visualization libraries are unlikely to explicitly rely on APIs
for computing Fourier transforms, signal analysis libraries sup-
porting spectral analysis of time series are likely to require Fourier
transform APIs. To accommodate specialized APIs, the Python
array API standard includes standardized optional extensions.

An extension is a sub-namespace of a main namespace and is
defined as a coherent set of standardized functionality which is
commonly implemented across many, but not all, array libraries.
Due to implementation difficulty (or impracticality), limited gen-
eral applicability, a desire to avoid significantly expanding API
surface area beyond what is essential, or some combination of
the above, requiring conforming array libraries to implement
and maintain extended functionality beyond their target domain
is not desirable. Extensions provide a means for conforming
array libraries to opt-in to supporting standardized API subsets
according to need and target audience.

Specification Status

Following formation of the Consortium in 2020, we released an
initial draft of the Python array API standard for community
review in 2021. We have released two subsequent revisions:

v2021.12: The first full release of the specification, detailing
purpose and scope, standardization methodology, future standard
evolution, a minimal array object, an interchange protocol, re-
quired data types, type promotion and broadcasting semantics, an
optional linear algebra extension, and array-aware functions for ar-
ray creation, manipulation, statistical reduction, and vectorization,
among others.

v2022.12: This revision includes errata for the v2021.12 re-
lease and adds support for single- and double-precision complex
floating-type data types, additional array-aware APIs, an optional
extension for computing fast Fourier transforms.

For future revisions, we expect annual release cadences; how-
ever, array API standard consumers should not assume a fixed
release schedule.

Implementation Status

Reference Implementation

To supplement the Python array API standard, we developed
a standalone reference implementation. The implementation is
strictly compliant (i.e., any non-portable usage triggers an ex-
ception) and is available as the numpy.array_api submodule
(discussed in [33]). In general, we do not expect for users to
rely on the reference implementation for production use cases.
Instead, the reference implementation is primarily useful for array-
consuming libraries as a means for testing whether array library
usage is guaranteed to be portable.

PYTHON ARRAY API STANDARD: TOWARD ARRAY INTEROPERABILITY IN THE SCIENTIFIC PYTHON ECOSYSTEM 13

Ecosystem Adoption

Arrays are fundamental to scientific computing, data science,
and machine learning. As a consequence, the Python array API
standard has many stakeholders within the ecosystem. When
establishing the Consortium, we thus sought participation from a
diverse and representative cross-section of industry partners and
maintainers of array and array-consuming libraries. To satisfy
stakeholder needs, array library maintainers worked in close part-
nership with maintainers of array-consuming libraries throughout
the array API standardization process to identify key use cases and
achieve consensus on standardized APIs and behaviors.

Direct participation in the Consortium by array and array-
consuming library maintainers has facilitated coordination across
the ecosystem. In addition to the numpy.array_api reference imple-
mentation [34], several commonly used array libraries, including
NumPy [35], CuPy [36], PyTorch [37], JAX [38], Dask [39],
and MXNet [40], have either adopted or are in the process of
adopting the array API standard. Increased array library adoption
has increased array interoperability, which, in turn, has encouraged
array-consuming libraries, such as SciPy [41] and scikit-learn [42]
(discussed below), to begin adopting the standard by decoupling
their implementations from specific array libraries. As array li-
brary adoption of the standard matures, we expect ecosystem
adoption to accelerate.

Tooling

Test Suite

To facilitate adoption of the Python array API standard by libraries
within the ecosystem, we developed a test suite to measure speci-
fication compliance [43]. The test suite covers all major aspects of
the specification, such as broadcasting, type promotion, function
signatures, special case handling, and expected return values.

Underpinning the test suite is Hypothesis, a Python library for
creating unit tests [44]. Hypothesis uses property-based testing, a
technique for generating arbitrary data satisfying provided spec-
ifications and asserting the truth of some "property" that should
be true. Property-based testing is particularly convenient when
authoring compliance tests, as the technique enables the direct
translation of specification guidance into test code.

The test suite is the first example known to these authors of
a Python test suite capable of running against multiple different
libraries. As part of our work, we upstreamed strategies to Hy-
pothesis for generating arbitrary arrays from any conforming array
library, thus allowing downstream array consumers to test against
multiple array libraries and their associated hardware devices.

Compatibility Layer

While we expect that maintainers of conforming array libraries
will co-evolve library APIs and behaviors with those specified in
the Python array API standard, we recognize that co-evolution is
not likely to always proceed in unison due to varying release cycles
and competing priorities. Varying timelines for adoption and full-
compliance present obstacles for array-consuming libraries hoping
to use the most recent standardized behavior, as such libraries are
effectively blocked by the slowest array library release schedule.

To address this problem and facilitate adoption of the standard
by array-consuming libraries, we developed a compatibility layer
(named array-api-compat), which provides a thin wrapper
around common array libraries [45]. The layer transparently
intercepts API calls for any API which is not fully-compliant

and polyfills non-compliant specification-defined behavior. For
compliant APIs, it exposes the APIs directly, without interception,
thus mitigating performance degradation risks due to redirection.
To reduce barriers to adoption, the layer supports vendoring and
has a small, pure Python codebase with no hard dependencies.

While the Python array API standard facilitates array inter-
operability in theory, the compatibility layer does so in practice,
helping array-consuming libraries decouple adoption of the stan-
dard from the release cycles of upstream array libraries. Currently,
the layer provides shims for NumPy, CuPy, and PyTorch and
aims to support additional array libraries in the future. By ensur-
ing specification-compliant behavior, we expect the compatibility
layer to have a significant impact in accelerating adoption among
array-consuming libraries.

Discussion

The principle aim of the Python array API standard is to facilitate
interoperability of array libraries within the ecosystem. In achiev-
ing this aim, array-consuming libraries, such as those for statistical
computing, data science, and machine learning, can decouple
their implementations from specific array libraries. Decoupling
subsequently allows end users to use the array library that is most
applicable to their use case and to no longer be limited by the set
of array libraries a particular array-consuming library supports.

In addition to improved developer ergonomics afforded by
standardized APIs and increased interoperability, standardization
allows end users and the authors of array-consuming libraries to
use a declarative, rather than imperative, programming paradigm.
This paradigm change has a key benefit in enabling users to opt
into performance improvements based on their constraints and
hardware capabilities. To assess the impact of this change, we
worked with maintainers of scikit-learn and SciPy to measure the
performance implications of specification adoption (Fig. 2).

scikit-learn

scikit-learn is a widely-used machine learning library. Its current
implementation relies heavily on NumPy and SciPy and is a
mixture of Python and Cython. Due to its dependence on NumPy
for array computation, scikit-learn is CPU-bound, and the library
is unable to capture the benefits of GPU- and TPU-based execution
models. By adopting the Python array API standard, scikit-learn
can decouple its implementation from NumPy and support non-
CPU-based execution, potentially enabling increased performance.

To test this hypothesis, we examined the scikit-learn code-
base to identify APIs which rely primarily on NumPy for their
implementation. scikit-learn estimators are one such set of APIs,
having methods for model fitting, classification prediction, and
data projection, which are amenable to input arrays supporting
alternative execution models. Having identified potential API
candidates, we selected the estimator class for linear discrimi-
nant analysis (LDA) as a representative test case. Refactoring
the LDA implementation was illustrative in several respects, as
demonstrated in the following code snippet showing source code
modifications6:
1 Xc = []
2 for idx, group in enumerate(self.classes_):
3 - Xg = X[y == group, :]
4 - Xc.append(Xg - self.means_[idx])

6. Source code modifications reflect those required for NumPy version
1.24.3 and Python array API standard version 2022.12.

14 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

CuPy PyTorch
CPU

PyTorch
GPU

0

10

20

30

40

50

60

7.9

1.9

45.1

scikit-learn
LDA fit

a

CuPy PyTorch
CPU

PyTorch
GPU

0

10

20

30

40

50

60

24.6

2.5

44.9

scikit-learn
LDA predict

b

CuPy PyTorch
CPU

PyTorch
GPU

0

10

20

30

40

50

60
52.4

1.4

51.6

SciPy
welch (optimized)

c

CuPy PyTorch
CPU

PyTorch
GPU

0.0

0.2

0.4

0.6

0.8

1.0

0.08
0.12

0.06

SciPy
welch (strict)

d
S

pe
ed

up
 v

s.
 N

um
P

y

Fig. 2: Benchmarks measuring performance implications of adoption in array-consuming libraries. Displayed timings are relative to NumPy.
All benchmarks were run on Intel i9-9900K and NVIDIA RTX 2080 hardware. a) Fitting a linear discriminant analysis (LDA) model. b)
Predicting class labels using LDA. c) Estimating power spectral density using Welch’s method and library-specific optimizations. d) Same as
c, but using a strictly portable implementation. Note that d has different vertical axis limits than a-c.

5 + Xg = X[y == group]
6 + Xc.append(Xg - self.means_[idx, :])
7

8 - self.xbar_ = np.dot(self.priors_, self.means_)
9 + self.xbar_ = self.priors_ @ self.means_

10

11 - Xc = np.concatenate(Xc, axis=0)
12 + Xc = xp.concat(Xc, axis=0)
13

14 - std = Xc.std(axis=0)
15 + std = xp.std(Xc, axis=0)
16

17 std[std == 0] = 1.0
18 - fac = 1.0 / (n_samples - n_classes)
19 + fac = xp.asarray(1.0 / (n_samples - n_classes))
20

21 - X = np.sqrt(fac) * (Xc / std)
22 + X = xp.sqrt(fac) * (Xc / std)
23

24 U, S, Vt = svd(X, full_matrices=False)
25

26 - rank = np.sum(S > self.tol)
27 + rank = xp.sum(xp.astype(S > self.tol, xp.int32))

Indexing: (lines 3-6) NumPy supports non-standardized in-
dexing semantics. To be compliant with the standard, 1) boolean
masks must be the sole index and cannot be combined with other
indexing expressions, and 2) the number of provided single-axis
indexing expressions must equal the number of dimensions.

Non-standardized APIs: (lines 8-9) NumPy supports several
APIs having no equivalent in the array API standard; np.dot()
is one such API. For two-dimensional arrays, np.dot() is
equivalent to matrix multiplication and was updated accordingly.

Naming conventions: (lines 11-12) NumPy contains several
standard-compliant APIs whose naming conventions differ from
those in the array API standard. In this and similar cases, adoption
requires conforming to the standardized conventions.

Functions: (lines 14-15) NumPy supports several array object
methods having no equivalent in the array API standard. To ensure
portability, we refactored use of non-standardized methods in
terms of standardized function-based APIs.

Scalars: (lines 18-22) NumPy often supports non-array input
arguments, such as scalars, Python lists, and other objects, as
"array-like" arguments in its array-aware APIs. While the array
API standard does not prohibit such polymorphism, the standard
does not require array-like support. In this case, we explicitly

convert a scalar expression to a zero-dimensional array in order
to ensure portability when calling xp.sqrt().

Data types: (lines 26-27) NumPy often supports implicit type
conversion of non-numeric data types in numerical APIs. The
array API standard does not require such support, and, more
generally, mixed-kind type promotion semantics (e.g., boolean to
integer, integer to floating-point, etc.) are not specified. To ensure
portability, we must explicitly convert a boolean array to an integer
array before calling xp.sum().

To test the performance implications of refactoring scikit-
learn’s LDA implementation, we generated a random two-class
classification problem having 400,000 samples and 300 features.7

We next devised two benchmarks, one for fitting an LDA model
and the second for predicting class labels for each simulated
sample. We ran the benchmarks and measured execution time
for NumPy, PyTorch, and CuPy backends on Intel i9-9900K
and NVIDIA RTX 2080 hardware. For PyTorch, we collected
timings for both CPU and GPU execution models. To ensure
timing reproducibility and reduce timing noise, we repeated each
benchmark ten times and computed the average execution time.

Fig. 2a and Fig. 2b display results, showing average execution
time relative to NumPy. When fitting an LDA model (Fig. 2a), we
observe 1.9× higher throughput for PyTorch CPU, 7.9× for CuPy,
and 45.1× for PyTorch GPU. When predicting class labels (Fig.
2b), we observe 2.5× higher throughput for PyTorch CPU, 24.6×
for CuPy, and 44.9× for PyTorch GPU. In both benchmarks, using
GPU execution models corresponded to significantly increased
performance, thus supporting our hypothesis that scikit-learn can
benefit from non-CPU-based execution models.

SciPy

SciPy is a collection of mathematical algorithms and convenience
functions for numerical integration, optimization, interpolation,
statistics, linear algebra, signal processing, and image processing,
among others. Similar to scikit-learn, its current implementation
relies heavily on NumPy. We thus sought to test whether SciPy
could benefit from adopting the Python array API standard.

7. To ensure that observed performance is not an artifact of the generated
dataset, we tested performance across multiple random datasets and did not
observe a measurable difference across benchmark runs.

PYTHON ARRAY API STANDARD: TOWARD ARRAY INTEROPERABILITY IN THE SCIENTIFIC PYTHON ECOSYSTEM 15

Following a similar approach to the scikit-learn benchmarks,
we identified SciPy’s signal processing APIs as being amenable to
input arrays supporting alternative execution models and selected
an API for estimating the power spectral density using Welch’s
method [46] as a representative test case. We then generated a
representative synthetic test signal (a 2 Vrms sine wave at 1234
Hz, corrupted by 0.001 V2/Hz of white noise sampled at 10 kHz)
having 50,000,000 data points. We next devised two benchmarks,
one using library-specific optimizations and a second strictly using
APIs in the array API standard. We ran the benchmarks for the
same backends, on the same hardware, and using the same analysis
approach as the scikit-learn benchmarks discussed above.

Fig. 2c and Fig. 2d display results, showing average execution
time relative to NumPy. When using library-specific optimizations
(Fig. 2c), we observe 1.4× higher throughput for PyTorch CPU,
51.6× for PyTorch GPU, and 52.4× for CuPy. When omitting
library-specific optimizations (Fig. 2d), we observe a 12-25×
decreased throughput across all non-NumPy backends.

The source of the performance disparity is due to use of
strided views in the optimized implementation. NumPy, CuPy, and
PyTorch support the concept of strides, where a stride describes
the number of bytes to move forward in memory to progress to the
next position along an axis, and provide similar, non-standardized
APIs for manipulating the internal data structure of an array. While
one can use standardized APIs to achieve the same result, using
stride "tricks" enables increased performance. This finding raises
an important point. Namely, while the array API standard aims to
reduce the need for library-specific code, it will never fully elimi-
nate that need. Users of the standard may need to maintain similar
library-specific performance optimizations to achieve maximal
performance. We expect, however, that the maintenance burden
should only apply for those scenarios in which the performance
benefits significantly outweigh the maintenance costs.

Future Work

Consortium work is comprised of three focus areas: standardiza-
tion, adoption, and coordination.

Standardization: Standardization is the core of Consortium
efforts. The Python array API standard is a living standard, which
should evolve to reflect the needs and evolution of array libraries
within the ecosystem. As such, we expect to continue working
with array and array-consuming library maintainers to codify APIs
and behaviors suitable for standardization.

Adoption: To ensure the success of the Python array API
standard, we work closely with maintainers of array and array-
consuming libraries to facilitate adoption by soliciting feedback,
addressing pain points, and resolving specification ambiguities.
In the immediate future, we plan to release additional tooling for
tracking adoption and measuring specification compliance. For the
former, we are collecting static compliance data and will publish
compatibility tables as part of the array API standard publicly
available on-line. For the latter, we are developing an automated
test suite reporting system to gather array API test suite results
from array libraries as part of continuous integration. We expect
these tools to be particularly valuable to array-consuming libraries
in order to quickly assess API portability.

Coordination: Providing a forum for coordination among
array libraries (and their consumers) was the primary motivating
factor behind Consortium formation and is the most important
byproduct of Consortium efforts. By facilitating knowledge ex-
change among array library communities, the Consortium serves

as a critical bulwark against further fragmentation and siloed tech-
nical stacks. Preventing such fragmentation is to the ultimate bene-
fit of array library consumers and their communities. Additionally,
coordination allows for orienting around a shared long-term vision
regarding future needs and possible solutions. We are particularly
keen to explore the following areas and open questions: device
standardization, extended data type support (including strings
and datetimes), input-output (IO) APIs, support for mixing array
libraries, parallelization, and optional extensions for deep learning,
statistical computing, and, more generally, functionality which is
out-of-scope, but needed in specific contexts.8

We should also note that array API standardization is not
the only standardization effort spearheaded by the Consortium.
We are also working to standardize APIs and behaviors for
Python dataframe libraries, including an interchange protocol and
a library-author focused dataframe object and associated set of
APIs. This work will be discussed in a future paper.

Conclusion

We introduced the Consortium and the Python array API standard,
which specifies standardized APIs and behaviors for array and
tensor objects and operations. In developing an initial specification
draft, we analyzed common array libraries in the ecosystem and
determined a set of common APIs suitable for standardization. In
consultation with array and array-consuming library maintainers,
we published two specification revisions codifying APIs and
behaviors for array objects and their interaction, array interchange,
and array-aware functions for array creation and manipulation,
statistical reduction, and linear algebra. In addition, we released
tooling to facilitate adoption of the array API standard: 1) a test
suite for measuring specification compliance and 2) a compatibil-
ity layer to allow array-consuming libraries to adopt the standard
without having to wait on upstream release cycles.

We further explored performance implications of adopting
the array API standard in two commonly-used array-consuming
libraries: scikit-learn and SciPy. For the former, we found that
adoption enabled scikit-learn to use GPU-based execution models,
resulting in significantly increased performance. For the latter, we
found similar performance gains; however, in order to realize
the performance gains, we needed to use library-specific opti-
mizations. This finding highlights a limitation of the standard.
Namely, while the array API standard aims to reduce the need
for library-specific code, it will never fully eliminate that need.
Users of the standard may need to maintain similar library-specific
performance optimizations to achieve maximal performance.

Our work demonstrates the usefulness of the Consortium and
the array API standard in facilitating array interoperability within
the ecosystem. In addition to shepherding standardization and
promoting adoption of the array API standard, the Consortium
provides a critical forum for coordinating efforts among array and
array-consuming library maintainers. Such coordination is critical
to the long-term success and viability of the ecosystem and its
communities. Having established a blueprint for standardization
methodology and process, the Consortium is also leading a similar
effort to standardize Python dataframe APIs and behaviors, thus
working to reduce fragmentation for the two fundamental data
structures underpinning the ecosystem—arrays and dataframes.

8. To participate in Consortium efforts, consult the Python array API
standard public issue tracker [47].

16 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

REFERENCES

[1] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant,
“Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–
362, Sep. 2020, https://doi.org/10.1038/s41586-020-2649-2. [Online].
Available: https://www.nature.com/articles/s41586-020-2649-2

[2] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis,
“CuPy: A NumPy-Compatible Library for NVIDIA GPU
Calculations,” in Proceedings of Workshop on Machine Learning
Systems (LearningSys) in The Thirty-first Annual Conference
on Neural Information Processing Systems (NIPS), 2017.
[Online]. Available: https://www.semanticscholar.org/paper/CuPy-
%3A-A-NumPy-Compatible-Library-for-NVIDIA-GPU-Okuta-
Unno/a59da4639436f582e483347a4833e7659fd3e598

[3] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: an imperative style, high-
performance deep learning library,” in Proceedings of the 33rd Inter-
national Conference on Neural Information Processing Systems. Red
Hook, NY, USA: Curran Associates Inc., Dec. 2019, no. 721, pp. 8026–
8037.

[4] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne,
and Q. Zhang, “JAX: composable transformations of Python+NumPy
programs,” http://github.com/google/jax, 2018. [Online]. Available:
http://github.com/google/jax

[5] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: a system for large-scale
machine learning,” in Proceedings of the 12th USENIX conference on
Operating Systems Design and Implementation, ser. OSDI’16. USA:
USENIX Association, Nov. 2016, pp. 265–283.

[6] M. Rocklin, “Dask: Parallel Computation with Blocked algorithms and
Task Scheduling,” in Proceedings for the Annual Scientific Computing
with Python Conference, Austin, Texas, 2015, pp. 126–132, https:
//doi.org/10.25080/Majora-7b98e3ed-013. [Online]. Available: https:
//conference.scipy.org/proceedings/scipy2015/matthew_rocklin.html

[7] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, “MXNet: A Flexible and Efficient
Machine Learning Library for Heterogeneous Distributed Systems,” Dec.
2015, https://doi.org/10.48550/arXiv.1512.01274. [Online]. Available:
http://arxiv.org/abs/1512.01274

[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. VanderPlas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: machine learning in Python,” Journal of
Machine Learning Research (JMLR), vol. 12, pp. 2825–2830, 2011.
[Online]. Available: www.jmlr.org/papers/v12/pedregosa11a.html

[9] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,
S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde,
J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R.
Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, and P. van
Mulbregt, “SciPy 1.0: fundamental algorithms for scientific computing
in Python,” Nature Methods, vol. 17, no. 3, pp. 261–272, Mar.
2020, https://doi.org/10.1038/s41592-019-0686-2. [Online]. Available:
https://www.nature.com/articles/s41592-019-0686-2

[10] K. J. Millman and M. Aivazis, “Python for Scientists and Engineers,”
Computing in Science & Engineering, vol. 13, no. 2, pp. 9–12, Mar.
2011, https://doi.org/10.1109/MCSE.2011.36.

[11] S. J. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. c.
Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu,
“scikit-image: image processing in Python,” PeerJ, vol. 2, p.
e453, Jun. 2014, https://doi.org/10.7717/peerj.453. [Online]. Available:
https://peerj.com/articles/453

[12] S. Hoyer and J. Hamman, “xarray: N-D labeled Arrays and Datasets in
Python,” vol. 5, no. 1, p. 10, Apr. 2017, https://doi.org/10.5334/jors.148.
[Online]. Available: https://openresearchsoftware.metajnl.com/articles/
10.5334/jors.148

[13] H. Abbasi, “Sparse: A more modern sparse array library,” in Proceedings
of the 17th Python in Science Conference, Austin, Texas, 2018, pp. 65–
68, https://doi.org/10.25080/Majora-4af1f417-00a. [Online]. Available:
https://conference.scipy.org/proceedings/scipy2018/hameer_abbasi.html

[14] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, May 2007, https://doi.
org/10.1109/MCSE.2007.55.

[15] F. Pérez, B. E. Granger, and J. D. Hunter, “Python: An Ecosystem for
Scientific Computing,” Computing in Science & Engineering, vol. 13,
no. 2, pp. 13–21, Mar. 2011, https://doi.org/10.1109/MCSE.2010.119.

[16] S. Seabold and J. Perktold, “Statsmodels: Econometric and Statistical
Modeling with Python,” in Proceedings for the Annual Scientific
Computing with Python Conference, Austin, Texas, 2010, pp. 92–
96, https://doi.org/10.25080/Majora-92bf1922-011. [Online]. Available:
https://conference.scipy.org/proceedings/scipy2010/seabold.html

[17] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, P. Ivanov,
D. Avila, S. Abdalla, C. Willing, and J. D. Team, “Jupyter notebooks
- a publishing format for reproducible computational workflows,” in
International Conference on Electronic Publishing, 2016, https://doi.org/
10.3233/978-1-61499-649-1-87.

[18] R. Frostig, M. Johnson, and C. Leary, “Compiling machine learning
programs via high-level tracing,” in Proceedings of SysML Conference,
2018. [Online]. Available: https://mlsys.org/Conferences/doc/2018/146.
pdf

[19] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A
Structure for Efficient Numerical Computation,” Computing in Science
& Engineering, vol. 13, no. 2, pp. 22–30, Mar. 2011, https://doi.org/10.
1109/MCSE.2011.37.

[20] P. F. Dubois, K. Hinsen, and J. Hugunin, “Numerical Python,” Computer
in Physics, vol. 10, no. 3, pp. 262–267, May 1996, https://doi.org/10.
1063/1.4822400. [Online]. Available: https://doi.org/10.1063/1.4822400

[21] J. Hugunin, “Extending Python for Numerical Computation,” http:
//hugunin.net/papers/hugunin95numpy.html, 1995. [Online]. Available:
http://hugunin.net/papers/hugunin95numpy.html

[22] P. Greenfield, J. T. Miller, J.-c. Hsu, and R. L. White, “numarray:
A New Scientific Array Package for Python,” in PyCon DC, 2003.
[Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.112.9899

[23] W. McKinney, “pandas: a Foundational Python Library for Data
Analysis and Statistics,” 2011. [Online]. Available: https://www.
semanticscholar.org/paper/pandas:-a-Foundational-Python-Library-for-
Data-and-McKinney/1a62eb61b2663f8135347171e30cb9dc0a8931b5

[24] C. Moler and J. Little, “A history of MATLAB,” Proceedings of
the ACM on Programming Languages, vol. 4, no. HOPL, pp. 81:1–
81:67, Jun. 2020, https://doi.org/10.1145/3386331. [Online]. Available:
https://dl.acm.org/doi/10.1145/3386331

[25] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A
Fresh Approach to Numerical Computing,” SIAM Review, vol. 59, no. 1,
pp. 65–98, Jan. 2017, https://doi.org/10.1137/141000671. [Online].
Available: https://epubs.siam.org/doi/10.1137/141000671

[26] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2019
(Revision of IEEE 754-2008), pp. 1–84, Jul. 2019, https://doi.org/10.
1109/IEEESTD.2019.8766229.

[27] C. for Python Data API Standards, “Array API Comparison,” https:
//github.com/data-apis/array-api-comparison, 2022. [Online]. Available:
https://github.com/data-apis/array-api-comparison

[28] ——, “Python Record API,” https://github.com/data-apis/python-record-
api, 2020. [Online]. Available: https://github.com/data-apis/python-
record-api

[29] J. Fraenkel and B. Grofman, “The Borda Count and its real-world
alternatives: Comparing scoring rules in Nauru and Slovenia,”
Australian Journal of Political Science, vol. 49, no. 2, pp. 186–205,
Apr. 2014, https://doi.org/10.1080/10361146.2014.900530. [Online].
Available: https://doi.org/10.1080/10361146.2014.900530

[30] P. Emerson, “The original Borda count and partial voting,”
Social Choice and Welfare, vol. 40, no. 2, pp. 353–358, Feb.
2013, https://doi.org/10.1007/s00355-011-0603-9. [Online]. Available:
https://doi.org/10.1007/s00355-011-0603-9

[31] DLPack, “Open In Memory Tensor Structure,” https://github.com/dmlc/
dlpack, 2023. [Online]. Available: https://github.com/dmlc/dlpack

[32] ——, “Python Specification for DLPack,” https://dmlc.github.io/dlpack/
latest/python_spec.html, 2023. [Online]. Available: https://dmlc.github.
io/dlpack/latest/python_spec.html

[33] R. Gommers, S. Hoyer, and A. Meurer, “NEP 47 — Adopting the array
API standard — NumPy Enhancement Proposals,” https://numpy.org/

PYTHON ARRAY API STANDARD: TOWARD ARRAY INTEROPERABILITY IN THE SCIENTIFIC PYTHON ECOSYSTEM 17

neps/nep-0047-array-api-standard.html, Jan. 2021. [Online]. Available:
https://numpy.org/neps/nep-0047-array-api-standard.html

[34] A. Meurer, “Implementation of the NEP 47 (adopting the array API
standard) by asmeurer · Pull Request #18585 · numpy/numpy,” https:
//github.com/numpy/numpy/pull/18585, Mar. 2021. [Online]. Available:
https://github.com/numpy/numpy/pull/18585

[35] S. Berg, “Road to NumPy 2.0,” https:
//mail.python.org/archives/list/numpy-discussion@python.
org/thread/XYA5KZNL362Q5KWLKS5QFBQNRT5N2ZJO/
#XCJU55EXSQPN5W7UWHDKURBU7EKBBTD2,
Jan. 2023. [Online]. Available: https:
//mail.python.org/archives/list/numpy-discussion@python.
org/thread/XYA5KZNL362Q5KWLKS5QFBQNRT5N2ZJO/
#XCJU55EXSQPN5W7UWHDKURBU7EKBBTD2

[36] Y.-L. L. Fang, “Adopt Python Array API standard · Issue #4789
· cupy/cupy,” https://github.com/cupy/cupy/issues/4789, Mar. 2021.
[Online]. Available: https://github.com/cupy/cupy/issues/4789

[37] P. Meier, “Python Array API Compatibility Tracker · Issue #58743 ·
pytorch/pytorch,” https://github.com/pytorch/pytorch/issues/58743, May
2021. [Online]. Available: https://github.com/pytorch/pytorch/issues/
58743

[38] J. VanderPlas, “Initial implementation of the Python Array API
standard · Pull Request #16099 · google/jax,” https://github.
com/google/jax/pull/16099, May 2023. [Online]. Available: https:
//github.com/google/jax/pull/16099

[39] T. White, “Python Array API in Dask issue tracking · Issue
#8917 · dask/dask,” https://github.com/dask/dask/issues/8917, Apr. 2022.
[Online]. Available: https://github.com/dask/dask/issues/8917

[40] N. Yyc, “Python Array API standardization · Issue #20501
· apache/mxnet,” https://github.com/apache/mxnet/issues/20501, Aug.
2021. [Online]. Available: https://github.com/apache/mxnet/issues/20501

[41] I. Yashchuk, “Using Array API standard for functions implemented
using pure Python and NumPy API · Issue #15354 · scipy/scipy,” https:
//github.com/scipy/scipy/issues/15354, Jan. 2022. [Online]. Available:
https://github.com/scipy/scipy/issues/15354

[42] T. Fan, “Path for Adopting the Array API spec · Issue #22352
· scikit-learn/scikit-learn,” https://github.com/scikit-learn/scikit-learn/
issues/22352, Jan. 2022. [Online]. Available: https://github.com/scikit-
learn/scikit-learn/issues/22352

[43] C. for Python Data API Standards, “Test Suite for Array
API Compliance,” https://github.com/data-apis/array-api-tests, 2022.
[Online]. Available: https://github.com/data-apis/array-api-tests

[44] D. MacIver, Z. Hatfield-Dodds, and M. Contributors, “Hypothesis: A new
approach to property-based testing,” Journal of Open Source Software,
vol. 4, no. 43, p. 1891, 11 2019, https://doi.org/10.21105/joss.01891.
[Online]. Available: http://dx.doi.org/10.21105/joss.01891

[45] C. for Python Data API Standards, “Array API compatibility
library,” https://github.com/data-apis/array-api-compat, 2023. [Online].
Available: https://github.com/data-apis/array-api-compat

[46] P. Welch, “The use of fast Fourier transform for the estimation of power
spectra: A method based on time averaging over short, modified peri-
odograms,” IEEE Transactions on Audio and Electroacoustics, vol. 15,
no. 2, pp. 70–73, Jun. 1967, https://doi.org/10.1109/TAU.1967.1161901.

[47] C. for Python Data API Standards, “Array API standard,”
https://github.com/data-apis/array-api, 2022. [Online]. Available: https:
//github.com/data-apis/array-api

18 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

A Modified Strassen Algorithm to Accelerate Numpy
Large Matrix Multiplication with Integer Entries

Anthony Breitzman‡∗

✦

Abstract—Numpy is a popular Python library widely used in the math and
scientific community because of its speed and convenience. We present a
Strassen type algorithm for multiplying large matrices with integer entries. The
algorithm is the standard Strassen divide and conquer algorithm but it crosses
over to Numpy when either the row or column dimension of one of the matrices
drops below 128. The algorithm was tested on a MacBook, an I7 based Windows
machine as well as a Linux machine running a Xeon processor and we found
that for matrices with thousands of rows or columns and integer entries, the
Strassen based algorithm with crossover performed 8 to 30 times faster than
regular Numpy on such matrices. Although there is no apparent advantage for
matrices with real entries, there are a number of applications for matrices with
integer coefficients.

Index Terms—Strassen, Numpy, Integer Matrix

Introduction

A recent article [1] suggests that Python is rapidly becoming
the Lingua Franca of machine learning and scientific computing
because of powerful frameworks such as Numpy, SciPy, and
TensorFlow. These libraries offer great flexibility while boosting
the performance of Python because they are written in compiled
C and C++.

In this short paper we present a modified Strassen-based [2]
algorithm for multiplying large matrices of arbitrary sizes contain-
ing integer entries. The algorithm uses Strassen’s algorithm for
several divide and conquer steps before crossing over to a regular
Numpy matrix multiplication. For large matrices the method is 8
to 30 times faster than calling Numpy.matmul or Numpy.dot to
multiply the matrices directly. The method was tested on a variety
of hardware and the speed advantage was consistent for cases
with integer entries. There is no such advantage for matrices with
floating point entries however as [3] points out, there are numerous
applications for large matrices with integer entries, including high
precision evaluation of so-called holonomic functions (e.g. exp,
log, sin, Bessel functions, and hypergeometric functions) as well
as areas of Algebraic Geometry to name just two. Integer matrices
are also frequently used as adjacency matrices in graph theory
applications and are also used extensively in combinatorics.

To give the reader some early perspective, we will see later
in the paper that some of the matrix multiplies that we do with

* Corresponding author: breitzman@rowan.edu
‡ Rowan University Department of Computer Science

Copyright © 2023 Anthony Breitzman. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

the suggested algorithm take approximately two minutes using the
new algorithm, but take 44 minutes using Numpy.matmul.

It is suggested in [4] that Numpy may be the single most-
imported non-stdlib module in the entire Pythonverse. Therefore,
an algorithm that speeds Numpy for large integer matrices may be
of interest to a large audience.

Motivating Exploration with Baseline Timings

For motivation consider the well-known standard algorithm for
multipyling a pair of NxN matrices, as found in [5] as well as any
algorithms book.
#multiply matrix A and B and put
#the product into C.
#A,B,C are assumed to be square
#matrices of the same dimension.
#No error checking is done.
def multiply(A, B, C):
for i in range(N):
for j in range(N):
C[i][j] = 0
for k in range(N):

C[i][j]+=A[i][k]*B[k][j]

It is clear from the three nested loops that this algorithm has O(N3)
running time.

Strassen’s algorithm [2] is described most easily in Figure
1 which is modified from GeeksForGeeks [5]. We see that to
multiply two N×N matrices via Strassen’s method requires seven
multiplications plus eighteen additions or subtractions of matri-
ces that are size (N/2)× (N/2). The additions and subtractions
will cost O(N2) and therefore the time complexity of Strassen’s
algorithm is T (N) = 7T (N/2) + O(N2) which by the Master
Theorem [6] is O(Nlog2 7 ≃ O(N2.81). Python code for an initial
implementation of the standard Strassen algorithm can be found
in [5].

To get a baseline for our improved algorithms below we
show how the standard multiplication and the Geeks-for-Geeks
implementation of the Strassen algorithm perform compared to
Numpy.matmul on several large square matrices with integer
coefficients. Timings are provided in Table 1. Unsurprisingly, the
Numpy implementation of matrix multiply is orders of magnitude
faster than the other methods. This is expected because Numpy
is written in compiled C and as discussed above is known for
its speed and efficiency. The table contains a column where we
compute the current timing divided by the previous timing. As
noted above the complexity of Strassen’s algorithm is O(Nlog2 7)
thus when we double the size of N we expect the timing to
increase about 7-fold. The current/previous column shows that

A MODIFIED STRASSEN ALGORITHM TO ACCELERATE NUMPY LARGE MATRIX MULTIPLICATION WITH INTEGER ENTRIES 19

Fig. 1: Illustration of Strassen’s Algorithm for multiplying 2 Square
Matrices (Modified from GeeksForGeeks)

this is the case. Similarly we expect the standard algorithm’s
timing to increase about 8-fold when we double the N and this
seems to be the case as well. Still, the Strassen algorithm as
implemented here is not a practical algorithm in spite of the lower
complexity. Although it would start to be faster than the standard
matrix multiplication for N = 4096 and larger, it would not rival
the Numpy multiplication until N reached 1016

Implementing Strassen with a Crossover to Numpy

It is clear from the initial timings in Table 1 that to improve the
Strassen implementation we should crossover to Numpy at some
level of our recursion rather than go all the way to the base case.

As long as we are modifying the algorithm we should also
generalize it so that is will work on any size matrices. The current
strassen function described in Figure 1 will crash if given a matrix
with odd row dimension or odd column dimension. We can easily
fix this by padding matrices with a row of zeros in the case of an
odd row dimension or by padding with a column of zeros in the
case of an odd column dimension. Code for padding a single row
or column can be found below.
"""add row of zeros to bottom of matrix"""
def padRow(m):

x = []
for i in range(len(m[0])):
x.append(0)

return(np.vstack((m,x)))

def padColumn(m):
"""add column of zeros to right of matrix"""

x = []
for i in range(len(m)):
x.append(0)

return(np.hstack((m,np.vstack(x))))

Since the padded rows (or columns) will need to be removed from
the product at each level one might wonder whether padding once
to a power of 2 would be more efficient? For example, a matrix
with 17 rows and 17 columns will be padded to 18×18, but then
each of its 9×9 submatrices will be padded to 10×10 which will
require 5×5 submatrices to be padded and so on. Cases like this
could be avoided by padding the original matrix to 32×32. This
was tested however, and it was found that padding of a single row
at multiple levels of recursion is considerably faster than padding
to the next power of 2.

To ensure that the new version of Strassen based matrix
multiplier shown below works as expected, more than a million
matrix multiplications of various sizes and random values were

computed and compared to Numpy.matmul to ensure both gave
the same answer.
#x,y, are matrices to be multiplied. crossoverCutoff
#is the dimension where recursion stops.
def strassenGeneral(x, y,crossoverCutoff):
#Base case when size <= crossoverCutoff
if len(x) <= crossoverCutoff:

return np.matmul(x,y)
if len(x[0])<= crossoverCutoff:

return np.matmul(x,y)

rowDim = len(x)
colDim = len(y[0])
#if odd row dimension then pad
if (rowDim & 1 and True):

x = padRow(x)
y = padColumn(y)

#if odd column dimension then pad
if (len(x[0]) & 1 and True):

x = padColumn(x)
y = padRow(y)

if (len(y[0]) & 1 and True):
y = padColumn(y)

#split the matrices into quadrants.
a, b, c, d = split(x)
e, f, g, h = split(y)

#Compute the 7 products, recursively (p1, p2...p7)
if (len(x) > crossoverCutoff):
p1 = strassenGeneral(a, f - h,crossoverCutoff)
p2 = strassenGeneral(a + b, h,crossoverCutoff)
p3 = strassenGeneral(c + d, e,crossoverCutoff)
p4 = strassenGeneral(d, g - e,crossoverCutoff)
p5 = strassenGeneral(a + d, e + h,crossoverCutoff)
p6 = strassenGeneral(b - d, g + h,crossoverCutoff)
p7 = strassenGeneral(a - c, e + f,crossoverCutoff)
else:
p1 = np.matmul(a, f - h)
p2 = np.matmul(a + b, h)
p3 = np.matmul(c + d, e)
p4 = np.matmul(d, g - e)
p5 = np.matmul(a + d, e + h)
p6 = np.matmul(b - d, g + h)
p7 = np.matmul(a - c, e + f)

#combine the 4 quadrants into a single matrix
c = np.vstack((np.hstack((p5+p4-p2+p6,p1+p2)),

np.hstack((p3+p4,p1+p5-p3-p7))))

x = len(c) - rowDim
if (x > 0):

c = c[:-x, :] #delete padded rows
x = len(c[0]) - colDim
if (x > 0):

c = c[:,:-x] #delete padded columns

return c

Timings of the Strassen Algorithm with Crossover to Numpy
for Square Matrices

Before checking the performance on random inputs we check the
performance on square matrices of size 2n × 2n for various n.
The results for the first machine which is a MacBook Pro 16
with a 6-Core Intel Core i7 at 2.6 GHz with 16GB of RAM
is shown in Table 2. The column headings are given shorthand
names but they can be described as follows. The Numpy column
contains timings in seconds for Numpy.matmul. The Strassen
column contains timings in seconds for the standard Strassen algo-
rithm shown discussed above modified from [5]. The Strassen16,
Strassen32, etc. columns represent timings from the Python code

20 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Numpy Strassen 1 Standard Multiply

Matrix
Size

Time
(seconds)

Current/
Previous

Time
(seconds)

Current/
Previous

Time
(seconds)

Current/
Previous

128x128 0.002 - 3.777 - 1.869 -

256x256 0.02 8.728 26.389 6.986 15.031 8.043

512x512 0.222 10.999 188.781 7.154 125.279 8.334

TABLE 1: Timing for Base Algorithms on Matrices with Integer Entries. (Intel Core I7-9700 CPU @ 3.00 GHz, 8 Cores)

Matrix Size Numpy Strassen Strassen16 Strassen32 Strassen64 Strassen128 Strassen256 Strassen512 Standard

128 x 128 0.00 3.88 0.02 0.00 0.00 0.00 0.00 0.00 1.32

256 x 256 0.03 26.85 0.13 0.03 0.01 0.01 0.01 0.01 10.67

512 x 512 0.27 188.09 0.90 0.19 0.09 0.08 0.11 0.20 86.63

1024 x 1024 3.75 ——– 6.70 1.41 0.64 0.63 0.82 1.45 ——–

2048 x 2048 82.06 ——– 44.03 9.29 4.24 4.23 5.44 9.84 ——–

4096 x 4096 988.12 ——– 322.82 68.06 31.61 31.10 40.14 72.56 ——–

8192 x 8192 14722.33 ——– 2160.77 457.28 211.77 211.02 270.69 483.54 ——–

TABLE 2: Timings (seconds) for Matrix Multiplication on Square Matrices with Integer Entries. MacBook Pro 16 with Core i7 @ 2.6 GHz

Matrix Size Numpy Strassen Strassen128 Standard

Time (s) Current /
Previous

Time (s) Current /
Previous

Time (s) Current /
Previous

Time (s) Current /
Previous

128 x 128 0.00 3.88 0.00 1.32

256 x 256 0.03 11.30 26.85 6.93 0.01 7.39 10.67 8.07

512 x 512 0.27 10.20 188.09 7.00 0.08 7.48 86.63 8.12

1024 x 1024 3.75 13.69 ——– 0.63 7.72 ——–

2048 x 2048 82.06 21.89 ——– 4.23 6.67 ——–

4096 x 4096 988.12 12.04 ——– 31.10 7.35 ——–

8192 x 8192 14722.33 14.90 ——– 211.02 6.78 ——–

TABLE 3: Timings (seconds) for Matrix Multiplication on Square Matrices with Integer Entries. MacBook Pro 16 with Core i7 @ 2.6 GHz

Matrix Size Numpy Strassen Strassen128 Standard

Time (s) Current /
Previous

Time (s) Current /
Previous

Time (s) Current /
Previous

Time (s) Current /
Previous

128 x 128 0.00 3.76 0.00 1.96

256 x 256 0.02 8.80 27.67 7.36 0.01 6.96 15.60 7.95

512 x 512 0.22 10.77 183.88 6.64 0.10 7.06 124.48 7.98

1024 x 1024 1.94 8.97 1283.43 6.98 0.68 7.03 1002.26 8.05

2048 x 2048 77.42 439.91 8979.96 7.00 4.84 7.07 8426.06 8.41

4096 x 4096 760.60 9.82 63210.78 7.04 35.40 7.31 68976.25 8.19

8192 x 8192 7121.69 9.36 441637.97 6.99 239.26 6.76 549939.81 7.97

TABLE 4: Timings (seconds) for Matrix Multiplication on Square Matrices with Integer Entries. Windows 11 with Core i7 @ 3.0 GHz

A MODIFIED STRASSEN ALGORITHM TO ACCELERATE NUMPY LARGE MATRIX MULTIPLICATION WITH INTEGER ENTRIES 21

Matrix Size Numpy Strassen Strassen128 Standard

Time (s) Current /
Previous

Time (s) Current /
Previous

Time (s) Current /
Previous

Time (s) Current /
Previous

128 x 128 0.00 4.58 0.00 1.82

256 x 256 0.03 9.56 32.71 7.14 0.02 7.91 15.11 8.29

512 x 512 0.45 17.77 228.34 6.98 0.11 6.76 122.98 8.14

1024 x 1024 4.21 9.38 ——– 0.78 7.26 ——–

2048 x 2048 98.00 23.27 ——– 5.61 7.21 ——–

4096 x 4096 1029.60 10.51 ——– 41.88 7.46 ——–

8192 x 8192 10050.31 9.76 ——– 287.43 6.86 ——–

TABLE 5: Timings (seconds) for Matrix Multiplication on Square Matrices with Integer Entries. Linux with Xeon E5-2680 v3 @ 2.50GHz

for strassenGeneral shown above with various crossover
levels. The Standard column contains timings for the standard
matrix multiplication algorithm previously discussed. We see in
Table 2 that using a Strassen type algorithm and crossing over to
Numpy when Matrix size is 128 gives a very slight advantage over
crossing over at 64. Crossing over at larger or smaller values is
slower than crossing over at size 128. We also see that not crossing
over at all is even slower than the standard matrix multiplication
for these sizes. Since the non-crossover Strassen algorithm and the
standard matrix multiplication are not competitive and very slow,
we stopped timing them after the 512× 512 case because they
would have taken a very long time to compute.

Table 3 is similar to Table 2 except we’ve removed all but
the best crossover case for Strassen (crossover 128) and added
columns to show the current time divided by the previous time.
These latter columns are instructive because for Strassen we
expect that if we double the size of the matrices the timing
should increase seven-fold and it does. Similarly for the standard
algorithm when we double the input size we expect the timing to
increase eight-fold which it does. We don’t exactly know what to
expect for Numpy without closely examining the code, but we see
that for the largest 2 cases when we double the size of the inputs
the timing increases 12 to 15-fold. This suggests that if we further
increase the size of the matrices that the Strassen type algorithm
with a crossover at size 128 will continue to be much faster than
the Numpy computation for square matrices with integer entries.

Normally, we would expect a matrix multiplication to increase
no more than eight-fold when we double the inputs. This suggests
that Numpy is tuned for matrices of size 128× 128 or smaller.
Alternatively, perhaps at larger sizes there are more cache misses
in the Numpy algorithm. Without a close examination of the
Numpy code it is not clear which is the case, but the point is that
a divide and conquer algorithm such as Strassen combined with
Numpy will perform better than Numpy alone on large matrices
with integer entries.

Timings from a second machine are shown in Table 4. These
timings are for the same experiment as above on a Windows 11
Machine with 3.0 GHz Core i7-9700 with 8 cores and 32 GB
of RAM. In this case we see again that using a Strassen type
algorithm that crosses over to Numpy at size 128 is considerably
faster than using Numpy alone for large matrices with integer
entries. Moreover we see that for the largest cases if we double
the matrix size, the timings for the Strassen based algorithm will
continue to grow seven-fold while the Numpy timings will grow
ten-fold for each doubling of input-size.

Since both of these trials were based on Intel i7 chips, we ran a
third experiment on a Linux machine with an Intel Xeon E5-2680
v3 @ 2.50GHz with 16 GB of RAM. Timings from this machine
are in Table 5 and are similar to the previous tables.

Timings of the Strassen Algorithm with Crossover to Numpy
for Arbitrary Matrices

Although the Python function strassenGeneral shown above
will work for Arbitrary sized matrices, to this point we have only
shown timings for square matrices N ×N where N is a power
of 2. The reason for this is that growth rates in timings when N
increases are easier to track for powers of 2. However, to show that
the Strassen type algorithm with crossover is viable in general we
need to test for a variety of arbitrary sizes. For this experiment it
is not possible to show the results in simple tables such as Table 2
through Table 5.

To motivate the next experiment consider the sample output
shown below:
(1701 x 1267) * (1267 x 1678)
numpy (seconds) 15.43970187567
numpyDot (seconds) 15.08170314133
a @ b (seconds) 15.41474305465
strassen64 (seconds) 3.980883831158
strassen128 (seconds) 2.968686999753
strassen256 (seconds) 2.88325377367
DC64 (seconds) 6.42917919531
DC128 (seconds) 4.37878428772
DC256 (seconds) 4.12086373381

(1659 x 1949) * (1949 x 1093)
numpy (seconds) 33.79341135732
numpyDot (seconds) 33.8062295187
a @ b (seconds) 33.6903500761
strassen64 (seconds) 2.929703416
strassen128 (seconds) 2.54137444496
strassen256 (seconds) 2.75581365264
DC64 (seconds) 4.581859096884
DC128 (seconds) 4.08950223028
DC256 (seconds) 4.01872271299

(1386 x 1278) * (1278 x 1282)
numpy (seconds) 7.96956253983
numpyDot (seconds) 7.54114297591
a @ b (seconds) 8.81335245259
strassen64 (seconds) 2.425855960696
strassen128 (seconds) 1.823907148092
strassen256 (seconds) 1.74107060767
DC64 (seconds) 3.8810345549
DC128 (seconds) 2.672704061493
DC256 (seconds) 2.603429134935

This snippet of output shows three different matrix multiplies
using three different variations of three different methods on

22 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

the Linux machine with the Xeon processor mentioned above.
To illustrate what this output means consider the first block of
output which represents a 1701 × 1267 matrix multiplied by a
1267 × 1678 matrix. The first three timings are variations of
Numpy. The first is Numpy.matmul, the second is Numpy.dot and
the third is called via the @ operator [4] which is really just an
infix operator that should be the same as Numpy.matmul. The next
three timings are for the Strassen type algorithm with crossover to
Numpy at size 64, 128, and 256. The third set of timings are Divide
and Conquer matrix multiplications that crossover to Numpy at
size 64, 128, and 256. These latter three methods were added since
much of the increase in efficiency of the Strassen type algorithms
is due to their divide and conquer approach which allows us to
compute Numpy multiplications on smaller matrices. We don’t
show the source code for this approach because it is not faster than
the Strassen approach, however it can be produced with a simple
modification of the code in strassenGeneral. The Strassen
algorithm divides the first matrix into sub-matrices a,b,c,d and
the second matrix into e, f ,g,h and reassembles via seven clever
products. The regular divide and conquer approach creates the
final product as the four submatrices a ∗ e+ b ∗ g, a ∗ f + b ∗ h,
c∗ e+d ∗g, and c∗ f +d ∗h. This uses eight products but is more
straightforward than Strassen and allows for recursively calling
itself until crossing over to Numpy for the smaller products.

We note for the three arbitrary size matrix multiplies shown
above that the Strassen based approaches are fastest, and the
alternative divide and conquer approaches are two to three times
faster than the Numpy method but slower than the Strassen
method.

To create a good experiment we set three variables dim1,
dim2, dim3 to random integers between 1000 and 8000 and then
created two matrices one of size (dim1 × dim2) and the other
of size (dim2 × dim3). Both were filled with random integers
and multiplied using the 9 methods described above. We then
put this experiment into a loop to repeat several thousand times.
In actuality we stopped the experiment on the MacBook and
the Windows machine after about 2 weeks and we stopped the
Linux machine after a few hours because the latter machine is a
shared machine used by students at Rowan and the timings are not
accurate when it has many users.

The question is how do we present the results of several
hundred such experiments on random sized matrices in a compact
manner? Since we have a large number of different dimension
multiplies they cannot easily be put into a table so instead we
decided to organize the results by elapsed time. To see how
consider Figure 2. We bin the Strassen128 results into round
number of seconds and we see the x-axis of Figure 2 shows the
number of seconds of Strassen128. Let us consider the case of
102 seconds. The matrix multiply (6977×4737)∗ (4737×7809)
took 101.56 seconds using Strassen128 and took 2482.76
seconds using Numpy. Meanwhile the matrix multiply (7029×
7209)∗(7209×6283) using Strassen128 took 101.80 seconds
compared to 2792.11 seconds using Numpy. These are the only
2 cases that round to 102 seconds for Strassen128 so they
get bucketed together and averaged. The Average Strassen128
time for these 2 cases is 101.68 seconds and the average Numpy
time for these 2 cases is 2637.43 seconds. In the Figure we
normalize by Strassen128 so the Strassen128 value for
102 seconds is 1.0 and the Numpy value for 102 seconds is
2637.43/101.68 = 25.94. Thus for matrix multiplies that take 102
seconds for Strassen128 the Numpy routines take almost 26

times as long which in this case is 44 minutes versus less than 2
for the Strassen128 routine.

Now that we’ve described how Figure 2 is derived it is useful
to describe several things shown by the Figure. First note that for
large matrix multiplies that take at least 15 seconds for the Strassen
type algorithm that crosses over at size 128, the regular Numpy
algorithms all take at least 8 times as long and in some cases up
to 30 times as long. Moreover the general trend is increasing so
that if we tested even larger sizes we would expect the disparity
to continue to increase. Another item to notice is there is really
no difference between Numpy.matmul, Numpy.dot or the infix
operator a@b as expected. Also notice that the Strassen algorithms
with crossover are almost twice as fast as the more straightforward
divide and conquer algorithm discussed above. The last item to
notice is the crossing over at size 128 seems to work best, just as
in the square cases of Table 2.

Figure 3 is similar to Figure 2 except these timings are done
on the Windows 11 machine described above. Here we see that
the Numpy algorithms take between 8 and 16 times as long as the
Strassen type algorithm that crosses over to Numpy at size 128.
One other difference between the Mac and Windows machine is
that crossing over at size 64 is better than crossing over at size 128
more frequently on the Windows machine.

Since the run-time to compute these last 2 figures is more than
several weeks, we did not repeat the experiment on the shared
machine with the Xeon processor, however we did run it for
several hours and the Strassen128 algorithm seems to be 8 to 16
times faster than Numpy for cases longer than 15 seconds just as
with the Mac and Windows machines.

Conclusions

Numpy is a Python library which is widely used in the math
and scientific community because of its speed. In this paper we
presented a Strassen type algorithm that greatly improves on
Numpy performance for large matrices with integer entries. For
integer matrices with row dimension or column dimension in
the thousands the algorithm can be 8 to 30 times faster than
Numpy. The algorithm is the standard Strassen divide and conquer
algorithm but it crosses over to Numpy when either the row
or column dimension of one of the matrices drops below 128.
The algorithm was tested on a MacBook, an I7 based Windows
machine as well as a Linux machine running a Xeon processor
with similar results. Although there is no apparent advantage for
matrices with real entries, there are a number of applications for
matrices with integer coefficients.

REFERENCES

[1] Z. Fink, S. Liu, J. Choi, M. Diener, and L. V. Kale, “Performance evalu-
ation of python parallel programming models: Charm4py and mpi4py,”
2021 IEEE/ACM 6th International Workshop on Extreme Scale Pro-
gramming Models and Middleware (ESPM2), pp. 38–44, 2021, https:
//doi.org/10.1109/ESPM254806.2021.00010.

[2] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathe-
matik, pp. 354–356, 1969, https://doi.org/10.1007/BF02165411.

[3] D. Harvey and J. V. der Hoeven, “On the complexity of integer matrix
multiplication,” Journal of Symbolic Computation, pp. 1–8, 2018, https:
//doi.org/10.1016/j.jsc.2017.11.001.

[4] Python.org, “Pep 465: A dedicated infix operator for matrix multiplica-
tion,” Available at https://peps.python.org/pep-0465/, 2014.

[5] GeeksforGeeks, “Strassen’s matrix multiplication - geeksforgeeks,” Avail-
able at https://www.geeksforgeeks.org/strassens-matrix-multiplication/,
2022.

[6] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algo-
rithms. Cambridge, MA: MIT Press, 2009.

A MODIFIED STRASSEN ALGORITHM TO ACCELERATE NUMPY LARGE MATRIX MULTIPLICATION WITH INTEGER ENTRIES 23

Fig. 2: Timing of Multiple Algorithms Relative to Strassen128 on MacBook Pro 16 with Core i7 @ 2.6 GHz.

Fig. 3: Timing of Multiple Algorithms Relative to Strassen128 on Windows 11 with Core i7 @ 3.0 GHz.

24 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

An Accessible Python based Author Identification
Process

Anthony Breitzman‡∗

✦

Abstract—Author identification also known as ‘author attribution’ and more
recently ‘forensic linguistics’ involves identifying true authors of anonymous
texts. The Federalist Papers are 85 documents written anonymously by a com-
bination of Alexander Hamilton, John Jay, and James Madison in the late 1780’s
supporting adoption of the American Constitution. All but 12 documents have
confirmed authors based on lists provided before the author’s deaths. Mosteller
and Wallace in 1963 provided evidence of authorship for the 12 disputed docu-
ments, however the analysis is not readily accessible to non-statisticians. In this
paper we replicate the analysis but in a much more accessible way using modern
text mining methods and Python. One surprising result is the usefulness of filler-
words in identifying writing styles. The method described here can be applied to
other authorship questions such as linking the Unabomber manifesto with Ted
Kaczynski, identifying Shakespeare’s collaborators, etc. Although the question
of authorship of the Federalist Papers has been studied before, what is new in
this paper is we highlight a process and tools that can be easily used by Python
programmers, and the methods do not rely on any knowledge of statistics or
machine learning.

Index Terms—Federalist, Author Identification, Attribution, Forensic Linguistics,
Text-Mining

Introduction

Author attribution is a long-standing problem involving identify-
ing true authors in anonymous texts. Recently the problem has gar-
nered headlines with several high profile cases that were made pos-
sible with computers and text mining methods. In 2017 The Dis-
covery Channel created a TV series called Manhunt:Unabomber
that showed how Forensic Linguistics was used to determine
that Ted Kaczynski was the author of the Unabomber manifesto
[1]. In 2016 a headline from The Guardian shook the literary
world: "Christopher Marlowe credited as one of Shakespeare’s co-
writers" [2]. It was long suspected that Shakespeare collaborated
with others, but since Marlowe was always considered his biggest
rival, it was quite a surprise that the two collaborated. See [3]
for other examples including the best seller Primary Colors about
the Clinton campaign that was published anonymously and the
question of authorship of "Twas the Night Before Christmas" as
well as other examples

* Corresponding author: breitzman@rowan.edu
‡ Rowan University Department of Computer Science

Copyright © 2023 Anthony Breitzman. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

About this Paper

Purpose of this Paper

While forensic linguistics may be a recent name for such attri-
bution, the idea of using statistical modeling to identify authors
goes back to at least 1963 when Mosteller and Wallace published
their ground-breaking study of the Federalist Papers [4]. Since that
study was published in a Statistics journal, it requires a thorough
understanding of statistics to understand it. Because our audience
consists mostly of Software Engineers instead of Statisticians, we
present a more accessible analysis of the Federalist Papers which
can be applied to other author attribution problems. In this paper
we endeavor to show a self-contained process that can be used for
author attribution problems as well as other text-analysis problems
such as gender identification of texts, genre classification, or
sentiment analysis.

The Contribution of this Paper

The use of the Federalist Papers as a case study in author
attribution is not new and dates to 1963 [4]. However, this paper’s
contribution is that it shows a process for author attribution and
text mining in general that requires only knowledge of Python and
requires no previous background in statistics or machine learning.

Outline of the Remaining Paper

We first describe how rudimentary author attribution was done
before 1963. We then briefly describe the notion of Exploratory
Data Analysis by way of a key table before showing the Python
tools necessary for building said table. We then discuss how to
build a dictionary of terms for each potential author and use
Python to turn that dictionary into a set of probabilities that can be
used as a Naive Bayes classifier. We then present a self-contained
explanation of Naive Bayes and use it to predict the author of
the disputed Federalist Papers. Finally, we show how a Python
programmer who has little background in machine learning, can
still successfully run numerous machine learning models to do
predictions.

The Disputed Federalist Papers as a Case Study

This brief history is shortened from [4] which itself is a much
shortened history from [5] and [6]. The Federalist Papers were
a series of essays written by Alexander Hamilton, John Jay, and
James Madison published under the pseudonym "Publius" in New
York newspapers in 1787 and 1788 in support of ratification of
the constitution. It is surmised that the authors were not anxious
to claim the essays for decades because the opinions in the essays

AN ACCESSIBLE PYTHON BASED AUTHOR IDENTIFICATION PROCESS 25

Fig. 1: Boxplots showing Sentence Length Statistics Federalist Au-
thors

sometimes opposed positions each later supported [4]. Hamilton
was famously killed in a duel in 1804 but he left a list of
the essays he wrote with his lawyer before his death. Madison
later generated his own list a decade later and attributed any
discrepancies between the lists as "owing doubtless to the hurry
in which (Hamilton’s) memorandum was made out" [5]. Of the
85 essays, the 5 essays written by Jay are not in dispute. Another
51 by Hamilton, 14 by Madison, and 3 joint essays coauthored
by Hamilton and Madison are also not in dispute. However, 12
essays (Federalist Nos. 49-58, 62 amd 63) were claimed by both
Hamilton and Madison in their respective lists [4].

Similarities of Hamilton and Madison as Writers

Before Mosteller used advanced statistical modeling for author
attribution, the standard approach was to look at things like
sentence length to identify authors. In [7] Mosteller explains why
this won’t work with Hamilton and Madison because they are too
similar.

The writings of Hamilton and Madison are difficult
to tell apart because both authors were masters of
the popular Spectator style of writing-complicated and
oratorical. Never use a short word if a long one will
do. Double negatives are good, triple even better. To
illustrate, in 1941 Frederick Williams and I counted sen-
tence lengths for the undisputed papers and got means of
34.55 and 34.59 words, respectively, for Hamilton and
Madison, and average standard deviations for sentence
lengths of 19.2 and 20.3. [7]

To illustrate the quote above, consider the boxplot in Figure 1
of the non-disputed Federalist Papers of Hamilton, Madison, and
Jay.

We see in Figure 1 that not only do Hamilton and Madison
have the same median sentence length, but they have the same
25-percentile and 75-percentile sentence length and very similar
minimum and maximum sentence lengths. In comparison John Jay
tends to use longer sentences. In general, before 1963 this kind
of analysis was used for author attribution, and it often works.
However, as we see, Hamilton and Madison were very similar
writers. The boxplot above is easily generated with matplotlib
and a sentence tokenizer discussed below. We omit the code for
space considerations, however all of the code discussed in this pa-

per can be found at https://github.com/AbreitzmanSr/SciPy2023-
AuthorAttribution.

Exploratory Data Analysis

Before jumping into modeling and code examples, we’ll start with
a key table that will suggest that Madison is the author of most if
not all of the disputed papers. Table 1 contains a list of Hamilton’s
and Madison’s favorite words. (Although John Jay is included in
the table, he is not really of interest in this study because he has
laid no claim to the disputed papers. The only reason the 12 papers
are disputed is because both Hamilton and Madison had claimed
authorship of them.)

Note that Hamilton uses "upon" many times in place of "on".
In the disputed papers both terms are used at the Madison rate
rather than the Hamilton rate.

Madison uses "whilst" instead of "while". While is never used
in the disputed papers but "whilst" is used in half of them.

Several words like "democratic", "dishonorable", "precision",
"inconveniency", etc. are not used in any Hamilton documents but
are used in both the disputed papers and Madison documents.

"While", "enough", "nomination", "kind" appear in Hamilton
documents but either not at all in the disputed papers or at the
Madison rate within the disputed papers

Generating the previous table is an example of what Data
Scientists call Exploratory Data Analysis which is an initial inves-
tigation on data to discover patterns and trends, spot anomalies,
and generate statistical summaries which might help us check
assumptions and perform hypotheses about our data.

The previous table suggests Madison is the likely author
of most of the disputed Federalist Papers. But the table did
materialize out of nowhere. There are 2 key components to the
previous table: We need a method to identify words that have a
high probability of being used by one author but not the other and
we need a way to identify usage per 1000 words for each author

Both of those components are easily done using Python’s
NLTK (Natural Language Tool-kit) library [8].

Building the Favorite Words Table

Project Gutenberg [9] has the Federalist Papers as a plain-text e-
book with each essay as an individual chapter. The Python code
required to put the plain text of the book into a long string is
below.

import re
from urllib import request

#utility functions for slicing text
def left(s, amount):
return s[:amount]

def right(s, amount):
return s[-amount:]

#Get Federalist Papers
url="https://www.gutenberg.org/cache/epub/1404/pg1404.txt"

response=request.urlopen(url)
raw=response.read()
text=raw.decode("utf-8-sig")

#replace multiple spaces with single space
text=re.sub("\s+", " ", text)

#kill all the front matter of the book
text=right(text,len(text)-text.find('FEDERALIST No.'))

26 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

% of Papers Containing Word Usage Per 1000 Words

word Hamilton Madison Joint Disputed Jay Hamilton Madison Joint Disputed Jay

upon 100 21.4 66.6 16.6 20 3.012 0.161 0.312 0.112 0.107

on 98 100 100 100 100 3.037 6.817 6.094 7.077 4.721

very 72.5 85.7 100 91.6 60 0.583 1.04 0.937 2.209 1.394

community 62.7 14.2 33.3 25 20 0.558 0.046 0.156 0.187 0.107

while 39.2 0 0 0 40 0.291 0 0 0 0.214

enough 35.2 0 33.3 0 0 0.267 0 0.156 0 0

nomination 13.7 0 0 0 0 0.178 0 0 0 0

consequently 5.8 57.1 0 41.6 40 0.032 0.277 0 0.337 0.429

lesser 3.9 35.7 0 16.6 20 0.016 0.161 0 0.149 0.107

whilst 1.9 57.1 66.6 50 0 0.008 0.277 0.312 0.337 0

although 1.9 42.8 0 33.3 80 0.008 0.161 0 0.149 0.536

composing 1.9 42.8 33.3 16.6 0 0.008 0.254 0.156 0.074 0

recommended 1.9 35.7 0 8.3 20 0.008 0.138 0 0.037 0.429

sphere 1.9 35.7 0 16.6 0 0.008 0.184 0 0.112 0

pronounced 1.9 28.5 0 16.6 0 0.008 0.115 0 0.074 0

respectively 1.9 28.5 0 16.6 0 0.008 0.138 0 0.074 0

enlarge 0 28.5 0 16.6 0 0 0.115 0 0.074 0

involves 0 28.5 0 16.6 0 0 0.092 0 0.074 0

stamped 0 28.5 33.3 0 0 0 0.092 0.156 0 0

crushed 0 21.4 0 8.3 0 0 0.069 0 0.037 0

democratic 0 21.4 0 8.3 0 0 0.069 0 0.037 0

dishonorable 0 21.4 0 8.3 0 0 0.069 0 0.037 0

precision 0 21.4 0 8.3 0 0 0.069 0 0.037 0

reform 0 21.4 33.3 16.6 0 0 0.161 0.156 0.074 0

transferred 0 21.4 0 8.3 0 0 0.069 0 0.037 0

universally 0 21.4 0 8.3 20 0 0.069 0 0.037 0.107

bind 0 14.2 0 8.3 20 0 0.069 0 0.037 0.107

derives 0 14.2 33.3 8.3 0 0 0.069 0.156 0.037 0

drawing 0 14.2 0 8.3 0 0 0.069 0 0.037 0

function 0 14.2 0 8.3 0 0 0.069 0 0.037 0

inconveniency 0 14.2 0 16.6 0 0 0.069 0 0.074 0

obviated 0 14.2 0 8.3 0 0 0.069 0 0.037 0

patriotic 0 14.2 0 25 20 0 0.069 0 0.112 0.107

speedy 0 14.2 0 8.3 0 0 0.069 0 0.037 0

TABLE 1: Favorite Words of Hamilton and Madison

#kill back matter
text=left(text,

text.find('*** END OF THE PROJECT GUTENBERG'))

Project Gutenberg [9] has the Federalist Papers stored as a book
with the individual papers as chapters. In the next code snippet
we reorganize the text so that each author’s Federalist papers
are contained in a list. For example the variable hamilton will
contain a list of Hamilton’s 51 known Federalist Papers.

#returns the main text of a Federalist paper.
def getFedText(s):
if (len(s)>0):
t = s + ' PUBLIUS' #additional sentinel in case

#it's not there.

#(in most cases it is)
i = t.find('PUBLIUS')
t = left(t,i)
i = t.find('State of New York')
t = right(t,len(t)-(i+19))
return t.strip()
else:
return ""

#Break Federalist papers up into individual texts
FedChapters=re.split('\sFEDERALIST No\. \d*\s',' '+text)

#Store Hamilton's Federalist papers in a Hamilton
#list, Madison's in a Madison list, etc.
hamilton = []
jay = []

AN ACCESSIBLE PYTHON BASED AUTHOR IDENTIFICATION PROCESS 27

madison = []
joint = []
disputed = []
for i in range(len(FedChapters)):
if (i in {2,3,4,5,64}):
jay.append([i,[getFedText(FedChapters[i])]])

else:
if (i in {18,19,20}):
joint.append([i,[getFedText(FedChapters[i])]])

else:
if (i in {49,50,51,52,53,54,55,56,57,58,62,63}):

disputed.append(
[i,[getFedText(FedChapters[i])]])

else:
if (i in {10,14,37,38,39,40,41,42,43,

44,45,46,47,48}):
madison.append(

[i,[getFedText(FedChapters[i])]])
else:
if (i > 0):
hamilton.append(

[i,[getFedText(FedChapters[i])]])

Introduction to NLTK Tokenizers

NLTK [8] makes it easy to make lists of sentences, lists of words,
count sentences, count words in sentences etc. Here’s an example
of how to first split a text into sentences and then make a Python
list of each word in each sentence. (This could be done with split()
but we would need multiple sentence delimiters and we would lose
the punctuation if we weren’t careful.)

from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize

text_2sentences = "A short sentence. Another
short sentence."

sentences = sent_tokenize(text_2sentences)
for x in sentences:
print(word_tokenize(x))

['A','short','sentence','.']
['Another','short','sentence','.']

We will leverage the NLTK word tokenizer to build dictionaries
of word frequencies for each author.

from nltk.tokenize import word_tokenize

hamiltonDicts=[]#list of dictionaries containing
#word freq for each of Hamilton's
#Federalist Papers

madisonDicts=[]
disputedDicts=[]
jointDicts=[]

def getDocDict(str1):
#returns a dictonary containing frequencies of
#any word in string.
#e.g. str1 = 'quick brown fox is quick.'
returns {quick:2, brown:1, fox:1, is:1}
x = {}
words = word_tokenize(str1.lower().strip())
for b in words:

if b in x:
x[b]+=1

else:
x[b]=1

return(x)

for a in hamilton:
hamiltonDicts.append(getDocDict(a[1][0]))

for a in madison:

madisonDicts.append(getDocDict(a[1][0]))

for a in joint:
jointDicts.append(getDocDict(a[1][0]))

for a in disputed:
disputedDicts.append(getDocDict(a[1][0]))

It is now straightforward to identify word usage for each author.
That is, given a word such as "upon" it is easy to identify the
percent of each author’s Federalist papers that mention "upon."
It’s also easy to identify the usage of "upon" per thousand words
for each author. What we haven’t addressed is how to find words
that are favorites of Hamilton but not Madison and vice-versa. We
will do that by building a Naive Bayes dictionary for each author,
but we will assume no prior knowledge of Naive Bayes to do so.

The code below creates a document frequency distribution
of every word mentioned in the Federalist Papers. That is, for
every word mentioned, we count how many documents the word
appears in. We then remove any word that is only mentioned
in one or two documents because it will have no discriminating
value. Similarly we remove any word that appears in all documents
because the only words mentioned in all documents are so-called
stopwords like "is", "and","the" that both authors use. Note words
like "while" and "whilst" might be considered stopwords, but these
will be kept because they are used by only one of the authors and
thus will not reach the 80 document threshold to be discarded.

completeDict={}#dictionary containing any word
#mentioned in any of the Federalist
#papers and the number of Federalist
#Papers containing the word.

kills = [',','.',"''",'',';','-',')','(']
authDicts = [hamiltonDicts,madisonDicts,

jointDicts,disputedDicts]
for authDict in authDicts:
for a in authDict:
for x in a:

if (x not in kills):
if x in completeDict:

completeDict[x]+=1
else:

completeDict[x]=1

trimDict = set() #subset of completeDict
#that contains useful words

for a in completeDict:
x = completeDict[a]
if (x >= 3 and x < 80):

trimDict.add(a)

print(len(completeDict),len(trimDict))

8492 3967

At this point completeDict contains document frequencies
for the 8,492 unique words in all the Federalist papers and
trimDict contains the subset of 3,967 potentially useful words.
We now need to find words that are much more likely to be
used by Hamilton than Madison and vice-versa. For each word
in trimDict we will compute the probability that Hamilton or
Madison used it. The words where Hamilton’s probability is 5+
times more likely than Madison (or vice-versa) is an interesting
word that gets selected for the previously shown Table 1.

The code below will help us get each author’s favorite words.
For each word in trimDict we will count how often each author
uses it. We next total up all of the word frequencies for each

28 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

author and store them in the denominators hamiltonNBdenom
and madisonNBdenom.

#build Naive Bayes Dictionaries
#for Hamilton and Madison
hamiltonNBwordDicts = {}
madisonNBwordDicts = {}

hamiltonNBdenom = madisonNBdenom = 0

for a in trimDict: #this is equivalent
#to Laplace Smoothing

hamiltonNBwordDicts[a]=madisonNBwordDicts[a]=1
hamiltonNBdenom += 1
madisonNBdenom += 1

for dictionary in hamiltonDicts:
for word in dictionary:
if (word in trimDict):
hamiltonNBwordDicts[word]+=dictionary[word]
hamiltonNBdenom +=dictionary[word]

for dictionary in madisonDicts:
for word in dictionary:
if (word in trimDict):
madisonNBwordDicts[word]+=dictionary[word]
madisonNBdenom += dictionary[word]

For those unfamiliar with Naïve Bayes we are just computing
word frequencies of the potentially useful words for each author
and making sure no word probability is 0. (This is called Laplace
Smoothing, but essentially we’re trying to avoid cases where
Hamilton uses a word very few times but Madison uses it 0 times
(or vice-versa) because that will pollute our table with a bunch of
useless words.) We need a denominator (consisting of the sum of
frequencies of all words) in order to compute a probability of an
author using the word, then the probability of an author using that
word is just the frequency of the word divided by the denominator.

It is now straightforward to identify words that are favorites of
Hamilton but not Madison and vice-versa as follows:

interesting = []
tableData = []
j = 0
for i,a in enumerate(trimDict):
h1 = hamiltonNBwordDicts[a]/hamiltonNBdenom
m1 = madisonNBwordDicts[a]/madisonNBdenom
if (m1/h1 > 5 or h1/m1 > 5):
interesting.append(a)
if (j < 10):

tableData.append([a,m1/h1,h1/m1])
j+=1

from tabulate import tabulate
print (tabulate(tableData,

headers=["FavoriteWord","Mad. Pr/Ham. Pr",
"Ham. Pr/Mad. Pr"]))

FavoriteWord Mad. Pr/Ham. Pr Ham. Pr/Mad. Pr
-------------- ----------------- -----------------
enumeration 6.08567 0.164321
surely 10.1428 0.0985923
defined 5.07139 0.197185
whilst 16.482 0.0606722
respectively 8.87493 0.112677
address 5.07139 0.197185
usurped 5.07139 0.197185
while 0.12191 8.20279
obviated 5.79072 0.17269
upon 0.0557395 17.9406

We of course cut off the table of "interesting" words because of
space considerations. As expected, we see that the the probability

of "whilst" being used by Madison is 16 times as likely as it being
used by Hamilton. Similarly, "upon" being used by Hamilton
is 18 times as likely as it being used by Madison. To get the
table of author favorite words shown above in Table 1 we just
need to calculate the percentage of papers from each author
that contain the words, and also compute the usage per 1000
words for each author. Both of those calculations are straight-
forward so we omit the code, however it can be found at at
https://github.com/AbreitzmanSr/SciPy2023-AuthorAttribution.

Naive Bayes Model

We now have everything we need to build a model to predict
the author of the disputed Federalist Papers. We assume no prior
knowledge of Naive Bayes, but the interested reader can see
[10] or many other books for a full derivation. For our pur-
poses we only care that: P(Author|word1,word2, . . . ,wordN) =
P(word1|Author) ∗P(word2|Author) ∗ . . . ∗P(wordN|author)/k.
That is, the conditional probability that a paper (word1 through
wordN) is authored by Hamilton or Madison is equal to the
product of the probabilities of each word belonging to the authors
then divided by a constant k. (The equality is only true if the
words are independent. Since we don’t care about the actual
probabilities, but only which author has the larger value, we don’t
need independence.) The constant k is actually another probability
that is hard to compute, but since it’s the same for both authors all
we really need is the following pseudocode:

Text = [word1, word2, ..., wordN]
if (P(word1|Hamilton)*P(word2|Hamilton)*...*

P(wordN|Hamilton) >
P(word1|Madison)*P(word2|Madison)*...*
P(wordN|Madison)):

return(Hamilton)
else:

return(Madison)

The actual Python code shown below is slightly different than
the pseudocode above. Since we are computing the product of
thousands of very small values there is a risk of underflow so
instead of the product of many small constants we compute the
sum of the logs of many small constants (e.g. Log(a*b) = Log(a)
+ Log(b)). Thus, the Python code looks like the following:

import math
#given a document return 'hamilton' if NaiveBayes prob
#suggests Hamilton authored it. similarly return
#'madison' if he is the likely author
def NB_federalist_predict(docDict,vocab1=trimDict):
h_pr = m_pr = 0
for word in docDict:
if (word in vocab1):
h_pr += float(docDict[word])*(math.log(

hamiltonNBwordDicts[word]/hamiltonNBdenom))
m_pr += float(docDict[word])*(math.log(

madisonNBwordDicts[word]/madisonNBdenom))

if (h_pr > m_pr):
return('hamilton')

else:
return('madison')

def check_accuracy(vocab1=trimDict):
right = wrong = 0
for a in hamiltonDicts:
if NB_federalist_predict(a,vocab1)=='hamilton':
right+=1

else:
wrong+=1

AN ACCESSIBLE PYTHON BASED AUTHOR IDENTIFICATION PROCESS 29

for a in madisonDicts:
if NB_federalist_predict(a,vocab1)=='madison':
right+=1

else:
wrong+=1

return([100*right/(right+wrong),right,wrong])

print('% correct:',check_accuracy()[0])

% correct: 100.0

The NB_federalist_predict is a Naive Bayes classifier
which takes in a document dictionary such as the elements in
hamiltonDicts or madisonDicts we defined earlier in
the paper. We check the accuracy of the classifier with the
straightforward function check_accuracy that simply looks
at the predictions for all the known Hamilton papers and all
the known Madison papers and counts the correct and erroneous
author predictions.

The classifier will work with any vocabulary but defaults to
trimDict if no vocabulary is provided. We will see below that
this allows us to run the classifier on various word lists which may
be useful for our analysis.

The last line shows that the Naive Bayes classifier correctly
predicts 100% of the undisputed papers from Hamilton and
Madison. The next thing to check is the 12 disputed papers and
see if they are attributed to Madison as the authors in [4] found.
For those familiar with machine learning or data mining we call
the known Federalist papers, the "training" set and the disputed
papers the "test" set.

Predicting Authors for the Disputed Papers

We saw how the predict function works above on the undisputed
papers. Now to see how various word sets can be used to predict
who wrote the disputed papers consider the code and output below:

#the following checks accuracy on the training set and
#then identifies how many of the disputed papers are
#by each author
def Federalist_report(words=trimDict):
if (len(words)<10):

print(words)
else:

temp = words[:9]
temp.append('...')
print(temp)

print(str(check_accuracy(words)[0])+'% accuracy')
madison = hamilton = 0
for a in disputedDicts:

if (NB_federalist_predict(a,words)=='madison'):
madison+=1

else:
hamilton+=1

print("disputed papers: madison:"+str(madison)+
', hamilton:'+str(hamilton)+'\n')

Federalist_report(interesting)
Federalist_report(['although','composing','involves',

'confederation','upon'])
Federalist_report(['although','obviated','composing',

'whilst','consequently','upon'])
Federalist_report(['against','within','inhabitants',

'whilst','powers','upon','while'])
Federalist_report(['against','upon','whilst',

'inhabitants','within'])
Federalist_report(['against','within','inhabitants',

'whilst','upon'])
Federalist_report(['against','while','whilst','upon',

'on'])
Federalist_report(['concurrent','upon','on',

'very','natural'])
Federalist_report(['while','upon','on','inconveniency'])

['enumeration', 'surely', 'whilst', 'respectively',
'relief', 'reform', 'jury', 'dishonorable',
'term', '...']
100.0% accuracy
disputed papers: madison:12, hamilton:0

['although', 'composing', 'involves', 'confederation',
'upon']
100.0% accuracy
disputed papers: madison:12, hamilton:0

['although', 'obviated', 'composing', 'whilst',
'consequently', 'upon']
96.92307692307692% accuracy
disputed papers: madison:12, hamilton:0

['against', 'within', 'inhabitants', 'whilst', 'powers',
'upon', 'while']
100.0% accuracy
disputed papers: madison:12, hamilton:0

['against', 'upon', 'whilst', 'inhabitants', 'within']
96.92307692307692% accuracy
disputed papers: madison:12, hamilton:0

['against', 'within', 'inhabitants', 'whilst', 'upon']
96.92307692307692% accuracy
disputed papers: madison:12, hamilton:0

['against', 'while', 'whilst', 'upon', 'on']
96.92307692307692% accuracy
disputed papers: madison:12, hamilton:0

['concurrent', 'upon', 'on', 'very', 'natural']
98.46153846153847% accuracy
disputed papers: madison:12, hamilton:0

['while', 'upon', 'on', 'inconveniency']
95.38461538461539% accuracy
disputed papers: madison:12, hamilton:0

The Federalist_report function shown above does two
things. It shows the vocabulary we are using to test on. It checks
the accuracy on the undisputed Federalist Papers (the training set)
and then counts how many of the disputed papers (the testing set)
the Naive Bayes model attributes to Madison and Hamilton. We
see that for several different subsets of the author Favorite words
from Table 1 the model suggests Madison is the author of all 12
of the disputed papers. We also see that for each word-set the
accuracy is at least 95% with several word-sets yielding 100%
accuracy.

More Advanced Models

Our hand-built Naive Bayes model was useful for showing how to
build a probability dictionary which was useful for our exploratory
data analysis and ultimately the model was sufficient for identify-
ing Madison as the likely author of the disputed papers. However,
Python programmers have an excellent library for running more
sophisticated models called Scikit-learn [11]. The advantage of the
Scikit-learn library is it has numerous built-in models that all take
the same parameters. Thus we can prepare the data set once and
run multiple models without needing to know how the underlying
machine learning models work.

Below we show how to run multiple models using only the
words "against," "within," "inhabitants," "whilst," and "upon" on
the undisputed and disputed Federalist Papers in less than 50 lines
of code.

30 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

def mPercent(results):
mcount = 0
tcount = 0
for a in results:
if (a == 'm'):
mcount+=1
tcount+=1

print('% Disputed attributed to Madison:',
100.0*mcount/tcount,"\n")

"""
Build and test multiple models via SKlearn.
X is a dataframe consisting of known Hamilton
and Madison papers.

y is a data frameconsisting of author labels.
X_test is a dataframe consisting of disputed
papers
"""
smallVocab5 = ['against','within','inhabitants',

'whilst','upon']
tfidf = sklearn.feature_extraction.text.

TfidfVectorizer(analyzer="word",
binary=False,min_df=2,
vocabulary=smallVocab5)

X_transformed = tfidf.fit_transform(X)
lb = sklearn.preprocessing.LabelEncoder()
y_transformed = lb.fit_transform(y)
X_test_transformed = tfidf.transform(X_test)

models = [
KNeighborsClassifier(3),
DecisionTreeClassifier(max_depth=5),
RandomForestClassifier(n_estimators=25,max_depth=3),
LinearSVC(),
SVC(gamma=2, C=1),
ComplementNB(),
AdaBoostClassifier()
]

CV = 5
cv_df = pd.DataFrame(index=range(CV * len(models)))
for model in models:
model_name = model.__class__.__name__
accuracies = cross_val_score(model, X_transformed,

y_transformed,scoring='accuracy',cv=CV)
avgAccur = 0
for fold_idx, accuracy in enumerate(accuracies):
print(model_name,"fold:",fold_idx,

"accuracy:",str(accuracy)[:5])
print(model_name,"avg accuracy:",

str(accuracies.mean())[:5])
model.fit(X_transformed, y_transformed)
y_final_predicted=model.predict(X_test_transformed)
y_final_predicted_labeled=

lb.inverse_transform(y_final_predicted)
mPercent(y_final_predicted_labeled)

KNeighborsClassifier fold: 0 accuracy: 1.0
KNeighborsClassifier fold: 1 accuracy: 1.0
KNeighborsClassifier fold: 2 accuracy: 1.0
KNeighborsClassifier fold: 3 accuracy: 1.0
KNeighborsClassifier fold: 4 accuracy: 1.0
KNeighborsClassifier avg accuracy: 1.0
% Disputed attributed to Madison: 100.0

DecisionTreeClassifier fold: 0 accuracy: 1.0
DecisionTreeClassifier fold: 1 accuracy: 0.846
DecisionTreeClassifier fold: 2 accuracy: 1.0
DecisionTreeClassifier fold: 3 accuracy: 1.0
DecisionTreeClassifier fold: 4 accuracy: 1.0
DecisionTreeClassifier avg accuracy: 0.969
% Disputed attributed to Madison: 100.0

RandomForestClassifier fold: 0 accuracy: 1.0
RandomForestClassifier fold: 1 accuracy: 0.846

RandomForestClassifier fold: 2 accuracy: 1.0
RandomForestClassifier fold: 3 accuracy: 1.0
RandomForestClassifier fold: 4 accuracy: 1.0
RandomForestClassifier avg accuracy: 0.969
% Disputed attributed to Madison: 100.0

LinearSVC fold: 0 accuracy: 1.0
LinearSVC fold: 1 accuracy: 1.0
LinearSVC fold: 2 accuracy: 1.0
LinearSVC fold: 3 accuracy: 1.0
LinearSVC fold: 4 accuracy: 1.0
LinearSVC avg accuracy: 1.0
% Disputed attributed to Madison: 100.0

SVC fold: 0 accuracy: 1.0
SVC fold: 1 accuracy: 1.0
SVC fold: 2 accuracy: 1.0
SVC fold: 3 accuracy: 1.0
SVC fold: 4 accuracy: 1.0
SVC avg accuracy: 1.0
% Disputed attributed to Madison: 100.0

ComplementNB fold: 0 accuracy: 0.923
ComplementNB fold: 1 accuracy: 1.0
ComplementNB fold: 2 accuracy: 1.0
ComplementNB fold: 3 accuracy: 1.0
ComplementNB fold: 4 accuracy: 1.0
ComplementNB avg accuracy: 0.985
% Disputed attributed to Madison: 100.0

AdaBoostClassifier fold: 0 accuracy: 1.0
AdaBoostClassifier fold: 1 accuracy: 0.846
AdaBoostClassifier fold: 2 accuracy: 1.0
AdaBoostClassifier fold: 3 accuracy: 1.0
AdaBoostClassifier fold: 4 accuracy: 1.0
AdaBoostClassifier avg accuracy: 0.969
% Disputed attributed to Madison: 100.0

The code snippet above puts multiple Scikit-learn models [11]
into a list and loops through each. Inside the loop a 5-fold cross
validation is run on the training data consisting of all known
Hamilton and Madison essays. (This just means that we randomly
cut the training set into 5 slices (called folds) and test on each
fold individually while using the remaining folds for training the
model.)

The models are then run on the disputed papers and a function
called mPercent is called that calculates how many of the
disputed papers were written by Madison.

We note that the 5-fold cross validation is 100% accurate for
each fold for the K-Nearest Neighbors model, and the Support-
Vector classifiers. For the other models 4 out of 5 folds were 100%
accurate and overall the models were 97% accurate or better. All
of the models predicted that the disputed papers were written by
Madison.

Note Scikit-learn offers multiple Naive Bayes classifiers. The
Complement Naive Bayes model was chosen above because it
was empirically shown by [12] to outperform other Naive Bayes
models on text classification tasks.

One Last Simple Model

We’ve seen several subsets of Table 1 that accurately identify the
authors of the known Federalist papers and also identify Madison
as the author of the disputed papers. The reader may be wondering
what is the smallest set of words that can be used to make
such predictions? From Table 1 it’s clear that "while", "whilst",
and "upon" can mostly distinguish between papers authored by
Hamilton or Madison. The use of "while" suggests Hamilton,
while the use of "whilst" often suggests Madison, particularly if
the rate is above 0.25 mentions per 1,000 words. If neither "while,"

AN ACCESSIBLE PYTHON BASED AUTHOR IDENTIFICATION PROCESS 31

or "whilst" is mentioned we can look for "upon." Both authors use
"upon", but if the rate of "upon" is at 0.9 mentions per 1,000 words
or above, then it is almost certainly authored by Hamilton.

The description above can be made into a very simple deci-
sion tree. A decision tree can be made into a series of if-then
statements, yielding the simple model below.

#return usage rate per 1000 words of a target word
#e.g. if target=='upon' appears 3 times in a 1500
#word essay, we return a rate of 2 per 1000 words.
def rate_per_1000(docDict,target):
if (target in docDict):

wordCount=0
for a in docDict:

wordCount+=docDict[a]
return(1000*docDict[target]/wordCount)

else:
return(0)

#given a document dictionary, predict if it was
#authored by Hamilton or Madison
def federalist_decison_tree(docDict):
if ('while' in docDict):

return('hamilton')
else:

if (rate_per_1000(docDict,'whilst') >= .25):
return('madison')

if (rate_per_1000(docDict,'upon') >= .9):
return('hamilton')

else:
return('madison')

The simple model above is 100% accurate on the known doc-
uments, and predicts Madison as the author of the 12 disputed
documents. In general, it is not recommended that we base an at-
tribution on only three words because of a potential of overfitting,
but it’s interesting that these two authors that are rather similar in
style, can be differentiated with such a simple model.

Conclusions

In this brief paper we presented a number of ways to solve
the problem of disputed author identification. First we did some
exploratory data analysis using each author’s favorite words. We
showed that the steps to build a Naive Bayes dictionary were
useful in helping us to find those favorite words. We built a
Naive Bayes model that suggested that James Madison is the
likely author of the disputed Federalist Papers. We showed how the
Scikit-learn [11] library could be used to build and test numerous
models very quickly and easily and noted that each of these models
also point to Madison as the author. Finally, we built a very simple
decision tree using only the words "while," "whilst," and "upon"
which also points to Madison as the author. Note that while this is
a case-study of the Federalist Papers, the methods shown here can
easily be applied to other author identification problems or other
text-mining tasks where we need to tokenize and explore large
bodies of text.

REFERENCES

[1] C. Luu, “Fighting words with the unabomber,” JSTOR.org. [Online].
Available: https://daily.jstor.org/fighting-words-unabomber/

[2] D. Alberge, “Christopher marlowe credited as one
of shakespeare’s co-writers,” The Guardian, 2016. [On-
line]. Available: https://www.theguardian.com/culture/2016/oct/23/
christopher-marlowe-credited-as-one-of-shakespeares-co-writers

[3] D. Foster, Author Unknown: On the Trail of Anonymous. Henry Holt
and Company, 2000.

[4] F. Mosteller and D. L. Wallace, “Inference in an authorship
problem,” Journal of the American Statistical Association, pp.
275–309, 1963, https://doi.org/10.2307/2283270. [Online]. Available:
https://www.jstor.org/stable/2283270?origin=JSTOR-pdf

[5] D. Adair, “The authorship of the disputed federalist papers,” The William
and Mary Quarterly, pp. 97–122, 1944, https://doi.org/10.2307/1921883.

[6] ——, “The authorship of the disputed federalist papers: Part ii,” The
William and Mary Quarterly, p. 235–264, 1944, https://doi.org/10.2307/
1923729.

[7] F. Mosteller, “A statistical study of the writing styles of the authors
of "the federalist" papers,” Proceedings of the American Philosophical
Society, 1987. [Online]. Available: https://www.jstor.org/stable/986786

[8] E. Loper and S. Bird, “Nltk: The natural language toolkit,” 2002.
[9] A. Hamilton, J. Jay, and J. Madison, “The project gutenberg ebook

of the federalist papers,” Available at https://www.gutenberg.org/cache/
epub/1404/pg1404.txt.

[10] D. Jurafsky and J. Martin, Speech and Language Processing (Draft of
3rd Ed.), 2023.

[11] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[12] J. Rennie, L. Shih, J. Teevan, and D. Karger, “Tackling the poor
assumptions of naive bayes text classifiers,” ICML, vol. 3, pp. 616–623,
2023.

32 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Biomolecular Crystallographic Computing with Jupyter

Blaine H. M. Mooers‡§¶∥∗

✦

Abstract—The ease of use of Jupyter notebooks has helped biologists enter
scientific computing, especially in protein crystallography, where a collaborative
community develops extensive libraries, user-friendly GUIs, and Python APIs.
The APIs allow users to use the libraries in Jupyter. To further advance this
use of Jupyter, we developed a collection of code fragments that use the vast
Computational Crystallography Toolbox (cctbx) library for novel analyses. We
made versions of this library for use in JupyterLab and Colab. We also made
versions of the snippet library for the text editors VS Code, Vim, and Emacs
that support editing live code cells in Jupyter notebooks via the GhostText web
browser extension. Readers of this paper may be inspired to adapt this latter
capability to their domains of science.

Index Terms—literate programming, reproducible research, scientific rigor,
electronic notebooks, JupyterLab, Jupyter notebooks, Colab notebook, OnDe-
mand notebooks, computational structural biology, computational crystallogra-
phy, biomolecular crystallography, protein crystallography, biomolecular struc-
ture, computational molecular biophysics, biomedical research, data visualiza-
tion, scientific communication, GhostText, text editors, snippet libraries, SciPy
software stack, interactive software development

Introduction

Biomolecular crystallography involves the determination of the
molecular structure of proteins and nucleic acids and their com-
plexes by using X-rays, neutrons, or electrons. The molecular
structure determines the protein’s biological function, so the exper-
imentally determined structures provide valuable insights vital for
understanding biology and developing new therapies in medicine.
The recent resolution revolution in cryo-electron microscopy
(cryo-EM) [1] and the breakthrough in protein structure prediction
with neural networks now provide complementary sources of
insights into biomolecular structure [2], [3], [4]. However, the
crystallographic approach continues to play a vital role because
it still supplies the most precise structures, [5].

About half of the crystal structures of protein molecules are
refined with the program Phenix [6]. This program has a user-
friendly GUI that supports standard analyses [7]. Phenix runs
on top of cctbx [8]. The Computational Crystallography Toolbox

* Corresponding author: blaine-mooers@ouhsc.edu
‡ Department of Biochemistry and Molecular Biology, University of Oklahoma
Health Sciences Center, Oklahoma City, OK 97104
§ Stephenson Cancer Center, University of Oklahoma Health Sciences Center,
Oklahoma City, OK 97104
¶ Laboratory of Biomolecular Structure and Function, University of Oklahoma
Health Sciences Center, Oklahoma City, OK 97104
|| Biomolecular Structure Core, Oklahoma COBRE in Structural Biology,
University of Oklahoma Health Sciences Center, Oklahoma City, OK 97104

Copyright © 2023 Blaine H. M. Mooers. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

(cctbx) provides a transparent API, so most users of Phenix are
barely aware that it relies on cctbx. However, nonstandard analyses
are not available in Phenix and require accessing the functions in
the cctbx library (e.g., [9]). The backend cctbx was written in
C++ in the early 2000s for speed and to provide customized data
structures for crystallography. Likewise, the GUI-driven Olex2
small molecule refinement program uses cctbx for many of its
crystallographic computations [10].

To ease the use of cctbx by general users, the C++ interfaces,
classes, and functions of cctbx are exposed to Python via the
Boost.Python Library [11]. Recently, dependency management in
cctbx was reworked by leveraging the Anaconda infrastructure to
ease its installation. In spite of these conveniences, the widespread
adoption of Python by field practitioners over the past decade,
and the presence of several on-line tutorials about cctbx, many
structural biologists still find cctbx hard to master and adoption has
remained low. This difficulty drove several groups to develop soft-
ware libraries (e.g. reciprocalspaceship [12], GEMMI [13]) that
reinvent some features of cctbx while utilizing the more familiar
pandas DataFrames in place of cctbx’s customized data structures.
In contrast to these new competitors, cctbx has more extensive
coverage of advanced crystallographic data analysis tasks and is
more thoroughly tested as the result running underneath Phenix for
almost two decades. cctbx remains the ultimate library for building
advanced crystallographic data analyses tools, so the field would
benefit if cctbx were easier to use.

To foster adoption of cctbx, we present a collection of cctbx
code snippets to be used in Jupyter notebooks [14]. Jupyter
provides an excellent platform for exploring the cctbx library
and prototyping new analysis tools. The Python API of cctbx
simplifies running cctbx in Jupyter via a kernel specific for its
conda environment. We formatted our snippet library for several
snippet extensions for the Classic Notebook and for Jupyter Lab.
To overcome the absence of tab triggers in the Jupyter ecosystem
to invoke the insertion of snippets, we also made the snippets
available for leading text editors. The user can use the GhostText
browser plugin to edit the contents of a Jupyter cell in a full-
powered external editor. GhostText enables the user to experience
the joy of interactive computing in Jupyter while working from the
comfort of their favorite text editor. These multiple modalities of
using cctbx in Jupyter that we describe below may inspire workers
in other domains to build similar snippet libraries for domain-
specific software.

Results

We provide a survey of the snippet library that we have customized
for several snippet extensions in JupyterLab and Google Colab.

BIOMOLECULAR CRYSTALLOGRAPHIC COMPUTING WITH JUPYTER 33

jupyterlabcctbxsnips

We developed the jupyterlabcctbxsnips library of code
templates for the JupyterLab extension jupyterlab-snippets
(https://github.com/QuantStack/jupyterlab-snippets).
Access to the code templates or snippets requires the editing of
the Jupyter notebook from inside of JupyterLab, a browser-based
IDE for displaying, editing, and running Jupyter notebooks.

JupyterLab supports more comprehensive workflows for aca-
demic work than what is possible in the Classic Jupyter Notebook
application. For example, it enables the writing or editing of a
document in a pane next to the Jupyter notebook. This variant is
useful for writing documentation, protocols, tutorials, blog posts,
and manuscripts next to the notebook that is being described. The
document can be a plain text, html, markdown, LaTeX, or even
an org-mode file if one activates the text area with GhostText
while running one of several advanced text editors (see the section
below about GhostText). The editing of a document next to
the related Jupyter notebook supports reproducible research and
reduces costly context switching.

We made a variant of the library, jupyterlabcctbxsnipsplus
(https://github.com/MooersLab/jupyterlabcctbxsnipsplus),
that has a copy of the code in a block comment (Fig. 1). In the
commented code, suggested sites for editing are indicated by tab
stops that are marked with dollar signs.

Fig. 1: A snippet from the jupyterlabcctbxsnipsplus library with
duplicate code in a comment block. The dollar sign marks the start of
a tab stop. The comment block guides the editing of the active code.

The figure below (Fig. 2) shows part of the cascading menus
for the jupyerlabcctbxsnipsplus library after it has been installed
successfully. The submenus correspond to the names of subfolders
in the cctbx+ folder in the snippets folder, which was manually
created inside of the Jupyter folder in the local library folder (i.e.,
~/Library/Jupyter/multimenus_snippets/cctbx+
on macOS).

Each final menu item is linked to a Python snippet file. The
selection of a snippet file by clicking on it with the left-mouse
button inserts its content into a new cell below the current cell.

In contrast, the mtzOjbectSummary.py snippet was selected
from the cctbx submenu and lacks the comment block. This code
was inserted in the current notebook cell (Fig. 3). The code in this
cell was be executed by entering Shift-Enter.

The mtzObjectSummary.py snippet prints a summary of an
mtz file. A mtz file is a binary file that contains diffraction
data in a highly customized data structure. The data in this mtz
file has columns of I(+) and I(-). These are the Bijvoet pairs
of diffraction intensities. These pairs are related by symmetry
and should have equal intensity values within experimental error.
The differences in intensities are a measure of the presence of

Fig. 2: The cascading menus for the jupyterlabcctbxsnipsplus library
for the jupyterlab-snippets version 0.4.1 extension in JupyterLab
version 3.5.2.

Fig. 3: The code and output from the mtzObjectSummary.py snippet
in JupyterLab.

anomalous scattering. Anomalous scattering can be measured for
elements like sulfur and phosphorus that are part of the native
protein and nucleic acid structures and heavier elements like
metals that are naturally occurring as part of metalloproteins or
that were purposefully introduced by soaking crystals or that were
incorporated covalently into the protein (e.g., selenomethionine)
or nucleic acid (e.g., 5-bromouracil) during its synthesis.

The anomalous differences can be used to determine the
positions of the anomalous scattering atoms. Once the positions
of the anomalous scatterers are known, it is possible to work
out the positions of the lighter atoms in the protein. We use
these data to make the I(+) vs I(-) scatter plot below (Fig.
4). The mtz file contains data for SirA-like protein (DSY4693)
from Desultobacterium hafniense, Northeast Structural Genomics
Consortium Target DhR2A. The diffraction data were retrieved

34 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

from the Protein Data Bank, a very early open science project that
recently celebrated its 50th anniversary [15].

The I(+) vs I(-) plot was made after reading the X-ray data into
a cctbx Miller array, a data structure designed for handling X-ray
data in cctbx. The I(+) and I(-) were eventually read into separate
lists. We plot the two lists against each other in a scatter plot using
matplotlib [16]. There is no scatter from the x = y line in this plot
if there is no anomalous signal. The larger the anomalous signal,
the greater the scatter. The departure from this line is expected to
be greater for intensities of large magnitude.

Fig. 4: The code snippet to generate a Ip versus Im plot and the
corresponding plot generated by the code.

Plots of this nature are useful for detecting very weak
anomalous signals from native anomalous scatters like sulfur and

phosphorus. The collection of the anomalous signal from native
scatters enables structure determination without having to spend
the extra time and money to introduce heavier atoms that are not
native to the protein. The measurement of the very weak signal
from native anomalous scatterers is still at the edge of what is
technically possible. It has rarely been achieved with in-house
instruments. Success generally requires the faster multi-million
dollar detectors at beamlines, tunable wavelengths of synchrotron
radiation available at one of 30+ laboratories around the world,
and cryogenic temperatures (-173 C) maintained by a cryostream
of nitrogen gas that slows radiation damage long enough to collect
complete datasets.

However, recently, several groups have completed successful
native phasing experiments at room temperature by collecting
data from large numbers of crystals and merging the data [17],
[18]. The advantages of room temperature data collection include
avoidance of conformational changes in the protein induced by su-
percooling the crystal. The room temperature data were collected
from each crystal briefly before radiation damage degraded the
diffraction too much. This is a remarkable achievement because
the merging of diffraction data from many crystals in various
orientations enhances the experimental error; this error can mask
the weak anomalous signal that is being sought.

The plot (Fig. 4) was adapted from an example in the re-
ciprocalspaceship project from the Hekstra Lab [12]. This new
project takes a more Pythonic approach than cctbx by utilizing
many of the packages in the SciPy stack that did not exist when
cctbx was initiated. For example, it uses the pandas package
to manage diffraction data whereas cctbx uses a custom C++
data structure for diffraction data that predates pandas by almost
a decade. The utilization of pandas enables easier integration
with the other components of the SciPy software stack including
machine learning packages.

The cctbx is most easily installed into its own
environment by using Anaconda with the command conda
create -n my_env -c conda-forge cctbx-base
python=3.11.

The atomic coordinates of the biomolecular structures are
the other major type of data that are intimately associated with
diffraction data. The fixed file format of Protein Data Bank
coordinate files with the file extension of pdb originated in the
1970s with the birth of the Protein Data Bank, but very large
biological macromolecules have been determined over the past
two decades that exceeded the limits on the number of atoms
permitted in one file. To address this and other shortcomings of the
PDB file format, the PDBx/mmCIF (Protein Data Bank Exchange
macromolecular Crystallographic Information Framework) file
format recently became the new data standard [19]. The cctbx
has been adapted to read mmCIF files.

taggedcctbxsnips

The Elyra-snippets extension for Jupyter
Lab supports the use of tagged snippets
(https://elyra.readthedocs.io/en/latest/user_guide/code-snippets.html).
Each snippet is in a separate JavaScript file with the json file
extension 5.

Each snippet file has a set of metadata. These data
include a list of tags. The tags are used to find the snippet
while editing a Jupyter notebook in JupyterLab. We made a
version of the cctbxsnips library for the Elyra-snippets extension
(https://github.com/MooersLab/taggedcctbxsnips).

BIOMOLECULAR CRYSTALLOGRAPHIC COMPUTING WITH JUPYTER 35

Fig. 5: Snapshot of a list of snippets in JupyterLab supported by the
Elyra-snippet extension. The 80 cctbx snippets have been narrowed
to seven snippets by entering the mtz tag. Additional tags can be
entered to further narrow the list of candidate snippets.

To add a new snippet, click on the + in the upper right of the
Code Snippets icon (Fig. 6). This will open new GUI (see below)
for creating a snippet. The value of Name should be one word or
a compound word. The value of Description describes in one or
more sentences what the snippet does. The values of the Tags field
are used to narrow the listing of snippets in the menu. The value
of the Source is the programming language; the value is Python
in this example. The Code can be entered by selecting code in a
notebook cell or copying and pasting from a script file.

Fig. 6: The GUI to create a new snippet via the Elyra-snippet
extension for JupyterLab.

colabcctbxsnips

The Google Colab notebook enables the running of software
on Google’s servers in a computational notebook that resembles
the Jupyter notebook. Colab notebooks are useful for workshop

settings where there is no time for installing software on a
heterogeneous mix of operating systems when the attendees are
following the presentation by using their own computers.

Colab notebooks do no support external extensions, but they
have built-in support for snippets. A particular snippet library
is stored in a dedicated Google Colab notebook rather than in
individual files. The notebook of snippets is stored on the user’s
Google Drive account. While the software installed in a Colab
session is lost upon logging out, the snippets remain available on
the next login.

After the snippet notebook is installed, the user opens a new
notebook to use the snippets. From that new notebook, the list of
snippets will be exposed by clicking on the <> icon in the left
margin of the notebook. Click on the Insert button in the upper
righthand corner of the snippet to copy the snippet to the current
code cell in the notebook.

We developed the colabcctbxsnips li-
brary and stored it in a Colab Notebook
(https://github.com/MooersLab/colabcctbxsnips).
Two snippets have the code for installing mamba and then cctbx
(Fig. 7). These code snippets have to be run before cctbx can be
accessed. The two code fragments require less than two minutes
to install the software.

Fig. 7: Snippets from the cctbx library for installing mamba and then
cctbx on Google Colab.

The Colab snippet system also lacks support for tab triggers
and tab stops. We address this problem by supplying a copy of the
snippet with the sites of the tab stops marked up like a yasnippet
snippet. Unlike the case of the jupyterlabcctbxsnipsplus library,
the marked up copy of the code snippet is displayed only in the
preview of the snippet and is not inserted into the code cell along
with the active code (Fig. 8).

Snippets for OnDemand Notebooks at HPCs

We have also worked out how to deploy this snippet library in
OnDemand notebooks at High-Performance Computing centers.
These notebooks resemble Colab notebooks in that JupyterLab
extensions cannot be installed. However, they do not have any
alternate support for accessing snippets from menus in the GUI.
Instead, we had to create IPython magics for each snippet that load

36 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 8: Preview of a Colab code snippet. The preview contains two
copies of the code. The bottom copy of the code will be inserted into
the current code cell. The top copy of the code serves as a guide to
sites to be edited. The dollar sign marks the start of a tab stop where
the enclosed placeholder value may need to be changed.

the snippet’s code into the code cell. This system would also work
on Colab and may be preferred by expert users because the snippet
names used to invoke the Ipython magic are under autocompletion.
We offer a variant library that inserts a commented out copy of the
code that has been annotated with the sites that are to be edited by
the user.

cctbxsnips for leading text editors

To support the use of the cctbx code snippets in text editors, we
made versions of the library for Emacs, Vim, Neovim, Visual
Studio Code, Atom, and Sublime Text3. We selected these text
editors because they are the most advanced and most popular
with software developers and because they are supported by the
GhostText project described below .

For Emacs, we developed a library
for use with the yasnippets package
(https://github.com/MooersLab/cctbxsnips-Emacs).
Emacs supports repel-driven software development, which
resembles the interactive software development experience in
Jupyter notebooks. Emacs also supports the use of literate
programming in several kinds of documents, including the
very popular org-mode document [20]. Code blocks in org
documents can be given a jupyter option with a Jupyter
kernel name that enables running a specific Jupyter kernel
including one mapped to a conda environment that has the
cctbx package installed. A similar example using the molecular
graphics package PyMOL is demonstrated in this short video
(https://www.youtube.com/watch?v=ZTocGPS-Uqk&t=2s).

Using GhostText to edit Jupyter cells from a favorite text editor

By adding the GhostText extension
(https://ghosttext.fregante.com/) to the web
browser and a server to one of several leading text editors, it is
possible to send the text from the browser through a WebSocket
to a server in the text editor. Thus, it is possible to edit the
contents of a computational notebook cell from inside a text
editor. Changes made in the text editor instantly appear in the
notebook and vice versa. By applying the power of a text editor
to computational notebooks, experienced developers can continue
to use familiar editing commands and tools in their preferred text
editor.

GhostText is a Javascript program developed by Federico
Brigante, a prolific JavaScript developer. Versions of the extension
are available for the Google Chrome, Firefox, Edge, Opera, and

Safari. The extension for the Google Chrome browser works in
the Brave browser, and the extension for Firefox works in the
Waterfox and Icecat browsers. GhostText was developed initially
for Sublime Text 3, so Sublime Text 3 can serve as a positive
control even if another editor in the list is the favored editor.
(Sublime Text 3 is available for most platforms for a free trial
period of infinite length.)

The snippet extensions for the Classic Jupyter Notebook and
JupyterLab lack support for tab triggers to insert snippets as you
type and tab stops inside the snippet to advance to sites in the
snippet that may need to be edited. These two features are standard
in the software that supports the use of snippet libraries in most
text editors.

As a quick reminder, tab triggers in text editors insert chunks
of computer code after the user enters the tab trigger name and
hits the TAB key (Fig. 9). The tab trigger name can be as short
as several letters. Many text editors and IDEs have pop-up menus
that aid the selection of the correct tab trigger. Tab stops are sites
within the code snippet where the cursor advances to after entering
TAB again. These sites often have placeholder values that can
be either edited or accepted by entering TAB again. Sites with
identical placeholder values can be mirrored so that a change in
value at one site is propagated to the other tab stops with the
same placeholder value. The absence of tab stops can increase
the number of bugs introduced by the developer by overlooking
parameter values in the code snippet that need to be changed to
adapt the snippet to the current program.

Fig. 9: Example of a tab trigger being entered in Sublime Text 3
editor and appearing in a Jupyter Notebook cell. A pop-up menu lists
the available snippets. The list was narrowed to one snippet by the
entry of three letters.

The text editor also needs to be extended with a server
that enables two-way communication with the web page via a
WebSocket. Edits made on the browser side of the WebSocket
are immediately sent to an open page in the Text Editor and vice
versa; however, the text editor’s snippets and other editing tools
only work in the text editor. The connection can be closed from
either side of the WebSocket. It is closed on the web browser side
via an option in GhostTest’s pulldown menu, and it closed on the
text editor side by closing the active buffer.

Here, we describe the setup for Emacs as an example
of configuring a text editor to use GhostText. The
server for Emacs is provided by the atomic-chrome
package that is available in both the Milkypostman’s
Emacs Lisp Package Archive (MELPA) and on GitHub
(https://github.com/alpha22jp/atomic-chrome).
The configuration for atomic-chrome in the Emacs initialization
file (e.g., init.el) is listed below (Fig. 10). The third line in
Code listing 1 sets the default Emacs mode (equivalent to a
programming language scope): We set it to Python for Jupyter
code cells. Atomic-chrome uses text-mode by default. You can
change the default mode to other programming languages that
you may use in Jupyter, like Julia or R. The last three lines specify
the Emacs mode to be used when text is imported from the text

BIOMOLECULAR CRYSTALLOGRAPHIC COMPUTING WITH JUPYTER 37

areas on github.com, Overleaf.com, and 750words.com. Similar
configuration options are available in the other text editors, or you
manually change the language scope for the window with the text
imported from Jupyter.

Fig. 10: Emacs lisp code to configure the atomic-chrome package
for Emacs. This configuration opens Jupyter notebooks in the Python
major mode and the 750words.com webpage in the LaTeX major
mode.

GhostText provides keyboard shortcuts to improve productiv-
ity. These shortcuts keep the developer’s hands on the keyboard
and avoid breaks in context by moving the hand to the mouse. The
shortcut by operating system is as follows: macOS, command-
shift-K; Linux, control-shift-H; and Windows, control-shift-K.

To support the use of GhostText to edit electronic notebooks
containing code from the cctbx library, we have made variants
of a collection of cctbx snippets for Visual Studio Code, Atom,
Sublime Text 3, Vim, NeoVim, and Emacs. For Vim and NeoVim, the
snippets are available for the UltiSnips, Snipmate, and neosnippets
plugins. The snippets are available for download on GitHub
(https://github.com/MooersLab). From our experience,
Sublime Text 3 has the easiest setup while Emacs provides
the highest degree of customization. The cctbx snippet library
was previously only available for use in Jupyter notebooks via
extensions for the Classic Jupyter Notebook application or Jupyter
Lab.

Note that the snippet library cannot be used with the program
nteract (https://nteract.io/). The nteract is an easy-
to-install and use desktop application for editing and running
Jupyter notebooks offline. The ease of installation makes the
nteract application popular with new users of Jupyter notebooks.
Obviously nteract is not browser-based, so it cannot work with
GhostText. nteract has yet to be extended to support the use of
code snippet libraries, but nteract allows the switching of jupyter
kernels between code cells.

While the focus of this report is on Jupyter and Colab
notebooks, the cctbxsnips snippet library can be used to aid the
development of Python scripts in plain text files, which have
the advantage of easier version control. The snippets can also
be used in other kinds of literate programming documents that
operate off-line like org-mode files in Emacs and the Quarto
(http://quarto.org) markdown representation of Jupyter
notebooks. Quarto is available for several leading text editors.
In the later case, you may have to extend the scope of the editing
session in the editor to include Python source code.

Discussion

What is new

We report a set of code template libraries for doing biomolecular
crystallographic computing in Jupyter. These template libraries
only need to be installed once because they persist between logins.

We also include support for Colab notebooks where the snip-
pets also persist between logins but other installed software is lost
upon logging out of a session. The templates include the code for
installing the software required for crystallographic computing.
The installation templates automate as many as seven installation
steps. Once the user runs the installation code at the top of a given
Colab notebook, the user only needs to rerun these blocks of code
upon logging into Colab to be able to reinstall the software during
later sessions. The user can also modify the installation templates
to install the crystallographic software on their local machine and
then run the notebook in Jupyter Classic and JupyterLab. The
template libraries presented here lower an important barrier to the
use of Colab by those interested in crystallographic computing on
the cloud.

We also report the use of GhostText to edit notebook code
cells in Jupyter notebooks and text documents in JupyterLab. This
capability enables a user to use an external text editor to edit code.
The user can thereby take advantage of the support for tab triggers
and tab stops in the external editor. This support can ensure faster
and more accurate writing and editing of new code.

Relation to other work with snippet libraries

This snippet library is among the first that is domain specific. Most
snippet libraries are for programming languages or for hypertext
languages like HTML, markdown, and LaTeX. The average snip-
pet in these libraries also tends to be quite short, and the sizes
of the libraries tend to be small. The audience for these general
purpose libraries are the millions of professional programmers and
web page developers. We reasoned that domain-specific snippet
libraries with long code fragments are a great coding tool that
should be brought to the aid of the tens of thousands of workers
in biological crystallography.

The other area where domain-specific snippets have been
provided is in molecular graphics. A pioneering scripting wizard
provided templates for use in the early molecular graphics pro-
gram RasMol [21]. In addition, the conscript program provided a
converter from RasMol to PyMOL [22]. We also provided snippets
for PyMOL, which has about 100,000 users, for use in text editors
[23] and Jupyter notebooks [24]. The former supports tab triggers
and tab stops; the latter does not.

Opportunities for interoperability

The code template libraries can encourage synergistic inter-
operability between software packages. That is, the develop-
ment of notebooks that use two or more software packages
and even two or more programming languages. More general
and well-known examples of interoperability include the Cython
module in Python that enables the running of C++ code in-
side Python [25], the reticulate library that enables the run-
ning of Python code in R [26], and the PyCall package in
Julia that enables the running of the Python packages in Julia
(https://github.com/JuliaPy/PyCall.jl). The lat-
ter package is widely used to run matplotlib in Julia. Interoper-
ability already occurs in computational crystallography between
CCP4 [27], clipper [28], GEMMI [13], reciprocalspaceship [12],

38 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Careless [29], and cctbx and to a limited extent between cctbx
and PyMOL. The snippet libraries reported here can promote
taking advantage of this interoperability in Jupyter and Colab
notebooks. We hope that our effort will help raise awareness of
interoperability issues among the community.

Snippets in the age of AI-assisted autocompletion

Snippet libraries of domain specific software may not be as
redundant as they first appear in the age of chatbots. The code
fragments of domain-specific libraries have a limited presence
on GitHub, so they may be underrepresented in large language
models. In addition, chatbots are designed to return text rather
than code. However, copilot and tabnine were designed for code
completion and are good at autosuggesting code fragments. Via
GhostText, it is possible to run copilot or tabnine in a text editor
while editing Jupyter notebook cells.

Conclusions

Our explorations suggest that code snippets for domain-specific
software libraries have several roles to play in supporting the
use of such libraries. First, the snippets illustrate possible uses
of the library, thereby, playing educational and inspirational roles.
Second, the snippets can speed up the assembly of scripts while
reducing the time spent on debugging, thereby, playing a produc-
tivity enhancement role. We hope that the cctbxnsips library will
inspire the creation of similar libraries in other domains.

Acknowledgments

This work was supported in part by the following grants: Ok-
lahoma Center for the Advancement of Science and Technology
HR20-002, National Institutes of Health grants R01 CA242845,
P30 CA225520, and P30 AG050911-07S1. In addition, we thank
the Biomolecular Structure Core of the NIH supported Oklahoma
COBRE in Structural Biology (PI: Ann West, P20 GM103640 and
P30 GM145423).

REFERENCES

[1] W. Kühlbrandt, “The resolution revolution,” Science, vol. 343, no. 6178,
pp. 1443–1444, 2014, https://doi.org/10.1126/science.1251652.

[2] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko et al., “Highly ac-
curate protein structure prediction with alphafold,” Nature, vol. 596, no.
7873, pp. 583–589, 2021, https://doi.org/10.1038/s41586-021-03819-2.

[3] M. Mirdita, K. Schütze, Y. Moriwaki, L. Heo, S. Ovchinnikov, and
M. Steinegger, “Colabfold: making protein folding accessible to all,”
Nature Methods, vol. 19, pp. 1–4, 2022, https://doi.org/10.1038/s41592-
022-01488-1.

[4] R. Chowdhury, N. Bouatta, S. Biswas, C. Floristean, A. Kharkar, K. Roy,
C. Rochereau, G. Ahdritz, J. Zhang, G. M. Church et al., “Single-
sequence protein structure prediction using a language model and deep
learning,” Nature Biotechnology, vol. 40, no. 11, pp. 1617–1623, 2022.

[5] A. Foerster and C. Schulze-Briese, “A shared vision for macromolecular
crystallography over the next five years,” Structural Dynamics, vol. 6,
no. 6, p. 064302, 2019, https://doi.org/10.1063/1.5131017.

[6] D. Liebschner, P. V. Afonine, M. L. Baker, G. Bunkóczi, V. B.
Chen, T. I. Croll, B. Hintze, L.-W. Hung, S. Jain, A. J. McCoy
et al., “Macromolecular structure determination using x-rays, neutrons
and electrons: recent developments in phenix,” Acta Crystallographica
Section D: Structural Biology, vol. 75, no. 10, pp. 861–877, 2019,
https://doi.org/10.1107/S2059798319011471.

[7] N. Echols, R. W. Grosse-Kunstleve, P. V. Afonine, G. Bunkóczi, V. B.
Chen, J. J. Headd, A. J. McCoy, N. W. Moriarty, R. J. Read, D. C.
Richardson et al., “Graphical tools for macromolecular crystallography
in phenix,” Journal of Applied Crystallography, vol. 45, no. 3, pp. 581–
586, 2012, https://doi.org/10.1107/S0021889812017293.

[8] R. W. Grosse-Kunstleve, N. K. Sauter, N. W. Moriatry, and P. D.
Adams, “The computational crystallography toolbox: crystallographic
algorithms in a reusable software framework,” Journal Application Crys-
tallography, vol. 35, no. 1, pp. 126–136, 2002, https://doi.org/10.1107/
S0021889801017824.

[9] E. De Zitter, N. Coquelle, P. Oeser, T. R. Barends, and J.-P. Colletier,
“Xtrapol8 enables automatic elucidation of low-occupancy intermediate-
states in crystallographic studies,” Communications Biology, vol. 5, no. 1,
p. 640, 2022, https://doi.org/10.1038/s42003-022-03575-7.

[10] L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. Howard, and
H. Puschmann, “The anatomy of a comprehensive constrained, re-
strained refinement program for the modern computing environment–
olex2 dissected,” Acta Crystallographica Section A: Foundations and
Advances, vol. 71, no. 1, pp. 59–75, 2015, https://doi.org/10.1107/
S2053273314022207.

[11] D. Abrahams and R. W. Grosse-Kunstleve, “Building hybrid systems
with boost.python,” C/C++ Users Journal, vol. 21, no. 7, 2003.
[Online]. Available: https://www.osti.gov/biblio/815409

[12] J. B. Greisman, K. M. Dalton, and D. R. Hekstra, “Reciprocalspaceship:
A python library for crystallographic data analysis,” Journal of Applied
Crystallography, vol. 54, no. 5, 2021, https://doi.org/10.1101/2021.02.
03.429617.

[13] M. Wojdyr, “Gemmi: A library for structural biology,” Journal of Open
Source Software, vol. 7, no. 73, p. 4200, 2022, https://doi.org/10.21105/
joss.04200.

[14] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila,
S. Abdalla, C. Willing, and J. development team, “Jupyter notebooks
- a publishing format for reproducible computational workflows,” in
Positioning and Power in Academic Publishing: Players, Agents and
Agendas, F. Loizides and B. Scmidt, Eds. IOS Press, pp. 87–90,
https://doi.org/10.3233/978-1-61499-649-1-87.

[15] wwPDB consortium, “Protein Data Bank: the single global archive for
3D macromolecular structure data,” Nucleic Acids Research, vol. 47,
no. D1, pp. D520–D528, 10 2018, https://doi.org/10.1093/nar/gky949.

[16] J. D. Hunter, “Matplotlib: A 2d graphics environment,” vol. 9, no. 3, pp.
90–95, https://doi.org/10.1109/MCSE.2007.55.

[17] F. Yabukarski, T. Doukov, D. A. Mokhtari, S. Du, and D. Herschlag,
“Evaluating the impact of x-ray damage on conformational heterogeneity
in room-temperature (277 k) and cryo-cooled protein crystals,” Acta
Crystallographica Section D: Structural Biology, vol. 78, no. 8, 2022,
https://doi.org/10.1107/S2059798322005939.

[18] J. B. Greisman, K. M. Dalton, C. J. Sheehan, M. A. Klureza, I. Kurinov,
and D. R. Hekstra, “Native sad phasing at room temperature,” Acta
Crystallographica Section D: Structural Biology, vol. 78, no. 8, pp. 986–
996, 2022, https://doi.org/10.1107/s2059798322006799.

[19] J. D. Westbrook, J. Y. Young, C. Shao, Z. Feng, V. Guranovic, C. L.
Lawson, B. Vallat, P. D. Adams, J. M. Berrisford, G. Bricogne et al.,
“Pdbx/mmcif ecosystem: foundational semantic tools for structural biol-
ogy,” Journal of Molecular Biology, vol. 434, no. 11, p. 167599, 2022,
https://doi.org/10.1016/j.jmb.2022.167599.

[20] E. Schulte, D. Davison, T. Dye, C. Dominik et al., “A multi-language
computing environment for literate programming and reproducible
research,” Journal of Statistical Software, vol. 46, no. 3, pp.
1–24, 1 2012, https://doi.org/10.18637/jss.v046.i03. [Online]. Available:
http://www.jstatsoft.org/v46/i03

[21] R. M. Horton, “Scripting wizards for chime and rasmol,” Biotechniques,
vol. 26, no. 5, pp. 874–6, 1999, https://doi.org/10.2144/99265ir01.

[22] S. E. Mottarella, M. Rosa, A. Bangura, H. J. Bernstein, and P. A. Craig,
“Conscript: Rasmol to pymol script converter,” Biochem Mol Biol Educ,
vol. 38, no. 6, pp. 419–22, 2010, https://doi.org/10.1002/bmb.20450.

[23] B. H. Mooers and M. E. Brown, “Templates for writing pymol scripts,”
Protein Science, vol. 30, no. 1, pp. 262–269, 2021, https://doi.org/10.
1002/pro.3997.

[24] B. H. Mooers, “A pymol snippet library for jupyter to boost researcher
productivity,” Computing in Science and Engineering, vol. 23, no. 2, pp.
47–53, 2021, https://doi.org/10.1109/MCSE.2021.3059536.

[25] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and
K. Smith, “Cython: The best of both worlds,” Computing in Science
& Engineering, vol. 13, no. 2, pp. 31–39, 2011, https://doi.org/10.1109/
mcse.2010.118.

[26] K. Ushey, J. Allaire, and Y. Tang, reticulate: Interface to
’Python’, 2023, r package version 1.28. [Online]. Available:
https://CRAN.R-project.org/package=reticulate

[27] J. Agirre, M. Atanasova, H. Bagdonas, C. Ballard, A. Baslé, J. Beilsten-
Edmands, R. Borges, D. Brown, J. Burgos-Mármol, J. Berrisford et al.,
“The ccp4 suite: integrative software for macromolecular crystallogra-

BIOMOLECULAR CRYSTALLOGRAPHIC COMPUTING WITH JUPYTER 39

phy,” Acta Crystallographica Section D: Structural Biology, vol. 79,
no. 6, pp. 449–461, 2023, https://doi.org/10.1107/S2059798323003595.

[28] S. McNicholas, T. Croll, T. Burnley, C. M. Palmer, S. W. Hoh, H. T.
Jenkins, E. Dodson, K. Cowtan, and J. Agirre, “Automating tasks in
protein structure determination with the clipper python module,” Protein
Science, vol. 27, no. 1, pp. 207–216, 2018, https://doi.org/10.1002/pro.
3299.

[29] K. M. Dalton, J. B. Greisman, and D. R. Hekstra, “A unifying bayesian
framework for merging x-ray diffraction data,” Nature Communications,
vol. 13, no. 1, p. 7764, 2022, https://doi.org/10.1038/s41467-022-35280-
8.

40 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Bayesian Statistics with Python, No Resampling
Necessary

Charles Lindsey‡∗

✦

Abstract—TensorFlow Probability is a powerful library for statistical analysis in
Python. Using TensorFlow Probability’s implementation of Bayesian methods,
modelers can incorporate prior information and obtain parameter estimates and
a quantified degree of belief in the results. Resampling methods like Markov
Chain Monte Carlo can also be used to perform Bayesian analysis. As an
alternative, we show how to use numerical optimization to estimate model
parameters, and then show how numerical differentiation can be used to get
a quantified degree of belief. How to perform simulation in Python to corroborate
our results is also demonstrated.

Index Terms—Bayesian statistics, resampling, maximum likelihood, numerical
differentiation

Introduction

Some machine learning algorithms output only a single number or
decision. It can be useful to have a measure of confidence in the
output of the algorithm, a quantified degree of belief. Bayesian
statistical methods can be used to provide both estimates and
confidence for users.

A model with parameters θθθ governs the process we are
investigating. We begin with a prior belief about the probability
distribution of θθθ , the density π(θθθ).

Then the data we observed gives us a refined belief about the
distribution θθθ . We obtain the posterior density π(θθθ |x).

We can estimate values of θθθ with the posterior mode of
π(θθθ |x), θ̂θθ .

Then we can estimate the posterior variance of θθθ , and with
some knowledge of π(θθθ |x) obtain confidence in our estimate θ̂θθ .

Normal Approximation to the Posterior

We will use numerical optimization to obtain the posterior mode
θ̂θθ , maximizing the posterior π(θθθ |x).

The posterior is proportional (where the scaling does not
depend on θθθ) to the prior and likelihood (or density of the data).

π(θθθ |x) ∝ L(θθθ |x)π(θθθ)

As in maximum likelihood, we directly maximize the log-
posterior, logπ(θθθ |x) because it is more numerically stable.

* Corresponding author: charles.lindsey@revionics.com
‡ Revionics, an Aptos Company

Copyright © 2023 Charles Lindsey. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Now, as described in section 4.1 of [1] , we can approximate
lnπ(θθθ |x) using a second order Taylor Expansion around θ̂θθ .

logπ(θθθ |x) ≈ logπ(θ̂θθ |x)+(θθθ − θ̂θθ)T S(θθθ)|θθθ=θ̂θθ

+
1
2
(θθθ − θ̂θθ)T H(θ̂θθ)(θθθ − θ̂θθ)

Where S(θθθ) is the score function

S(θθθ) =
δ

δθθθ
logπ(θθθ |x)

and H(θθθ) is the Hessian function.

H(θθθ) =
δ

δθθθ T S(θθθ)

We assume that θ̂θθ is in the interior of the parameter space (or
support) of θθθ . Also, π(θθθ |x) is a continuous function of θθθ .

Finally the Hessian matrix, H(θθθ) is negative definite, so
−H(θθθ) is positive definite. This means that we can invert −H(θθθ)
and get a matrix that is a valid covariance.

With these assumptions, as the sample size n → ∞ the
quadratic approximation for logπ(θθθ |x) becomes more accurate.
At the posterior mode θθθ = θ̂θθ , logπ(θθθ |x) is maximized and
0 = S(θθθ)|θθθ=θ̂θθ .

Given this, we can exponentiate the approximation to get

π(θθθ |x)≈ π(θ̂θθ |x)exp(
1
2
(θθθ − θ̂θθ)T H(θ̂θθ)(θθθ − θ̂θθ))

So for large n, the posterior distribution of θθθ is approximately
proportional to a multivariate normal density with mean θ̂θθ and
covariance −H(θ̂θθ)−1.

θθθ |x ≈D N(θ̂θθ ,−H(θ̂θθ)−1)

Another caveat for this result is that the prior should be proper,
or at least lead to a proper posterior. By proper we mean that
the function corresponds to a probability density function. Our
asymptotic results are depending on probabilities integrating to 1.

We could get a quantified degree of beief by using resampling
methods like Markov chain Monte Carlo (MCMC) [1] directly.
We would have to use fewer assumptions. However, resampling
can be computationally intensive.

Parameter Constraints and Transformations

Optimization can be easier if the parameters are defined over the
entire real line. Parameters that do not follow this rule are plentiful.
Variances are only positive. Probabilities are in [0,1].

BAYESIAN STATISTICS WITH PYTHON, NO RESAMPLING NECESSARY 41

We can perform optimization over the real line by creating
unconstrained parameters from the original parameters of interest.
These are continuous functions of the constrained parameters,
which may be defined on intervals of the real line.

For example, the unconstrained version of a standard deviation
parameter σ is ψ = logσ . The parameter ψ is defined over the
entire real line.

It will be useful for us to consider the constrained param-
eters as being functions of the unconstrained parameters. So
σ = exp(ψ) is our constrained parameter of ψ .

So the posterior mode of the constrained parameters θθθ ccc is
θ̂θθ ccc = g(θ̂θθ). We will call g the constraint function.

Then we can use the delta method [2] on g to get the posterior
distribution of the constrained parameters.

A first-order Taylor approximation of g(θθθ) at θ̂θθ yields

g(θθθ)≈ g(θ̂θθ)+
{

δ
δ θ̂θθ

g(θ̂θθ)
}
(θθθ − θ̂θθ)

Remembering that the posterior of θθθ is approximately normal, the
rules about linear transformations for multivariate normal random
vectors tell us that

θθθ ccc|x = g(θθθ)|x ≈D

N

[
g(θ̂θθ),

{
δ

δ θ̂θθ
g(θ̂θθ)

}T {
−H(θ̂θθ)−1

}{
δ

δ θ̂θθ
g(θ̂θθ)

}]

We could use Numpy’s matmul function to multiply the com-
ponent matrices together. The inv function in the lingalg library
could be used to invert the Hessian. So referring the to the gradient
of g as dg, the following python code could be used to compute
the constrained covariance.

np.matmul(
np.matmul(dg,

np.linalg.inv(hessian)),
np.transpose(dg))

This involved a first-order approximation of g. Earlier we used
a second order approximation for taking the numeric derivative.
Why would we just do a first-order here? Traditionally the delta-
method is taught and used as only a first-order method. Usually
the functions used in the delta method are not incredibly complex.
It is good enough to to use the first-order approximation.

Hessian and Delta Approximation

To be able to use the normal approximation, we need θ̂θθ , H(θ̂θθ)−1,
and δ

δ θ̂θθ
g(θ̂θθ). As mentioned before, we use numerical optimization

to get θ̂θθ . Ideally, we would have analytic expressions for H and
the derivatives of g.

This can be accomplished with automatic differentiation [3],
which will calculate the derivatives analytically. We can also
perform numerical differentiation to get the Hessian and the
gradient of the constraint function g. This will be less accurate than
an analytic expression, but may be less computationally intensive
in large models.

But once you learn how to take one numeric derivative, you
can take the numeric derivative of anything. So using numerical
differentiation is a very flexible technique that we can easily apply
to all the models we would use.

Numerical Differentiation

So numeric derivatives can be very pragmatic, and flexible. How
do you compute them? Are they accurate? We use section 5.7 of
[4] as a guide.

The derivative of the function f with respect to x is

f ′(x) = lim
h→0

f (x+h)− f (x)
h

To approximate f ′(x) numerically, couldn’t we just plugin a small
value for h and compute the scaled difference? Yes. And that is
basically what happens. We do a little more work to choose h and
use a second-order approximation instead of a first-order.

We can see that the scaled difference is a first-order approxi-
mation by looking at the Taylor series expansion around x.

Taylor’s theorem with remainder gives

f (x+h) = f (x)+((x+h)− x) f ′(x)+ .5((x+h)− x)2 f ′′(ε)
= f (x)+−h f ′(x)+ .5h2 f ′′(ε)

where ε is between x and x+h.
Now we can rearrange to get

f (x+h)− f (x)
h

− f ′(x) = .5h f ′′(ε)

The right hand side is the truncation error, εt since it’s linear in h,
the bandwidth we call the this approximation a first order method.

We can do second-order approximations for f (x+h) and f (x−
h) and get a more accurate second order method of approximation
for f ′(x).

f (x+h) = f (x)+((x+h)− x) f ′(x)

+
((x+h)− x)2 f ′′(x)

2!
+

((x+h)− x)3 f ′′′(ε1)

3!
f (x−h) = f (x)+((x−h)− x) f ′(x)

+
((x−h)− x)2 f ′′(x)

2!
+

((x−h)− x)3 f ′′′(ε2)

3!
were ε1 is between x and x+h and ε2 is between x−h and x.

Then we have
f (x+h)− f (x−h)

2h
− f ′(x) = h2 f ′′′(ε1)+ f ′′′(ε2)

12
This is quadratic in h. The first term takes equal input from both
sides of x, so we call it a centered derivative.

So we choose a small value of h and plug it into f (x+h)− f (x−h)
2h

to approximate f ′(x).
Our derivation used a single input function f . The idea applies

to partial derivatives of multi-input functions as well. The inputs
that you aren’t taking the derivative with respect to are treated as
fixed parts of the function.

Choosing a Bandwidth

In practice, second order approximation actually involves two
sources of error. Roundoff error, εr arises from being unable
to represent x and h or functions of them with exact binary
represetation.

εr ≈ ε f
| f (x) |

h
where ε f is the fractional accuracy with which f is computed.
This is generally machine accuracy. If we are using NumPy [5]
this would be

ε f = np.finfo(float).eps

42 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Minimizing the roundoff error and truncation error, we obtain

h ∼ ε1/3
f

(
f

f ′′′

)1/3

where (f/ f ′′′)1/3 is shorthand for the ratio of f (x) and the sum of
f ′′′(ε1)+ f ′′′(ε2).

We use shorthand here because because we are not going to
approximate f ′′′ (we are already approximating f ′), so there is no
point in writing it out.

Call this shorthand
(

f
f ′′′

)1/3

= xc

the curvature scale, or characteristic scale of the function f .
There are several algorithms for choosing an optimal scale.

The better the scale chosen, the more accurate the approximation
is. A good rule of thumb, which is computationally quick, is to
just use the absolute value of x.

xc =| x |
Then we would use

h = ε1/3
f | x |

But what if x is 0? This is simple to handle, we just add ε1/3
f to

xc =| x |
h = ε1/3

f (| x |+ε1/3
f)

Now, [4] also suggests performing a final sequence of assignment
operations that ensures x and x + h differ by an exactly repre-
sentable number. You assign x+ h to a temporary variable temp.
Then h is assigned the value of temp−h.

In Python, the code would simply be
temp = x + h
h = temp - x

Estimating Confidence Intervals after Optimization

With the posterior mode, variance, and normal approximation to
the posterior. It is simple to create confidence (credible) intervals
for the parameters.

Let’s talk a little bit about what these intervals are. For the
parameter γ we want a (1 − α) interval (u, l) (defined on the
observed data generated by a realization of γ) to be defined such
that

Pr(γ ∈ (u, l)) = 1−α

The frequentist confidence interval does not meet this criteria. γ
is just one fixed value, so it is either in the interval, or it isn’t!
The probability is 0 or 1. A credible interval (Bayesian confidence
interval) can meet this criteria.

Suppose that we are able to use the normal approximation for
γ|x

γ|x ≈D N(γ̂, σ̂2
γ)

Then we have

1−α = Pr(l ≤ γ ≤ u|x)
= Pr(l − γ̂ ≤ γ − γ̂ ≤ u− γ̂|x)

= Pr
(

l − γ̂
σ̂γ

≤ γ − γ̂
σ̂γ

≤ u− γ̂
σ̂γ

|x
)

Now, (γ − γ̂)/σ̂2
γ is N(0,1), standard normal. So we can use the

standard normal quantiles in solving for l and u.

The upper α/2 quantile of the standard normal distribution,
zα/2 satisfies

Pr(Z ≥ zα/2) = α/2

for standard normal Z.
Noting that the standard normal is symmetric, if we can find l

and u to satisfy

l − γ̂
σ̂γ

= −zα/2

u− γ̂
σ̂γ

= zα/2

then we have a valid Bayesian confidence interval.
Simple calculation shows that the solutions are

l = −zα/2σ̂γ + γ̂
u = zα/2σ̂γ + γ̂

The zα/2 quantile can be easily generated using scipy.stats from
SciPy [6]. We would use the norm.ppf function.

In Python, we would have
z_alpha_2 = scipy.stats.norm.ppf(1-alpha/2)
l = -z_alpha_2*se_gamma_hat + gamma_hat
u = z_alpha_2*nsd_gamma_hat + gamma_hat

We can also adjust the intervals for inference on many parameters
by using Bonferroni correction [7].

Now we know how to estimate the posterior mode. We also
know how to estimate the posterior variance after computing the
posterior mode. And we have seen how confidence intervals are
made based on this posterior variance, mode, and the normal
approximation to the posterior. Let’s discuss some tools that will
enable us to perform these operations.

TensorFlow Probability

Now we will introduce TensorFlow Probability, a Python library
that we can use to perform the methods we have been discussing.
TensorFlow Probability is library built using TensorFlow, a leading
software library for machine learning and artificial intelligence [8].

TensorFlow Probability is a probabilistic programming lan-
guage. This lets us build powerful models in a modular way
and estimate them automatically. At the heart of TensorFlow
Probability is the Distribution class. In theory, a probability
distribution is the set of rules that govern the likelihood of how a
random variable (vector, or even general tensor) takes its values.

In TensorFlow Probability, distribution rules for scalars and
vectors are parametrized, and these are expanded for higher
dimensions as independent samples. A distribution object corre-
sponds to a random variable or vector. The parts of a Bayesian
model can be represented using different distribution objects for
the parameters and observed data.

Example Distribution

As an example, let’s examine a linear regression with a χ2 prior
for the intercept a and a normal prior for the slope β . Our observed
outcome variable is y with a normal distribution and the predictor
is x.

yi ∼ Normal(xiβ +α,1)

We can store the distribution objects in a dictionary for clear
organization. The prior distribution of β is Normal with mean 1

BAYESIAN STATISTICS WITH PYTHON, NO RESAMPLING NECESSARY 43

and variance 1, N(1,1). We use the Normal distribution subclass
to encode its information in our dictionary.
tfd = tfp.distributions
dist_dict = {}
dist_dict['beta'] = tfd.Normal(1,1)

The β parameter can range over the real line, but the intercept, α
should be nonnegative. The Chi2 distribution sublcass has support
on only the nonegative reals. However, if we are performing
optimization on the α parameter, we may take a step where it
became negative. We can avoid any complications like this if
we use a TransformedDistribution. Transformed distributions
can be used together with a Bijector object that represents the
transforming function.

For α , we will model an unconstrained parameter, αu = logα .
The natural logarithm can take values over the real line.
tfb = tfp.bijectors
dist_dict['unconstrained_alpha'] = \
tfd.TransformedDistribution(tfd.Chi2(4),tfb.Log())

We can use the sample method on the distribution objects we
created to see random realizations. Before we do that we should
set the seed, so that we can replicate our work.
tf.random.set_seed(132)
sample_ex=dist_dict['unconstrained_alpha'].sample(10)
sample_ex

<tf.Tensor: shape=(10,), dtype=float32, numpy=
array([2.050956 , 0.56120026, 1.8559402,

-0.05669071, ...], dtype=float32)>

We see that the results are stored in a tf.Tensor object. This has
an easy interface with NumPy, as you can see by the numpy
component. We see that the unconstrained α , αu takes positive
and negative values.

We can evaluate the density, or it’s natural logarithm using
class methods as well. Here is the log density for the sample we
just drew.

dist_dict['unconstrained_alpha'].log_prob(sample_ex)

<tf.Tensor: shape=(10,), dtype=float32, numpy=
array([-1.1720479 , -1.1402813 , -0.8732692 ,

-1.9721189 , ...], dtype=float32)>

Now we can get α from αu by using a callable and the Determin-
istic distribution.

dist_dict['alpha'] = \
lambda unconstrained_alpha: \

tfd.Deterministic(\
loc= tfb.Log().inverse(\

unconstrained_alpha))

Now we’ve added all of the parameters to dist_dict. We just need
to handle the observed variables y and x. In this example x is
exogenous, which means it can be treated as fixed and nonrandom
in estimating α and β in the model for y. y is endogenous, which
means it is a response variable in the model, the outcome we are
trying to estimate.

We will define x separately from our dictionary of distribu-
tions. For the example we have to generate values of x, but once
this is done we will treat it as fixed and exogenous

The observed variable x will have a standard normal distribu-
tion. We will start by giving it a sample size of 100.

n = 100
x_dist = tfd.Normal(tf.zeros(n),1)
x = x_dist.sample()

The distribution of y, which would give us the likelihood, can be
formulated using a callable function of the parameters and the
fixed value of x we just obtained.

dist_dict['y'] = \
lambda alpha, beta: \

tfd.Normal(loc = alpha + beta*x,scale=1)

With a dictionary of distributions and callables indicating their
dependencies, we can work with the joint density. This will
correspond to the posterior distribution of the model, augmenting
the priors with the likelihood.

The JointDistributionNamed class takes a dictionary as input
and behaves similarly to a regular univariate distribution object.
We can take samples, which are returned as dictionaries keyed by
the parameter and observed variable names. We can also compute
log probabilities, which gives us the posterior density.

posterior = tfd.JointDistributionNamed(dist_dict)

Now we have a feel for how TensorFlow Probability can be used to
store a Bayesian model. We have what we need to start performing
optimization and variance estimation.

Maximum A Posteriori (MAP) with SciPy

We can use SciPy’s implementation of the Limited memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [9] algorithm to
estimate the posterior mode. This is a Quasi-Newton optimization
method that does not need to store the entire Hessian matrix
during the algorithm, so it can be very fast. If the Hessian was
fully stored we could just use it directly in variance estimation,
but it would be slower. We do to take advantage of automatic
differentiation to calculate the score function, the first derivative
of the posterior. TensorFlow Probability provides this through the
value_and_gradient function of its math library.

We will use minimize from the optimize SciPy library, which
operates on a loss function that takes a vector of parameters as
input. We will optimize on unconstrained_alpha and beta, the
unconstrained space parameters of the model. In the joint distribu-
tion representation, they are separate tensors. But in optimization,
we will need to evaluate a single tensor.

We will use the first utility function from the bayes_mapvar
library, which will be available with this paper, to accomplish
this. The par_vec_from_dict function unpacks the tensors in a
dictionary into a vector.

Within our loss function, we must move the vector of input pa-
rameters back to a dictionary of tensors to be evaluated by Tensor-
Flow probability. The par_dict_from_vec function moves the un-
constrained parameters back into a dictionary, and the constrained
parameters are generated by the get_constrained function. Then
the posterior density is evaluated by augmenting this dictionary of
constrained parameters with the observed endogenoous variables.
The get_constrained function is also used to get the final posterior
model estimates from the SciPy optimization.

Variance Estimation with SciPy

Once the posterior mode is estimated we can estimate the variance.
The first step is calculating the bandwidths. The get_bandwidths
function handles this.

def get_bandwidths(unconstrained_par_vec):
abspars = abs(unconstrained_par_vec)
epsdouble = np.finfo(float).eps

44 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Statistic Mean S.D.

αMAP mean 4.141 2.475
αMCMC mean 3.989 2.765
αMAP S.E. 0.037 0.004
αMCMC S.E. 0.041 0.001
α A.D. Reject 0.042 0.201
βMAP mode 1.013 0.504
βMCMC mean 1.022 1.003
βMAP S.E. 0.029 0.001
βMCMC S.E. 0.041 0.002
β A.D. Reject 0.045 0.207

TABLE 1
Simulation Results, npre = 1000, npost = 600, nMCMC = 500.

epsdouble = epsdouble**(1 / 3)
scale = epsdouble * (abspars + epsdouble)
scaleparmstable = scale + abspars
return scaleparmstable - abspars

With the bandwidths calculated, we step through the parameters
and create the Hessian and Delta matrices that we need for vari-
ance estimation. The get_hessian_delta_variance function use
numeric differentation to calculate the Hessian, based on numeric
derivaties of the automatic derivatives computed by TensorFlow
probability for the score function. The Delta matrix is calculated
using numeric differentation of the constrained parameter func-
tions.

Simulation

We evaluated our methodology with a simulation based on the α
and β parameter setting discussed earlier. This was an investiga-
tion into how well we estimated the posterior mode, variance, and
distribution using the methods of TensorFlow Probability, SciPy,
and bayes_mapvar.

To evaluate the posterior distributions of the parameters we
used the MCMC capabilities of TensorFlow Probability. Partic-
ulary the the No-U-Turn Sampler [10]. We were careful to thin
the sample based on effective sample size so that autocorrelation
would not be a problem. This was accomplished using Tensor-
Flow Probability’s effective_sample_size function from its mcmc
library.

We drew npre = 1000 observations from the unconstrained
prior parameter distribution for αi and βi. For each of these
prior draws, we drew a posterior sample of yi and xi. yi and xi
were npost = 600 samples based on each \alpha_i and βi. The
posterior mode and variance were estimated, and nMCMC = 500
posterior draws from MCMC were made. The mean was used in
the MCMC draws since it sould coincide with the mode if our
assumptions are correct.

To check the distributional results, we used the Anderson-
Darling test [11]. This is given by anderson in scipy.stats. We
stored a record of whether the test rejects normality at the .05
significance level for each of the npre draws. This test actually
checks the mean and variance assumptions as well, since it
compares to a standard normal and we are standardizing based
on the MAP and get_hessian_delta_variance estimates.

The results of the simulation are shown in 1.We use Standard
Error (S.E.) to refer to the 1000 estimates of posterior standard
deviations from get_hessian_delta_variance and the MCMC

Statistics Lower Upper

α AD Reject 0.030 0.056
β A.D. Reject 0.033 0.060

TABLE 2
A.D. Confidence Intervals, npre = 1000, npost = 600, nMCMC = 500.

sample standard deviations. The Standard Deviation (S.D.) column
represents the statistics calculated over the 1000 estimates. The
standard errors are not far from each other, and neither are the
modes and means. The rejection rates for the Anderson Darling
test are not far from .05 either.

We can perform a hypothesis test of whether the rejection
rate is .05 by checking whether .05 is in the confidence interval
for the proportion. We will use the proportion_confint function
from statsmodels [12]. In 2, we see that .05 is comfortably
within intervals for both parameters. Our simulation successfully
corroborated our assumptions about the model and the consistency
of our method for estimating the posterior mode, variance, and
distribution.

Conclusion

We have explored how Bayesian analysis can be performed
without resampling and still obtain full inference. With adequate
amounts of the data, the posterior mode can be estimated with
numeric optimization and the posterior variance can be estimated
with numeric or automatic differentation. The asymptotic nor-
mality of the posterior distribution enables simple calculation of
posterior probabilities and confidence (credible) intervals as well.

Bayesian methods let us use data from past experience, subject
matter expertise, and different levels of certainty to solve data
sparsity problems and provide a probabilistic basis for inference.
Retail Price Optimization benefits from historical data and dif-
ferent granularities of information. Other fields may also take
advantage of access to large amounts of data and be able to use
these approximation techniques. These techniques and the tools
implementing them can be used by practicioners to make their
analysis more efficient and less intimidating.

REFERENCES

[1] A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin,
Bayesian Data Analysis, Third Edition, ser. Chapman & Hall/CRC Texts
in Statistical Science. Taylor & Francis, 2013. [Online]. Available:
https://books.google.com/books?id=ZXL6AQAAQBAJ

[2] G. W. Oehlert, “A note on the delta method,” The American Statistician,
vol. 46, no. 1, pp. 27–29, 1992, https://doi.org/10.1080/00031305.1992.
10475842. [Online]. Available: https://www.tandfonline.com/doi/abs/10.
1080/00031305.1992.10475842

[3] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic differentiation in machine learning: a survey,” 2018.

[4] W. Press and S. Teukolsky, Numerical Recipes 3rd Edition: The Art
of Scientific Computing, ser. Numerical Recipes: The Art of Scientific
Computing. Cambridge University Press, 2007. [Online]. Available:
https://books.google.com/books?id=1aAOdzK3FegC

[5] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” vol. 585,
no. 7825, pp. 357–362, https://doi.org/10.1038/s41586-020-2649-2.
[Online]. Available: https://doi.org/10.1038/s41586-020-2649-2

BAYESIAN STATISTICS WITH PYTHON, NO RESAMPLING NECESSARY 45

[6] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,
E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pe-
dregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Funda-
mental Algorithms for Scientific Computing in Python,” Nature Methods,
vol. 17, pp. 261–272, 2020, https://doi.org/10.1038/s41592-019-0686-2.

[7] C. Bonferroni, “Teoria statistica delle classi e calcolo delle probabilita,”
Pubblicazioni del R Istituto Superiore di Scienze Economiche e Com-
mericiali di Firenze, vol. 8, pp. 3–62, 1936.

[8] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[9] R. Fletcher, Practical Methods of Optimization, 2nd ed. New York, NY,
USA: John Wiley & Sons, 1987, https://doi.org/10.1002/9781118723203.

[10] M. D. Hoffman and A. Gelman, “The no-u-turn sampler: Adaptively
setting path lengths in hamiltonian monte carlo,” 2011.

[11] M. A. Stephens, “Edf statistics for goodness of fit and some compar-
isons,” Journal of the American Statistical Association, vol. 69, no. 347,
pp. 730–737, Sep. 1974, https://doi.org/10.2307/2286009.

[12] S. Seabold and J. Perktold, “statsmodels: Econometric and statistical
modeling with python,” in 9th Python in Science Conference, 2010,
https://doi.org/10.25080/majora-92bf1922-011.

46 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Using Numba for GPU acceleration of Neutron
Beamline Digital Twins

Coleman J. Kendrick‡∗, Jiao Y. Y. Lin‡, Garrett E. Granroth‡

✦

Abstract—Digital twins of neutron instruments using Monte Carlo ray tracing
have proven to be useful in neutron data analysis and verifying instrument and
sample designs. However, these simulations can become quite complex and
computationally demanding with tens of billions of neutrons. In this paper, we
present a GPU accelerated version of MCViNE using Python and Numba to
balance user extensibility with performance. Numba is an open-source just-in-
time (JIT) compiler for Python using LLVM to generate efficient machine code
for CPUs and GPUs with NVIDIA CUDA. The JIT nature of Numba allowed
complex instrument kernels to be generated easily. Initial simulations have
shown a speedup between 200-1000x over the original CPU implementation.
The performance gain with Numba enables more sophisticated data analysis
and impacts neutron scattering science and instrument design.

Index Terms—Monte Carlo, numba, digital twin, Python, neutron, GPU, ray
tracing, CUDA

INTRODUCTION

MCViNE [1], [2] is a software package for creating digital
twins of neutron scattering experiments using a Monte Carlo ray-
tracing approach. In this method, randomly generated probability
packets (representing neutrons) are propagated through a series
of components. Each component changes the probability packets
according to the physics of the component. As an example of
a component, consider a neutron mirror with less than perfect
reflectivity. The interaction between the probability packet and
the mirror would cause the velocity component perpendicular to
the mirror to reverse and would reduce the probability of the
packet to take into account that there is a finite probability that
the neutron would not be reflected. The physics of each MCViNE
component is documented in the code. An extensive description of
components for a similar package, McStas is provided at [3]. There
is no correlation between packets, so the system is embarrassingly
parallel. These simulations are useful in performing advanced
neutron data analysis [4], [5], [6], [7], [8], [9] as well as in
designing novel neutron instruments [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20] and sample environments [21],
[22]. Specifically, it has been used in the initial designs for
instruments in the Second Target Station at the Spallation Neutron
Source (SNS) [23] at Oak Ridge National Laboratory. Currently,

* Corresponding author: kendrickcj@ornl.gov
‡ Oak Ridge National Laboratory

Copyright © 2023 Coleman J. Kendrick et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

MCViNE only runs on CPUs which is a bottleneck in large
simulations with tens of billions of neutrons, and in modelling
complex multiple scattering, with some simulations taking months
to complete. Due to the massively parallel nature of Monte
Carlo methods, bringing GPU acceleration to these simulations
would offer superior performance and scalability. MCViNE was
originally implemented in C++ and parallelized using MPI, with
bindings to Python for user interaction. However, extensibility for
the end user can be very difficult.

To further improve performance and to create an easily ex-
tensible code base, Python and Numba [24] were chosen to
create a new package of MCViNE providing GPU acceleration,
mcvine.acc [25]. Numba is an open-source JIT (just-in-time)
compiler for Python using LLVM to generate efficient machine
code and supports GPUs using NVIDIA CUDA. Numba is de-
signed for scientific computing and can support NumPy arrays
and functions. Currently, we are only using Numba for its GPU
capabilities as the original version of MCViNE is used to run
on CPUs. This accelerated MCViNE package is compatible with
existing MCViNE scripts, and using a mixture of CPU and GPU
components is supported.

This paper will first describe how MCViNE works at a high-
level, how components and instruments are created using Numba
to generate CUDA kernels, and how Numba is also used to gen-
erate kernels for complex sample geometries and scatterers. Next,
we will compare performance of the CPU version of MCViNE
to the Numba GPU version. After that we will describe how the
MCViNE GPU acceleration will be used in the larger context of a
workflow for data analysis. Finally, we will discuss our experience
using Numba for this application.

METHOD

MCViNE Overview

MCViNE simulations are run from a script that defines an instru-
ment, where an instrument is composed of multiple components.
A simple 4 component instrument is shown in Figure 1. Full in-
struments may have several hundred components. Each instrument
script is run with a specified number of probability packets, where
each packet has several state variables: position, velocity, spin,
probability, and time.

At a high-level, a component takes a neutron as input and
performs some action on the neutron. Components can be attached
to the instrument at a specified position and orientation. Some of
the main component types are sources, guides, monitors, samples,

USING NUMBA FOR GPU ACCELERATION OF NEUTRON BEAMLINE DIGITAL TWINS 47

and detectors. In a full instrument simulation, neutrons are gener-
ated from a source component and are propagated through each
component in the instrument. Sample components are a special
type of component with additional input files to specify geometry
and material composition.

Source Guide Sample Detector

Components

Fig. 1: Example instrument with four components: a source, guide,
sample, and detector.

Component Hierarchy

One of the major benefits of using Python for this application is
the ease of utilizing an object-oriented design and polymorphism.
Each component inherits from a base AbstractComponent
class. This AbstractComponent class requires a “propagate”
method to be defined which takes in a neutron for the first
parameter. The “propagate” method is responsible for defining
the action of the component and is decorated with @cudajit to
indicate that it is a CUDA kernel. An example of creating a simple
component can be seen below. Additional parameters can be spec-
ified, but must also be defined in the propagate_params list.
There are several major types of components that have their own
subclasses: SampleBase, SourceBase, and MonitorBase.

from mcvine.acc.ComponentBase import ComponentBase
class Arm(ComponentBase):

def __init__(self, name, **kwargs):
self.name = name
self.propagate_params = ()

Aim a neutron at this arm to
cause JIT compilation.
import mcni
neutrons = mcni.neutron_buffer(1)
neutrons[0] = \

mcni.neutron(r=(0, 0, -1),
v=(0, 0, 1),
prob=1, time=0)

self.process(neutrons)

@cuda.jit(void(NB_FLOAT[:]),
device=True)

def propagate(in_neutron):
pass

CUDA Kernel Generation for an Instrument

In order to run a simulation from an input instrument script,
mcvine.acc first generates a GPU kernel from the instrument
specification. The input script will be parsed and then “compiled”
to generate a Python script representing an instrument kernel.
This compiled version is then imported and executed to run the
simulation. An example of a simple MCViNE instrument script
containing a source, guide, and monitor can be seen below.

def instrument():
instrument = mcvine.instrument()
source = Source_simple(

'src',
radius = 0., width = 0.03,
height = 0.03, dist = 1.,
xw = 0.035, yh = 0.035

)
instrument.append(source,

position=(0,0,0.))

guide1 = Guide(
'guide',
w1=0.035, h1=0.035,
w2=0.035, h2=0.035,
l=10

)
instrument.append(guide1,

position=(0,0,1.))

mon = PosDiv_monitor(
'mon', xwidth=0.08, yheight=0.08,
maxdiv=2.,
npos=250, ndiv=251,

)
instrument.append(mon,

position=(0,0,12.))
return instrument

When mcvine.acc is called on the above instrument script,
a new Python file is generated which contains a Numba CUDA
kernel for the entire instrument. Each of the instrument compo-
nents’ process kernels are collected and inserted to form a
generic kernel in this process. This generated kernel effectively
models a neutron travelling through the entire instrument.

Depending on the kernel launch configuration, each GPU
thread might be responsible for more than one neutron. An
example of a compiled instrument script can be seen in the code
listing below. As seen in the script, a CUDA kernel is defined
using Numba. Inside the kernel, each GPU thread will loop
over the number of neutrons it is processing. Each propagate
function has a number appended to it. These propagate functions
correspond to the Component’s propagate method. For this case,
propagate0 matches the Source component propagate kernel,
propagate1 matches the Guide component propagate kernel,
and so on. The applyTransformation function is inserted in-
between instrument components and is responsible for translating
the position/velocity of a neutron in the current component’s
coordinate system to that of the next component by applying a
transformation matrix.
@cuda.jit
def process_kernel_no_buffer(

rng_states, N, n_neutrons_per_thread,
args

):
args0, args1, args2, offsets, rotmats, neutron_counter = args
thread_index = cuda.grid(1)
start_index = thread_index*n_neutrons_per_thread
end_index = min(start_index+n_neutrons_per_thread, N)
neutron = cuda.local.array(shape=10, dtype=NB_FLOAT)
r = cuda.local.array(3, dtype=NB_FLOAT)
v = cuda.local.array(3, dtype=NB_FLOAT)
for neutron_index in range(start_index, end_index):

cuda.atomic.add(neutron_counter, 0, 1)
propagate0(thread_index, rng_states, neutron, *args0)
applyTransformation(neutron[:3], neutron[3:6],

rotmats[0], offsets[0], r, v)
propagate1(neutron, *args1)
applyTransformation(neutron[:3], neutron[3:6],

rotmats[1], offsets[1], r, v)
propagate2(neutron, *args2)

from mcvine.acc.components.sources.SourceBase import SourceBase
class _Base(SourceBase): # has to be named Base in definition

def __init__(self, instrument):
offsets, rotmats = calcTransformations(instrument)
self.neutron_counter = neutron_counter = np.zeros(1, dtype=int)
self.propagate_params = tuple(

c.propagate_params for c in instrument.components)
self.propagate_params += (offsets, rotmats, neutron_counter)

48 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

return
def propagate(self): return

InstrumentWrapper = _Base
InstrumentWrapper.process_kernel_no_buffer = process_kernel_no_buffer

def run(ncount, ntotalthreads=None, threads_per_block=None, **kwds):
instrument = loadInstrument(script, **kwds)
iw = InstrumentWrapper(instrument)
iw.process_no_buffer(ncount, ntotalthreads=ntotalthreads,

threads_per_block=threads_per_block)
processed = iw.neutron_counter[0]
saveMonitorOutputs(instrument, scale_factor=1.0/ncount)

Sample Kernels and CSG

One unique feature of MCViNE is its sample component, which
allows for simulation of complex sample/sample environment and
detector systems with flexible, sophisticated geometry and scat-
tering physics. This feature has enabled simulations that produce
virtual experiment data that closely resemble real experimental
data and make MCViNE a useful tool for both instrument design
and advanced data analysis.

A Sample is made up of a Sample Assembly which has
Shape and Phase tags. The Shape tag contains the geometry
specification. The Phase tag, together with additional XML
file(s) named {name}-scatterer.xml, contain the scattering
physics specification where {name} is the name of a scatterer in-
cluded in the sample assembly. A simple example for an aluminum
(Al) sphere is shown below. Such an Al sphere is an idealized
sample, where the sphere matches the scattering condition and
Al is the material most transparent to neutron and is used for
mounts and sample containers. Therefore it is well studied and
well understood.
<?xml version="1.0"?>

<!DOCTYPE SampleAssembly>

<SampleAssembly name="isotropic_sphere">
<PowderSample name="sample" type="sample">
<Shape>
<sphere radius="1*cm" />

</Shape>
<Phase type="crystal">
<ChemicalFormula>Al</ChemicalFormula>
<xyzfile>Al.xyz</xyzfile>

</Phase>
</PowderSample>
<LocalGeometer registry-coordinate-system="InstrumentScientist">
<Register name="sample" position="(0,0,0)" orientation="(0,0,0)"/>

</LocalGeometer>
</SampleAssembly>

Simple shapes can be created easily, but more complex shapes
can be created too. To create the sample geometry, MCViNE uses
Constructive Solid Geometry (CSG). CSG can create complex
geometries from operations such as intersection and union, on
primitive shapes, such as cubes, spheres, and cylinders. For exam-
ple, Figure 2 shows how CSG is used to create an annular sample
can from cylindrical primitives. This can is similar to those used
in experiment design [26]. First a ring for the outside of the can is
made from two cylinders by subtraction, then a ring for the inside
of the can is also made from two cylinders. These two rings are
then combined in union with another cylinder that is the bottom
of the can.

Ray tracing routines are implemented as CUDA kernels for
these primitive shapes and operations. To support complex geome-
tries that might involve many operations and shapes, the visitor
pattern is used which constructs a single CUDA kernel to handle
the ray intersection of that shape. This highlights one of the major
advantages of using Python and Numba, as the ability to generate
a CUDA kernel dynamically at run-time would be much more
difficult to implement in other languages.

The specification of the scattering physics of a particular
neutron scatterer is described in a dedicated “scatterer” XML file,

Fig. 2: An example of an annular sample can created using CSG
(right) and how the primitives and operations are specified in XML as
input to MCViNE.

where one or more sample kernels can be specified. An example
of a scatterer XML file for specifying scattering physics can be
seen below.
<?xml version="1.0"?>

<!DOCTYPE scatterer>

<!-- weights: absorption, scattering, transmission -->
<homogeneous_scatterer mcweights="0, 1, 0">
<IsotropicKernel absorption_coefficient="10./m" scattering_coefficient="10./m">
</IsotropicKernel>

</homogeneous_scatterer>

Note the format is extensible enough to allow a composite
scatterer with multiple scatters, though at the time of writing
this paper the Numba version of this functionality is still under
development.

RESULTS

Two types of comparisons were performed to show the usefulness
of mcvine.acc. First, simulations comparing the CPU and
GPU shows a significant performance gain by using a GPU (Fig-
ures 3 – 5). Second, simulations from a more complete instrument
solution showing equivalent outcomes from a CPU and GPU
simulation were performed (Figure 6 and 7).

For the first study, we focus on the performance gain achieved
by the GPU accelerated version of MCViNE. We used a simple
instrument consisting of a source, sample, and detector to focus
on the sample assembly component. We performed tests with two
different samples: a simple spherical sample with an isotropic
scattering kernel, and a second with a more complex Uranium
Nitride (UN) sample. The UN sample was chosen as it has been
experimentally studied and is well modeled by single and multiple
scattering of a Quantum Harmonic oscillator model [27], [9]. The
UN sample is treated as a 1 cm polycrystalline cube to match
the experimental configuration [27]. The UN structure is the same
as rock salt structure with the light N atoms located between the
much heavier U atoms. The N vibrates as a harmonic oscillator
which provides equally spaced lines in energy transfer E. The
lines are modeled in MCViNE with a sample scattering kernel
containing a composite of E(Q) kernels with constant E values of
a 50 meV spacing from 0 to 350 meV.

Figure 3 shows the performance of the isotropic sphere sample
for the CPU version of MCViNE with one and 16 cores (blue and

USING NUMBA FOR GPU ACCELERATION OF NEUTRON BEAMLINE DIGITAL TWINS 49

103 104 105 106 107 108 109 1010 1011 1012

Neutron Count

100

101

102

103

104

105

106

107
Ti

m
e

(s
)

HSS Isotropic Sphere Timings
CPU (AMD 5950X, Single Core)
CPU (AMD 5950X, 16 Core)
GPU (RTX 3080Ti)

Fig. 3: Time versus neutron counts for a single core CPU (blue
line), multi-core CPU (green line), and GPU (orange line) for a
simple instrument using a homogeneous single scatterer (HSS) with a
aluminum sphere sample.

green curves) compared to the GPU version of MCViNE (orange
curve). At 1012 neutrons, mcvine.acc achieves a speedup of
1725x over a single core and 133x over 16 cores.

Two versions of this simulation were run for the UN sample:
the first with only single scattering events (Figure 4), and the sec-
ond with single and multiple scattering events (Figure 5). Single
scattering was implemented first to verify the overall workflow and
kernel generation of mcvine.acc. Multiple scattering was then
added to fully capture the realistic scattering physics. Multiple
scattering is much more computationally intensive since each
neutron can scatter more than once.

103 104 105 106 107 108 109 1010 1011

Neutron Count

100

101

102

103

104

105

106

Ti
m

e
(s

)

UN Single Scatterer Timings
CPU (AMD 5950X, Single Core)
CPU (AMD 5950X, 16 Core)
GPU (RTX 3080Ti)

Fig. 4: Time versus neutron counts for a single core CPU (blue
line), multi-core CPU (green line), and GPU (orange line) and GPU
(orange line) for the UN instrument with single scattering.

For the UN single scattering case, Figure 4 shows that for
1011 neutrons, the GPU version obtained a speedup of 383x over a
single core, and 33x over 16 cores. For the UN multiple scattering
case, Figure 5 shows that for 1010 neutrons, the GPU version
obtained a speedup of 137x over a single core, and 10x over 16
cores. Comparing the speedup achieved for the simple isotropic

103 104 105 106 107 108 109 1010

Neutron Count

100

101

102

103

104

105

Ti
m

e
(s

)

UN Multiple Scatterer Timings
CPU (AMD 5950X, Single Core)
CPU (AMD 5950X, 16 Core)
GPU (RTX 3080Ti)

Fig. 5: Time versus neutron counts for a single core CPU (blue
line), multi-core CPU (green line), and GPU (orange line) for the
UN instrument with multiple scattering.

Simulation Type Speedup over 1 Core Speedup over 16 Cores
HSS Isotropic Sphere 1725 133
UN Single Scatterer 383 33

UN Multiple Scatterer 137 10

TABLE 1: Speedup achieved by mcvine.acc over the CPU with
one core and 16 cores for each type of simulation.

sphere to the UN with single and multiple scattering shows the
additional complexity required for the UN sample. A speedup of
10x over 16-core CPU for the UN multiple scattering case is still
significant as some simulations can take on the order of days to
months to complete.

While the speedup over the CPU version of MCViNE is signif-
icant, further optimization is possible. Currently, each GPU thread
executes a single large kernel that models the instrument. For large
instruments that contain many components, the instrument kernel
can use too many registers which limits device occupancy. Addi-
tionally, a lot of components involve many conditional statements
which do not perform well on the GPU. This can be seen by
comparing the performance of complex sample components, such
as the UN sample, to the simple isotropic sphere.

Next we run a more complete test with the Uranium Nitride
sample to verify the same result between the CPU and GPU. A
study on UN was the first time the multiple-scattering as well as
the multiple-scattering physics in the CPU version of MCViNE
was used to explain experimental results [9]. Specifically, one of
the puzzles from the measured data was that the equally spaced
lines extend over all Q. It was determined that this was due
to multiple scattering. To more conclusively check this, a CPU
simulation using MCViNE was performed [9]. At the time this
CPU simulation was run, it took days to do such calculations.
Therefore, this is a good test case to check the speed increase
gained from using GPUs with mcvine.acc.

In this case, the incident beamline simulation (the simulation
up to the sample containing the SNS source, guide choppers and
slits) for the Wide Angular-Range Chopper Spectrometer (ARCS)
instrument [28], [29] was run using McStas [30], [31] inside a
workflow tool [32]. To configure the incident beam simulation in
this workflow a user simply provides an existing experimental data

50 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

0 5 10 15 20 25 30
Q (Å 1)

100

0

100

200

300

400
E

(m
eV

)

Fig. 6: The results from the UN simulation on ARCS with multiple
scattering turned on. Color indicates the scattering intensity where
brighter regions represent higher intensity. Note that the equally
spaced lines are visible even at low Q.

file that provides the necessary parameters. Specifically, an ARCS
data file with an Ei = 500 meV was fed into the workflow which
then generates an mcpl [33] file [34] for use in MCViNE. The
rest of the virtual instrument uses mcvine.acc to leverage the
GPU acceleration. It consists of a source component that reads the
mcpl file to generate neutrons for the neutron source component,
a sample assembly component, and a powder S(Q,E) monitor
component for direct-geometry inelastic neutron spectrometers.
The results are shown in Figure 6 and 7.

First, note the equally spaced lines in E shown in Figure 6.
This the expected quantum oscillator behavior. Furthermore, Fig-
ure 7 shows the Q dependence of the scattering intensity along
each of the E lines in Figure 6. The expected functional depen-
dence for each successive transition and the overall increase in
background expected from multiple scattering are both observed.

As this paper focuses on the GPU implementation, Figure 6
and 7 also show the agreement between the CPU and GPU
versions of MCViNE. The majority of the speed increase for
this particular simulation is in the incident beam line simulation
leveraging the McStas GPU implementation, and is now under an
hour rather than days. The MCViNE part of the simulation has
a speed up similar to the simpler test from ∼ 103s to ∼ 102s.
For a virtual neutron experiment the incident beam simulation can
often be reused in a series of source-sample-detector simulations
with various sample and detector configurations. For example, a
researcher may run the case with and without multiple scattering
or a series of related samples. Thus fast sample simulations
are critical to the overall speed of experimental analysis which
highlights the need for using mcvine.acc.

CONCLUSIONS

Python and Numba were used successfully to create
mcvine.acc, a new GPU accelerated version of MCViNE,
which has so far achieved significant performance gains over the
original CPU implementation. Using Python for this application
has helped increase the usability, extensibility, and maintainability

0 5 10 15 20 25 30
Q (Å 1)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

In
te

ns
ity

 (a
rb

. u
ni

t)

40 < E < 60
90 < E < 110
140 < E < 160
190 < E < 210
240 < E < 260
290 < E < 310
340 < E < 360

Fig. 7: Constant-E cuts around the individual energy levels in the
I(Q,E) displayed in Figure 6. Note the functional dependence of each
level and the background increase are consistent with the physics and
the multiple scattering. The comparisons between the CPU and GPU
calculations are shown with the solid line and circles respectively.

of the codebase, while gaining performance benefits of GPUs by
using Numba. Additionally, the JIT nature of Numba allowed com-
plex combinations of CUDA kernels to be generated at runtime,
which would have been significantly harder to implement in other
languages.

The performance gains from using Numba have shown to
be beneficial. For a simple isotropic sphere sample, a speedup
of 133x was achieved over a 16-core CPU using a consumer-
grade GPU. For the more complex UN sample with multiple
scattering, a speedup of 10x was achieved over a 16-core CPU.
These performance gains are crucial for current simulations that
take on the order of days to weeks to complete. However, there are
still opportunities to further optimize these simulations to better
leverage the full capability of the GPU.

Using Numba for GPU acceleration has enabled more sophis-
ticated data analysis for neutron scattering and instrument design,
while overall lowering the development cost needed to obtain
significant performance improvements. The techniques used in
this project could also be applied to other scientific computing
applications.

ACKNOWLEDGEMENTS

For initial Framework development and instrument component de-
velopment, this research used resources of the Spallation Neutron
Source Second Target Station Project at Oak Ridge National Lab-
oratory (ORNL). Sample development was sponsored by ORNL’s
Laboratory Director’s Research and Development Fund. ORNL is
managed by UT-Battelle LLC for DOE’s Office of Science, under
Contract No. DE-AC05-00OR22725.

The US government retains and the publisher, by accepting
the article for publication, acknowledges that the US government
retains a nonexclusive, paid-up, irrevocable, worldwide license
to publish or reproduce the published form of this manuscript,
or allow others to do so, for US government purposes. DOE
will provide public access to these results of federally spon-
sored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

USING NUMBA FOR GPU ACCELERATION OF NEUTRON BEAMLINE DIGITAL TWINS 51

REFERENCES

[1] J. Y. Y. Lin, H. L. Smith, G. E. Granroth, D. L. Abernathy, M. D.
Lumsden, B. Winn, A. A. Aczel, M. Aivazis, and B. Fultz, “MCViNE–
an object oriented monte carlo neutron ray tracing simulation package,”
Nuclear Instruments and Methods in Physics Research Section A: Accel-
erators, Spectrometers, Detectors and Associated Equipment, vol. 810,
pp. 86–99, 2016, https://doi.org/10.1016/j.nima.2015.11.118.

[2] J. Y. Y. Lin, F. Islam, G. Sala, I. Lumsden, H. Smith, M. Doucet, M. B.
Stone, D. L. Abernathy, G. Ehlers, J. F. Ankner, and G. E. Granroth,
“Recent developments of MCViNE and its applications at SNS,”
Journal of Physics Communications, vol. 3, no. 8, p. 085005, Aug.
2019, https://doi.org/10.1088/2399-6528/ab3622. [Online]. Available:
https://doi.org/10.1088%2F2399-6528%2Fab3622

[3] P. Willendrup, E. Farhi, E. Knudsen, U. Filges, and K. Lefmann, Com-
ponent Manual for the Neutron Ray-Tracing Package McStas. Danish
Techincal University, 2022.

[4] J. Y. Y. Lin, G. Sala, and M. B. Stone, “A super-resolution technique to
analyze single-crystal inelastic neutron scattering measurements using
direct-geometry chopper spectrometers,” Review of Scientific Instru-
ments, vol. 93, no. 2, p. 025101, 2022, https://doi.org/10.1063/5.0079031.

[5] F. Islam, J. Y. Y. Lin, R. Archibald, D. L. Abernathy, I. Al-Qasir, A. A.
Campbell, M. B. Stone, and G. E. Granroth, “Super-resolution energy
spectra from neutron direct-geometry spectrometers,” Review of Scientific
Instruments, vol. 90, no. 10, p. 105109, 2019, https://doi.org/10.1063/1.
5116147.

[6] G. Sala, J. Y. Y. Lin, A. M. Samarakoon, D. S. Parker, A. F.
May, and M. B. Stone, “Ferrimagnetic spin waves in honeycomb and
triangular layers of Mn3Si2Te6,” Phys. Rev. B, vol. 105, p. 214405,
Jun 2022, https://doi.org/10.1103/PhysRevB.105.214405. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevB.105.214405

[7] S.-H. Do, K. Kaneko, R. Kajimoto, K. Kamazawa, M. B. Stone, J. Y. Y.
Lin, S. Itoh, T. Masuda, G. D. Samolyuk, E. Dagotto et al., “Damped
dirac magnon in the metallic kagome antiferromagnet FeSn,” Physical
Review B, vol. 105, no. 18, p. L180403, 2022, https://doi.org/10.1103/
physrevb.105.l180403.

[8] J. C. Leiner, H. O. Jeschke, R. Valentí, S. Zhang, A. T. Savici,
J. Y. Y. Lin, M. B. Stone, M. D. Lumsden, J. Hong, O. Delaire,
W. Bao, and C. L. Broholm, “Frustrated magnetism in mott
insulating (v1−xcrx)2o3,” Phys. Rev. X, vol. 9, p. 011035, Feb
2019, https://doi.org/10.1103/PhysRevX.9.011035. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevX.9.011035

[9] J. Y. Y. Lin, A. A. Aczel, D. L. Abernathy, S. E. Nagler, W. Buyers,
and G. E. Granroth, “Using monte carlo ray tracing simulations to model
the quantum harmonic oscillator modes observed in uranium nitride,”
Physical Review B, vol. 89, no. 14, p. 144302, 2014, https://doi.org/10.
1103/physrevb.89.144302.

[10] E. Mamontov, C. Boone, M. Frost, K. Herwig, T. Huegle, J. Y. Y. Lin,
B. McCormick, W. McHargue, A. Stoica, P. Torres et al., “A concept of a
broadband inverted geometry spectrometer for the Second Target Station
at the Spallation Neutron Source,” Review of Scientific Instruments,
vol. 93, no. 4, p. 045101, 2022, https://doi.org/10.1063/5.0086451.

[11] K. An, A. D. Stoica, T. Huegle, J. Y. Y. Lin, and V. Graves,
“MENUS—materials engineering by neutron scattering,” Review of Sci-
entific Instruments, vol. 93, no. 5, p. 053911, 2022, https://doi.org/10.
1063/5.0089783.

[12] G. Sala, M. Mourigal, C. Boone, N. P. Butch, A. Christianson, O. Delaire,
A. DeSantis, C. Hart, R. P. Hermann, T. Huegle et al., “CHESS: The
future direct geometry spectrometer at the Second Target Station,” Review
of Scientific Instruments, vol. 93, no. 6, p. 065109, 2022, https://doi.org/
10.1063/5.0089740.

[13] V. O. Garlea, S. Calder, T. Huegle, J. Y. Y. Lin, F. Islam, A. Stoica, V. B.
Graves, B. Frandsen, and S. D. Wilson, “VERDI: Versatile diffractometer
with wide-angle polarization analysis for magnetic structure studies in
powders and single crystals,” Review of Scientific Instruments, vol. 93,
no. 6, p. 065103, 2022, https://doi.org/10.1063/5.0090919.

[14] G. E. Borgstahl, W. B. O’Dell, M. Egli, J. F. Kern, A. Kovalevsky, J. Y. Y.
Lin, D. Myles, M. A. Wilson, W. Zhang, P. Zwart et al., “EWALD: A
macromolecular diffractometer for the Second Target Station,” Review of
Scientific Instruments, vol. 93, no. 6, p. 064103, 2022, https://doi.org/10.
1063/5.0090810.

[15] Y. Liu, H. Cao, S. Rosenkranz, M. Frost, T. Huegle, J. Y. Y. Lin, P. Torres,
A. Stoica, and B. C. Chakoumakos, “PIONEER, a high-resolution single-
crystal polarized neutron diffractometer,” Review of Scientific Instru-
ments, vol. 93, no. 7, p. 073901, 2022, https://doi.org/10.1063/5.0089524.

[16] S. Qian, W. Heller, W.-R. Chen, A. Christianson, C. Do, Y. Wang, J. Y. Y.
Lin, T. Huegle, C. Jiang, C. Boone et al., “CENTAUR—the small-and
wide-angle neutron scattering diffractometer/spectrometer for the Second

Target Station of the Spallation Neutron Source,” Review of Scientific
Instruments, vol. 93, no. 7, p. 075104, 2022, https://doi.org/10.1063/5.
0090527.

[17] C. Do, R. Ashkar, C. Boone, W.-R. Chen, G. Ehlers, P. Falus, A. Faraone,
J. S. Gardner, V. Graves, T. Huegle et al., “EXPANSE: A time-of-flight
expanded angle neutron spin echo spectrometer at the Second Target Sta-
tion of the Spallation Neutron Source,” Review of Scientific Instruments,
vol. 93, no. 7, p. 075107, 2022, https://doi.org/10.1063/5.0089349.

[18] J. Ankner, R. Ashkar, J. Browning, T. Charlton, M. Doucet, C. Halbert,
F. Islam, A. Karim, E. Kharlampieva, S. Kilbey et al., “Cinematic
reflectometry using QIKR, the quite intense kinetics reflectometer,”
Review of Scientific Instruments, vol. 94, no. 1, p. 013302, 2023,
https://doi.org/10.1063/5.0122279.

[19] A. Brugger, H. Z. Bilheux, J. Y. Y. Lin et al., “The Complex, Unique,
and Powerful Imaging instrument for Dynamics (CUPI2D) at the
Spallation Neutron Source,” Review of Scientific Instruments, vol. 94,
no. 5, p. 051301, 2023, https://doi.org/10.1063/5.0131778. [Online].
Available: https://doi.org/10.1063/5.0131778

[20] J. Y. Y. Lin, T. Huegle, L. Coates, and A. D. Stoica, “A realistic
guide misalignment model for the Second Target Station instruments
at the Spallation Neutron Source,” Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, vol. 1047, p. 167881, 2023, https://doi.org/10.
1016/j.nima.2022.167881.

[21] M. B. Stone, G. Sala, and J. Y. Y. Lin, “Design of a radial collimator
for the SEQUOIA direct geometry chopper spectrometer,” Physica B:
Condensed Matter, vol. 564, pp. 17–21, 2019, https://doi.org/10.1016/j.
physb.2018.11.042.

[22] J. L. Niedziela, R. Mills, M. J. Loguillo, H. D. Skorpenske, D. Armitage,
H. L. Smith, J. Y. Y. Lin, M. S. Lucas, M. B. Stone, and D. L. Abernathy,
“Design and operating characteristic of a vacuum furnace for time-of-
flight inelastic neutron scattering measurements,” Review of Scientific
Instruments, vol. 88, no. 10, p. 105116, 2017, https://doi.org/10.1063/1.
5007089.

[23] T. E. Mason, D. Abernathy, I. Anderson, J. Ankner, T. Egami, G. Ehlers,
A. Ekkebus, G. Granroth, M. Hagen, K. Herwig, J. Hodges, C. Hoffmann,
C. Horak, L. Horton, F. Klose, J. Larese, A. Mesecar, D. Myles,
J. Neuefeind, M. Ohl, C. Tulk, X.-L. Wang, and J. Zhao, “The Spal-
lation Neutron Source in Oak Ridge: A powerful tool for materials
research,” Physica B: Condensed Matter, vol. 385, pp. 955–960, 2006,
https://doi.org/10.1016/j.physb.2006.05.281.

[24] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python
jit compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, 2015, pp. 1–6, https://doi.org/10.1145/
2833157.2833162.

[25] J. Lin and C. Kendrick, “mcvine.acc,” https://github.com/mcvine/acc.
[Online]. Available: https://github.com/mcvine/acc

[26] T. R. Prisk, R. T. Azuah, D. L. Abernathy, G. E. Granroth, T. E.
Sherline, P. E. Sokol, J. Hu, and M. Boninsegni, “Zero-point motion
of liquid and solid hydrogen,” Phys. Rev. B, vol. 107, p. 094511,
Mar 2023, https://doi.org/10.1103/PhysRevB.107.094511. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevB.107.094511

[27] A. A. Aczel, G. E. Granroth, G. J. MacDougall, W. Buyers, D. L.
Abernathy, G. D. Samolyuk, G. M. Stocks, and S. E. Nagler, “Quantum
oscillations of nitrogen atoms in uranium nitride,” Nature Communica-
tions, vol. 3, p. 1124, 2012, https://doi.org/10.1038/ncomms2117.

[28] D. L. Abernathy, M. B. Stone, M. J. Loguillo, M. S. Lucas, O. De-
laire, X. Tang, J. Y. Y. Lin, and B. Fultz, “Design and operation of
the wide angular-range chopper spectrometer ARCS at the Spallation
Neutron Source,” Review of Scientific Instruments, vol. 83, no. 1, 2012,
https://doi.org/10.1063/1.3680104.

[29] M. B. Stone, J. L. Niedziela, D. L. Abernathy, L. DeBeer-Schmitt,
G. Ehlers, O. Garlea, G. E. Granroth, M. Graves-Brook, A. I. Kolesnikov,
A. Podlesnyak, and B. Winn, “A comparison of four direct geom-
etry time-of-flight spectrometers at the Spallation Neutron Source,”
Review of Scientific Instruments, vol. 85, no. 4, p. 045113, 2014,
https://doi.org/10.1063/1.4870050.

[30] P. K. Willendrup and K. Lefmann, “McStas (i): Introduction, use, and ba-
sic principles for ray-tracing simulations,” Journal of Neutron Research,
vol. 22, no. 1, pp. 1–16, 2020, https://doi.org/10.3233/JNR-190108.

[31] ——, “McStas (ii): An overview of components, their use, and advice
for user contributions,” Journal of Neutron Research, vol. 23, no. 1, pp.
7–27, 2021, https://doi.org/10.3233/JNR-200186.

[32] G. R. Watson, G. Cage, J. Fortney, G. E. Granroth, H. Hughes, T. Maier,
M. McDonnell, A. Ramirez-Cuesta, R. Smith, S. Yakubov, and W. Zhou,
“Calvera: A platform for the interpretation and analysis of neutron
scattering data,” in Accelerating Science and Engineering Discoveries

52 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Through Integrated Research Infrastructure for Experiment, Big Data,
Modeling and Simulation, K. Doug, G. Al, S. Pophale, H. Liu, and
S. Parete-Koon, Eds. Cham: Springer Nature Switzerland, 2022, pp.
137–154.

[33] T. Kittelmann, E. Klinkby, E. Knudsen, P. Willendrup, X. Cai, and
K. Kanaki, “Monte Carlo Particle Lists: MCPL,” Computer Physics
Communications, vol. 218, pp. 17–42, 2017, https://doi.org/10.1016/
j.cpc.2017.04.012. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0010465517301261

[34] G. Granroth, D. L. Abernathy, J. Lin, W. Zhou, and P. K. Wilendrup,
“Incident beamline simulation for ei= 510 mev on the ARCS
spectrometer at the Spallation Neutron Source,” https://doi.org/10.13139/
ORNLNCCS/1975747, 6 2023, https://doi.org/10.13139/ORNLNCCS/
1975747. [Online]. Available: https://doi.ccs.ornl.gov/ui/doi/438

PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023) 53

EEG-to-fMRI Neuroimaging Cross Modal Synthesis in
Python

David Calhas‡§∗

✦

Abstract—Electroencepholography (EEG) and functional magnetic resonance
imaging (fMRI) are two ways of recording brain activity; the former provides
good time resolution but poor spatial resolution, while the converse is true for
the latter. Recently, deep neural network models have been developed that
can synthesize fMRI activity from EEG signals, and vice versa. Because these
generative models simulate data, they make it easier for neuroscientists to test
ideas about how EEG and fMRI signals relate to each other, and what both
signals tell us about how the brain controls behavior. To make it easier for
researchers to access these models, and to standardize how they are used,
we developed a Python package, EEG-to-fMRI, which provides cross modal
neuroimaging synthesis functionalities. This is the first open source software
enabling neuroimaging synthesis. Our main focus is for this package to help
neuroscience, machine learning, and health care communities. This study gives
an in-depth description of this package, along with the theoretical foundations
and respective results.

Index Terms—Electroencephalography, Functional Magnetic Resonance Imag-
ing, Synthesis, Deep Learning, Learning, Machine Learning, Computer Vision

Introduction

Neuronal activity, usually measured through electroencephalog-
raphy (EEG), is related to haemodynamical activity, measured
through functional magnetic resonance imaging (fMRI). The first
captures the dynamics of the electrical field, whose source is
located from the firing neurons’ action potentials. In its turn, the
second measures the blood supply dynamics. These two while
being studied simultaneously [1], [2], [3], [4], [5], [6], [7], [8]
differ in many aspects such as: temporal and spatial resolution,
brain functions captured, recording and hardware cost. Recently
we have seen several studies that use deep neural network models
[9] to learn a mapping from EEG data to and from fMRI data
[10], [11]. These are a type of generative models [12], that
sample/synthesize instances from a different data source (instead
of a distribution). Such a model could allow health care cost
reductions and discoveries of new neuroscience insights on the
relationship between these two modalities. Indeed, pathologies
that require MRI scans diagnostics benefit from a lower cost EEG
assessment, since availability of MRI hardware is very scarce [13].
As Python [14] becomes a hub for scientific development [15],

* Corresponding author: david.calhas@tecnico.ulisboa.pt
‡ INESC-ID
§ Instituto Superior Tecnico

Copyright © 2023 David Calhas. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

[16], [17] we find the need to provide open source software that
provides solutions for EEG to fMRI synthesis, urgent, in order for
third party scientific contributions coming from other laboratories
to coexist and health care software integration to develop for
diagnostic settings. To that end, we provide a description of the
open source software EEG-to-fMRI, which originated from an
academic scientific project funded by Fundação para a Ciência
e Tecnologia, and make publicly available a github repository.

Methods

The mapping function provided in this software is the one
proposed by [11]. It consists on transforming the EEG from a
channel by time representation to a channel by time-frequency
one, achieved using the short time Fourier transform [18] by means
of the fast Fourier transform (scipy.fft.fft) available in the SciPy
package. The latter corresponds to the second step of the diagram
illustrated in Figure 1. In the second step, this representation is
then forward through a deep neural network (implemented as a
tf.keras.Model), with contributions ranging from Resnet blocks
[19], an automated machine learning framework [20] and Fourier
features [21]. Ultimately, this enables the prediction of an fMRI
volume associated with a 26 second segment of an EEG recording.

Description

The dependencies of each component are described in
an UML diagram. Overall to install the package, the
user is required to install the following dependencies:
tensorflow 2.9.0, matplotlib 3.5.3, mne
0.23.4, nilearn 0.7.0, tensorflow_probability
0.12.2, tensorflow_determinism 0.3.0, and
tensorflow_addons 0.19.0. As seen there is a high
dependency in tensorflow related packages. This is due to the
whole system provided being built in tensorflow, a library that
enables automatic differentiation and is widely used for deep
learning model development.

Package modules

This package, as it is provided, has eight main modules:

• models: here you will find the code that implements
the models for synthesis and classification. The synthe-
sis models are located in the synthesizers.py, where the
class EEG_to_fMRI is implemented. This class defines a
tf.keras.Model, composed of two encoders, one for
the EEG and another for the fMRI. Additionally, there is

54 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 1: The pipeline of the EEG to fMRI synthesis project consists of processing EEG recordings, that are sourced from a human subject that
goes through an EEG recording sesssion, then processing the channel by time signal and taking the short time Fourier transform. The latter,
gives us the time frequency representation of the EEG signal. The novelty of this software is that it provides a model that given as input the
EEG signal it predicts the corresponding fMRI volume associated with that segment. A video demonstration of the whole pipeline is available
on Youtube.

a decoder that maps the latent EEG representation, that is
the output of the EEG encoder, to the estimate of the fMRI
volume associated. The fMRI encoder is defined in the
fmri_ae.py file. The task would not be complete without
the extrapolation of the synthesis model to a classification
task. To that end, two linear classifiers are provided, the
ViewLatentContrastiveClassifier and the ViewLatentLike-
lihoodClassifier, corresponding to a contrastive latent loss
and a cross entropy error driven classification, respectively.
The extrapolation is made by taking the output of the
neural flow that comes from the EEG, that is the EEG
encoder and the decoder.

• layers: this module contains the layers which compose the
synthesizer models. It provides five main types of layers.
First, the TopographicalAttention computes a self attention
mechanism in the channels dimension of the EEG [11] that
allows the representation to be correctly processed by the
convolutional blocks. Second, the ResnetBlock [19] imple-
ments a residual block composed of convolutional layers.
This block allows efficient gradient propagation, by tack-
ling the vanishing gradient phenomena. Third, the Fourier-
Features layer projects cosines functions of different shifts
and biases to build a latent spectral basis for the prediction
of the fMRI volume. Fourth, the DenseVariational is
an implementation of the tf.keras.layers.Dense
layer for two-dimensional inputs, whose weights are drawn
from gaussian distributions. Last, but not least, we provide
the DCT based layers, which implement the discrete cosine
transform [22]. These layers are useful for alternative
ways of decoding the latent representation of the EEG to
produce the desired fMRI volume.

• regularizers: here the implementation of different regu-
larizers for the synthesizer model is provided. Most im-
portantly in the activity_regularizers.py file is found the
OrganizeChannels implementation which can be added in
the TopographicalAttention layer, so that the layer does not
surpress any channel;

• learning: here are implemented the routines for the opti-
mization of the models, namely the losses and the train
procedures. The train.py is a generalizable training routine
that fits any type of tf.keras.Model instance. Fol-
lowing, the losses.py contain a set of losses that are imple-
mented to train the models provided in the models module.

Most importantly, here you will find the mae_cosine for
the deterministic versions of the EEG_to_fMRI model,
the LaplacianLoss for variational versions, and the Con-
trastiveClassificationLoss which serves as the cost func-
tion for the ViewLatentContrastiveClassifier;

• explainability: this module contains explainability meth-
ods that were employed for the models developed. The
implementation for the layer wise relevance propagation
[23] can be found in lrp.py. In particular, since this type
of algorithm is not model agnostic, we have the imple-
mentation for all the permutations’ of operations that the
EEG_to_fMRI model can have;

• data: this is maybe the most important module for re-
searchers wanting to try out their collected data with this
software. Here all of the functions, that read data and
manipulate it as such to allow the efficient training, are
implemented. Starting with the eeg_utils.py, where the
get_eeg_instance_<DS> function is implemented for a
limited set of datasets that participated in the experiments
of the associated studies. The <DS> stands for the iden-
tifier of the dataset. Currently there are a set of functions
implemented for publicly available datasets. Please check
the description of the code in the github repository for
more details. In the fmri_utils.py file one finds functions of
the form get_individuals_paths_<DS>, that have the exact
same function as the functions to read EEG recordings,
but in this case they read nifti file format. These type
of files are the standard format for fMRI recordings.
Finally, the data_utils.py and preprocessed_data.py are
responsible for concatenating the EEG and fMRI instance
pairs, with all the alignments and event synchronization
events taken into account, as well as the processing to
build tf.data.Dataset classes.

• metrics: in this module are implemented the metrics usu-
ally used to evaluate synthesis of generated images, such as
the root mean squared error, mean absolute error, structural
similarity index measure [24], among others;

• utils: Last but not least, is the utilities module, which
provides the user with print functions, configuration of
the tensorflow environments and several visualizations
that were used in the original studies that developed the
package.

EEG-TO-FMRI NEUROIMAGING CROSS MODAL SYNTHESIS IN PYTHON 55

Fig. 2: The synthesized signal of fMRI. This is the output visualization when running the code for the classification notebook.

New data integration

In order to use the software provided for new data, we recommend
that the dataset is structured as shown in Figure 3. If the data is

Fig. 3: Recommended structure of the dataset directory.

provided as illustrated then the user only has to name the directory
of the data as 01. This should suffice for the correct loading of the
data. Any type of issue that is encountered for this package should
be published as an issue in the official github repository.

Building an EEG to fMRI model

For the user to build an EEG to fMRI model, they have to first
import the correct library module and tensorflow.

from tensorflow as tf
from eeg_to_fmri.models.synthesizers

import EEG_to_fMRI

from eeg_to_fmri.models.synthesizers
import parameters

from eeg_to_fmri.models.synthesizers
import na_specification_eeg

from eeg_to_fmri.models.fmri_ae
import na_specification_fmri

Let us define the size of the EEG representation x⃗ ∈R64×134×10×1,
the fMRI representation y⃗ ∈ R64×64×30×1, and the latent represen-
tation, for both the EEG and fMRI, that is z⃗x ,⃗zy ∈ R7×7×7.

fmri_dim=(64,134,10,1)
fmri_dim=(64,64,30,1)
latent_dim=(7,7,7)

Then, we have to define the parameters for the model, these are
provided as a variable in the synthesizers.py.

learning_rate,weight_decay,kernel_size,
stride_size,batch_size,latent_dimension,
n_channels,max_pool,batch_norm,
skip_connections,dropout,
n_stacks,outfilter,local=parameters

Some of these parameters will also be used to define the fMRI
encoder. Since the fMRI encoder is a different class, we need to
define the initialization parameters.

fmri_parameters=(parameters, latent_dim,
fmri_dim, kernel_size, stride_size,
n_channels, max_pool, batch_norm,
weight_decay, skip_connections,
n_stacks, True, False,
outfilter, dropout, None,
False, na_specification_fmri)

Next, we have all of the parameters necessary to build a simple
deterministic version of the EEG to fMRI model.

with tf.device('/CPU:0'):
model = EEG_to_fMRI(latent_dim, eeg_dim,

na_specification_eeg, n_channels,
weight_decay=weight_decay,
skip_connections=True, batch_norm=True,
fourier_features=True,
random_fourier=True,
topographical_attention=True,
conditional_attention_style=True,
conditional_attention_style_prior=False,
local=True, seed=None,
fmri_args = fmri_parameters)

56 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

The model is built once it is specified the input dimension, this
is done through the tf.keras.Layer#build. This will initialize all of
the weights of the network.

model.build((None,)+eeg_dim, (None,)+fmri_dim)

Cost function and optimization

Regarding the cost function, which is provided in the learning
module at the losses.py file, we can specify different metrics
that are provided. Take, for instance, the example of using an
approximation of the mean absolute error at the output for the
fMRI volume prediction ˆ⃗y, and approximation of the latent repre-
sentations of the fMRI as proposed by [11]. This is reduced to the
mathematical formula

L (⃗x, y⃗,⃗zx ,⃗zy) = ||⃗y− ˆ⃗y||11 +1− z⃗x ·⃗ zy

||⃗zx||22||⃗zy||22
. (1)

In terms of code, this is already implemented and can be loaded
directly.

from eeg_to_fmri.learning import losses
loss_fn=losses.mae_cosine

The optimizer is already provided in the tensorflow library
and its corresponding learning rate is given in the parameters
variable.

optimizer=
tf.keras.optimizers.Adam(learning_rate)

Training the model requires an input, the EEG x⃗, and an output,
the fMRI y⃗. The architecture processes both the EEG and fMRI,
producing the latent representation for both. Proceeding the latent
EEG representation, z⃗x, is fed to the decoder which estimates the
fMRI ˆ⃗y.

def apply_gradient(model, optimizer, loss_fn,
x, y, return_logits=False, call_fn=None):
with tf.GradientTape(persistent=True) as

tape:
logits=model(x, y, training=True)
regularization=0.
if(len(model.losses)):

regularization=
tf.math.add_n(model.losses)

loss=loss_fn(y, logits)+regularization
gradients=tape.gradient(loss,

model.trainable_variables)
optimizer.apply_gradients(zip(gradients,

model.trainable_variables))
return tf.reduce_mean(loss)

The training routine functions are found in the learning module.
The function apply_gradient computes the forward and back-
ward pass of the neural network. Note that the input of the
EEG_to_fMRI model is composed of two tensors, the EEG and
fMRI, which is the reason why one gives the model both x and y.
The loss computes both the estimation of the fMRI according to
the mean absolute error (MAE) and the cosine distance between
the latent representations. Regularization terms, such as weight
decay and other activity regularizers that may or may not partic-
ipate in the model, are also added to the loss. The loss function
used for the synthesis task, the one used in [11], is the MAE and
the cosine distance. This loss function is defined in the learning
module, found at the losses.py file. This loss receives a tf.Tensor
object, y_true, and a list of tf.Tensor. The list of tensors contains
the outputs of the neural network that should be approximate the
ground truth. The first element of the list is the estimated fMRI
volume and the second and third items are the latent EEG and
fMRI representations, respectively.

def mae_cosine(y_true, y_pred):
return tf.reduce_mean(

tf.math.abs(y_pred[0] - y_true),
axis=(1,2,3)) +
cosine(y_pred[1], y_pred[2])

At test time, the EEG_to_fMRI model can discard the fMRI input.
To that end, only the decoder attribute is called, which is composed
of the EEG encoder and the decoder.

def call(self, x1, x2):
if(self.training):

return [self.decoder(x1),
self.eeg_encoder(x1),
self.fmri_encoder(x2)]

return self.decoder(x1)

Note that, the pretrained_EEG_to_fMRI class processes a pre-
trained model of the type EEG_to_fMRI and builds a new model
that only processes EEG and outputs an fMRI prediction given the
representation learned. This class is built to be then appended with
a classifier, that can be either a ViewLatentContrastiveClassifier or
a ViewLatentLikelihoodClassifier.

Examples

In this section, we walk through the examples given in jupyter
notebooks.

Synthesis

We provide a compressed version of the dataset of [25]. Users
can directly execute the code and have both the python package,
as well as the dataset, setup in a google colab environment.
The flow of execution has been already described. In the end
a synthesized fMRI is shown, as illustrated in Figure 2. This
image is built using the viz_utils.py. The user can find metrics for
synthesis evaluation in eeg_to_fmri.metrics.quantitative_metrics.
We report results from the [11] study on the NODDI dataset [25].
An example with a reduced dataset is available in this synthesis
notebook. The best model, which used the configuration of the
eeg_to_fmri.models.synthesizers.EEG_to_fMRI achieved 0.3972
RMSE and 0.4613 SSIM. This constitutes the state-of-the-art for
this task and provides a view that can be applied in EEG only
datasets for classification task.

Classification

We also provide a compressed version of the dataset of [26]. This
example, available in this classification notebook, is based on a
publicly available dataset that contains individuals diagnosed with
schizophrenia and healthy controls. The whole goal of the project
is to be applied in an health care setting and to this end we employ
an end to end software solution. The whole software package is
able to synthesize fMRI and adapt to a classification setting, that
given EEG recordings outputs a set of probabilities for each group
of people considered in the dataset.

Collaboration

Ultimately, the goal of this package is to collect, in one package,
methods for EEG to fMRI synthesis. We welcome contributions
from authors of related work such as [10]. In the future, we plan
to add a module or example folder with implementations of these
approaches, so that other research groups can easily access them
and reproduce key results.

On a higher level, this software is encouraged for testing its ap-
plicability in health care settings. The impact, that such mappings
from EEG to fMRI, would have on society is enormous, given that

EEG-TO-FMRI NEUROIMAGING CROSS MODAL SYNTHESIS IN PYTHON 57

Fig. 4: Output of the predicted fMRI when given an EEG representation. Note that, due to the EEG encoder being optimized towards classifying
the data according to the groups of individuals defined, e.g. schizophrenic and healthy controls, the decoder (that has the parameters frozen)
gives a slightly altered representation. This change is seen in the produced fMRI, where activity beyond the limit of the human scalp is reported.
Please recall Figures 1 and 2 to directly compare with an fMRI representation without these flaws.

the diagnostic is faithful. Take for instance the example of the MRI
machine density across the African continent. In the worst case
scenario, Nigeria has a density of 0.33 MRI machines per million
people, according to [13]. To let that sink in, imagine having to
wait in a line of 3 million people to get a diagnostic exam. This
type of waiting bottleneck impacts greatly the development of
diseases for the worse. Countries in such conditions would greatly
benefit from contributions that further advance this scientific field.
Even fortunate countries, whose economy thrives, that are able
to provide their populations with a good ratio of MRI machines,
they still have small portions of the population who live in remote
areas. These people find it hard to get quality health care, without
having to travel significant distances.

Conclusion

This is the first package, to the best of our knowledge, that
provides a machine learning oriented synthesis between functional
neuroimaging modalities (EEG and fMRI). It is targeted to help
the neuroscience community, in tasks such as modality augmen-
tation, resolution enhancement, neuroimaging explainability tech-
niques, among others. We hope to motivate researchers, scientists,
and software developers to contribute to this package which we
have been so passionate about throughout the last years.

Acknowledgments

This work was supported by national funds through Fundação para
a Ciência e Tecnologia under the PhD Grant SFRH/BD/5762/2020
to David Calhas.

REFERENCES

[1] H. Shibasaki, “Human brain mapping: hemodynamic response and elec-
trophysiology,” Clinical Neurophysiology, vol. 119, no. 4, pp. 731–743,
2008, https://doi.org/10.1016/j.clinph.2007.10.026.

[2] Q. Yu, L. Wu, D. A. Bridwell, E. B. Erhardt, Y. Du, H. He, J. Chen,
P. Liu, J. Sui, G. Pearlson et al., “Building an eeg-fmri multi-modal brain
graph: a concurrent eeg-fmri study,” Frontiers in human neuroscience,
vol. 10, p. 476, 2016, https://doi.org/10.3389/fnhum.2016.00476.

[3] Y. He, M. Steines, J. Sommer, H. Gebhardt, A. Nagels, G. Sammer,
T. T. J. Kircher, and B. Straube, “Spatial–temporal dynamics of ges-
ture–speech integration: a simultaneous eeg-fmri study,” Brain Structure
and Function, vol. 223, pp. 3073–3089, 2018, https://doi.org/10.1007/
s00429-018-1674-5.

[4] G. M. Rojas, C. Alvarez, C. E. Montoya, M. de la Iglesia-Vayá, J. E.
Cisternas, and M. Gálvez, “Study of resting-state functional connectivity
networks using eeg electrodes position as seed,” Frontiers in neuro-
science, vol. 12, p. 235, 2018, https://doi.org/10.3389/fnins.2018.00235.

[5] L. Bréchet, D. Brunet, G. Birot, R. Gruetter, C. M. Michel, and J. Jorge,
“Capturing the spatiotemporal dynamics of self-generated, task-initiated
thoughts with eeg and fmri,” Neuroimage, vol. 194, pp. 82–92, 2019.

[6] I. Daly, D. Williams, F. Hwang, A. Kirke, E. R. Miranda, and S. J.
Nasuto, “Electroencephalography reflects the activity of sub-cortical
brain regions during approach-withdrawal behaviour while listening to
music,” Scientific reports, vol. 9, no. 1, pp. 1–22, 2019, https://doi.org/
10.1038/s41598-019-45105-2.

[7] C. Cury, P. Maurel, R. Gribonval, and C. Barillot, “A sparse eeg-informed
fmri model for hybrid eeg-fmri neurofeedback prediction,” Frontiers in
neuroscience, vol. 13, p. 1451, 2020, https://doi.org/10.3389/fnins.2019.
01451.

[8] R. Abreu, J. Jorge, A. Leal, T. Koenig, and P. Figueiredo, “Eeg mi-
crostates predict concurrent fmri dynamic functional connectivity states,”
Brain topography, vol. 34, no. 1, pp. 41–55, 2021, https://doi.org/10.
1007/s10548-020-00805-1.

[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[10] X. Liu et al., “A convolutional neural network for transcoding si-
multaneously acquired eeg-fmri data,” in NER. IEEE, 2019, https:
//doi.org/10.1109/ner.2019.8716994.

[11] D. Calhas and R. Henriques, “Eeg to fmri synthesis benefits
from attentional graphs of electrode relationships,” arXiv preprint
arXiv:2203.03481, 2022.

[12] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press,
2012.

[13] G. I. Ogbole, A. O. Adeyomoye, A. Badu-Peprah, Y. Mensah, and D. A.
Nzeh, “Survey of magnetic resonance imaging availability in west africa,”
Pan African Medical Journal, vol. 30, no. 1, 2018, https://doi.org/10.
11604/pamj.2018.30.240.14000.

[14] G. Van Rossum and F. L. Drake Jr, Python tutorial. Centrum voor
Wiskunde en Informatica Amsterdam, The Netherlands, 1995.

[15] C. R. Harris, K. J. Millman, S. J. Van Der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith et al., “Array
programming with numpy,” Nature, vol. 585, no. 7825, pp. 357–362,
2020.

[16] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright et al.,

58 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

“Scipy 1.0: fundamental algorithms for scientific computing in python,”
Nature methods, vol. 17, no. 3, pp. 261–272, 2020.

[17] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in Osdi, vol. 16. Savannah, GA, USA, 2016,
pp. 265–283.

[18] J. Allen, “Short term spectral analysis, synthesis, and modification by
discrete fourier transform,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 25, no. 3, pp. 235–238, 1977, https://doi.org/10.
1109/tassp.1977.1162950.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778, https://doi.org/10.1109/cvpr.
2016.90.

[20] D. Calhas, V. M. Manquinho, and I. Lynce, “Automatic generation of
neural architecture search spaces,” in Combining Learning and Reason-
ing: Programming Languages, Formalisms, and Representations, 2022.

[21] M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Ragha-
van, U. Singhal, R. Ramamoorthi, J. T. Barron, and R. Ng, “Fourier
features let networks learn high frequency functions in low dimensional
domains,” arXiv preprint arXiv:2006.10739, 2020.

[22] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,”
IEEE transactions on Computers, vol. 100, no. 1, pp. 90–93, 1974, https:
//doi.org/10.1016/b978-0-08-092534-9.50007-2.

[23] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and
W. Samek, “On pixel-wise explanations for non-linear classifier decisions
by layer-wise relevance propagation,” PloS one, vol. 10, no. 7, p.
e0130140, 2015, https://doi.org/10.1371/journal.pone.0130140.

[24] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004,
https://doi.org/10.1109/tip.2003.819861.

[25] F. Deligianni, M. Centeno, D. W. Carmichael, and J. D. Clayden,
“Relating resting-state fmri and eeg whole-brain connectomes across
frequency bands,” Frontiers in Neuroscience, vol. 8, p. 258,
2014, https://doi.org/10.3389/fnins.2014.00258. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2014.00258

[26] A. Padée et al., “"fribourg ultimatum game in schizophrenia study",”
2022, https://doi.org/10.18112/openneuro.ds004000.v1.0.0.

PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023) 59

vak: a neural network framework for researchers
studying animal acoustic communication

David Nicholson‡∗, Yarden Cohen§

✦

Abstract—How is speech like birdsong? What do we mean when we say
an animal learns their vocalizations? Questions like these are answered by
studying how animals communicate with sound. As in many other fields, the
study of acoustic communication is being revolutionized by deep neural net-
work models. These models enable answering questions that were previously
impossible to address, in part because the models automate analysis of very
large datasets. Acoustic communication researchers have developed multiple
models for similar tasks, often implemented as research code with one of
several libraries, such as Keras and Pytorch. This situation has created a real
need for a framework that allows researchers to easily benchmark multiple
models, and test new models, with their own data. To address this need, we
developed vak (https://github.com/vocalpy/vak), a neural network framework
designed for acoustic communication researchers. ("vak" is pronounced like
"talk" or "squawk" and was chosen for its similarity to the Latin root voc, as in
"vocal".) Here we describe the design of the vak, and explain how the framework
makes it easy for researchers to apply neural network models to their own
data. We highlight enhancements made in version 1.0 that significantly improve
user experience with the library. To provide researchers without expertise in
deep learning access to these models, vak can be run via a command-line
interface that uses configuration files. Vak can also be used directly in scripts
by scientist-coders. To achieve this, vak adapts design patterns and an API
from other domain-specific PyTorch libraries such as torchvision, with modules
representing neural network operations, models, datasets, and transformations
for pre- and post-processing. vak also leverages the Lightning library as a
backend, so that vak developers and users can focus on the domain. We provide
proof-of-concept results showing how vak can be used to test new models and
compare existing models from multiple model families. In closing we discuss our
roadmap for development and vision for the community of users.

Index Terms—animal acoustic communication, bioacoustics, neural networks

Introduction

Are humans unique among animals? We seem to be the only
species that speaks languages [1], but is speech somehow like
other forms of acoustic communication in other animals, such
as birdsong [2]? How should we even understand the ability of
some animals to learn their vocalizations [3]? Questions like these
are answered by studying how animals communicate with sound
[4]. As others have argued, major advances in this research will
require cutting edge computational methods and big team science
across a wide range of disciplines, including ecology, ethology,

* Corresponding author: nicholdav@gmail.com
‡ Independent researcher, Baltimore, Maryland, USA
§ Weizmann Institute of Science, Rehovot, Israel

Copyright © 2023 David Nicholson et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

bioacoustics, psychology, neuroscience, linguistics, and genomics
[5], [6], [3], [1].

Research on animal acoustic communication is being revolu-
tionized by deep learning algorithms [5], [6], [7]. Deep neural
network models enable answering questions that were previously
impossible to address, in part because these models automate
analysis of very large datasets. Within the study of animal acoustic
communication, multiple models have been proposed for similar
tasks--we review these briefly in the next section. These models
have been implemented using a range of frameworks for neural
networks, including PyTorch (as in [8] and [9]), Keras and Tensor-
flow (as in [10] and [11]), and even in programming environments
outside Python such as Matlab (as in [12]). Because of this, it
is difficult for researchers to directly compare models, and to
understand how each performs on their own data. Additionally,
many researchers will want to experiment with their own models
to better understand the fit between tasks defined by machine
learning researchers and their own question of interest. All of
these factors have created a real need for a framework that allows
researchers to easily benchmark models and apply trained models
to their own data.

To address this need, we developed vak [13] (https://github.
com/vocalpy/vak), a neural network framework designed for re-
searchers studying animal acoustic communication. vak is already
in use in at least 10-20 research groups to our knowledge, and
has already been used in several publications, including [8], [9],
[14], [15]. Here we describe the design of the vak framework,
and explain how vak makes it easy for acoustic communication
researchers to work with neural network models. We have also
recently published an alpha release of version 1.0 of the library,
and throughout this article we highlight enhancements made in this
version that we believe will significantly improve user experience.

Related work

First, we briefly review related literature, to further motivate the
need for a framework. A very common workflow in studies of
acoustic behavior is to take audio recordings of one individual
animal and segment them into a sequence of units, after which
further analyses can be done, as reviewed in [16]. Some analyses
require further annotation of the units to assign them to one of
some set of classes, e.g. the unique syllables within an individual
songbird’s song. An example of segmenting audio of Bengalese
finch song into syllables and annotating those syllables is shown
in Figure 1.

Several models have been developed to detect and classify a
large dataset of vocalizations from an individual animal. These are

60 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 1: Schematic of analyzing acoustic behavior as a sequence of
units. Top panel shows a spectrogram of an individual Bengalese
finch’s song, consisting of units, often called syllables, separated by
brief silent gaps. Bottom panel illustrates one method for segmenting
audio into syllables that are annotated: a threshold is set on the audio
amplitude to segment it into syllables (a continuous period above the
threshold), and then a human annotator labels each syllable (e.g.,
with a GUI application). Adapted from [8] under CC BY 4.0 license.

all essentially supervised machine learning tasks. Some of these
models seek to align a neural network task with the common
workflow just described [16], where audio is segmented into a
sequence of units with any of several methods [17], that are then
labeled by a human annotator. The first family of neural network
models reduces this workflow to a frame classification problem
[18], [19]. That is, these models classify a series of frames,
like the columns in a spectrogram. Sequences of units (e.g.,
syllables of speech or birdsong) are recovered from this series of
frame classifications with post-processing. Essentially, the post-
processing finds the start and stop times of each continuous run
of a single label. Multiple neural network models have been
developed for this frame classification approach, including [8] and
[20]. A separate approach from frame classification models has
been to formulate recognition of individual vocalizations as an
object detection problem. To our knowledge this has been mainly
applied to mouse ultrasonic vocalizations as in [12].

Another line of research has investigated the use of unsu-
pervised models to learn a latent space of vocalizations. This
includes the work of [11] and [9]. These unsupervised neural
network models allow for clustering vocalizations in the learned
latent space, e.g., to efficiently provide a human annotator with an
estimate of the number of classes of vocalizations in an animal’s
repertoire [11], and/or to measure similarity between vocalizations
of two different animals [9], [21]. It is apparent that unsupervised
approaches are complementary to supervised models that automate
labor-intensive human annotation. This is another reason that a
single framework should provide access to both supervised and
unsupervised models.

Methods

In this section we describe the design of vak: its application pro-
gramming interface (API) and its command-line interface (CLI).
We begin by introducing the design of vak at the highest level.

Design

vak relies on PyTorch [22] for neural networks, because PyTorch
accommodates Pythonic idioms and low-level control flow within
networks when needed. In version 1.0, we have additionally
adopted the Lightning library [23] as a backend, freeing us up
as developers to focus on the research domain while benefiting

from the Lightning team’s engineering expertise. Of course, vak
relies heavily on the core libraries of the scientific Python stack.
Many functions make use of numpy [24], [25], scipy [26], and
matplotlib [27], [28]. In particular, the built-in workflows for
preparing datasets make frequent use of pandas [29] to work with
tabular data formats, and dask [30] to enable scalable, distributed
processing of very large datasets with mixed file formats, which
are common in acoustic communication research. Functionality
for preparing datasets is specifically tailored to the needs of
acoustic communication researchers in other ways as well. For
example, to parse the wide range of annotation formats used by
acoustic communication researchers across disciplines, we use the
pyOpenSci package crowsetta [31].

In terms of its API, the design of vak is most similar to other
domain-specific libraries developed with torch, such as torchvision
[32], but here the domain is animal acoustic communication
research. (Perhaps surprisingly, many of the models proposed to
date in this area are essentially adopted from computer vision.)
Thus, similar to the torchvision API, vak provides modules for
neural network models, operations, transformations for loading
data, and datasets.

In addition to its torchvision-like API, vak provides a simple
command-line interface (CLI) that allows researchers to work with
neural network models without requiring significant expertise in
Python programming or deep learning. We first describe the API,
so that key concepts have been introduced when we explain the
usage of the CLI.

Models

As its name implies, the models module is where implementa-
tions of neural network models are found. Our design is focused
on a user who wants to benchmark different models within an
established task and data processing pipeline as defined by our
framework. In version 1.0 of vak, we have introduced abstractions
that make it easier for researchers to work with the built-in models
and with models they declare in code outside of the library, e.g., in
a script or notebook. At a high level, we achieved this by adopting
the Lightning library as a backend. By sub-classing the core
lightning.LightningModule class, we provide users with
per-model implementations of methods for training, validation,
and even for forwarding a single batch or sample through the
model. We briefly describe the abstractions we have developed to
make it easier to work with models.

Abstractions for declaring a model in vak

Our goal is to make it so that a scientist-coder is able to
use any of the built-in models, and experiment with their own
models, without needing to contribute code to vak or to use a
developer-focused mechanism like entry points. To achieve this,
we provide a decorator, vak.models.model, that is applied to
a model definition to produce a sub-class of a model family. The
vak.models.model decorator additionally adds any class it
decorates to a registry. In the rest of the section we explain these
abstractions and how they make it possible to easily test different
models.

A model definition takes the form of a class with four required
class variables: network, loss, optimizer, and metrics.
In other words, our abstraction asserts that the definition of a
neural network model consists of the neural network function,
the loss function used to optimize the network’s parameters, the
optimizer, and the metrics used to assess performance.

VAK: A NEURAL NETWORK FRAMEWORK FOR RESEARCHERS STUDYING ANIMAL ACOUSTIC COMMUNICATION 61

To relate a model as declared with a definition to
the machine learning tasks that we implement within
the vak framework, we introduce the concept of model
families. A model family is represented by a sub-class
of the core lightning.LightningModule class.
Each class representing a family implements family-
specific methods: training_step, validation_step,
prediction_step, and forward. In this way, model
families are defined operationally: a model can belong to a family
if it accepts the inputs provided by logic within the training,
validation, and prediction steps, and the model also produces the
appropriate outputs needed within those same steps.

With these two abstractions in hand, we can add models to vak
as follows: we start by applying the model decorator to create a
new subclass of a model family. This new subclass has the same
name as the class that it decorates, which is the class representing
the model definition. The decorator then adds a single attribute to
this sub-class, the definition, that is used when initializing a
new instance of the specific model. After creating this sub-class
and adding this attribute, the model decorator finally registers
the model within the vak.models.registry module. This
allows other functions within vak to find the model by its name
in the registry. The registry is implemented with its own helper
functions and module-level dict variables that are updated by
those functions. We present a listing that demonstrates usage of
the abstractions just described.

from vak.models import (
model,
FrameClassificationModel

)
from vak.metrics import (

Accuracy,
Levenshtein,
SegmentErrorRate,

)

@model(family=FrameClassificationModel)
class TweetyNoLSTMNet:

"""TweetyNet model without LSTM layer"""
network = TweetyNetNoLSTM
loss = torch.nn.CrossEntropyLoss
optimizer = torch.optim.Adam
metrics = {

'acc': Accuracy,
'levenshtein': Levenshtein,
'segment_error_rate': SegmentErrorRate,
'loss': torch.nn.CrossEntropyLoss}

default_config = {
'optimizer':

{'lr': 0.003}
}

This example is used in an experiment accompanying this paper,
as described below in Results. That experiment demonstrates how
the decorator enables models to be declared and used in a script
outside of vak. Here we can notice that we apply the model
decorator to the class TweetyNoLSTMNet, which is the model
definition. Notice also that we pass in as an argument to the
decorator the name of the model family that we wish to sub-
class, FrameClassificationModel. When Python’s import
machinery parses the script, the model class will be created and
added to vak’s registry, so that it can be found by other functions
for training and evaluating models. The models that are built in to
vak use the exact same decorator.

Model families

Having introduced the abstraction needed to declare models within
the vak framework, we now describe the families we have imple-
mented to date.

Frame classification. As stated in the Related Work section,
one way to formulate the problem of segmenting audio into
sequences of units so that it can be solved by neural networks is to
classify each frame of audio, or a spectrogram produced from that
audio, and to then recover segments from this series of labeled
frames [18], [19].

This problem formulation works, but an issue arises from the
fact that audio signals used by acoustic communication researchers
very often vary in length. E.g., a bout of Bengalese finch birdsong
can vary from 1-10 seconds, and bouts of canary song can vary
roughly from 10 seconds to several minutes. In contrast, the vast
majority of neural network models assume a "rectangular" tensor
as input and output, in part because they were originally developed
for computer vision applications applied to batches. One way to
work around this issue is to convert inputs of varying lengths
into rectangular batches with a combination of windowing and
padding. E.g., pick a window size w, find the minimum number
of consecutive non-overlapping strides s of that window that will
cover an entire input x of length T , s ∗w ≥ T , and then pad x to
a new length Tpadded = s ∗w. This approach then requires a post-
processing step where the outputs are stitched back together into
a single continuous sequence xpadded . The padding is removed by
tracking which time bins are padded, e.g., with a separate vector
that acts as a "padded" flag for each time bin. Of course there are
other ways to address the issue of varying lengths, such as using
the torch.nn.utils.rnn API to pad and unpad tensors (or
using a different family of neural network models).

Because more than one model has been developed that uses
this post-processing approach to solve the problem of frame
classification, we define this as a family of models within vak, the
FrameClassification model. Both the TweetyNet model
from [8] and the Deep Audio Segmenter (DAS) from [10] are
examples of such models. We provide an implementation of
TweetyNet now built directly into vak in version 1.0. We also pro-
vide a PyTorch implementation of the Encoder Decoder-Temporal
Convolutional (ED-TCN) Network, that was previously applied
to frames of video features for an action segmentation task [33].
Below in Results we show how vak can be used to benchmark and
compare both models on the same dataset.

Parametric UMAP. To minimally demonstrate that our frame-
work is capable of providing researchers with access to multiple
families of models, we have added an initial implementation
of a Parametric UMAP model family. The original algorithm
for UMAP (Uniform Manifold Approximation and Projection)
consists of two steps: computing a graph on a dataset, and then
optimizing an embedding of that graph in a lower dimensional
space that preserves local relationships between points [34]. The
parametrized version of UMAP replaces the second step with
optimization of a neural network architecture [35]. Because the
parametrized version can be used with a wide variety of neural
network functions, we declare this as a family. We provide an
implementation of a single model, an encoder with a convolu-
tional front-end that can map spectrograms of units extracted
from audio to a latent space. Our implementation is adapted
from https://github.com/elyxlz/umap_pytorch and https://github.
com/lmcinnes/umap/issues/580#issuecomment-1368649550.

62 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Neural network layers and operations

Like PyTorch, vak provides a module for neural network op-
erations and layers named nn. This module contains layers
used by more than one network. For example, it includes a 2-
D convolutional layer with the 'SAME' padding provided by
Tensorflow, that is used both by the TweetyNet model [8] and
by our implementation of the ED-TCN model [33]. (PyTorch has
added this padding from version 1.10 on, but we maintain our
original implementation for purposes of replicability.) Another
example of an operation in vak.nn is a PyTorch implementation
of the normalized ReLu activation used by [33] with their ED-
TCN model.

Transformations

Like torchvision, vak provides a module for transformations of
data that will become input to a neural network model or will be
applied to the outputs of model, i.e., pre- and post-processing.

Standardization of spectrograms. A key transform that we
provide for use during training is the StandardizeSpect
class, that standardizes spectrograms so they are all on the same
scale, by subtracting off a mean and dividing by a standard
deviation (often called "normalization"). This transform is distinct
from the normalization done by computer vision frameworks like
torchvision, because it normalizes separately for each frequency
bin in the spectrogram, doing so across all time bins. Using a
scikit-learn-like API, this StandardizeSpect is fit to a set of
spectrograms, such as the training set. The fit transform is saved
during training as part of the results and then loaded automatically
by vak for evaluation or when generating predictions for new data.

Transforms for frame labels. Many of the transforms we
provide relate to what we call frame labels, that is, vectors where
each element represents a label for a time bin from a spectrogram
or a sample in an audio signal. These vectors of class labels are
used as targets when training models in a supervised setting to
perform frame classification.

The from_segments transform is used when loading anno-
tations to produce a vector of labeled timebins from the segmented
units, which are specified in terms of their onset and offset times
along with their label.

Conversely, the to_segments takes a vector of labeled
timebins and returns segments, by finding each continuous run
of labels and then converting the onset and offsets from indices
in the timebins vector to times in seconds. This post-processing
transformation can be configured to perform additional clean-up
steps: removing all segments shorter than a minimum duration,
and taking a "majority vote" within each series of labels that are
bordered by a "background" or "unlabeled" class.

In version 1.0, we have added the ability to evaluate models
with and without the clean-up steps of the to_segments trans-
form applied, so that a user can easily understand how the model is
performing before and after these steps. This enhancement allows
users to replicate a finding from [8], which showed, while the
TweetyNet model achieved quite low segment error rates without
post-processing, these simple clean-up steps allowed for signifi-
cant further reduction of error. This finding was originally shown
with an ad hoc analysis done with a script, but is now available
directly through vak. This makes it easier for users to compare
their model to a sort of empirical upper bound on performance,
a strong baseline that indicates the "room for improvement" any
given model has.

One more transformation worth highlighting here is the
to_labels transformation, that converts a vector of labeled
timebins directly to labels without recovering the onset or offset
times. Essentially this transform consists of a numpy.diff
operation, that we use to find the start of each run of continuous
labels, and we then take the label at the start of each run. This
transformation can be efficient when evaluating models where
we want to measure just the segment error rate. (Of course we
preclude the use of other metrics related to onset and offset times
when throwing away that information, but for some research
questions the main goal is to simply have the correct labels for
each segment.)

Metrics

Vak additionally declares a metrics module for evaluation
metrics that are specific to acoustic communication models. The
main metric we have found it necessary to implement at this
time is the (Levenshtein) string edit distance, and its normalized
form, known in speech recognition as the word error rate. Our
results have shown that edit distances such as this are crucial for
evaluating frame classification models. We provide a well-tested
implementation tailored for use with neural network models. In
version 1.0 of vak, we have additionally adopted as a dependency
the torchmetrics library, that makes it easier to compute a
wide array of metrics for models.

Datasets

Lastly, vak provides a dataset module, again similar in spirit
to the module of the same name in torchvision. Each family of
models has its own dataset class or classes. We introduce these
below, but first we describe our standardized dataset format.

Dataset directory format. In version 1.0 of vak we have
adopted a standard for datasets that includes a directory structure
and associated metadata. This addressed several limitations from
version 0.x: datasets were not portable because of absolute paths,
and certain expensive computations were done by other commands
that should really have been done when preparing the dataset,
such as validating the timebin size in spectrograms or generating
multiple random subsets from a training set for learning curves.
A listing that demonstrates the directory structure and some key
contents is shown below.
dataset/
train/

song1.wav.npz
song1.csv
song2.wav.npz
song2.csv

val/
song3.wav.npz
song3.csv

dataset.csv
config.toml # config used to generate dataset
prep.log # log from run of prep
metadata.json # any metadata

We can observe from the listing that, after collating files and
separating them into splits as just described, the files are either
moved (if we generated them) or copied (if a user supplied them)
to directories corresponding to each split. For annotation formats
where there is a one-to-one mapping from annotation file to the
file that it annotates, we copy the annotation files to the split
subdirectories as well. For annotation formats that place all anno-
tations in a single file, we place this file in the root of the dataset
directory. After moving these files, we change the paths in the

VAK: A NEURAL NETWORK FRAMEWORK FOR RESEARCHERS STUDYING ANIMAL ACOUSTIC COMMUNICATION 63

pandas dataframe representing the entire dataset so that they are
written relative to the root of the directory. This makes the dataset
portable. In addition to these split sub-directories containing the
data itself, we note a few other files. These include a csv file
containing the dataset files and the splits they belong to, whose
format we describe next. They also include the metadata.json
file that captures important parameters that do not fit well in the
tabular data format of the csv file. For example, the metadata
file for a frame classification dataset contains the duration of the
timebin in every spectrogram. Finally, we note two other files
in a dataset as shown above. The first is the configuration file
used to generate it, copied into the dataset as another form of
metadata. The second is a log file that captures any other data
about choices made during dataset preparation, e.g., what files
were omitted because they contained labels that were not specified
in the labelset option of the configuration file.

Dataset csv file format. Next we outline the format of the
csv file that represents a dataset. This csv (and the dataframe
loaded from it) has four essential columns: 'audio_path',
'spect_path', 'annot_path', and 'split'. These
columns serve as provenance for the prepared dataset. Each row
represents one sample in the dataset, where the meaning of sample
may vary depending on the model family. For example, a sample
for a frame classification model is typically an entire bout of
vocalizations, whereas a sample for a Parametric UMAP model
is typically a single unit from the bout. The csv format allows
for tracing the provenance of each sample back to the source files
used to generate the dataset. Each row must minimally contain
either an audio_path or a spectrogram_path; if a user
provides pre-computed spectrograms, the audio_path column
is left empty. For models that use these files directly, the files will
be copied into a sub-directory for each split, and the paths are
written relative to the dataset root. The 'annot_path' column
points to annotation files. These again may be in the split sub-
directories with the file that each annotates, or in the case of a
single file will be in the root of the dataset directory, meaning that
this single path will be repeated for every row in the csv. Logic in
vak uses this fact to determine whether annotations can be loaded
from a single file or must be loaded separately for each file when
working with models.

Frame classification datasets

There are two generalized dataset classes for frame classification
models in vak. Both these classes can operate on a single dataset
prepared by the vak prep command; one class is used for
training and the other for evaluation. We describe the workflow
for preparing this dataset so that the difference between classes is
clearer. The initial step is to pair data that will be the source of
inputs x to a neural network model with the annotations that will
be the source of training targets y for that model. This is done by
collecting audio files or array files containing spectrograms from
a "data directory", and then optionally pairing these files with
annotation files. For models that take spectrograms as input, vak
can use audio files to generate spectrograms that are then saved
in array files and paired with any annotations. Alternatively a user
can provide pre-computed spectrograms. This dataset can also be
prepared without the targets y, for the case where a model is used
to predict annotations for previously unseen data.

WindowDataset. This dataset class represents all possible
time windows of a fixed width from a set of audio recordings or
spectrograms. It is used for training frame classification models.

Each call to WindowDataset.__getitem__ with an index
returns one window x from an audio signal or a spectrogram
loaded into a tensor, along with the annotations that will be the
target for the model y. Because this is a frame classification
dataset, the annotations are converted during dataset preparation to
vectors of frame labels, and y will be the window from this vector
that corresponds to the window x. This is achieved by using a set
of vectors to represent indices of valid windows from the total
dataset, as described in detail in the docstring for the class. This
use of a set of vectors to represent valid windows also enables
training on a dataset of a specified duration without modifying the
underlying data.

FramesDataset. As with the WindowDataset, every call to
FramesDataset.__getitem__ returns a single sample from
the dataset. Here though, instead of a window, the sample will
be the entire audio signal or spectrogram x and a corresponding
vector of frame labels y. The default transforms used with this
dataset apply additional pre-processing to the sample that facilitate
evaluation. Specifically, the frames x and the frame labels y in
a single sample are transformed to a batch of consecutive, non-
overlapping windows. This is done by padding both x and y so
their length is an integer multiple w of the window size used
when training the model, and then returning a view of the sample
as a stack of those w windows. Post-processing the output batch
allows us to compute metrics on a per-sample basis, to answer
questions such as "what is the average segment error rate per bout
of vocalizations?".

Parametric UMAP datasets

For the parametric UMAP model, we provide a single dataset
class, ParametricUMAPDataset. The underlying dataset
consists of single units extracted from audio with a segmenting
algorithm. The parameters of the dataset class configure the first
step in the UMAP algorithm, that of building a graph on the dataset
before embedding.

Command-line interface and configuration file

Having described the API, we now walk through vak’s CLI.
An example screenshot of a training run started from the
command line is shown in Figure 2. A key design choice
is to avoid any sub-commands or even options for the CLI,
and instead move all such logic to a configuration file.
Thus, commands through the CLI all take the form of vak
command configuration-file.toml, e.g., vak train
gy6or6_train.toml. This avoids the need for users to under-
stand options and sub-commands, and minimizes the likelihood
that important metadata about experiments will be lost because
they were specified as options. The configuration file follows the
TOML format (Tom’s Obvious Minimal Language) that has been
adopted by the Python and Rust communities among others.

The few commands available through the CLI correspond
to built-in, model-specific workflows. There are five commands:
prep, train, eval, predict, and learncurve. These
commands are shown in 3 as part of a chart illustrating the built-
in workflows, using as an example a frame classification model
as we define them below. As their names suggest, the commands
train, eval, and predict are used to train a model, evaluate
it, and generate predictions with it once trained. The prep and
learncurve commands require more explanation. A user makes
a separate configuration file for each of the other four commands,
but prep can be used with any configuration file. As can be seen

64 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 2: Screenshots of vak, demonstrating the command-line interface
and logging. In top panel (a), an example is shown of using the
command-line interface to train a model with a configuration file.
In the bottom panel (b) an example is shown of how vak logs progress
and reports metrics during training

in the figure, the typical workflow starts with a call to vak prep,
which prepares a canonicalized form of a dataset for the specific
machine learning task associated with a model, and then adds
the path to that dataset to the configuration file. Thus, there is
a prep_frame_classification_dataset function that
will be called for the example model in the figure. If a dataset has
already been prepared and is being re-used for another experiment,
this step would not be necessary. Once any needed dataset is
prepared, the user can run the command related to the model,
using the same configuration file.

The learncurve command is used to generate results for
a learning curve, that plots model performance as a function of
training set size in seconds. Although technically a learning curve,
its use is distinct from common uses in machine learning, e.g.,
looking for evidence of high bias or high variance models. Instead,
the learning curve functionality allows vak users to answer impor-
tant practical questions for their research. Most importantly, what
is the optimal performance that can be achieved with the minimum
amount of labor-intensive, hand-annotated training data?

Results

In this section we present proof-of-concept results demonstrat-
ing the utility of our framework. The project that produced
these results can be found at: https://github.com/vocalpy/scipy-
proceedings-2023-vak

Ablation experiment

We first show how vak allows researchers to experiment with a
model not built into the library. For this purpose, we carry out an
"ablation experiment" as the term is used in the artificial neural
network literature, where an operation is removed from a neural
network function to show that operation plays an important role in
the model’s performance. Using a script, we define a version of the
TweetyNet model in [8] without the recurrent Long Short Term

Fig. 3: A chart showing workflows in vak, using an example a frame
classification model as defined below. See text for description of
workflows.

Memory (LSTM) layer (thus "ablating" it). This model without
the LSTM makes a prediction for each frame using the output
of the convolutional layers, instead of using the hidden state of
the recurrent layer at each time step. If the hidden state contains
features that are useful for predicting across time steps, we would
expect that "ablating" (removing) it would impair performance.
To show that removing the LSTM layer impairs performance, we
compare with the full TweetyNet model (now built into vak). For
all experiments, we prepared a single dataset and then trained both
models on that same dataset. We specifically ran learning curves as
described above, but here we consider only the performance using
10 minutes of data for training, because as we previously reported
[8] this was the minimum amount of training data required to
achieve the lowest error rates. As shown in the top row of Figure
4, ablating the recurrent layer increased the frame error rate (left
column, right group of bars), and this produced an inflated syllable
error rate (right column, right group of bars).

This first result is the average across models trained on
datasets prepared from individual birds in the Bengalese finch song
repository dataset [36], as we did previously in [8]. (There are four
birds, and five training replicates per bird, where each replicate is
trained on different subsets from a larger pool of training data.)
Other studies using the same benchmark data repository have
trained models on datasets prepared from all four birds [10] (so
that the model predicts 37 classes, the syllables from all four birds,
instead of 5-10 per bird). We provide this result for the TweetyNet
model with and without LSTM in the bottom row of Figure 4. It

VAK: A NEURAL NETWORK FRAMEWORK FOR RESEARCHERS STUDYING ANIMAL ACOUSTIC COMMUNICATION 65

Fig. 4: Ablation experiment carried out by declaring a model in a
script using the vak framework. Bar plots show frame error (left col-
umn) and syllable error rate (right column), without post-processing
clean-up (blue bars) and with (orange bars). Within each axes, the
grouped bars on the left indicate results from the TweetyNet model
built into the vak library, and the grouped bars on the right indicate
results from a model declared in a script where the recurrent LSTM
layer has been removed ("ablated") from the TweetyNet architecture.
In the top row, values are the average across models trained on data
from four different Bengalese finches, with five training replicates per
bird (see text for detail). In the bottom row, single models were trained
to classify syllables from all four birds.

can be seen that asking the models to predict a greater number of
classes further magnified the difference between them (as would
be expected). TweetyNet without the LSTM layer has a syllable
error rate greater than 230%. (Because the syllable error rate is an
edit distance, it can be greater than 1.0. It is typically written as a
percentage for readability of smaller values.)

Comparison of TweetyNet and ED-TCN

We next show how vak allows researchers to compare models.
For this we compare the TweetyNet model in [8] with the ED-
TCN model of [33]. As for the ablation experiment, we ran full
learning curves, but here just focus on the performance of models
trained on 10 minutes of data. Likewise, the grouped box plots are
as in Figure 4, with performance of TweetyNet again on the left
and in this case the ED-TCN model on the right. Here we only
show performance of models trained on data from all four birds
(the same dataset we prepared for the ablation experiment above).
We observed that on this dataset the ED-TCN had a higher frame
error and syllable error rate, as shown in Figure 5. However, there
was no clear difference when training models on individual birds
(results not shown because of limited space). Our goal here is not
to make any strong claim about either model, but simply to show
that our framework makes it possible to more easily compare two
models on the exact same dataset.

Applying Parametric UMAP to Bengalese finch syllables with a
convolutional encoder

Finally we provide a result demonstrating that a researcher can ap-
ply multiple families of models to their data with our framework.
As stated above, the vak framework includes an implementation
of a Parametric UMAP family, and one model in this family, a
simple encoder network with convolutional layers on the front
end. To demonstrate this model, we train it on the song of an
individual bird from the Bengalese finch song repository. We use

Fig. 5: Comparison of TweetyNet model [8] with ED-TCN model.
Plots are as in 4. Each axes shows results for one individual bird
from the Bengalese finch song repository dataset [36]. Bar plots
show frame error (left column) and syllable error rate (right column),
without post-processing clean-up (blue bars) and with (orange bars).

Fig. 6: Scatter plot showing syllables from the song of one Bengalese
finch, embeeded in a 2-D space using a convolutional encoder trained
using the Parametric UMAP algorithm. Each marker is a point
produced from a spectrograms of a single syllable rendition, mapped
down to the 2-D space, from 40 seconds of training data. Colors
indicate the label applied to each syllable by an expert human when
annotating the spectrograms with a GUI.

a training set with a duration of 40 seconds total, containing clips
of all syllable classes from the bird’s song, taken from songs that
were drawn at random from a larger data pool by the vak dataset
preparation function. We then embed a separate test set. It can be
seen in Figure 6 that points that are close to each other are almost
always the same color, indicating that syllables that were given the
same label by a human annotator are also nearer to each other after
mapping to 2-D space with the trained parametric UMAP model.

Discussion

Researchers studying acoustic behavior need to benchmark mul-
tiple neural network models on their data, evaluate training per-
formance for different training set sizes, and use trained models
to make predictions on newly acquired data. Here we presented
vak, a neural network framework developed to meet these needs.
In the Methods we described its design and development. Then
in the Results we provide proof-of-concept results demonstrating
how researchers can easily use our framework.

Finally, we summarize the roadmap for further development
of version 1.0 of vak. In the spirit of taking an open approach,
we are tracking issues related to this roadmap on GitHub:
https://github.com/vocalpy/vak/issues/614. A key goal will be to
add benchmark datasets, generated by running the vak prep
command, that a user can download and use to benchmark models

66 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

with publicly shared configuration files. Another key goal will be
to add models that are pre-trained on these benchmark datasets.
Additionally we plan to refactor the prep module to make use
of the vocalpy package [37], developed to make acoustic com-
munication research code in Python more concise and readable.
Another key step will be inclusion of additional models like
those reviewed in the Related Work. Along with this expansion of
existing functionality, the final release of version 1.0 will include
several quality-of-life improvements, including a revised schema
for the configuration file format that better leverages the strengths
of TOML, and dataclasses that represent outputs of vak, such
as dataset directories and results directories, to make it easier
to work with outputs programmatically. It is our hope that these
conveniences plus the expanded models and datasets will provide
a framework that can be developed collaboratively by the entire
research community studying acoustic communication in animals.

REFERENCES

[1] M. D. Hauser, N. Chomsky, and W. T. Fitch, “The Faculty of Language:
What Is It, Who Has It, and How Did It Evolve?” Science, vol. 298,
no. 5598, pp. 1569–1579, Nov. 2002, https://doi.org/10.1126/science.
298.5598.1569.

[2] A. J. Doupe and P. K. Kuhl, “BIRDSONG AND HUMAN SPEECH:
Common Themes and Mechanisms,” Annual Review of Neuroscience,
vol. 22, no. 1, pp. 567–631, Mar. 1999, https://doi.org/10.1146/annurev.
neuro.22.1.567.

[3] M. Wirthlin, E. F. Chang, M. Knörnschild, L. A. Krubitzer, C. V. Mello,
C. T. Miller, A. R. Pfenning, S. C. Vernes, O. Tchernichovski, and M. M.
Yartsev, “A Modular Approach to Vocal Learning: Disentangling the
Diversity of a Complex Behavioral Trait,” Neuron, vol. 104, no. 1, pp.
87–99, Oct. 2019, https://doi.org/10.1016/j.neuron.2019.09.036.

[4] S. L. Hopp, M. J. Owren, and C. S. Evans, Animal Acoustic Commu-
nication: Sound Analysis and Research Methods. Springer Science &
Business Media, 2012.

[5] T. Sainburg and T. Q. Gentner, “Toward a Computational Neuroethol-
ogy of Vocal Communication: From Bioacoustics to Neurophysiology,
Emerging Tools and Future Directions,” Frontiers in Behavioral Neu-
roscience, vol. 15, p. 811737, Dec. 2021, https://doi.org/10.3389/fnbeh.
2021.811737.

[6] D. Stowell, “Computational bioacoustics with deep learning: A review
and roadmap,” p. 46, 2022.

[7] Y. Cohen, T. A. Engel, C. Langdon, G. W. Lindsay, T. Ott, M. A.
Peters, J. M. Shine, V. Breton-Provencher, and S. Ramaswamy, “Recent
advances at the interface of neuroscience and artificial neural networks,”
Journal of Neuroscience, vol. 42, no. 45, pp. 8514–8523, 2022.

[8] Y. Cohen, D. A. Nicholson, A. Sanchioni, E. K. Mallaber, V. Skidanova,
and T. J. Gardner, “Automated annotation of birdsong with a neural
network that segments spectrograms,” Elife, vol. 11, p. e63853, 2022.

[9] J. Goffinet, S. Brudner, R. Mooney, and J. Pearson, “Low-dimensional
learned feature spaces quantify individual and group differences in vocal
repertoires,” eLife, vol. 10, p. e67855, May 2021, https://doi.org/10.7554/
eLife.67855.

[10] E. Steinfath, A. Palacios-Muñoz, J. R. Rottschäfer, D. Yuezak, and
J. Clemens, “Fast and accurate annotation of acoustic signals with
deep neural networks,” eLife, vol. 10, p. e68837, Nov. 2021, https:
//doi.org/10.7554/eLife.68837.

[11] T. Sainburg, M. Thielk, and T. Q. Gentner, “Finding, visualizing, and
quantifying latent structure across diverse animal vocal repertoires,”
PLOS Computational Biology, vol. 16, no. 10, p. e1008228, Oct. 2020,
https://doi.org/10.1371/journal.pcbi.1008228.

[12] K. R. Coffey, R. E. Marx, and J. F. Neumaier, “DeepSqueak: A deep
learning-based system for detection and analysis of ultrasonic vocal-
izations,” Neuropsychopharmacology, vol. 44, no. 5, pp. 859–868, Apr.
2019, https://doi.org/10.1038/s41386-018-0303-6.

[13] D. Nicholson and Y. Cohen, “Vak,” Zenodo, Mar. 2022, https://doi.org/
10.5281/zenodo.6808839.

[14] J. N. McGregor, A. L. Grassler, P. I. Jaffe, A. L. Jacob, M. S. Brainard,
and S. J. Sober, “Shared mechanisms of auditory and non-auditory vocal
learning in the songbird brain,” eLife, vol. 11, p. e75691, Sep. 2022,
https://doi.org/10.7554/eLife.75691.

[15] K. L. Provost, J. Yang, and B. C. Carstens, “The impacts of fine-tuning,
phylogenetic distance, and sample size on big-data bioacoustics,” PLOS
ONE, vol. 17, no. 12, p. e0278522, Dec. 2022, https://doi.org/10.1371/
journal.pone.0278522.

[16] A. Kershenbaum, D. T. Blumstein, M. A. Roch, Ç. Akçay, G. Backus,
M. A. Bee, K. Bohn, Y. Cao, G. Carter, C. Cäsar, M. Coen, S. L.
DeRuiter, L. Doyle, S. Edelman, R. Ferrer-i-Cancho, T. M. Freeberg,
E. C. Garland, M. Gustison, H. E. Harley, C. Huetz, M. Hughes,
J. Hyland Bruno, A. Ilany, D. Z. Jin, M. Johnson, C. Ju, J. Karnowski,
B. Lohr, M. B. Manser, B. McCowan, E. Mercado, P. M. Narins, A. Piel,
M. Rice, R. Salmi, K. Sasahara, L. Sayigh, Y. Shiu, C. Taylor, E. E.
Vallejo, S. Waller, and V. Zamora-Gutierrez, “Acoustic sequences in non-
human animals: A tutorial review and prospectus: Acoustic sequences
in animals,” Biological Reviews, vol. 91, no. 1, pp. 13–52, Feb. 2016,
https://doi.org/10.1111/brv.12160.

[17] Y. Fukuzawa, “Computational methods for a generalised acoustics analy-
sis workflow: A thesis presented in partial fulfilment of the requirements
for the degree of Master of Science in Computer Science at Massey Uni-
versity, Auckland, New Zealand,” Ph.D. dissertation, Massey University,
2022.

[18] A. Graves and J. Schmidhuber, “Framewise phoneme classification with
bidirectional LSTM and other neural network architectures,” Neural
networks, vol. 18, no. 5-6, pp. 602–610, 2005, https://doi.org/10.1016/
j.neunet.2005.06.042.

[19] A. Graves, “Supervised sequence labelling,” in Supervised Sequence
Labelling with Recurrent Neural Networks. Springer, 2012, pp. 5–13,
https://doi.org/10.1007/978-3-642-24797-2_2.

[20] E. Steinfath, A. Palacios, J. Rottschäfer, D. Yuezak, and J. Clemens, “Fast
and accurate annotation of acoustic signals with deep neural networks,”
p. 30.

[21] L. Zandberg, V. Morfi, J. George, D. F. Clayton, D. Stowell, and R. F.
Lachlan, “Bird song comparison using deep learning trained from avian
perceptual judgments,” Animal Behavior and Cognition, Preprint, Dec.
2022, https://doi.org/10.1101/2022.12.23.521425.

[22] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” Oct. 2017.

[23] W. Falcon and T. P. L. team, “PyTorch Lightning,” Zenodo, Apr. 2023,
https://doi.org/10.5281/zenodo.7859091.

[24] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A
Structure for Efficient Numerical Computation,” Computing in Science
Engineering, vol. 13, no. 2, pp. 22–30, Mar. 2011, https://doi.org/10.
1109/MCSE.2011.37.

[25] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith et al., “Array
programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362,
2020.

[26] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,
E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pe-
dregosa, P. van Mulbregt, and S. . . Contributors, “SciPy 1.0–Fundamen-
tal Algorithms for Scientific Computing in Python,” arXiv:1907.10121
[physics], Jul. 2019.

[27] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007, https://doi.org/10.
1109/MCSE.2007.55.

[28] T. A. Caswell, M. Droettboom, A. Lee, J. Hunter, E. S. de Andrade,
E. Firing, T. Hoffmann, J. Klymak, D. Stansby, N. Varoquaux, J. H.
Nielsen, B. Root, R. May, P. Elson, J. K. Seppänen, D. Dale, J.-J.
Lee, D. McDougall, A. Straw, P. Hobson, C. Gohlke, T. S. Yu, E. Ma,
A. F. Vincent, S. Silvester, C. Moad, N. Kniazev, hannah, E. Ernest,
and P. Ivanov, “Matplotlib/matplotlib: REL: V3.3.2,” Zenodo, Sep. 2020,
https://doi.org/10.5281/zenodo.4030140.

[29] T. pandas development team, “Pandas-dev/pandas: Pandas,” Feb. 2020,
https://doi.org/10.5281/zenodo.3509134.

[30] Dask Development Team, Dask: Library for Dynamic Task Scheduling,
2016.

[31] D. Nicholson, “Crowsetta: A python tool to work with any format for
annotating animal vocalizations and bioacoustics data.” Journal of Open
Source Software, vol. 8, no. 84, p. 5338, 2023, https://doi.org/10.21105/
joss.05338.

[32] T. maintainers and contributors, “TorchVision: PyTorch’s computer vi-
sion library,” GitHub, 2016.

VAK: A NEURAL NETWORK FRAMEWORK FOR RESEARCHERS STUDYING ANIMAL ACOUSTIC COMMUNICATION 67

[33] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Tempo-
ral convolutional networks for action segmentation and detection,” in
proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 156–165, https://doi.org/10.1109/cvpr.2017.113.

[34] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold
approximation and projection for dimension reduction,” arXiv preprint
arXiv:1802.03426, 2018.

[35] T. Sainburg, L. McInnes, and T. Q. Gentner, “Parametric umap embed-
dings for representation and semisupervised learning,” Neural Computa-
tion, vol. 33, no. 11, pp. 2881–2907, 2021, https://doi.org/10.1162/neco_
a_01434.

[36] D. Nicholson, J. E. Queen, and S. J. Sober, “Bengalese Finch song
repository,” Oct. 2017, https://doi.org/10.6084/m9.figshare.4805749.v5.

[37] D. Nicholson, “vocalpy/vocalpy: 0.3.0,” May 2023, https://doi.org/10.
5281/zenodo.7925888. [Online]. Available: https://zenodo.org/record/
7925888

68 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Emukit: A Python toolkit for decision making under
uncertainty

Andrei Paleyes‡∗, Maren Mahsereci§, Neil D. Lawrence‡

✦

Abstract—Emukit is a highly flexible Python toolkit for enriching decision making
under uncertainty with statistical emulation. It is particularly pertinent to complex
processes and simulations where data are scarce or difficult to acquire. Emukit
provides a common framework for a range of iterative methods that propagate
well-calibrated uncertainty estimates within a design loop, such as Bayesian
optimisation, Bayesian quadrature and experimental design. It also provides
multi-fidelity modelling capabilities. We describe the software design of the
package, illustrate usage of the main APIs, and showcase the breadth of use
cases in which the library already has been used by the research community.

Index Terms—statistical emulation, software, Bayesian optimisation, Bayesian
quadrature, Bayesian experimental design, multi-fidelity, active learning

INTRODUCTION

Data selection is a major challenge in supervised machine learning
(ML). Quite often when data availability is not an issue, data
collection occurs prior to the training process and results in a
static dataset, meaning that the machine learning model has no
influence on the data collection process. However, if data points
are expensive and scarce the performance of a model trained
on a static dataset can be suboptimal or even poor. In those
cases, it is beneficial to carefully select the dataset such that,
for example, it is maximally informative under the ML model to
achieve the task at hand. This branch of ML is generally referred
to as active learning [1] and has attracted attention in various
sub-fields such as experimental design (the task of predicting
an unknown function value from its input), global optimisation
(guessing the global minimiser of a function) and integration
(guessing the integral of a function). The Emukit Python library,
at core, augments existing machine learning models with active
data selection functionality.

Tasks where data acquisition is hard usually involve a higher
degree of expert knowledge on the modeling side, because in-
corporating prior information, such as mechanical or physical
knowledge about the system under study, aims for more phys-
ically meaningful and accurate predictions on the task at hand.
Often these models are of probabilistic nature and can provide
a degree of uncertainty of their prediction to counteract the lack

* Corresponding author: ap2169@cam.ac.uk
‡ Department of Computer Science and Technology, University of Cambridge
§ University of Tübingen

Copyright © 2023 Andrei Paleyes et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

of data [2], [3], [4], [5]. Such a model is often referred to as
a statistical emulator1, which is a machine learning model that
can replace an expensive computer simulation (a simulator) or
real world experiment, and is trained on input-output pairs of
the latter [6], [7], [8], [9]. Concretely, the simulator could be
an involved stochastic weather simulation, and the emulator a
predictive machine learning model trained on expensive input-
output pairs of the weather simulation. Alternatively, the emulator
may model a real world process. The emulator now may replace
the original data source to obtain fast predictions when needed, or
to compute auxiliary quantities that cannot be obtained from the
data source.

Once trained, the performance of the emulator (the ML
model), as mentioned, depends on the informativity of the data
(the simulation results), especially if it is expensive and scarce,
and hence active data selection is often desirable for such models.
A unique feature of Emukit is that it enables the user to wrap
custom emulator models into an interface provided by Emukit and,
by doing so, use them in Emukit’s decision loop. As such, Emukit
‘actifies’ (makes active) the data-acquisition of custom models
written in custom backends that only connect via an interface to
Emukit. This may i) save users time and money to write their own
active learning loop, ii) or to rewrite their custom model in existing
decision loop packages with a fixed backend, and iii) improve
performance of the model with more informative training data.

Hence, the most prominent features of Emukit can be summa-
rized as follows.

• Emukit augments existing models with active learning
capability, in particular models used in Bayesian optimisa-
tion, Bayesian quadrature and experimental design.

• Emukit can use existing, potentially specialized, custom
models provided by the user and wrap them into a provided
interface. As such Emukit is model backend agnostic.

• Emukit is highly abstracted and mimics the components
of an active decision loop. This composability allows
users to provide custom implementations of subroutines
and classes that seamlessly integrate with the rest of the
package. Hence Emukit is highly flexible and allows fast
and easy prototyping.

• In contrast to other packages, Emukit provides several
active learning methods via subpackages that share a core

1. The reader might be familiar with the term ‘emulator’ in computing
context, where it refers to a hardware or software that makes one system
behave like another. The ‘(statistical) emulator’ we use throughout this paper
is an unrelated, albeit similar, term from the machine learning literature.

EMUKIT: A PYTHON TOOLKIT FOR DECISION MAKING UNDER UNCERTAINTY 69

implementation of the active learning loop. This enables
the user to potentially use the same model backend and
even the same model instance across tasks. This increases
consistency between results, may reduce implementation
overhead and allow resource sharing between tasks.

• Emukit provides basic functionality for multi-fidelity mod-
eling which allows the user to incorporate data sources
of different fidelities. Further, Emukit contains a limited
number of model wrappers to illustrate their usage and
some example applications.

The remainder of the paper corroborates the points above
in greater detail. The following section briefly introduces the
supported machine learning methods before sketching Emukit’s
workflow and library structure. Throughout the text, we refer to
‘tasks’ in an abstract sense, without a specific application in mind.
In the remainder of text, we will use the terms ‘ML model’ and
‘emulator’ interchangeably. The ‘simulator’ or ‘data source’ will
later also be referred to as ‘user function’, ‘black-box function’ or
‘objective function’.

BACKGROUND ON PROBABILISTIC ACTIVE METHODS

This section gives an overview of the machine learning methods
provided by Emukit. Emukit mainly contains three high-level
methods: Bayesian optimisation (BO), Bayesian quadrature (BQ)
and experimental design (ED).

Bayesian optimisation [10], [11] is a numerical method that
aims to guess the global minimiser of a black-box function by
querying function values at nodes and returning the minimiser of
the collected set. Corresponding algorithms are inherently sequen-
tial and, at every iteration, decide on where to query the objective
function next. The decision solves the so called ‘exploration-
exploitation trade-off’ between exploring unknown regions of the
function’s domain, or exploiting rather promising regions of a
potential minimiser. This trade-off is encoded in a heuristic called
‘acquisition function’ that quantifies the usefulness of evaluating
the function at a certain node. Hence, BO is generally sample-
efficient and thus especially useful when the function is expensive
to evaluate and the number of allowed evaluations is limited. There
exists a large range of heuristics and methods that all fall under the
umbrella of BO, out of which Emukit supports several. Bayesian
optimisation has been successfully applied in various fields [12],
[13], but most notably in the automation of hyperparameter tuning
tasks of neural networks [14], [15].

Bayesian quadrature [16], [17], [18] is a numerical method
that aims to infer the integral of a black-box function (called the
‘integrand’) given some integration measure and queries of the
integrand at nodes. In contrast to Monte Carlo (MC) methods, BQ
generally accept any kind of node design and is especially sample
efficient which makes it superior to MC in certain circumstances
[19]. A sub-group of BQ methods are active and follow a similar
decision loop as BO; the most notable difference being that
acquisition functions are specific to BQ and the class of models
is somewhat more restricted. Generally, active BQ methods are
algorithmically similar on a high level to BO methods and can use
similar models.

Experimental design [6], [7], [8], [9], also known as Bayesian
active learning, is a method that aims to collect data about a
black-box function such that the resulting probabilistic model
predicts unseen function values well. Unlike BO and BQ discussed
above, ED aims to learn the objective function as well as possible

across the entire input space. It traditionally has been applied to
statistical emulation of complex computer models but also has
found applications in healthcare [20], computational biology [21]
and engineering [22]. Some ED methods also obey the structure
of an active decision loop similar to BO and BQ.

Emukit embodies the realization that all three methods (BO,
BQ, ED), albeit having different numerical aims, share the same
algorithmic structure: a decision loop that computes the next node
based on the current model, evaluates the user function, and then
updates the model accordingly. This decision loop is contained in
Emukit’s core package and shared by all three high-level methods.
Furthermore, especially BO and ED may use similar models while
BQ is somewhat more restricted. Potential benefits of sharing
implementation, model and compute between tasks are discussed
in later sections.

Finally, Emukit provides basic support of multi-fidelity models
[23] which can combine query results of the black-box function
of different quality (from low fidelity to high fidelity). This yields
multi-fidelity BO, BQ and ED methods that may be made active
again with Emukit’s decision loop.

EMUKIT WORKFLOW

Decision making with statistical emulation consists of three parts.
All starts with a task, a high level goal that we are interested
in achieving. It usually involves a complex process that we aim
to study to answer a question. Some examples include finding
the best operation mode of a drone, measuring the quality of a
weather simulation, explaining behavior of a complex system. In
order to solve the task we choose a method, a relatively low-
level technique that guides our exploration of the target process
and provides the quantifiable way to answer the task’s question.
Examples include Bayesian optimisation, Bayesian quadrature and
experimental design. And finally there is a model, a probabilistic
data-driven representation of the process under study. Examples of
such models are a Gaussian process, a random forest or a Bayesian
network. Consequently, the typical workflow for users working
with Emukit consists of three steps (see Figure 1 for a graphical
description).

Build the model. Instead of constraining the user to certain
model classes, Emukit provides the flexibility of using user-
specified models. Generally speaking, Emukit does not provide
modeling capabilities. Instead users are expected to define their
own models. Because of the variety of modeling frameworks
available, Emukit does not mandate or make any assumptions
about a particular modeling technique or a library, and suggests
implementing a subset of defined model interfaces that are re-
quired to use a particular method.

Run the method. This is the main focus of Emukit. Emukit
defines a general structure of a decision making method and offers
implementations of several such methods: Bayesian optimisation,
Bayesian quadrature, experimental design. All methods are model-
agnostic and only rely on model interfaces.

Solve the task. For the end users, Emukit is a way to solve a
certain task, which may have research or business value. Emukit
provides a set of examples of how tasks such as hyperparameter
tuning, sensitivity analysis, multi-fidelity modeling or benchmark-
ing are accomplished using the library.

STRUCTURE OF THE LIBRARY

At a conceptual level the methods supported in Emukit – such as
Bayesian optimisation, experimental design and Bayesian quadra-

70 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 1: Summary of workflow for the users of Emukit. The user chooses
a a modeling framework and defines a model. The model is wrapped
using a pre-defined interface and connected to the core components of
several methods such as Bayesian optimisation, experimental design
etc. Specific tasks are then solved using these methods.

ture – are all iterative decision making processes that follow a
similar pattern. Algorithmically they can be thought of as instances
of a common abstract loop, which we now describe (also see
Algorithm 1).

The common goal of all of these methods is to learn a behavior
of an objective function - a black-box expensive process that has
certain parameters. The knowledge about the objective function
(initially available as well as that collected during the learning
process) is represented with a probabilistic model. New data points
are proposed by optimising an acquisition function constructed
using the model. Finally, the decision making process is done in a
loop until a certain stopping condition is met.

Algorithm 1 Decision making loop in Emukit.

1: while stopping condition is not met do
2: collect next point(s) for evaluation
3: evaluate objective function
4: update model with new observation(s)
5: end while

The internal structure of Emukit reflects these abstractions to
enable swapping and replacement of fundamental components of
the decision making loop. While some of the basic components
in Emukit correspond to the parts of the decision making loop
exactly, others are more fine-grained to allow for greater flexi-
bility and plug-and-play experience for the researchers using the
package. We will now give an overview of these components.

Outer Loop. The OuterLoop class is the abstract loop
where the different components come together. Loops for specific
methods, such as Bayesian optimisation and experiment design,
should subclass it. The library provides several concrete imple-
mentations of the loop, and also contains examples how the users
may build their own.

Parameter space. Represents the parameter space of the
objective function, also referred to as input space. Emukit supports
continuous, categorical, discrete, and bandit parameters.

Model. All Emukit loops need a probabilistic model. Emukit
does not provide functionality to build models as there are al-
ready good modeling frameworks available in Python. Instead,
it provides a way of interfacing third-party modeling libraries.
The interfacing mechanism consists of two parts: interfaces and
wrappers. Interfaces define functionality required from a model.
Different models and modeling frameworks will provide different
functionality. For instance a Gaussian process will usually have
derivatives of the predictions available but random forests will
not. A model implements a set of interfaces that represent these

different functionalities. The basic interface that all models must
implement is IModel, which implements functionality to make
predictions and update the model but a model may implement
any number of other interfaces such as IDifferentiable
which indicates a model has prediction derivatives available. Other
components of the decision making loop may also be define
interfaces to indicate that they require a certain functionality from
the model. For example, ICalculateVarianceReduction
defines methods the user needs to implement with their model to
use it with the variance reduction technique. Model wrappers
adapt third-party models and implement one or more of the
interfaces using specific modeling framework. Emukit provides
a wrapper for using a model created with GPy [24].

Candidate Point Calculator. This entity drives the decision
on which point(s) to evaluate next. The simplest implementation
provided out of the box, SequentialPointCalculator,
collects one point at a time by finding where the acquisition
is at a maximum by applying the acquisition optimiser to the
acquisition function. More complex implementations are possible,
for example to enable batches of points to be collected so that the
user function may be evaluated in parallel.

Acquisition. The acquisition is a function defined on the
parameter space that produces continuous values. It represents a
heuristic quantification of how valuable collecting a future point
might be, and produces continuous values. It is used by the
candidate point calculator to decide which point(s) to collect next.
Acquisition functions balance exploration and exploitation of the
decision making process.

Acquisition Optimiser. The AcquisitionOptimizer
optimises the acquisition function to find the point at which the
acquisition is at a maximum. If available, the optimiser can use the
acquisition function gradients. Otherwise, it will either estimate
the gradients numerically or use a gradient free optimisation.

User Function. This is the component that represents the
objective function. It can be evaluated by the user or it can be
passed into the loop and evaluated by Emukit.

Model Updater. The ModelUpdater class updates the
model with new training data after a new point is observed and
optimises any hyperparameters of the model. It can decide whether
hyperparameters need updating based on some internal logic.

Stopping Condition. The StoppingCondition class
chooses when the decision making loop should stop collecting
points. The most commonly used approach is to stop when a set
number of iterations has been reached.

These are the core components Emukit defines. Specific
methods may also define additional concepts of their own, e.g.
integration measures or costs. Table 1 shows the mapping between
decision making abstractions and Emukit components.

USAGE OVERVIEW

This section describes Emukit’s high level APIs for all main func-
tions of the package: Bayesian optimisation, Bayesian quadrature,
experimental design and multi-fidelity emulation. Unless stated
otherwise, we assume that some initial data (an initial design
of reasonable size with corresponding evaluations of the user
function) are already defined and stored in the variables X (inputs)
and Y (values). We use GPy [24] in the code snippets below for
modeling, and exclude import lines for brevity.

EMUKIT: A PYTHON TOOLKIT FOR DECISION MAKING UNDER UNCERTAINTY 71

Decision making abstractions Emukit components

Loop Outer loop

Parameters Parameter space
Probabilistic model Model interface

Model wrapper

Acquisition function Candidate point calculator
Acquisition
Acquisition optimiser

Objective function User function
Model updater

Stopping Condition Stopping condition

TABLE 1: The mapping between abstractions of the decision making
process and the components defined in Emukit.

Standard methods and model wrapping

Interfaces for Bayesian optimisation and experimental design are
the most straighforward ways to use the library. Both methods
require the user to define a model and wrap it in the Emukit’s
model wrapper. An input space also has to be defined using
Emukit’s classes. The choice of acquisition function is optional, as
reasonable defaults are provided. High level loop objects allow the
user to execute the decision making loop and access its properties.

model_gpy = GPy.models.GPRegression(X,Y)
model_emukit = GPyModelWrapper(model_gpy)

parameter_space = ParameterSpace([
ContinuousParameter('x1', -5, 10),
ContinuousParameter('x2', 0, 15)

])

expected_improvement_acquisition =
ExpectedImprovement(model = model_emukit)

bayesopt_loop = BayesianOptimizationLoop(
model = model_emukit,
space = parameter_space,
acquisition = expected_improvement_acquisition

)

model_variance_acquisition =
ModelVariance(model = model_emukit)

experimental_design_loop =
ExperimentalDesignLoop(

model = model_emukit,
space = parameter_space,
acquisition = model_variance_acquisition

)

Usage of Bayesian quadrature (BQ) API is more involved, as
even in its most basic form it requires more choices from the user.
First the objective function, also referred to as an integrand, is
modeled with a Gaussian process (GP). Since BQ integrates the
kernel function, the kernel is then wrapped in a separate Emukit
object. Bundled together, wrappers around the kernel and the
model itself represent a base model in the BQ package. This model
may be used with several BQ methods, the code below illustrates
vanilla Bayesian quadrature where the GP model is directly placed
over the integrand function and then integrated analytically.

lb = -3.0 # lower integral bound
ub = 3.0 # upper integral bound
gpy_model = GPy.models.GPRegression(X=X, Y=Y)

emukit_rbf = RBFGPy(gpy_model.kern)

emukit_measure = LebesgueMeasure.from_bounds(
bounds=[(lb, ub)]

)
emukit_qrbf = QuadratureRBFLebesgueMeasure(

emukit_rbf, emukit_measure
)
gp_model = BaseGaussianProcessGPy(

kern=emukit_qrbf, gpy_model=gpy_model
)

emukit_model = VanillaBayesianQuadrature(
base_gp=gp_model, X=X, Y=Y

)
bq_loop = VanillaBayesianQuadratureLoop(

model=emukit_model
)

Once the loop object is created, either for optimisation, quadra-
ture or experiment design, it may be evaluated in one of two
modes. If the user has access to the objective function via Python,
Emukit can manage the loop with the run_loop method that
accepts two arguments: the objective function and the stopping
criterion. If the objective has to be called externally (e.g. a lab ex-
periment has to be done), Emukit provides get_next_points
method that produces the next evaluation point(s) based on the
data observed so far. In that latter case user has to manage the
decision making loop themselves.

Interfaces for fast prototyping

Emukit gives researchers a lot of flexibility in swapping in-
dividual pieces in and out of the decision making loop. This
is made possible by clearly defined interfaces. We illustrate
how this is accomplished in the package with an example
of IntegratedHyperParameterAcquisition. This class
provides an ability to integrate any acquisition function over hy-
perparameters of the model. To do that, the model needs to support
two operations: generate hyperparameter samples and fix hyperpa-
rameters to a certain sample value. Consequently, Emukit defines
an interface IPriorHyperparameters that declares these op-
erations, and IntegratedHyperParameterAcquisition
requires input model to implement this interfaces, as is shown in
the following code snippet:

class IPriorHyperparameters:
def generate_hyperparameters_samples(...

def fix_model_hyperparameters(...

class IntegratedHyperParameterAcquisition(Acquisition):
def __init__(

self,
model: Union[IModel, IPriorHyperparameters],
...

Model reuse across tasks

Emukit’s composability allows to reuse components between
methods. For example, we use the quadrature model defined above
to perform an optimisation loop, and then integrate it using the
quadrature API. The ability to reuse components in this way
lowers implementation overhead, optimises utilisation of compute
resources, and increases consistency.

see BQ snippet for complete
definition of the model
emukit_bq_model = VanillaBayesianQuadrature(

base_gp=gp_model, X=X, Y=Y
)

72 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

bayesopt_loop = BayesianOptimizationLoop(
model = emukit_bq_model, space = parameter_space

)
n_iterations = 20
bayesopt_loop.run_loop(

user_function,
stopping_condition=n_iterations

)

emukit_bq_model.integrate()

Multi-fidelity emulation

To support research on multi-fidelity emulation methods, Emukit
implements both linear and non-linear multi-fidelity models. The
user needs to provide data for each of the fidelities and make
the choice of appropriate Gaussian process kernel. Emukit can
then be used to define a combined multi-fidelity model. In the
example below we define a linear multi-fidelity model, where the
relationship between fidelities is linear.

This utility method allows conversion
of data from different fidelities
to arrays where fidelity is represented
as an input variable
X, Y = convert_xy_lists_to_arrays(

[x_low, x_high],
[y_low, y_high]

)

kernels = [
GPy.kern.RBF(dim=1),
GPy.kern.RBF(dim=1)

]
linear_mf_kernel =

LinearMultiFidelityKernel(kernels)
gpy_linear_mf_model =

GPyLinearMultiFidelityModel(
X, Y,
linear_mf_kernel,
n_fidelities = 2

)

Other methods and features

In addition to the APIs discussed above, Emukit also provides
basic support for sensitivity analysis and benchmarking. Fur-
ther information about Emukit’s functionality, including available
implementations of acquisition functions, multi-output models,
support for constraints and cost functions, and custom events in
the outer loop may be found in library’s website2, documentation3

and tutorial notebooks4.

EMUKIT IN ACTION

Since its announcement in 2019 [25], Emukit was used in a wide
range of research projects. In this section we review a selection of
these projects to showcase the breadth of situations in which the
library may be useful.

Methodological research

Because of its flexibility Emukit allows researchers to rapidly ex-
periment with decision making methods in its suite. In this section

2. https://emukit.github.io/
3. https://emukit.readthedocs.io/en/latest/
4. https://nbviewer.org/github/emukit/emukit/blob/main/notebooks/index.

ipynb

we discuss several research papers that leverage this advantage to
advance the field of decision making under uncertainty.

Optimisation of parameters in high dimensional structured
data spaces is an increasingly important and challenging task. A
common pattern is to use unsupervised learning methods to project
parameters into low dimensional continuous representations, also
known as latent spaces. There are multiple ways to approach
the design of the Bayesian optimisation procedure on such latent
spaces. Siivola et al. [26] studied the effects of various design
choices. Namely, the effects of the dimensionality of the latent
space, the optimisation bounds, and the choice of acquisition func-
tion were analysed. Emukit’s plug-and-play approach allowed the
researchers to facilitate measurement of these effects in isolation.

Emukit’s composability was also leveraged for the implemen-
tation of BOSH, a sampling approach for Bayesian optimisation of
functions with stochastic evaluations [27]. Authors used hierarchi-
cal Gaussian process as a surrogate and designed a novel BOSH
acquisition function using the information-theoretic framework,
incorporating both pieces in Emukit’s Bayesian optimisation loop.
Emukit was also used to assess BOSH performance against a
variety of baselines.

Naslidnyk et al. [28] implemented a custom Bayesian quadra-
ture model and used Emukit’s existing BQ wrapper and decision
loop in order to learn integrals of functions that are input invariant
under some transformations. They tested their method on a prob-
lem from Fourier optics where the integral over a point spread
functions of symmetric lenses was computed. Further, Gessner
et al. [29] applied Emukit in the context of active multi-source
Bayesian quadrature. The authors implemented a custom multi-
source BQ model, a corresponding wrapper and even a custom
multi-source acquisition function and point calculator which was
possible due to Emukit’s abstraction and plug-and-play capability.

Example applications

In this section we describe several cases where Emukit was used
to solve applied research problems.

Bell et al. used Emukit to show how to conduct multi-
verse analysis for machine learning experiments [30]. Multiverse
analysis was originally introduced in psychology, and allows
researchers to explore the robustness and generality of claims
by systematically examining the impact of different choices and
variations in the experimental setup. The authors argue that the
same concept can be applied to the machine learning: if a new
technique, e.g. batch normalization, is proposed for an ML model,
it should remain effective regardless of the model architecture,
optimisation method, dataset, evaluation metric, and so on. The
set of these variations comprises a multiverse, and needs to be
explored effectively. The authors use surrogate modeling and
Bayesian experimental design to systematically explore the effect
of each choice. Emukit was chosen as an implementation tool
because of the experimental design API it provides.

Uhrenholt and Jensen used Emukit’s Bayesian optimisation
module to solve the problem of finding settings of a musical
synthesizer to produce a given sound [31]. A musical synthesizer
produces sound by generating waveforms via oscillators. Created
audio streams are then routed through a pipeline that consists (not
necessary all) of mixing of separate streams, filtering, adding of
noise, and saturation. Musicians can control the output sound by
changing the configuration of the pipeline. In order to estimate
the discrepancy between the produced sound and the target, the

EMUKIT: A PYTHON TOOLKIT FOR DECISION MAKING UNDER UNCERTAINTY 73

authors designed a novel modeling approach, in which Gaussian
process is used to model the distribution of the output’s L2 norm.
The flexibility of Emukit allowed to implement this customization
directly, without necessary effort duplication. Emukit’s API also
facilitated a fair comparison to the standard Bayesian optimisation
used as a baseline.

Liyanage et al. faced the problem of combining data from
multiple particle accelerators, including Large Hadron Collider
and Relativistic Heavy Ion Collider, to study the properties of
quark-gluon plasma [32]. Nuclear collision experiments generate
a large body of measurements with varying levels of uncertainty
that would be expensive to quantify with simulations. Instead the
authors proposed to use inexpensive statistical emulators and use
transfer learning to leverage similarities between different heavy
ion collisions systems. This new technique is based on multi-
fidelity emulation, making Emukit an obvious implementation
choice.

RELATED WORK

The Python ecosystem is rich with powerful scientific packages,
including those for decision making methods.

In particular, Bayesian optimisation enjoys a wide selection of
tools and frameworks. Spearmint [14] and GPyOpt [33] are among
the first Python packages for Bayesian optimisation, the latter
being an inspiration for the first release of Emukit. BoTorch [34]
is a popular library for Bayesian optimisation based on PyTorch.
Similarly, Trieste [35] also focuses on Bayesian optimisation but
uses Tensorflow as a backend. More options, such as pyGPGO
[36], scikit-optimize [37], RoBO [38], are also available.

For Bayesian quadrature and Bayesian experimental design
the choice of frameworks is more scarce. Namely, bayesquad [39]
appears to be another Python package for Bayesian quadrature.
The Python library ProbNum [40] supports a variety of Bayesian
quadrature methods, but it’s lack of hyperparameter tuning ca-
pability reduces its practical relevance significantly in its current
form. Optbayesexpt [41] and NEXTorch [42] provide Bayesian
experimental design functionality adopted for their respective
fields. Elements of experimental design can also be found in
Trieste [35].

The key difference between Emukit and the mentioned li-
braries is the fact that Emukit does not dictate a particular
modeling framework, allowing for flexibility in the choice of
computational backends. In addition, Emukit does not focus on
a single method and provides a common core set of abstractions
for optimisation, quadrature and experimental design. Emukit
provides a unique way of using the same model backend for all
tasks, which increases consistency, reduces implementation and
computing overheads.

Likewise, we were not able to locate a Python library other
than Emukit that provides multi-fidelity emulation functionality.
A notable package for research on multi-fidelity methods is
MF2 [43] that implements a variety of multi-fidelity benchmark
functions, but does not have modeling capabilities.

Looking at a wider family of optimisation libraries in Python,
Optuna [44] is a popular choice for hyperparameter optimisation.
Similarly to Emukit, Optuna is framework agnostic, however it
provides a different set of optimisation methods, focusing on evo-
lutionary, genetic and Monte Carlo based approaches. Finally, Ray
Tune [45] is a well known scalable platform in Python on which
other model optimisation frameworks can be executed. Emukit

can potentially be integrated with Ray Tune as an optimisation
library. This work was not carried out yet, and may be a future
development direction.

LIMITATIONS

The design choices made in Emukit have proven to be highly
beneficial for rapid prototyping and experimentation. However
they also led to some of the key limitations of the library.

Emukit does not provide modeling capabilities, and instead
requires users to provide their own surrogate models. This re-
quires certain level of proficiency with probabilistic modeling,
and can prevent some people from using the library. While we
aim to mitigate this with extensive collection of examples and
tutorials, and Emukit is successfully used in teaching university-
level courses and scientific summer schools, the library still cannot
be recommended for absolute beginners.

Emukit puts a strong emphasis on plug-and-play construction
of the decision making loop. All components interact via inter-
faces, and they require a common data format to communicate,
which in Emukit is a Numpy array. On one hand Numpy is a
defacto standard in scientific Python which means it is reasonable
to expect all Emukit users to be able to use Numpy. On the
other hand, linear algebra operations in Numpy cannot be GPU-
accelerated. This means that while individual components of the
outer loop (e.g. a model) can run on GPU, the entire end-to-
end process in Emukit is CPU-bound. This issue severely limits
Emukit’s performance comparing to the libraries that have chosen
to rely on a fixed computational backend (BoTorch/PyTorch or
Trieste/Tensorflow). This can be potentially mitigated by using
specialized libraries that allow Numpy to be run on GPU, such as
Numba [46] and CuPy [47].

CONCLUSIONS

Emukit is built on a realisation that common methods for deci-
sion making under uncertainty – such as Bayesian optimisation,
Bayesian quadrature and experimental design – follow the same
iterative pattern, and therefore can be seen as instances of a
unified high level framework. Emukit provides high level inter-
faces for these methods that are built on the core set of common
abstractions. To enable researchers and practitioners to iterate
and experiment quickly Emukit follows plug-and-play design,
allowing users to swap out a single part of the decision making
loop without affecting other components. Since its initial release
in 2019, Emukit has been successfully used in academic research,
industry, and teaching.

Emukit has multiple potential growth directions. Mitigation
of limitations discussed earlier may improve user experience
and overall quality of the library. Integration with other tools
in scientific Python ecosystem (e.g. Ray Tune) may increase
Emukit’s visibility within the community. New functionality, such
as multi-objective Bayesian optimisation, would expand library’s
capabilities and give users new ways to do research with Emukit.

Researchers and enthusiasts from any scientific or industrial
domain are welcome to explore the potential of using Emukit
for their applications, to contibute new functionality, and to
take part in the discussions around the library. The authors are
always open to feedback and comments about improvements
to the library. The Emukit repository is available on GitHub:
https://github.com/EmuKit/emukit.

74 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

ACKNOWLEDGMENTS

AP and NL acknowledge the support from the Engineering and
Physical Sciences Research Council (EPSRC) and the Alan Turing
Institute under grant EP/V030302/1. MM gratefully acknowledges
financial support by the European Research Council through ERC
StG Action 757275 / PANAMA; the DFG Cluster of Excellence
“Machine Learning - New Perspectives for Science”, EXC 2064/1,
project number 390727645; the German Federal Ministry of Ed-
ucation and Research (BMBF) through the Tübingen AI Center
(FKZ: 01IS18039A); and funds from the Ministry of Science,
Research and Arts of the State of Baden-Württemberg.

We are thankful to every community member for discussions,
comments, bug reports, pull requests, as well as everyone who
used the library in their work, study or research. The full list of
people who contributed code to Emukit can be found at https:
//github.com/EmuKit/emukit/graphs/contributors.

REFERENCES

[1] B. Settles, “Active learning literature survey,” University of Wisconsin–
Madison, Computer Sciences Technical Report 1648, 2009.

[2] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning, ser. Adaptive Computation and Machine Learning. MIT Press,
2006.

[3] T. K. Ho, “Random decision forests,” in Proceedings of 3rd International
Conference on Document Analysis and Recognition, vol. 1, 1995, pp.
278–282 vol.1, https://doi.org/10.1109/ICDAR.1995.598994.

[4] D. J. C. MacKay, “A practical Bayesian framework for backprop net-
works,” Neural Computation, 1991.

[5] A. O’Hagan, M. C. Kennedy, and J. E. Oakley, “Uncertainty analysis and
other inference tools for complex computer codes,” in Bayesian Statistics
6, 1998.

[6] M. C. Kennedy and A. O’Hagan, “Predicting the output from a complex
computer code when fast approximations are available,” Biometrika,
vol. 87, no. 1, pp. 1–13, 2000, https://doi.org/10.1093/biomet/87.1.1.

[7] ——, “Bayesian calibration of computer models,” Journal of the Royal
Statistical Society: Series B (Statistical Methodology), vol. 63, no. 3, pp.
425–464, 2001, https://doi.org/10.1111/1467-9868.00294.

[8] S. Conti, J. P. Gosling, J. E. Oakley, and A. O’Hagan, “Gaussian process
emulation of dynamic computer codes,” Biometrika, vol. 96, no. 3, pp.
663–676, 06 2009, https://doi.org/10.1093/biomet/asp028.

[9] S. Conti and A. O’Hagan, “Bayesian emulation of complex multi-output
and dynamic computer models,” Journal of Statistical Planning and
Inference, vol. 140, no. 3, pp. 640–651, 2010, https://doi.org/10.1016/
j.jspi.2009.08.006.

[10] J. Mockus, V. Tiesis, and A. Zilinskas, “The application of Bayesian
methods for seeking the extremum,” Towards Global Optimization,
vol. 2, no. 117-129, p. 2, 1978.

[11] R. Garnett, Bayesian Optimization. Cambridge University Press, 2023,
to appear.

[12] A. Baheri and C. Vermillion, “Altitude optimization of airborne wind
energy systems: A Bayesian optimization approach,” in 2017 American
Control Conference (ACC). IEEE, 2017, pp. 1365–1370, https://doi.org/
10.23919/acc.2017.7963143.

[13] D. E. Graff, E. I. Shakhnovich, and C. W. Coley, “Accelerating
high-throughput virtual screening through molecular pool-based active
learning,” Chemical science, vol. 12, no. 22, pp. 7866–7881, 2021,
https://doi.org/10.1039/d0sc06805e.

[14] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimiza-
tion of machine learning algorithms,” Advances in neural information
processing systems, vol. 25, 2012.

[15] B. Avent, J. González, T. Diethe, A. Paleyes, and B. Balle, “Automatic
discovery of privacy–utility Pareto fronts,” Proceedings on Privacy
Enhancing Technologies, vol. 4, pp. 5–23, 2020, https://doi.org/10.2478/
popets-2020-0060.

[16] P. Diaconis, “Bayesian numerical analysis,” in Statistical decision theory
and related topics IV. Springer-Verlag New York, 1988, vol. 1, pp.
163–175.

[17] A. O’Hagan, “Some Bayesian numerical analysis,” Bayesian Statistics,
vol. 4, pp. 345–363, 1992.

[18] P. Hennig, M. A. Osborne, and H. P. Kersting, Probabilistic Numerics:
Computation as Machine Learning. Cambridge University Press, 2022,
https://doi.org/10.1017/9781316681411.

[19] C. E. Rasmussen and Z. Ghahramani, “Bayesian Monte Carlo,” in
Advances in Neural Information Processing Systems, vol. 15, 2002, pp.
505–512.

[20] A. Giovagnoli, “The Bayesian design of adaptive clinical trials,” Inter-
national Journal of Environmental Research and Public Health, vol. 18,
no. 2, 2021, https://doi.org/10.3390/ijerph18020530.

[21] E. Pauwels, C. Lajaunie, and J.-P. Vert, “A Bayesian active learning strat-
egy for sequential experimental design in systems biology,” BMC Systems
Biology, vol. 8, no. 1, pp. 1–11, 2014, https://doi.org/10.1186/s12918-
014-0102-6.

[22] A. E. Gongora, B. Xu, W. Perry, C. Okoye, P. Riley, K. G. Reyes,
E. F. Morgan, and K. A. Brown, “A Bayesian experimental autonomous
researcher for mechanical design,” Science advances, vol. 6, no. 15, p.
eaaz1708, 2020, https://doi.org/10.1126/sciadv.aaz1708.

[23] B. Peherstorfer, K. Willcox, and M. Gunzburger, “Survey of multifidelity
methods in uncertainty propagation, inference, and optimization,” SIAM
Review, vol. 60, no. 3, pp. 550–591, 2018, https://doi.org/10.1137/
16M1082469.

[24] The GPy authors, “GPy: A Gaussian process framework in Python,” http:
//github.com/SheffieldML/GPy, 2012.

[25] A. Paleyes, M. Pullin, M. Mahsereci, C. McCollum, N. D. Lawrence,
and J. González, “Emulation of physical processes with Emukit,” Second
workshop on machine learning and the physical sciences, NeurIPS, 2019.

[26] E. Siivola, A. Paleyes, J. González, and A. Vehtari, “Good practices for
Bayesian optimization of high dimensional structured spaces,” Applied
AI Letters, vol. 2, no. 2, p. e24, 2021, https://doi.org/10.1002/ail2.24.

[27] H. B. Moss, D. S. Leslie, and P. Rayson, “BOSH: Bayesian optimisation
by sampling hierarchically,” Workshop on Real World Experimental
Design and Active Learning, ICML, 2020.

[28] M. Naslidnyk, J. Gonzalez, and M. Mahsereci, “Invariant priors for
Bayesian quadrature,” in Your Model is Wrong: Robustness and mis-
specification in probabilistic modeling Workshop, NeurIPS, 2021.

[29] A. Gessner, J. Gonzalez, and M. Mahsereci, “Active multi-information
source Bayesian quadrature,” in Proceedings of The 35th Uncertainty in
Artificial Intelligence Conference, ser. Proceedings of Machine Learning
Research, R. P. Adams and V. Gogate, Eds., vol. 115. PMLR, 2020, pp.
712–721.

[30] S. J. Bell, O. Kampman, J. Dodge, and N. Lawrence, “Modeling the ma-
chine learning multiverse,” Advances in Neural Information Processing
Systems, vol. 35, pp. 18 416–18 429, 2022.

[31] A. K. Uhrenholt and B. S. Jensen, “Efficient Bayesian optimization
for target vector estimation,” in The 22nd International Conference on
Artificial Intelligence and Statistics. PMLR, 2019, pp. 2661–2670.

[32] D. Liyanage, Y. Ji, D. Everett, M. Heffernan, U. Heinz, S. Mak,
and J.-F. Paquet, “Efficient emulation of relativistic heavy ion
collisions with transfer learning,” Phys. Rev. C, vol. 105, p. 034910,
Mar 2022, https://doi.org/10.1103/PhysRevC.105.034910. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevC.105.034910

[33] The GPyOpt authors, “GPyOpt: A Bayesian optimization framework in
Python,” http://github.com/SheffieldML/GPyOpt, 2016.

[34] M. Balandat, B. Karrer, D. Jiang, S. Daulton, B. Letham, A. G. Wil-
son, and E. Bakshy, “BoTorch: A framework for efficient Monte-Carlo
Bayesian optimization,” Advances in neural information processing sys-
tems, vol. 33, pp. 21 524–21 538, 2020.

[35] V. Picheny, J. Berkeley, H. B. Moss, H. Stojic, U. Granta, S. W. Ober,
A. Artemev, K. Ghani, A. Goodall, A. Paleyes et al., “Trieste: Efficiently
exploring the depths of black-box functions with Tensorflow,” arXiv
preprint arXiv:2302.08436, 2023.

[36] J. Jiménez and J. Ginebra, “pyGPGO: Bayesian optimization for Python,”
Journal of Open Source Software, vol. 2, no. 19, p. 431, 2017, https:
//doi.org/10.21105/joss.00431.

[37] G. Louppe, “Bayesian optimisation with scikit-optimize,” in PyData
Amsterdam, 2017.

[38] A. Klein, S. Falkner, N. Mansur, and F. Hutter, “RoBO: A flexible
and robust Bayesian optimization framework in Python,” in NIPS 2017
Bayesian Optimization Workshop, 2017.

[39] OxfordML, “bayesquad,” https://github.com/OxfordML/bayesquad,
2013.

[40] J. Wenger, N. Krämer, M. Pförtner, J. Schmidt, N. Bosch, N. Effenberger,
J. Zenn, A. Gessner, T. Karvonen, F.-X. Briol, M. Mahsereci, and
P. Hennig, “ProbNum: Probabilistic numerics in Python,” 2021.

[41] R. D. McMichael, S. M. Blakley, and S. Dushenko, “Optbayesexpt:
Sequential Bayesian experiment design for adaptive measurements,”
Journal of Research of the National Institute of Standards and Tech-
nology, vol. 126, pp. 1–5, 2021.

[42] Y. Wang, T.-Y. Chen, and D. G. Vlachos, “NEXTorch: a design and
Bayesian optimization toolkit for chemical sciences and engineering,”

EMUKIT: A PYTHON TOOLKIT FOR DECISION MAKING UNDER UNCERTAINTY 75

Journal of Chemical Information and Modeling, vol. 61, no. 11, pp.
5312–5319, 2021, https://doi.org/10.1021/acs.jcim.1c00637.s001.

[43] S. van Rijn and S. Schmitt, “MF2: A collection of multi-fidelity
benchmark functions in Python,” Journal of Open Source Software,
vol. 5, no. 52, p. 2049, 2020, https://doi.org/10.21105/joss.02049.
[Online]. Available: https://doi.org/10.21105/joss.02049

[44] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 2019, https://doi.org/10.1145/3292500.3330701.

[45] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica,
“Tune: A research platform for distributed model selection and training,”
arXiv preprint arXiv:1807.05118, 2018.

[46] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A LLVM-based Python
JIT compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, 2015, pp. 1–6, https://doi.org/10.1145/
2833157.2833162.

[47] R. Nishino and S. H. C. Loomis, “CuPy: A numpy-compatible library
for Nvidia GPU calculations,” 31st conference on neural information
processing systems, vol. 151, no. 7, 2017.

76 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

MDAKits: A Framework for FAIR-Compliant Molecular
Simulation Analysis

Irfan Alibay‡†∗, Lily Wang‡†, Fiona Naughton§†, Ian Kenney¶†, Jonathan Barnoud∥, Richard J Gowers‡, Oliver
Beckstein¶

✦

Abstract—The reproducibility and transparency of scientific findings are widely
recognized as crucial for promoting scientific progress. However, when it comes
to scientific software, researchers face many barriers and few incentives to
ensure that their software is open to the community, thoroughly tested, and
easily accessible. To address this issue, the MDAKits framework has been
developed, which simplifies the process of creating toolkits for the MDAnalysis
simulation analysis package (https://www.mdanalysis.org/) that follow the ba-
sic principles of FAIR (findability, accessibility, interoperability, and reusability).
The MDAKit framework provides a cookiecutter template, best practices docu-
mentation, and a continually validated registry. Registered kits are continually
tested against the latest release and development version of the MDAnalysis
library and their code health is indicated with badges. Users can browse the
registry frontend (https://mdakits.mdanalysis.org/) to find new packages, learn
about associated publications, and assess the package health in order to make
informed decisions about using a MDAKit in their own research. The criteria
for registering an MDAKit (open source, version control, documentation, tests)
are similar to the criteria required for publishing a paper in a software journal,
so we encourage and support publication in, e.g., the Journal of Open Source
Software, creating further academic incentive for researchers to publish code.
Through the MDAKits framework, we aim to foster the creation of a diverse
ecosystem of sustainable community-driven downstream tools for MDAnalysis
and hope to provide a blueprint for a model for growing communities around
other scientific packages.

Index Terms—Molecular Dynamics Simulations, Python, MDAnalysis, eco-
system

Introduction

Software has become increasingly essential to research. In many
areas, it underlies fundamental tasks such as generating, process-
ing, analyzing, storing, visualizing, and communicating the key
results and insights ultimately published.

Scientific code frequently fails to meet FAIR tenets, impeding scien-
tific progress

Despite the importance of software, it is typically not central
to the publication peer review process in many scientific fields.

† These authors contributed equally.
* Corresponding author: ialibay@mdanalysis.org
‡ Open Molecular Software Foundation, Irvine, CA, USA
§ Cardiovascular Research Institute, University of California, San Francisco,
San Francisco, CA, USA
¶ Arizona State University, Tempe, AZ, USA
|| Centro Singular de Investigación en Tecnoloxías Intelixentes, Santiago de
Compostela, Spain

Copyright © 2023 Irfan Alibay et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Consequently, scientific code frequently fails to meet the basic
tenets of FAIR: findability, accessibility, interoperability, and
reusability [1], [2]. With the publication of “The FAIR Guiding
Principles for scientific data management and stewardship” in
2016 and the follow-up "FAIR Principles for Research Software
(FAIR4RS Principles)" in 2022, it has become increasingly ac-
knowledged that abiding by the principles of FAIR is crucial to
promoting robust, reproducible, and efficient scientific discovery
and innovation [1], [2]. We believe that extending FAIR principles
to include open-source software not only significantly advances
that goal, but furthermore is necessary for transparent research.
Open sharing of code brings a number of substantial benefits to
the scientific community. For example, scientists can accurately
replicate a given methodology or re-use previous code, reducing
duplication of effort and reducing the risk of implementation
errors. Indeed, the molecular simulation community in particular
has made a concerted effort over recent years to encourage the
open sharing of scientific codes [3]. For example, as of July 2022,
over 4700 GitHub repositories containing Python code that makes
use of MDAnalysis [4], [5] have been made publicly available1.

However, simply sharing code is not sufficient to fulfill FAIR
guidelines. In fact, making software FAIR compliant requires
significant investment and often expert knowledge on the part of
the developers, especially if the code was written specifically for a
particular research project. For example, the Python ecosystem
is so dynamic that it is common for research code to rapidly
become obsolete or unusable if a new version of a key library
is released. To fulfill the Reusability tenet of FAIR alone, code
should include documentation, version control, and dependency
management. Ideally, it would also include unit tests, examples,
and packaging. Even when code is released in reference to a
publication, it often falls short of ideal FAIR standards. A short
survey of publications in Scopus [6] and the Journal of Open
Source Software [7] over 2017—2021 identified that out of a
total 720 papers citing MDAnalysis [4], [5], only 43 linked to
code available on a version control platform such as GitHub,
GitLab, or Bitbucket. Of these, only 18 met the requirements
of best practices: they implemented unit tests, comprehensive
documentation, and some means of installation.

Two major factors contribute to the lack of open-source FAIR
compliant code. Firstly, code is typically written by scientists
with no formal training or support in programming, for whom
implementing FAIR principles can pose an intimidating and te-
dious barrier. Secondly, despite the substantial investment of effort
and time required to implement best practices, publishing FAIR

MDAKITS: A FRAMEWORK FOR FAIR-COMPLIANT MOLECULAR SIMULATION ANALYSIS 77

software is not typically appreciated with academic recognition or
reward. Fostering a culture of open-source FAIR software requires
addressing both.

Centralized open-source packages such as MDAnalysis offer a
limited solution

One solution is to consolidate scientific code around a small
number of large, central packages. MDAnalysis [4], [5] is a
widely-used open-source Python library for molecular simulation
data. With over 18 years of development by more than 180 de-
velopers, MDAnalysis has refined its code base to offer a mature,
robust, flexible API that offers a range of high-performance tools
to extract, manipulate, and analyze data from the majority of
common simulation formats. MDAnalysis tools have been used for
a variety of scientific applications ranging from exploring protein-
ligand interactions [8], [9], [10], to understanding lipid behavior
[11], [12], to assessing the behavior of novel materials [13], [14].

Initially, MDAnalysis focused on growing the developer and
user community by encouraging users to contribute their code di-
rectly to the MDAnalysis library. Notable examples of this include
the waterdynamics [15] and ENCORE [16] analysis modules.
This approach of encouraging code to be contributed to a central
package has also been successfully taken by packages such as
cpptraj [17] and the GROMACS tools [18]. It has a number of key
advantages for users and the original developers:

• MDAnalysis can ensure that the code follows best prac-
tices (including documentation and tests).

• Code is promoted and made freely accessible to all MD-
Analysis users.

• Maintenance, support, and potential updates are performed
by the experienced MDAnalysis developer team, ensuring
that the contributed code remains functional even while the
other parts of the library change. The original developers
can thus focus on other work.

However, the many costs of this approach can, under some
conditions, result in unsustainable, untenable disadvantages:

• Ensuring that the code follows best practices often requires
long review periods and strict code-style adherence, thus
slowing down the availability of the new code in a released
version of the package.

• The necessity of keeping the API stable between major
releases precludes quick releases of breaking changes. In
general, a mature package such as MDAnalysis has a
slow release cycle, so new features and bug fixes can take
months to become available in new releases.

• As MDAnalysis implicitly agrees to maintain any code that
we release, a certain level of understanding and expertise is
required from the maintainers. If the core developer team
lacks expertise in a specific discipline or subdiscipline,
adding new code in these areas introduces a substantial
maintenance burden should the original code contributors
not be available to help with maintenance. Consequently, it
is impractical to include recently released or cutting-edge
techniques in the core library.

• Introducing new package dependencies incurs software
stack maintenance costs for many users who may not
require this additional code.

1. Based on a search for repositories containing import MDAnalysis.

• Code contributors lose complete control of their code.

The many disadvantages listed above can severely limit the
usefulness of centralizing code around one monolithic package.
Indeed, encountering these issues when attempting to expand the
core MDAnalysis library attests that this approach is not the most
suited for the MDAnalysis community.

Implementing an ecosystem of downstream packages for more
sustainable progress

We believe that a sustainable alternative solution is for com-
munities such as MDAnalysis to encourage, educate, and foster
researchers in their efforts towards developing individual software.
We have developed a program of structured technical assistance
to help researchers implement best practices and publish their
code within a growing ecosystem of toolkits that we have called
MDAKits (MDAnalysis Toolkits). We have also developed a plat-
form called the "MDAKit registry" (https://mdakits.mdanalysis.
org/mdakits.html) where packages that meet certain standards are
advertised to the community. The MDAKit ecosystem builds on
the success of other community packages such as PLUMED’s
PLUMED-NEST [19], AiiDA’s plugin registry [20], or the napari-
hub [21] of plugins for the napari image viewer [22], all of which
list available tools that are known to work in their respective user
communities.

Our technical assistance begins with cookiecutter templates
and example repositories. Here we model best practices, promote
the use of helpful tools, e.g., for checking code coverage, and
reduce the work required to set up processes such as continuous
integration, versioned documentation, packaging and deployment.
Developers can also reach out to the MDAnalysis community for
feedback, technical assistance, or even make connections with new
co-developers and potential users. Decoupled from MDAnalysis’s
release cycle, developers are able to introduce new changes as
required, keeping complete control over their code-base. Join-
ing an MDAnalysis registry allows for frequent and streamlined
communication between MDAnalysis and downstream developers,
allowing developers to be efficiently forewarned about potential
breaking changes.

Although establishing such an ecosystem of MDAnalysis-
supported packages requires substantial investment from MDAnal-
ysis developers, this approach is nonetheless likely to be far more
sustainable than centralizing around a super-package. Offering
technical assistance to individual developers in implementing best
practices constitutes a large part of the effort; however, this level
has thus far proven much lower than the effort associated with
adding additional functionality to the core MDAnalysis library,
and we believe that it will continue to remain so. Furthermore,
as the ecosystem grows, we hope that an increasing portion of
the community will participate in taking care of the packages
and registry, and that the culture of following best practices and
publishing code will gain momentum in itself.

In part, we hope that this momentum will be driven by users
and user expectations. Users of the MDAnalysis ecosystem gain
huge benefit from the MDAKit registry. They are able to see new
software as it gets added, rather than having to comb through
literature or rely on developers advertising the code themselves.
They are also able to easily verify the current development status
of a package and whether it is being actively maintained and
passing tests with both released and in-development versions of
MDAnalysis. In the future, the registry could contain informa-
tion about the health of a given codebase, such as its activity

78 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 1: Workflow diagram of the MDAKit framework. Starting from the
creation of an MDAKit package, with the help of documentation and
the MDAKit cookiecutter, the package then goes through the process of
being added to the MDAKit registry, undergoing continuous validation
and review and eventually reaching the stage of publication.

status and if it optimally leverages high performance MDAnalysis
components (e.g. highly optimised PBC-aware distance routines).
Packages on the registry also come with easy-to-find instructions
on how to easily install and run a given package, significantly
lowering the technical barrier to use and experimentation. As
the maintenance remains the burden of the package owners,
unfortunately the risk remains that packages on the registry may
eventually become out-of-date, which is indeed one of the major
disadvantages of this approach. However, the registry significantly
increases the likelihood that packages will reach users who will
become sufficiently motivated to contribute or take over their
maintenance and development.

In the rest of this document we outline our expectations for
MDAKits in terms of best practices and how we implement their
registration and continuous validation.

The MDAKit framework

The MDAKit framework (Fig. 1) is designed to be a complete
workflow to help and incentivize developers to go from the initial
stages of package development all the way through to the long-
term maintenance of a mature codebase, while adhering to best
practices.

Main goals

As such, the main goals of the proposed MDAKit framework are:

1) To help as many packages as possible implement best
practices and develop user communities.

2) To ensure that members of the MDAnalysis community
can easily identify new packages of interest and know to
what extent they are suitable for production use.

3) To improve contacts between MDAnalysis core library
developers and those developing packages using MD-
Analysis.

4) To encourage participation from the community at all
steps of the process.

We wish to state three main points that the framework is not
designed for:

1) The MDAKit framework is not intended to restrict the
packages which can participate. It is our view that all
packages at any stage of their development are of value
to the community. As such, we aim for framework com-
ponents to be as non-blocking as possible.

2) It is not the intention of any parts of this framework to
take control or ownership of the packages that participate
within it. The original code developers retain full own-
ership, control, and responsibility for their packages and
may optionally participate in any part of this framework.

3) We also do not want to block future contributions to the
core library. If new code in MDAKits prove particularly
popular, and the MDAKit developers are amenable to
contributing these back into the core library, the MD-
Analysis team will work with them to integrate additional
functionality into MDAnalysis itself.

Overview of the framework

The MDAKit framework (Fig. 1) is a multi-step process. In the
first step of the MDAKit framework, developers create an initial
package which is intended to achieve a set purpose of their choice.
To help with this process, MDAnalysis provides a cookiecutter
template specifically for MDAKits [23], alongside documentation
on best practices and how to optimally use the MDAnalysis API.
An overview of what we consider to be best practices for the
contents of MDAKit packages is included in Section Defining
MDAKits: best practice package features. We note that at this
point MDAKits are not expected to fully adhere to best practices,
but should at least meet the minimum requirements defined in
Section Defining MDAKits: best practice package features before
moving to the next step along this process.

Once a package is suitably developed, code owners are en-
couraged to add the details of their code to the “MDAKit registry”
which advertises their package to the MDAnalysis community and
offers continual validation and review tools to help with pack-
age maintenance. Section The MDAKit registry contains more
information about the MDAKit registry, including the registration
process (Section Registering MDAKits). Briefly, the registration
process involves submitting a metadata file to the registry that
contains essential information about the MDAKit, such as where
the source code is provided, who the code authors are, and how to
install the MDAKit. The contents of this metadata file is reviewed
both by automatic code checks and the MDAnalysis developer
team before being added to the registry. We want to highlight that
this process does not include checks on scientific validity or code
health. In fact, none of the processes in this framework account
for the scientific validity of the MDAKits. While members of the

MDAKITS: A FRAMEWORK FOR FAIR-COMPLIANT MOLECULAR SIMULATION ANALYSIS 79

community are free to offer help, scientific or technical validity is
beyond the scope of what is feasible with the MDAnalysis registry.

Upon registration, the MDAKit is automatically advertised to
the MDAnalysis community (see Section Advertising MDAKits).
In the first instance this amounts to a set of auto-generated
pages that expose the details in the metadata file provided in the
registration step. Additional tags and badges are also included
that reflect the current status and health of the package. Examples
include:

• whether or not it is compatible with the latest versions of
MDAnalysis

• what percentage of the codebase is covered by unit tests
• what type or extent of documentation is provided
• what Python versions are currently supported.

This status information is provided as part of checks done
during the continual validation and review steps (see Sections
Continual validation and Continual review) of the framework.
These steps involve a mix of regularly scheduled automatic (e.g.,
linters and unit test execution) checks and more infrequent manual
(e.g., code reviews) processes. It is our intention that code health
analysis will help developers maintain and improve their codes,
as well as suitably warn potential users about issues they may
encounter when using a given codebase.

Where possible, the framework encourages a code review
process to be carried out by members of the MDAnalysis com-
munity. The aim here is to work with developers in identifying
potential areas of improvements for both MDAKits and the core
MDAnalysis library (see Sections Continual review and Feeding
back into the MDAnalysis library). We aim to tie this process
closely to the review processes of journals such as the Journal of
Open Source Software [7], which would help lower the barrier
towards and encourage an eventual publication (Section Towards
publication).

Defining MDAKits: best practice package features

Here we list requirements that we believe MDAKits should strive
to fulfill in order to meet best practices in Python package
usability and maintenance. To help with implementing these, a
cookiecutter is provided which offers a template for potential
MDAKits to follow [23]. We want to emphasize again that the aim
of the MDAKit project is to encourage best practices whilst also
minimizing barriers to sharing code where possible. Therefore,
only a minimal set of requirements listed here as required are
necessary for MDAKits to be included in the MDAKit registry.
Similarly, we do not mean to enforce the label of MDAKit on any
package; the process is fully optional and the code owners may
choose whether to associate themselves with it.

All MDAKits must implement the features on the list of
required features in order to become registered:

• Code in the package uses MDAnalysis (Code using MD-
Analysis (required)).

• Open source code is published under an OSI approved
license (Open source code under an OSI approved license
(required)).

• Code is versioned and provided in an accessible version-
controlled repository (Versioning and provision under an
accessible version-controlled repository (required)).

• Code authors and maintainers are clearly designated
(Designated code authors and maintainers (required)).

• Documentation is provided (Documentation (required)).
• Tests and continuous integration are present (Tests and

continuous integration (required)).

The following are highly recommended features:

• Code is installable as a standard package (Packaging).
• Information on bug reporting, user discussions, and com-

munity guidelines is made available (Bug reporting, user
discussions, and community guidelines).

Code using MDAnalysis (required): This is the base re-
quirement of all MDAKits. The intent of the MDAKit framework
is to support packages existing downstream from the MDAnalysis
core library. MDAKits should therefore contain code using MD-
Analysis components which are intended by the package authors
to address the MDAKit’s given purpose.

Open source code under an OSI approved license (re-
quired): The core aim of MDAKits is to encourage the open
sharing of codes to potential users within the MDAnalysis com-
munity and beyond. To achieve this, we require that codes under
this framework be released as open source. Here we define open
source as being under an Open Source Initiative (OSI) approved
license [24].

As of writing, the MDAnalysis library is currently licensed
under GPLv2+ [25]. Due to limitations with this license type, we
cannot currently recommend other licenses than GPLv2+ for codes
importing MDAnalysis. However, we hope to relicense to a less
restrictive license. In this event, MDAKits will be able to adopt a
wider range of OSI approved licenses.

Versioning and provision under an accessible version-
controlled repository (required): The ability to clearly identify
changes in a codebase is crucial to enabling reproducible science.
By referencing a specific release version, it is possible to trace
back any bug fixes or major changes which could lead to a differ-
ence in results obtained with a later version of the same codebase.
Whilst we encourage the use of Semantic Versioning ("semver")
[26], any PEP440 [27] compliant versioning specification would
be suitable for MDAKits.

Beyond versioning releases, it is also crucial to be able to
develop code in a sustainable and collaborative manner. The most
popular way of achieving this is through the use of version control
through Git [28]. We require all MDAKits to be held in a publicly
facing version controlled repository such as GitHub [29], GitLab
[30], or Bitbucket [31].

Designated code authors and maintainers (required): In
order for users to be able to contact the code owners and maintain-
ers, all MDAKits should clearly list their authors and a means of
contacting the persons responsible for maintaining the codebase.
To incentivize and recognize contributors throughout the life of a
project, we recommend the use of a version controlled “authors”
file which lists the authors to a codebase over time.

Documentation (required): Describing what a given code
does and how to use it is a key component of open sharing.
Ideally a package would include a complete description of the
entire codebase, including both API documentation and some kind
of user guide with worked examples on how the code could be
used in certain scenarios. Whilst this is recommended as best
practices for an MDAKit, we recognize that this is not always
feasible, especially in the early stages of development. Therefore,
the minimum requirement for MDAKits is to have a readme file
which details the key aspects of the MDAKit, such as what it is
intended to do, how to install it, and a basic usage example.

80 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

For best practices, we strongly recommend using docstrings
(see PEP 257 [32]) to document code components and using
a tool such as ReadTheDocs [33] to build, version and host
documentation in a user-friendly manner. We also recommend
using duecredit [34] to provide the correct attributions to a given
method if it has been published previously.

Tests and continuous integration (required): Testing is a
critical component to ensure that code behaves as intended. Not
only does it prevent erroneous coding, but it also assures users
that the code they rely on is working as intended. We require at
least a single regression test for major functionality to qualify for
the registry (i.e. if a toolkit implements a new analysis method,
at least one test that checks to see if the analysis code yields the
expected value on provided data; regression tests can often double
as example documentation).

Ideally one should do full unit testing of the contents of a
code, ensuring that not only a specific outcome is reached, but
also that each smaller component works. As part of best practices,
we highly recommend implementing tests using a framework such
as pytest [35] for executing tests and codecov [36] to capture
which lines are covered by the tests. We strongly encourage that a
minimum of at least 80% of the code lines be covered by tests.

To ensure that tests are run regularly, the recommended best
practice is to implement a continuous integration pipeline that per-
forms the tests every time new code is introduced. We encourage
the use of free pipelines such as GitHub Actions [37] to implement
continuous integration.

Packaging: Providing a standard means of installing code
as a package is important to ensure that other code can correctly
link to (i.e., import in the case of Python) and use its contents.
Whilst it can be easy to expect users to simply read a Python script,
look at its required dependencies, and install them manually, this
can quickly become unreasonable should the code grow beyond
a single file. Additionally, the lack of clearly defined versions,
including the intended Python versions, can lead to inoperable
code.

As best practices we heavily encourage the use of setuptools
[38] or an alternative such as poetry [39] for package installation.
We also encourage that packages be available on common package
repositories such as PyPi [40] and conda-forge [41]. The use
of such repositories and their respective package managers can
significantly lower the barrier to installing a package, enabling
new users to rapidly get started using it.

Bug reporting, user discussions, and community guide-
lines: To help maintain and grow the project, it is important to
specify where users can raise any issues they might have about
the project or simply ask questions about its operation. To achieve
this, we recommend at the very least adding documentation that
points users to an issue tracker.

Key to successfully building a user community is ensuring
that there are proper guidelines in place for how users will interact
with a project [42]. As best practices we recommend making a
code of conduct available that defines how users should interact
with developers and each other within a project. It is also advised
to provide information on how users can contribute to the project
as part of its documentation.

The MDAKit registry

As defined in Section The MDAKit framework, once MDAKits
are created, we encourage that they be added to the MDAKit

registry. The registry not only provides a platform to advertise
MDAKits to the MDAnalysis user community at the web page
https://mdakits.mdanalysis.org/, but also offers tools and work-
flows to help packages improve and continue to be maintained.
Here we describe the various processes that occur within the
registry. We note that we expect the exact details of how these
processes are implemented to evolve over time based on feedback
from MDAKit developers and other members of the MDAnalysis
community.

MDAKit registry contents

The main aim of the registry is to hold information about MDAK-
its. The contents of the registry therefore center around a list of
packages and the metadata associated with each MDAKit. This
metadata has the form of two files: one containing user-provided
information on the package contents (see Section Registering
MDAKits), and the other a set of mostly auto-generated details
indicating the code health of the package (see Section Advertising
MDAKits).

This metadata is used for two purposes: continuous integration
testing and documentation. Continuous testing, helper methods
and workflows are used to regularly install MDAKits and run their
test suite (if available) to check if they still work as intended.
Should the tests fail, package maintainers are automatically con-
tacted and failure information is recorded in the code health
metadata to inform users. For the registry documentation, the
metadata is used to provide user-facing information about the
various MDAKits in the registry, their contents, how to install
them, and their current status as highlighted by continuous inte-
gration tests. The registry also includes further information such
as user guides and tutorials on the MDAKit framework, helping
developers to implement their own MDAKits.

Registering MDAKits

A key feature of the MDAKit framework is the process of adding
MDAKits to the registry. As previously defined, our intent is to
offer a low barrier to entry and have packages be registered early
in their development cycles. This allows developers to benefit
from the MDAKit registry validation and review processes early
on, hopefully lowering the barrier to further improvements and
encouraging early user interactions and feedback.

From an MDAKit developer standpoint, the registration pro-
cess involves opening a pull request against the MDAKit registry
that adds a new YAML file with metadata about the project.
The metadata, as detailed in Fig. 2, contains information such
as the MDAKit description, source code location, installation
instructions, how to run tests, and where to find documentation.
Complete details about the metadata file specification are provided
in the MDAKit registry documentation.

After a pull request is opened, the MDAnalysis developers
review the contents of the submission based on the following
criteria:

1) If the required features for MDAKits are met (Section
Defining MDAKits: best practice package features), that
is:

1. Does the MDAKit contain code using MDAnaly-
sis?

2. Is the MDAKit license appropriate?
3. Is the MDAKit code offered through a suitable

version-controlled platform?

MDAKITS: A FRAMEWORK FOR FAIR-COMPLIANT MOLECULAR SIMULATION ANALYSIS 81

Fig. 2: YAML metadata file for an MDAKit entry of the propkatraj
package, stored as mdakits/propkatraj/metadata.yaml in
the registry repository.

4. Are the MDAKit authors and maintainers clearly
designated in the metadata file?

5. Is there at least minimal documentation in place
detailing the MDAKit and its functionality?

6. Are there at least minimal regression tests avail-
able within the MDAKit code?

2) If the metadata file passes linting and integration checks
3) That there are no potential breaches of community guide-

lines

Once the criteria are fulfilled the metadata is merged and
the MDAKit is considered registered. Updates to the MDAKit
metadata can be carried out at any time after registration by
opening pull requests to change the metadata file contents.

Advertising MDAKits

Registered MDAKits are automatically added to the registry’s
public facing documentation at https://mdakits.mdanalysis.org/
mdakits.html. This involves an indexable list of entries for all
registered MDAKits. Each entry displays available information
from the provided metadata, e.g., what the MDAKit does, any
relevant keywords, how to obtain the source code, how to install
the package, and where to find relevant documentation. Alongside
this information is also a set of badges which describe the current
health of the codebase, allowing users to rapidly identify which
packages are currently active, and their level of code maturity. This
includes information such as which MDAnalysis library versions

the package is compatible with. We further plan to add more
information, such as how much test coverage the package has,
and what type of MDAnalysis API extensions are provided (e.g.,
using base classes such as AnalysisBase or ReaderBase).

Information about MDAKits is continually updated, either
through automatic checks or manual additions provided by pack-
age owners updating the metadata files. We aim for the MDAKit
registry to be immutable (aside from special cases covered by
Section Raising issues, concerns, and paths to registry removal).
Therefore, should an MDAKit stop being maintained, it will not
be removed from the index but instead labeled as abandoned.

Continual validation

The MDAKit registry implements workflows to validate the code
health of registered packages. This mostly centers around a test
matrix that regularly runs to check if the latest MDAKit release
can be installed and if unit tests pass with both the latest release
of MDAnalysis and the development version. Should tests fail
regularly, an issue is automatically raised on the MDAKit registry
issue tracker contacting the package maintainers and letting them
know of the failure. The auto-generated code health metadata for
the MDAKit is also updated to reflect whether or not the tests are
currently failing or passing.

In the future we hope to expand these tests to include more
historical releases of the MDAKits and the MDAnalysis library,
checks for different architectures (non-x86), and operating sys-
tems. We may also expand the checks to consider the cross-
compatibility of MDAKits with each other, offering insights on
which packages can be safely used together.

Continual review

To help package growth and improvements, it is our goal for
the registry to become a platform that allows members of the
MDAnalysis community to offer feedback on MDAKits over
the lifetime of their inclusion on the registry. Unfortunately, as
MDAnalysis developers can only devote limited time towards the
registry, offering regularly scheduled comprehensive reviews of
packages is too large an undertaking to be practical.

Instead, we aim to use a system of badges and achieve-
ments to push packages towards gradual improvements. For ex-
ample, we may offer an achievement that encourages MDAK-
its to use high performance PBC-aware distance routines de-
fined in MDAnalysis.lib.distances instead of relying
on NumPy’s linalg method to find the distance between two
points. Once MDAKit owners believe that they have suitably
updated their code to fulfill the relevant badge criteria, they can
open a pull request highlighting these changes and have developers
review these smaller, more focused updates.

MDAKit users are also encouraged to provide feedback, re-
quest improvements, and report bug fixes. However, this should
happen outside the scope of the registry; instead, we ask users to
use the MDAKit’s own issue tracker for these.

Feeding back into the MDAnalysis library

The existence of the MDAKits framework does not preclude the
addition of new codes and methods to the core MDAnalysis
library. The MDAKit registry, and especially the ongoing review
process, provides a platform for MDAnalysis and MDAKit de-
velopers to interact and work together to identify common goals
and areas of improvements for both upstream and downstream
packages. In particular, MDAnalysis developers will work with

82 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

MDAKit developers to see if any popular MDAKit methods,
components or other means to improve core method performance
and lower the barrier to downstream package development can and
should be implemented back into the core MDAnalysis library.

Towards publication

We have laid out a number of best practices here that we encourage
MDAKits to fulfill. These essentially amount to the majority
of the contribution criteria for submissions to software-focused
journals such as the Journal Open Source Software (JOSS) [7]. In
order to incentivize developers, we heavily encourage MDAKits
to consider submission to a journal such as JOSS once they meet
the required levels of best practices. To aid in this process, the
MDAnalysis developers will in the first instance work with journal
editors at JOSS to create a streamlined process to submit MDAKits
as JOSS entries [43]. The details of this process are still under
development.

Raising issues, concerns, and paths to registry removal

If community members (users, developers or otherwise) have
concerns about an MDAKit, we primarily encourage them to raise
issues on the MDAKit’s own issue tracker. However, in situations
where the MDAKit maintainers cannot respond, or if the concern
relates to code of conduct breaches, MDAnalysis developers may
step in. If an MDAKit has systemic issues with its correctness, the
MDAKit may be given special annotations warning users about
the issues before using the code. We generally view the MDAKit
registry as a permanent record, and avoid removing packages
after registration even if they become fully obsolete. However,
we reserve the right to remove packages at our discretion in
specific cases, notably code of conduct breaches and violation of
the GitHub terms of service [44].

Long term registry maintenance and support

As with most MDAnalysis projects, long-term support for the
MDAKit framework and especially the registry is expected to
be carried out by contributors from the MDAnalysis community.
Members of the MDAnalysis core development team lead the
maintenance of the registry and are also responsible for passing
judgment on serious events such as code of conduct breaches.
In the long term, we hope that any gains in popularity of the
MDAKits framework are accompanied by an increase in commu-
nity involvement in reviews and other maintenance tasks.

Examples of MDAKits

The web frontend of the registry (Fig. 3) provides a searchable
database of packages. At the moment, seven MDAKits are regis-
tered that already showcase the breadth of specialized tools for
the analysis of biomolecular simulations. For example, mdacli
provides a commandline interface to analysis tools in MDAnalysis
itself. openmm-mdanalysis-reporter enhances the interoperabil-
ity with the popular OpenMM MD engine [45]. hole2-mdakit
interfaces with the legacy HOLE2 program for the analysis of
pores and tunnels in proteins such as ion channels [46], [47].
The lipyds package provides a suite of tools for the analysis of
biological membranes in simulations [11]. ProLIF quantitatively
analyzes the interactions between small molecules such as drugs
and biomolecules (protein, nucleic acids) [10].

Fig. 3: Web front end of the searchable MDAKit registry with
registered MDAKits. Badges indicate code health based on continuous
validation against the latest release and development version of the
MDAnalysis library.

Conclusions

We introduce the MDAnalysis MDAKits framework for scientific
software packages. This framework is designed to assist and
incentivize the creation of FAIR-compliant (findable, accessi-
ble, interoperable, and reusable) packages that use and extend
MDAnalysis. We describe the current state of scientific code,
which is typically published either in independent repositories of
varying quality, or as additions to a large, monolithic package. We
summarize the limitations of each approach that result in code that
falls short of FAIR principles, or may end up impractical to sustain
as a long-term strategy. We propose the MDAKits framework
as an alternative solution to support developers in creating new
packages, guiding them through the process of achieving best
practices and FAIR compliance.

In Section The MDAKit framework we lay out the aims
and structure of an MDAKit, summarizing the minimal and
optimal requirements that we think necessary to build sustainable,
reusable software. These include publishing code under a suitable
open-source license, the use of version control, comprehensive
documentation, thorough unit tests, and packaging the software
following modern best practices. In Section Defining MDAKits:
best practice package features we outline our vision and imple-
mentation of the MDAKit registry, a public facing repository
that promotes MDAKits to the MDAnalysis community. The
MDAKit registry offers regular checks and reviews in order to
help improve and maintain the listed MDAKits. We describe a
structured workflow that begins from the initial registration of
MDAKits and reaches as far as eventual publication in software-
focused journals such as JOSS.

This document is just the first step and broad guide to our
vision of developing a rich, diverse software ecosystem, and we
are still in the early stages of implementing MDAKits. While we
expect that we may need to revisit and refine our strategy to best
serve the needs of the community, we believe that the fundamental
framework outlined here will bring great benefit to the software
written and used by scientists, and thereby empower transparent

MDAKITS: A FRAMEWORK FOR FAIR-COMPLIANT MOLECULAR SIMULATION ANALYSIS 83

and reproducible research.

Acknowledgments

We gratefully acknowledge the 184 developers and countless
community members who have contributed to the MDAnalysis
project since its inception and NumFOCUS for its support as our
fiscal sponsor.

The work on the MDAKits project and this publication have
been made possible in part by CZI grant DAF2021-237663 and
grant DOI https://doi.org/10.37921/426590wiobus from the Chan
Zuckerberg Initiative DAF, an advised fund of Silicon Valley
Community Foundation (funder DOI 10.13039/100014989).

Jonathan Barnoud has received financial support from the
Agencia Estatal de Investigación (Spain) (REFERENCIA DEL
PROYECTO / AEI / CÓDIGO AXUDA), the Xunta de Gali-
cia - Consellería de Cultura, Educación e Universidade (Centro
de investigación de Galicia accreditation 2019-2022 ED431G-
2019/04 and Reference Competitive Group accreditation 2021-
2024, CÓDIGO AXUDA) and the European Union (European
Regional Development Fund - ERDF).

REFERENCES

[1] N. P. Chue Hong, D. S. Katz, M. Barker, A.-L. Lamprecht,
C. Martinez, F. E. Psomopoulos, J. Harrow, L. J. Castro,
M. Gruenpeter, P. A. Martinez, and T. Honeyman, “FAIR Principles
for Research Software (FAIR4RS Principles),” Research Data
Alliance, 2022, https://doi.org/10.15497/RDA00068. [Online]. Available:
https://zenodo.org/record/6623556#.YqCJTJNBwlw

[2] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton,
M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos,
P. E. Bourne, J. Bouwman, A. J. Brookes, T. Clark, M. Crosas, I. Dillo,
O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers, A. Gonzalez-Beltran,
A. J. G. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. C.
’t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E.
Martone, A. Mons, A. L. Packer, B. Persson, P. Rocca-Serra, M. Roos,
R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater,
G. Strawn, M. A. Swertz, M. Thompson, J. van der Lei, E. van
Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft,
J. Zhao, and B. Mons, “The FAIR Guiding Principles for scientific data
management and stewardship,” Scientific Data, vol. 3, no. 1, p. 160018,
Mar. 2016, https://doi.org/10.1038/sdata.2016.18. [Online]. Available:
https://www.nature.com/articles/sdata201618

[3] W. P. Walters, “Code Sharing in the Open Science Era,” Journal of
Chemical Information and Modeling, vol. 60, no. 10, pp. 4417–4420,
Oct. 2020, https://doi.org/10.1021/acs.jcim.0c01000. [Online]. Available:
https://doi.org/10.1021/acs.jcim.0c01000

[4] N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein,
“MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics
Simulations,” J Comp Chem, vol. 32, pp. 2319–2327, 2011,
https://doi.org/10.1002/jcc.21787. [Online]. Available: http://www.ncbi.
nlm.nih.gov/pmc/articles/PMC3144279/

[5] R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L.
Seyler, D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and
O. Beckstein, “MDAnalysis: A Python package for the rapid analysis
of molecular dynamics simulations.” in Proceedings of the 15th Python
in Science Conference, S. Benthall and S. Rostrup, Eds., Austin, TX,
2016, pp. 102–109, https://doi.org/10.25080/Majora-629e541a-00e.

[6] “Scopus,” https://www.scopus.com/. [Online]. Available: https://www.
scopus.com/

[7] “Journal of Open Source Software,” https://joss.theoj.org. [Online].
Available: https://joss.theoj.org

[8] I. Alibay, “IAlibay/MDRestraintsGenerator: MDRestraintsGenerator
0.1.0,” Mar. 2021, https://doi.org/10.5281/zenodo.4570556. [Online].
Available: https://zenodo.org/record/4570556

[9] D. B. Kokh, B. Doser, S. Richter, F. Ormersbach, X. Cheng, and
R. C. Wade, “A workflow for exploring ligand dissociation from
a macromolecule: Efficient random acceleration molecular dynamics
simulation and interaction fingerprint analysis of ligand trajectories,”
The Journal of Chemical Physics, vol. 153, no. 12, p. 125102,
Sep. 2020, https://doi.org/10.1063/5.0019088. [Online]. Available:
https://aip.scitation.org/doi/10.1063/5.0019088

[10] C. Bouysset and S. Fiorucci, “ProLIF: a library to encode molecular
interactions as fingerprints,” Journal of Cheminformatics, vol. 13, no. 1,
p. 72, Sep. 2021, https://doi.org/10.1186/s13321-021-00548-6. [Online].
Available: https://doi.org/10.1186/s13321-021-00548-6

[11] K. A. Wilson, L. Wang, Y. C. Lin, and M. L. O’Mara, “Investigating the
lipid fingerprint of SLC6 neurotransmitter transporters: a comparison of
dDAT, hDAT, hSERT, and GlyT2,” BBA Advances, vol. 1, p. 100010, Jan.
2021, https://doi.org/10.1016/j.bbadva.2021.100010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2667160321000090

[12] P. Smith and C. D. Lorenz, “LiPyphilic: A Python Toolkit
for the Analysis of Lipid Membrane Simulations,” Journal of
Chemical Theory and Computation, vol. 17, no. 9, pp. 5907–5919,
Sep. 2021, https://doi.org/10.1021/acs.jctc.1c00447. [Online]. Available:
https://doi.org/10.1021/acs.jctc.1c00447

[13] R. Gowers, M. Matta, and H. Nguyen, “kugupu/kugupu: v0.1.2,”
Feb. 2021, https://doi.org/10.5281/zenodo.4545322. [Online]. Available:
https://zenodo.org/record/4545322

[14] P. Loche, H. Jaeger, A. Schlaich, M. Becker, S. Gravelle,
P. Stärk, and S. Velpuri, “MAICoS,” Feb. 2022. [Online]. Available:
https://gitlab.com/maicos-devel/maicos

[15] R. Araya-Secchi, T. Perez-Acle, S.-g. Kang, T. Huynh, A. Bernardin,
Y. Escalona, J.-A. Garate, A. D. Martínez, I. E. García, J. C. Sáez, and
R. Zhou, “Characterization of a Novel Water Pocket Inside the Human
Cx26 Hemichannel Structure,” Biophysical Journal, vol. 107, no. 3,
pp. 599–612, Aug. 2014, https://doi.org/10.1016/j.bpj.2014.05.037.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0006349514006018

[16] M. Tiberti, E. Papaleo, T. Bengtsen, W. Boomsma, and
K. Lindorff-Larsen, “ENCORE: Software for Quantitative Ensemble
Comparison,” PLOS Computational Biology, vol. 11, no. 10,
p. e1004415, Oct. 2015, https://doi.org/10.1371/journal.pcbi.1004415.
[Online]. Available: https://journals.plos.org/ploscompbiol/article?id=10.
1371/journal.pcbi.1004415

[17] D. R. Roe and T. E. Cheatham, “PTRAJ and CPPTRAJ: Software
for Processing and Analysis of Molecular Dynamics Trajectory
Data,” Journal of Chemical Theory and Computation, vol. 9, no. 7,
pp. 3084–3095, Jul. 2013, https://doi.org/10.1021/ct400341p. [Online].
Available: https://doi.org/10.1021/ct400341p

[18] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess,
and E. Lindahl, “GROMACS: High performance molecular simulations
through multi-level parallelism from laptops to supercomputers,”
SoftwareX, vol. 1-2, pp. 19–25, Sep. 2015, https://doi.org/10.1016/j.
softx.2015.06.001. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2352711015000059

[19] M. Bonomi, G. Bussi, C. Camilloni, G. A. Tribello, P. Banáš,
A. Barducci, M. Bernetti, P. G. Bolhuis, S. Bottaro, D. Branduardi,
R. Capelli, P. Carloni, M. Ceriotti, A. Cesari, H. Chen, W. Chen,
F. Colizzi, S. De, M. De La Pierre, D. Donadio, V. Drobot, B. Ensing,
A. L. Ferguson, M. Filizola, J. S. Fraser, H. Fu, P. Gasparotto, F. L.
Gervasio, F. Giberti, A. Gil-Ley, T. Giorgino, G. T. Heller, G. M. Hocky,
M. Iannuzzi, M. Invernizzi, K. E. Jelfs, A. Jussupow, E. Kirilin, A. Laio,
V. Limongelli, K. Lindorff-Larsen, T. Löhr, F. Marinelli, L. Martin-
Samos, M. Masetti, R. Meyer, A. Michaelides, C. Molteni, T. Morishita,
M. Nava, C. Paissoni, E. Papaleo, M. Parrinello, J. Pfaendtner,
P. Piaggi, G. Piccini, A. Pietropaolo, F. Pietrucci, S. Pipolo, D. Provasi,
D. Quigley, P. Raiteri, S. Raniolo, J. Rydzewski, M. Salvalaglio, G. C.
Sosso, V. Spiwok, J. Šponer, D. W. H. Swenson, P. Tiwary, O. Valsson,
M. Vendruscolo, G. A. Voth, A. White, and The PLUMED consortium,
“Promoting transparency and reproducibility in enhanced molecular
simulations,” Nature Methods, vol. 16, no. 8, pp. 670–673, Aug.
2019, https://doi.org/10.1038/s41592-019-0506-8. [Online]. Available:
https://www.nature.com/articles/s41592-019-0506-8

[20] “AiiDA plugin registry,” https://aiidateam.github.io/aiida-registry/.
[Online]. Available: https://aiidateam.github.io/aiida-registry/

[21] Chan Zuckerberg Initiative, “napari hub,” https://www.napari-hub.
org/about, last accessed 2022-08-05. [Online]. Available: https:
//www.napari-hub.org/about

[22] N. Sofroniew, T. Lambert, K. Evans, J. Nunez-Iglesias, G. Bokota,
P. Winston, G. Peña-Castellanos, K. Yamauchi, M. Bussonnier,
D. Doncila Pop, A. Can Solak, Z. Liu, P. Wadhwa, A. Burt,
G. Buckley, A. Sweet, L. Migas, V. Hilsenstein, L. Gaifas,
J. Bragantini, J. Rodríguez-Guerra, H. Muñoz, J. Freeman, P. Boone,
A. Lowe, C. Gohlke, L. Royer, A. PIERRÉ, H. Har-Gil, and
A. McGovern, “napari: a multi-dimensional image viewer for Python,”
May 2022, https://doi.org/10.5281/zenodo.3555620. [Online]. Available:
https://doi.org/10.5281/zenodo.3555620

[23] L. Wang, I. Alibay, and F. Naughton, “Cookiecutter for MDAnalysis-

84 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

based packages,” https://github.com/MDAnalysis/cookiecutter-mdakit.
[Online]. Available: https://github.com/MDAnalysis/cookiecutter-mdakit

[24] Open Source Initiative, “Licenses and Standards,”
https://opensource.org/licenses, last accessed 2022-08-05. [Online].
Available: https://opensource.org/licenses

[25] “GNU General Public License v2.0 - GNU Project - Free Software
Foundation,” https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html,
last accessed 2022-08-04. [Online]. Available: https://www.gnu.org/
licenses/old-licenses/gpl-2.0.en.html

[26] T. Preston-Werner, “Semantic Versioning 2.0.0,” https://semver.org/, last
accessed 2022-08-04. [Online]. Available: https://semver.org/

[27] “PEP 257 – Docstring Conventions | peps.python.org,” https://peps.
python.org/pep-0257/. [Online]. Available: https://peps.python.org/pep-
0257/

[28] “Git,” https://git-scm.com/, last accessed 2022-08-04. [Online].
Available: https://git-scm.com/

[29] GitHub, Inc, “GitHub,” https://github.com, last accessed 2022-08-04.
[Online]. Available: https://github.com

[30] GitLab Inc., “GitLab,” https://about.gitlab.com/, last accessed 2022-08-
04. [Online]. Available: https://about.gitlab.com/

[31] Atlassian, “Bitbucket,” https://bitbucket.org/product, last accessed
2022-08-04. [Online]. Available: https://bitbucket.org/product

[32] “PEP 440 – Version Identification and Dependency Specification
| peps.python.org,” https://peps.python.org/pep-0440/, last accessed
2022-08-04. [Online]. Available: https://peps.python.org/pep-0440/

[33] Read the Docs, Inc, “Read the Docs,” https://readthedocs.org/, 2022.
[Online]. Available: https://readthedocs.org/

[34] Y. O. Halchenko, M. Visconti di Oleggio Castello, M. Hanke,
J. Gors, M. Szczepanik, C. Barnes, E. Irvine, P. R. Raamana,
C. J. Markiewicz, J. Wilk, D. Volgyes, K. Leinweber, L. Estève,
O. Beckstein, and O. F. Gulban, “duecredit/duecredit: 0.9.1,”
Apr. 2021, https://doi.org/10.5281/zenodo.4685131. [Online]. Available:
https://zenodo.org/record/4685131

[35] H. Krekel, B. Oliveira, R. Pfannschmidt, F. Bruynooghe, B. Laugher,
and F. Bruhin, “pytest-dev/pytest,” https://github.com/pytest-dev/pytest,
2004. [Online]. Available: https://github.com/pytest-dev/pytest

[36] Codecov LLC, “Codecov,” https://about.codecov.io/, 2022. [Online].
Available: https://about.codecov.io/

[37] GitHub, Inc, “GitHub Terms of Service,” https://docs.github.com/en/site-
policy/github-terms/github-terms-of-service, last accessed 2022-08-
04. [Online]. Available: https://docs.github.com/en/site-policy/github-
terms/github-terms-of-service

[38] “pypa/setuptools,” https://github.com/pypa/setuptools, Aug. 2022,
original-date: 2016-03-29T14:02:33Z. [Online]. Available: https:
//github.com/pypa/setuptools

[39] “Poetry - Python dependency management and packaging made easy,”
https://python-poetry.org/. [Online]. Available: https://python-poetry.org/

[40] “PyPI · The Python Package Index,” https://pypi.org/. [Online].
Available: https://pypi.org/

[41] Conda-Forge Community, “The conda-forge Project: Community-
based Software Distribution Built on the conda Package Format
and Ecosystem,” Zenodo, Jul. 2015, https://doi.org/10.5281/ZENODO.
4774216. [Online]. Available: https://zenodo.org/record/4774216

[42] A. Grossfield, “How to be a Good Member of a Scientific Software
Community [Article v1.0],” Living Journal of Computational Molecular
Science, vol. 3, no. 1, pp. 1473–1473, 2021, https://doi.org/10.
33011/livecoms.3.1.1473. [Online]. Available: https://livecomsjournal.
org/index.php/livecoms/article/view/v3i1e1473

[43] “Submitting a paper to JOSS,” https://joss.readthedocs.io/en/latest/
submitting.html, 2018, last accessed 2022-08-03. [Online]. Available:
https://joss.readthedocs.io/en/latest/submitting.html

[44] GitHub, Inc, “GitHub Actions,” https://github.com/features/actions,
2022. [Online]. Available: https://github.com/features/actions

[45] P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao, K. A.
Beauchamp, L.-P. Wang, A. C. Simmonett, M. P. Harrigan, C. D. Stern,
R. P. Wiewiora, B. R. Brooks, and V. S. Pande, “OpenMM 7: Rapid
development of high performance algorithms for molecular dynamics,”
PLOS Computational Biology, vol. 13, no. 7, pp. 1–17, 07 2017, https:
//doi.org/10.1371/journal.pcbi.1005659.

[46] O. S. Smart, J. G. Neduvelil, X. Wang, B. A. Wallace, and M. S. P.
Sansom, “HOLE: A program for the analysis of the pore dimensions
of ion channel structural models,” J Molecular Graphics, vol. 14,
pp. 354–360, 1996, https://doi.org/10.1016/s0263-7855(97)00009-x.
[Online]. Available: http://www.holeprogram.org/

[47] L. S. Stelzl, P. W. Fowler, M. S. P. Sansom, and O. Beckstein,
“Flexible gates generate occluded intermediates in the transport
cycle of LacY,” J Mol Biol, vol. 426, pp. 735–751, 2014,

https://doi.org/10.1016/j.jmb.2013.10.024. [Online]. Available: http:
//doi.org/10.1016/j.jmb.2013.10.024

PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023) 85

The Pandata Scalable Open-Source Analysis Stack

James A. Bednar‡∗, Martin Durant‡

✦

Abstract—As the scale of scientific data analysis continues to grow, traditional
domain-specific tools often struggle with data of increasing size and complexity.
These tools also face sustainability challenges due to a relatively narrow user
base, a limited pool of contributors, and constrained funding sources. We in-
troduce the Pandata open-source software stack as a solution, emphasizing
the use of domain-independent tools at critical stages of the data life cycle,
without compromising the depth of domain-specific analyses. This set of interop-
erable and compositional tools, including Dask, Xarray, Numba, hvPlot, Panel,
and Jupyter, provides a versatile and sustainable model for data analysis and
scientific computation. Collectively, the Pandata stack covers the landscape of
data access, distributed computation, and interactive visualization across any
domain or scale. See github.com/panstacks/pandata to get started using this
stack or to help contribute to it.

Index Terms—distributed computing, data visualization, workflows

Introduction

Modern science, engineering, and analysis workflows rely on
computational tools for data processing, such as the foundational
NumPy [1], Pandas [2], Matplotlib [3], and Jupyter [4] libraries
for Python. Over the past few decades, different research areas
and communities have built their own “stacks”, i.e. layered sets of
software tools that are combined to solve problems in a particular
research area (see [5] for examples for big data, and [6] for
the idea of a layered stack). For instance, a Python geoscience
stack might combine GDAL and Fiona for geoscience file-format
access, Xarray [7] (itself built on NumPy) for multidimensional
array processing, cartopy (built on PROJ and NumPy) for handling
earth coordinates, Matplotlib for plotting, and Jupyter for user
interaction and code execution. A Python financial analysis stack
might combine Pandas for file reading and columnar data manip-
ulation, Matplotlib for plotting, TA-Lib for financial mathematics
functions, and Jupyter for user interaction and code execution.

Many of these stacks’ components date back decades before
Python became popular, capturing important functionality but
inheriting technical complexity and limitations that may no longer
apply. For instance, domain-specific visualization and user inter-
face (UI) tools are often tied to a local desktop operating system
and graphical user interface (GUI), limiting the stack to working
with data and compute resources available locally, and making
it difficult to share work with colleagues at other sites or using

* Corresponding author: jbednar@anaconda.com
‡ Anaconda, Inc.

Copyright © 2023 James A. Bednar et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

other operating systems. Older tools are often either inherently
single threaded, with no support for distributed computation, or
specifically focused on supercomputing systems rather than flexi-
bly supporting the current diversity of computing platforms (such
as GPUs and cloud computing). Software is of course infinitely
malleable, and so any such limitations could be addressed in
principle, but in practice each domain-specific tool has a relatively
narrow collection of users, contributors, and funding sources for
that domain, limiting the scope of such development.

Could there be a better way? Yes! Today’s Python ecosystem
includes general data-processing tools that address tasks across
all research areas, domains, and industries, with flexible tools
for storing, reading, processing, plotting, analyzing, modeling,
and exploring data of any kind. This paper introduces a specific
collection of such tools called the Pandata stack. Like the “modern
data stack” [8], [9], Pandata consists of tools that are engineered
and tested to work well with each other to process very large
datasets using distributed computation, with independently main-
tained components adding up to complete, end-to-end solutions
for important workflows. Unlike the “modern data stack”, the
Pandata stack consists only of open-source tools and is also
equally usable for small problems that fit onto a single laptop
or local workstation, making it a solid basis for addressing data-
centric problems of any size for any domain.

The Pandata stack’s Python libraries are:

• Domain independent: Maintained, used, and tested by
people from many different backgrounds

• Efficient: Run at machine-code speeds using vectorized
data and compiled code

• Scalable: Run on anything from a single-core laptop to a
thousand-node cluster

• Cloud friendly: Fully usable for local or remote compute
using data on any file storage system

• Multi-architecture: Run on Mac/Windows/Linux sys-
tems, using CPUs or GPUs

• Scriptable: Fully support batch mode for parameter
searches and unattended operation

• Compositional: Select which tools you need and put them
together to solve your problem

• Visualizable: Support rendering even the largest datasets
without conversion or approximation

• Interactive: Support fully interactive exploration, not just
rendering static images or text files

• Shareable: Deployable as web apps for use by anyone
anywhere

• OSS: Free, open, and ready for research or commercial
use, without restrictive licensing

86 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 1: Pandata: the scalable open-source analysis stack.

Figure 1 illustrates the Pandata stack, which includes the
Parquet and Zarr file formats along with the fsspec, Kerchunk,
Pandas, Xarray, RAPIDS, Dask, Numba, hvPlot, Panel, and
Jupyter libraries. The tools are grouped into categories that will
be described fully in later sections. Tools shown with a gray
background are not part of Pandata itself but are illustrative of
domain-specific code that builds on the Pandata stack to complete
a solution for problems in a particular domain. We argue that
Pandata libraries taken together as a group are a meaningful and
well-tested base for general-purpose scientific computation across
nearly all research areas and scientific domains. We will first
look at the features that governed the selection of these particular
libraries and that in many cases drive development priorities in the
library itself. We will then describe the specific libraries involved
and how they can be put together by users to solve computing
tasks and how tool authors can build on them to support scientific
computing in their own discipline.

Design considerations

Library authors have to choose between different designs and
alternative technologies when deciding which features are imple-
mented and how they are built. Here we will unpack each of the
above considerations driving the Pandata collection of libraries
and examine how these libraries implement those principles.

Domain independent

Pandata tools are all built to be used in any scientific domain,
without making design choices that constrain them to a narrow
subfield or topic. At first it may seem that having all your tools
be written specifically for your particular research area would be
ideal, but we argue that it is neither desirable nor feasible to
draw strict boundaries between active scientific research areas.
Should you have to switch to an entirely different stack whenever

you do collaborative work? Or if you want to do something
novel, differing slightly from assumptions previously made in your
research area? A deep, difficult-to-change stack that encodes a
fixed and unnecessarily brittle model of your domain will make
scientific progress difficult to achieve. Of course, not every aspect
of research crosses multiple domains or challenges core assump-
tions, but using Pandata tools ensures that doing so will come at
relatively little cost, because the same tools are valid across a very
wide range of fields. Pandata tools can also draw from expertise,
effort, and funding across all of science and analysis, rather than
from a single narrow area.

Efficient

Because Python itself is a relatively slow, interpreted language,
native Python code is often suitable only for smaller problems,
limiting the audience for any tool that is built purely in Python
with Python dependencies. To make efficient use of the compu-
tational resources available, libraries in the Pandata stack either
wrap fast code written in compiled languages like Fortran and
C, or they use a Python compiler like Numba [10] or Cython
[11] to compile Python syntax into machine code that runs as fast
as compiled C or Rust or Fortran. Custom domain-specific code
building on Pandata can easily use a compiler like Numba as well,
so that the overall workflows and pipelines are not limited by the
speed of Python.

Scalable

Even compiled code is not sufficient to address the largest prob-
lems, which require more memory than is available on a single
machine, or require long computation that is feasible only when
split across many processors working simultaneously. To cover
all these cases, Pandata tools support optional distributed compu-
tation using Dask [12] on hundreds or thousands of processors,

THE PANDATA SCALABLE OPEN-SOURCE ANALYSIS STACK 87

while also fully supporting a single laptop or workstation. That
way there is no need to switch to a different stack when you hit a
problem larger than your machine, or conversely when you want to
work on small problems that do not need extensive infrastructure.
Supporting distributed computation efficiently requires tooling
support at every level, starting with chunked binary file formats
like Parquet and Zarr that let each processor access data indepen-
dently, and culminating in visualization tools like Datashader that
can render plots in separate chunks on each processor and combine
them for the final display. Note that Pandata includes libraries like
Pandas and Matplotlib that are not necessarily scalable on their
own, but become scalable when combined with other Pandata
tools (with e.g. Dask providing scalable DataFrames built on
Pandas DataFrames, and Matplotlib being scalable when used with
Datashader).

Cloud friendly

The enormous datasets now available in many research areas are
typically hosted in a remote data center and can be prohibitively
expensive (in time and money) to download locally. If you only
need a small part of the data, Pandata tools like Pandas support
efficient remote access to the relevant chunks of each file without
having to download it all locally first, using fsspec to provide
uniform filesystem-like access for data on local disk, cloud stor-
age, web servers, and many other locations. If the total size of
the chunks that you need to access is still too high to download
locally, Pandata tools also support remote computation, with the
processing done on a remote cloud-computing server with a high-
bandwidth connection to the data server and a user interface using
a web browser whether compute is local or remote. A typical
scalable cloud-computing configuration for Pandata would be to
have a remote JupyterHub system with Dask installed running on
the cloud server close to the data. Users then contact the remote
system from their local browser, initiating a remote session for
computation and data access but with interactivity on the local
machine using web-based controls and visuals. Using Datashader
on the remote system provides server-side rendering so that only
a rendered image of the data ever need be transferred across low-
bandwidth connections, providing interactive local visualization
without having to transfer large datasets. Pandata tools thus sup-
port either efficient access to remote datasets for local computa-
tion, or efficient fully remote computing with a local user interface,
to make good use of cloud storage or compute resources. Note
that “cloud friendly” is not the same as the term “cloud native”
as used in the Modern Data Stack; Pandata tools fully support
cloud usage but are equally at home on a local machine, and have
no requirement for cloud resources, containers, microservices, or
other architectures typical of cloud-native approaches.

Multi-architecture

Because researchers typically use Windows or Mac systems lo-
cally, while cloud servers typically run Linux, research code needs
to be independent of the operating system for it to be equally
well supported on local and remote systems. A software stack tied
to a particular OS not only shuts out users who are not on that
OS, it often implicitly favors either cloud or local usage for that
stack, further reducing the community size and range of problems
that can be addressed by a particular stack. Pandata tools are all
either fully OS independent or support Linux (Intel or ARM),
Mac (Intel or M1/M2), and Windows. Similarly, some problems
can be addressed orders of magnitude faster on a general-purpose

graphics processing unit (GPU) than on a conventional CPU, yet
many researchers do not have access to GPUs or are working on
problems unsuited for them, making it essential that a general-
purpose software stack support both GPU and CPU usage as
appropriate. The Pandata stack includes GPU-based equivalents
for much of the functionality available on CPUs.

Scriptable

Many of the scientific tools that are common in particular domains
(especially commercial tools provided alongside hardware used
in that domain) require a GUI. GUI tools can be convenient for
exploration, but without an accompanying non-GUI interface it
is difficult to capture a reproducible set of steps for publication
and dissemination. Additionally, GUIs often funnel users into
a few well-supported operations without providing the level of
configurability and customization needed to execute less common
workflows, long-running jobs, or large parameter searches. Pan-
data tools that offer a GUI interface never require a local desktop,
graphical display, or live interaction, making them fully suitable
as a basis for reproducible, large-scale, and long-running research.

Compositional

When approaching a particular task, a researcher can either choose
a monolithic tool that addresses all aspects of the task, or they
can combine lower-level tools that together accomplish the task.
Monolithic tools are attractive when they fully cover a specific use
case, but given the dynamic nature of research, it is unreasonable
to expect a monolithic tool to cover all the requirements of a
particular research area, let alone across different areas of research.
Accordingly, Pandata tools are all compositional, intended for
independent use or in combination to solve specific problems.
Where appropriate, each library has been adapted to work well
with components from the other Pandata libraries, allowing a
researcher to mix and match and combine projects in novel
ways to reach their goals. Pandata projects also take part in
larger efforts to improve compositionality and interoperability like
numpy.org/neps and scientific-python.org/specs
and by implementing existing APIs that allow a Dask dataframe
to be a drop-in replacement for a Pandas dataframe, let hvPlot be
a drop-in replacement for Pandas plotting, or allow a Panel app
to display ipywidgets (or vice versa). Of course, compositional
approaches can take more initial user effort and expertise than an
out-of-the box monolithic approach. To address well-established
complex tasks, a domain-specific monolithic tool can be built out
of Pandata tools, while other tasks that need to remain flexible can
be built compositionally as needed for that task.

Visualizable

For computing tasks that operate in the background without any
visual output, it is easy to ensure that they are scriptable and cloud
friendly. However, doing good science requires understanding
each of the processing steps in complete detail, and if there are
any unobservable black boxes in your workflows, that is surely
where bugs will hide. To make sure that the work is being done
correctly, it is crucial to be able to represent each of the computing
steps involved in a way that a human can easily grasp what
is happening, with a minimum of extra effort that discourages
exploration. Often, a remote computing job will export data that is
then subsampled and downloaded locally for analysis, but any step
that adds friction and covers up the raw data makes it more likely
that important issues and insights will be missed. Accordingly,

88 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

the HoloViz tools included in the Pandata stack are designed to
make the full set of data available at any point in the computation,
by supporting efficient in-place interactive visualization of even
distributed or GPU-based data of any size using Datashader and
hvPlot, assembled from separately computed chunks for display
on any device.

Interactive

Supporting unattended batch-mode computation is important for
doing comprehensive parameter evaluation, but batch runs tend
to keep research focused on specific well-trodden paths, changing
only a few options at any one time and thus limiting the search
space that gets explored for a model or dataset. Using only a batch
approach makes it easy to miss important opportunities or to fail
to understand major limitations, by simply re-running the same
code paths “blind” every time. Pandata tools like hvPlot and Panel
running in Jupyter make it easy even for remote cloud workflows
to have interactive widgets and controls in a web browser, to more
easily explore parameter combinations with immediate feedback
to help understand how the system behaves.

Shareable

Creating easy interactive visualizations is great, but if they
are limited to your own desktop or installation, the impact
of your ideas and approaches will be limited. With enough
HTML/JavaScript/CSS web-technology experience, any compu-
tation can be wrapped up as an interactive website, but many
scientists lack front-end web-development skills. The Panel tool
in Pandata makes it simple to convert any Jupyter notebook into
a web app that can be shared with collaborators or the public to
disseminate the results of a project. Panel apps can be shared as
static JavaScript-based HTML files (for small datasets), WASM-
based HTML files (running Python in the browser), or via a live
Python server (for the largest computations and datasets). (Also
see “Environments and reproducibility” below for other aspects of
ensuring that your work is shareable.)

OSS

For software to be fully accessible across years, labs, collabora-
tors, and research problems it is crucial that there be no licensing
restrictions that prevent it from being used across the entire disci-
pline and on all relevant hardware and software platforms. Pandata
tools are all permissively licensed so that they are freely usable in
academia, industry, government, and by private individuals, easily
scaled up to the largest problems or in new contexts without having
to obtain permission or pay additional fees. Beyond the licensing,
it is also crucial that the underlying source code is accessible, so
that every processing step involved can be examined and justified.
That way, if the research hits any fundamental limitations, it is
always possible (though not always easy!) to extend or adapt the
software for the new requirements. The OSS developer community
is also typically accessible through issues and online forums, so
that even though the software is not officially “supported” in the
sense of commercial software, it is often easier to discuss details
of the software’s internal operations with the maintainers than with
commercial software where developers are inaccessible.

The Pandata stack

The above considerations determined which libraries are consid-
ered to be a part of the Pandata stack. As illustrated in Figure 1,

the stack consists of options for each of the major steps in a data-
processing task. A finance task might involve files from efficient
Parquet-format columnar data storage, accessed from Amazon S3
storage using fsspec file readers, into a Pandas data API, for
data processing using Pandas calls plus some custom Numba-
optimized analysis code, visualized using an interactive Bokeh
plot returned from hvPlot, using Jupyter as a UI (figure 2). When
moving to larger financial datasets or more complex analysis and
processing, a Dask dataframe can be substituted for the Pandas
dataframe, while keeping the rest of the tools the same, thus
supporting distributed computation without requiring it. Similarly,
a geoscience task typical for the Pangeo community might involve
files stored in cloud-friendly Zarr multidimensional array storage,
accessed using fsspec based on a specification in an Intake data
catalog, into a lazy Dask-based xarray multidimensional data
structure, with raster processing done by the Xarray-spatial library
(not part of Pandata since it is domain specific, but built on
the Pandata stack and using otherwise similar principles), with
visualization using xarray’s interface to Matplotlib for Dask data
structures, and with computation and a UI provided by JupyterHub
running in the cloud and providing access to Jupyter (figure 3).

As you can see from these examples, any particular problem
solved using the Pandata stack can involve completely different
underlying libraries, and because each of the Pandata libraries are
designed to interoperate freely, users can select the appropriate
library or libraries for their needs at each stage. We’ll now
look into each of the stages in a bit more detail to explain the
options available to a researcher using Pandata tools to solve their
particular research problems.

Data storage

Pandata tools are designed for working with data, whether it
comes from a file on disk, a hardware device, remote cloud
storage, or a database query. Many existing scientific file
formats were designed before cloud computing and are terrible
choices for efficient distributed computation. The ubiquitous
comma-separated-value CSV columnar file format, for instance,
can be orders of magnitude larger and slower than Parquet
(github.com/holoviz/datashader/issues/129).
CSV and other legacy formats also often require serial access
to the whole file to reach any value in it, thereby preventing
parallel reads by processors working on different parts of the
task. Even relatively efficient older binary formats are typically
not “chunked” in a way that makes it simple to access the data
needed by any particular run or any particular processor in a large
compute job.

Pandata tools can provide very efficient, scalable, end-to-
end computations only if the data itself is stored in an effi-
cient, chunk-addressable way. Parquet is a suitable well-supported
chunked columnar format (for data arranged in rows consisting
of differently typed columns), while zarr is a suitable chunked
multidimensional array format (for n-dimensional arrays of typed
values indexed by row, column, and other dimensions). DuckDB
is a relatively new addition to Pandata that makes an underlying
file type like CSV or Parquet act like a queryable database, which
can be very efficient when accessing small parts or aggregations
of large datasets, so other Pandata tools are starting to add support
for working with DuckDB as well.

What if you need to access very large collections of data not
already stored in an efficient chunked format like Parquet or Zarr?
Thanks to kerchunk (see “Data access” below), it is possible to

THE PANDATA SCALABLE OPEN-SOURCE ANALYSIS STACK 89

Fig. 2: Pandata stack applied to a finance problem

scan such files to record the locations of each chunk of data stored
in them, and from then on act as if the underlying file is in Zarr
(or potentially Parquet) format. In this way, the Pandata stack
can support access to a wide array of legacy binary file formats
such as HDF/NetCDF, GRIB, FITS, and GeoTIFF, which with the
appropriate Kerchunk driver can now support efficient scalable
computation without servers having to maintain multiple copies
of the underlying data.

Data access

Once you have data in a suitable supported file format, it needs
to be located somewhere that your Python code can access it. The
nearly invisible but powerful fsspec library provides flexible and
efficient access to files wherever they might be located, whether
that is on your local hard drive, on an FTP file server, on cloud
storage like S3, on a website, in a zip file, or in any number of
other possible locations. fsspec is now integrated into Pandas and
Xarray, transparently providing access from within those libraries
(below). As mentioned above, Kerchunk can optionally be used for
data access to make an older file format be efficiently addressable
for Pandata usage, once there are indexing plugins available for
that particular (usually domain-specific) format. Kerchunk and
fsspec are also supported by the Intake data-catalog system, which
allows a research group or community to capture metadata about
collections of datasets so that they can be accessed conveniently
without having research code tied to the location or file type of the
underlying data.

Data API

At a Python level, most users actually start here, by selecting
an appropriate data application programming interface (API) for
their work. Python libraries provide many possible APIs that are
suitable for different types of data. Pandas (for columnar data) and
Xarray (for multidimensional data) are both supported throughout
the Pandata stack, with or without Dask (see below) to handle
distributed and out-of-core computation. Pandata’s other options
provide access to other data structures (ragged arrays, for Awk-
ward, and graphs/networks, for GraphBLAS) and/or other com-
putational hardware (RAPIDS and CuPy for GPU architectures),
with extensive (but not yet fully complete) support throughout
the Pandata stack. Users or domain-specific library authors will
typically pick one or more of these data APIs to cover the types
of data being used in their domain or their specific problem, and
then provide a path to the data to access it using the underlying
data-access tools using the data formats and storage available.

Data processing

Once the data is accessible in Python using a data API, the
actual computation can begin. Data processing covers many pos-
sible computations, but we will consider three main categories:

(1) domain-general operations provided by the data API library
directly, (2) small custom-compiled loops for arbitrary domain-
specific computations at scale, and (3) separate domain-specific
or other custom libraries. (1) First, each data API provides a
wide variety of inbuilt data-processing routines for selecting,
aggregating, and summarizing the data being accessed. For many
data-processing workflows, such transformations are sufficient to
complete the task, when combined with the rest of the Pandata
stack, and using them preserves all the Pangeo qualities like
scalability and easy visualization. (2) Second, sometimes the
domain-specific code can be isolated to a few small loops with
explicit numeric or string computations, now that Pandata covers
so many of the other tasks. In such cases, these loops can easily
be implemented in a notebook or script using the general-purpose
Numba library along with Dask for optional scalability, again
providing all of the benefits of Pandata without significant effort.

(3) The third category of computations typically requires
leaving the Pandata stack, bringing in domain-specific libraries
from the Python ecosystem that focus on the particular models
and computations needed in a given domain. In some cases, you
can find domain-specific libraries already designed to work well
with the Pandata tools like Dask and Xarray, e.g. xarray-spatial
(geoscience), dask-image (image processing), dask-ml (machine
learning), icepyx (satellite data), panel-chemistry (chemistry),
xdart (x-ray analysis), asari (metabolomics), and megspikes (brain
imaging). Using a Pandata-compatible domain-specific tool helps
ensure that all of the above properties like being scalable, visual-
izable, and cloud-friendly are maintained. However, in other cases
there will be libraries available, but using them will introduce
a bottleneck: not being scalable with Dask, not being compiled
for efficient operation, not being vectorized to work with large
datasets, being tied to a local GUI or local filesystem access, etc.
In those cases, you can either try to ensure that the bottleneck only
applies to infrequent usage patterns, or you can invest what may
require substantial effort to rewrite the domain-specific libraries
to work well with a Pandata approach. Rebuilding a particular
domain’s tools to be fully integrated with the Pandata stack takes
time, requiring ambitious projects like building your simulator or
analysis tool on top of Dask and Xarray or Pandas and ensuring
that fully visualizable distributed objects are available for all
stages of a workflow. Still, the focus of such efforts can be solely
on the aspects specific to a particular research domain, and they
can simply inherit all the capabilities of the Pandata stack (now
and into the future) for what the Pandata stack covers.

Visualization

Each step in the complete data-processing pipeline pipeline from
raw data to results requires human understanding and validation,
often most effectively achieved using visualization tools. Most

90 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 3: Pandata stack applied to a geoscience problem

Python visualization tools (see pyviz.org for a complete list)
have limitations that prevent them from being suitable for the Pan-
data stack. Many of them are limited to relatively small amounts of
data, lack support for the various Pandata data APIs, lack support
for multidimensional arrays or unstructured grids for the fields that
need those, or are tied to a desktop OS or GUI. All Pandata tools
support basic static-image visualization using Matplotlib, and
most also support fully interactive Bokeh- or Plotly-based plotting
via hvPlot [13]. hvPlot supports the native .plot visualization
calls provided by the data APIs, while adding support for efficient
server-side distributed rendering using Datashader so that even the
largest datasets can be visualized without subsampling or copying
the data. Datashader can also be used by itself as a general-purpose
scalable server-side rasterizer, turning data of any supported type
(point, line, region, polygon, raster, etc.) into a regular grid of
values suitable for further processing and combination with other
data.

User Interface (UI)

The Jupyter Notebook is a now-ubiquitous domain-independent
user interface for working with Python code, and all Pandata tools
are fully usable from within Jupyter. Beyond just executing cells
full of code, the Panel library in Pandata makes it simple to add
interactivity to each Jupyter cell, using a widget to provide control
over workflow parameters, and allowing tabular or graphical
outputs to be arranged into dashboards or small applications that
fit into a cell. Panel also lets users designate certain cells as
being “servable” if the notebook code is deployed as a separate,
standalone application with a UI independent of Jupyter. Panel
thus supports the “interactive” and “shareable” qualities of the
Pandata stack, ensuring that your work can have impact on others.

Jupyter focuses on a single researcher or user, but many
Pandata-based projects involve collaborations among multiple
team members and multiple institutions. Such projects typically
use JupyterHub to provide a shared computing environment with
the Pandata tools already installed and ready to run. Pandata-
based projects often use Nebari (a declarative specification for
infrastructure) to simplify configuring JupyterHub, Dask, and
associated authentication on cloud servers.

Environments and reproducibility

A final category of tools underlying all the rest shown in figure
1 centers on how these libraries are packaged and put together
into Python environments for solving any particular problem.
Many different options are available for Python package and
environment management, but Pandata tools are typically used
with the conda package and environment manager, because it
tracks binary dependencies between libraries, including the under-
lying C and Fortran code that is involved in the domain-specific

libraries needed for any particular Pandata workflow. For a specific
workflow, once the list of packages needed in the environment has
been finalized, the anaconda-project tool (now being developed in
a more general form as conda-project) allows the precise versions
involved to be locked on every supported platform, achieving
cross-platform reproducibility for a Pandata-based project (see
[14] for details).

Examples

To help users understand how these tools fit together, a variety of
example workflows based on Pandata tools can be found online.
The website examples.holoviz.org includes research top-
ics in different domains, with Pandata tools featured prominently
in most of them and particularly in the Attractors, Census, Ship
Traffic, and Landsat examples. The holoviz.org site has a
tutorial that brings in many of the Pandata packages to solve
an example research problem. The Pangeo Project Gallery at
pangeo.io and Project Pythia at projectpythia.org both
include detailed examples in the specific area of climate science.
Each Pandata package also has its own documentation and website
illustrating what it can do, often in combination with other Pandata
tools, such as the Dask examples at stories.dask.org.

History and background

The Pandata libraries individually address important domain-
independent problems for scientific research, engineering, and data
analysis. As argued above, together they form a coherent and pow-
erful basis for scientific computing in any discipline. Given that
each tool has its own developers, separate management structures,
and separate communities, how did it happen that together the
tools add up to such a coherent approach? To understand this
process, it is necessary to dive into the history of some of these
projects and the connections between them.

First, many of the Pandata projects were either originally
launched at Anaconda, Inc., or they were adapted by people who
were at Anaconda at the time to work well with the other projects.
Anaconda’s consulting division (led by the author Bednar) and
open-source tooling division (with most projects led by the author
Durant) have worked with a wide variety of government agencies,
private foundations, universities, and companies doing numerical
computation and research. Each project is designed to address pain
points being experienced by those collaborators, and the Anaconda
staff involved help the projects work together to add up to
complete solutions. Each new consulting project also extensively
tests and validates each library both alone and in combination
with the others, ensuring that these particular packages add up to
complete solutions for each domain in which they are applied.

Specifically, the fastparquet, fsspec, kerchunk, intake, numba,
dask, datashader, bokeh, hvplot, panel, and conda projects were

THE PANDATA SCALABLE OPEN-SOURCE ANALYSIS STACK 91

all created by developers working at Anaconda at the time, with
funding from a very wide range of external grants and contracts
but with Anaconda playing a central role in developing them and
ensuring interoperability between them. These Anaconda-based
developers have also contributed extensively to the other projects
listed, such as xarray, pandas, awkward-array, graphblas, zarr, and
jupyter. Anaconda as a company does not (and cannot!) control
the overall set of projects involved, because each has their own
contributors, governance structure, and stakeholders. But having
a large collection of scientific software developers working at
Anaconda on this wide range of projects exercising the code in
many different research fields and domains has led naturally to the
emergence of Pandata, to which this paper is only now assigning a
name and describing the underlying principles guiding this work.

Out of the many external projects that Anaconda developers
have been involved in, there is one that deserves a special mention
because of how it catalyzed the collection of Pandata tools: Pangeo
[15]. The pangeo.io project is a climate-science initiative based
on bringing modern distributed cloud computing approaches to
bear on large-scale modeling and analysis of the Earth’s climate.
Many of the Pandata tools are also Pangeo tools, and in fact
the main distinction between Pandata and Pangeo is simply that
Pangeo is domain specific, while Pandata is largely the same stack
of tools as Pangeo but explicitly not being tied to any specific
research domain (hence the name “Pandata”, with Pangeo-style
tooling but for any field using data, not just geoscience). Across
numerous grants, contracts, and projects, Pangeo’s researchers
have improved each of the various tools in the Pandata stack and
demonstrated how they can be put together to solve very challeng-
ing research problems, cost-effectively processing petabytes of
climate and remote sensing data in a way enabled by Pandata tools
like Dask and JupyterHub. This paper is an effort to publicize that
the underlying tools are in fact fully domain general and applicable
to all of science, with different data API and file format choices
but largely the same tools used to cover general data-processing
needs that span all research areas. Why start from scratch, when
you can build on this battle-hardened, extensively validated set of
general-purpose tools addressing much of what you need in any
project?

Alternatives to Pandata

The libraries in Pandata are of course not the only alternatives
available in Python; each library individually has alternatives
that have their own strengths and advantages. However, the al-
ternative libraries have not (yet?) been integrated with Pandata
tools, making it much more difficult to apply them to a Pandata-
based project. For instance, Ray [16] is an alternative approach
to distributed computation that is not supported by these tools,
and so if a project uses Ray to manage distributed computation,
then they cannot (currently) easily select hvPlot for visualization
without first converting the data structures into something hvPlot
understands. Similarly, Vaex [17] and Polars [18] offer alternatives
to the Pandas/Dask columnar dataframes supported in Pandata,
and projects based on those data APIs will not (yet!) easily be
able to use Pandata tools for visualization and user interfaces.
There are also now alternative tools for server-side rendering of
large datasets that in Pandata are handled by Datashader, such as
VegaFusion for Vega and Altair, but those are not fully integrated
with the other Pandata libraries like Dask and Numba.

There are also full alternative stacks to consider, such as tools
like Hadoop [19] and Spark [20] from the Apache Foundation.

Most Apache tools rely on the Java Virtual Machine (JVM) that
provides OS-independent computation but requires a heavyweight
runtime compared to the Pandata tools, making it awkward to
combine most Apache tools with Pandata tools. Pandata already
offers flexible support for distributed computation without the
JVM overhead, making “big data” tools like Hadoop and Spark
unnecessary for Pandata applications. Pandata does rely on the
low-level Apache Parquet and Arrow projects, which have non-
JVM implementations that fit well into the Pandata stack.

Future work

This paper is the first to describe Pandata as an entity or collection
of tools. The specific tools we selected are those that in the
opinion of the authors are well integrated with the other tools
and provide a “mix and match” approach to putting together
libraries to implement a particular analysis workflow. There is
not currently any entity besides these authors and this paper that
defines what Pandata is, which libraries are included, and what
process to follow for a library to be included or excluded from
Pandata. As Pandata evolves, it will be important to formalize
some of these processes, similar to how the Pangeo organization
and the HoloViz organization (of which hvPlot and Panel are a
part) have been constituted with a independent steering committee
and governance policies. Future Pandata directions and develop-
ment can be tracked at github.com/panstacks/pandata,
where people interested in Pandata can raise issues and discuss
options and alternatives. In the meantime, Pandata is just a concept
and an explanation for the work of hundreds of people working
mostly independently but with key connections that make these
independent projects come together into a coherent stack for
performing scientific research.

Other relevant areas that need work include the develop-
ment of domain-general reusable tools for capturing the meta-
data, conventions, consistent units, etc. needed in each do-
main, such as the cfconventions.org conventions for cli-
mate science. Furthermore, improved tools for collaboration
are needed, such as implementing parts of the JupyterHub
roadmap (jupyterhub.readthedocs.io/en/stable/
contributing/roadmap.html). Lastly, better documenta-
tion and workflow demonstrations of the Pandata stack are re-
quired to facilitate easier onboarding, provide comprehensive
usage guidelines, and showcase the full potential of Pandata in
solving diverse scientific problems.

Conclusion

The Pandata stack is ready to use today, as an extensive basis
for scientific computing in any research area and across many
different communities. There are alternatives for each of the
components of the Pandata stack, but the advantage of having
this very wide array of functionality that works well together is
that researchers in any particular domain can just get on with their
actual work in that domain, freed from having to reimplement
basic data handling in all its forms and freed from the limitations
of legacy domain-specific stacks. Everything involved is open
source, so feel free to use any of these tools in any combination to
solve any problems that you have!

Acknowledgements

Thanks to Christian Capdeville, Deepak Cherian, Andrew
Donoho, Kodie Dower, Tetsuo Koyama, Dillon Niederhut,

92 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Dharhas Pothina, Demetris Roumis, Philipp Rudiger, Stan Siebert,
Rich Signell, Hunt Sparra, Gene Trantham, and Sophia Yang, for
comments and suggested revisions.

REFERENCES

[1] C. R. Harris, K. J. Millman, S. J. van der Walt et al., “Array
programming with NumPy,” Nature, vol. 585, no. 7825, p. 357–362,
2020, https://doi.org/10.1038/s41586-020-2649-2. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

[2] W. McKinney, “Data structures for statistical computing in Python,” in
Proceedings of the 9th Python in Science Conference. SciPy, 2010,
https://doi.org/10.25080/majora-92bf1922-00a. [Online]. Available: http:
//conference.scipy.org/proceedings/scipy2010/mckinney.html

[3] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in
Science & Engineering, 2007, https://doi.org/10.1109/MCSE.2007.55.
[Online]. Available: http://scitation.aip.org/content/aip/journal/cise/9/3/
10.1109/MCSE.2007.55

[4] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila,
S. Abdalla, and C. Willing, “Jupyter notebooks – a publishing format
for reproducible computational workflows,” in Positioning and Power
in Academic Publishing: Players, Agents and Agendas, F. Loizides and
B. Schmidt, Eds. IOS Press, 2016, pp. 87 – 90.

[5] I. Stančin and A. Jović, “An overview and comparison of free Python
libraries for data mining and big data analysis,” in 2019 42nd In-
ternational Convention on Information and Communication Technol-
ogy, Electronics and Microelectronics (MIPRO), 2019, pp. 977–982,
https://doi.org/10.23919/MIPRO.2019.8757088.

[6] N. Briscoe, “Understanding the OSI 7-layer model,” PC Network Advi-
sor, vol. 120, no. 2, pp. 13–15, 2000.

[7] S. Hoyer and J. Hamman, “xarray: N-D labeled arrays and
datasets in Python,” Journal of Open Research Software, vol. 5,
no. 1, 2017, https://doi.org/10.5334/jors.148. [Online]. Available:
https://doi.org/10.5334/jors.148

[8] T. Handy, “The modern data stack: Past, present, and future,”
dbt blog, 2020, accessed 2023-07-08. [Online]. Available: https:
//blog.getdbt.com/future-of-the-modern-data-stack/

[9] T. Jaipuria, “Understanding the modern data stack,” Substack, July 2022,
accessed 2023-07-08. [Online]. Available: https://tanay.substack.com/p/
understanding-the-modern-data-stack

[10] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A LLVM-based Python
JIT compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, 2015, pp. 1–6.

[11] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and
K. Smith, “Cython: The best of both worlds,” Computing in Science
& Engineering, vol. 13, no. 2, pp. 31–39, 2011.

[12] Dask Development Team, Dask: Library for dynamic task scheduling,
2016. [Online]. Available: https://dask.org

[13] P. Rudiger, M. Liquet, J. Signell, S. H. Hansen, J. A. Bednar et al.,
“holoviz/hvplot: Version 0.8.4,” Jun. 2023, https://doi.org/10.5281/
zenodo.8009640. [Online]. Available: https://doi.org/10.5281/zenodo.
8009640

[14] J. A. Bednar, “8 levels of reproducibility: Future-proofing your Python
projects,” Anaconda Maker Blog, June 2012, www.anaconda.com/blog/8-
levels-of-reproducibility. [Online]. Available: https://www.anaconda.
com/blog/8-levels-of-reproducibility

[15] T. E. Odaka, A. Banihirwe, G. Eynard-Bontemps, A. Ponte, G. Maze,
K. Paul, J. Baker, and R. Abernathey, “The Pangeo ecosystem: Interactive
computing tools for the geosciences: Benchmarking on HPC,” in Tools
and Techniques for High Performance Computing, G. Juckeland and
S. Chandrasekaran, Eds. Springer International Publishing, 2020,
pp. 190–204, https://doi.org/10.1007/978-3-030-44728-1_12. [Online].
Available: https://doi.org/10.1007/978-3-030-44728-1_12

[16] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A
distributed framework for emerging AI applications,” 2018.

[17] M. A. Breddels and J. Veljanoski, “Vaex: Big data exploration
in the era of Gaia,” Astronomy & Astrophysics, vol. 618, p.
A13, Oct 2018, https://doi.org/10.1051/0004-6361/201732493. [Online].
Available: https://doi.org/10.1051%2F0004-6361%2F201732493

[18] R. Vink, “Polars: Lightning fast dataframe library for Rust and Python,”
2023, accessed: 2023-07-08. [Online]. Available: https://www.pola.rs/

[19] T. White, Hadoop: The Definitive Guide, 4th ed. O’Reilly, 2015.

[20] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
Spark: A unified engine for big data processing,” Communications of the
ACM, vol. 59, no. 11, pp. 56–65, 2016.

PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023) 93

Spatial Microsimulation and Activity Allocation in
Python: An Update on the Likeness Toolkit

Joseph V. Tuccillo‡∗, James D. Gaboardi‡

✦

Abstract—Understanding human security and social equity issues within hu-
man systems requires large-scale models of population dynamics that simulate
high-fidelity representations of individuals and access to essential activities
(work/school, social, errands, health). Likeness is a Python toolkit that provides
these capabilities for Oak Ridge National Laboratory’s (ORNL) UrbanPop spatial
microsimulation project. In step with the initial development phase for Likeness
(2021 - 2022), we built out several foundational examples of work/school and
health service access. In this paper, we describe expansion and scaling of
Likeness capabilities to metropolitan areas in the United States. We then provide
an integrated demonstration of our methods based on a case study of Leon
County, FL and perform validation exercises on 1) neighborhood demographic
composition and 2) visits by demographic cohorts (gender/age) obtained from
point of interest (POI) footfall data for essential services (grocery stores). Taking
into account lessons learned from our case study, we scope improvements to
our model as well as provide a roadmap of the anticipated Likeness development
cycle into 2023 - 2024.

Index Terms—activity space, synthetic population, microsimulation, population
dynamics

Introduction

Agent-based models (ABMs) of population dynamics are essential
for understanding human security and social equity issues within
human systems [1], [2], [3]. Such models often rely upon syn-
thetic populations – virtual representations of individuals plausibly
residing within an area – to assess how individual behaviors
and interactions contribute to complex system-level behavior.
Applications of ABMs for population dynamics range from urban
planning (access to essential services like food and healthcare),
public health (facility occupancy, social contact networks), and
disaster preparedness (social vulnerability to environmental haz-
ards, evacuation and critical infrastructure planning).

A current challenge for research in population dynamics is to
more directly represent population heterogeneity [4]. Individuals
exhibit a variety of patterns of life dictating their behavior and in-
teractions [5], which are in turn influenced by social, demographic,
and economic characteristics. Incorporating these factors into the
design of synthetic populations contributes to more holistic models
of how human systems operate.

* Corresponding author: tuccillojv@ornl.gov
‡ Oak Ridge National Laboratory, Geospatial Sciences and Human Security

Copyright © 2023 Oak Ridge National Laboratory This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

To support enhanced ABMs of population dynamics, the
UrbanPop spatial microsimulation framework developed by Oak
Ridge National Laboratory (ORNL) generates high-fidelity syn-
thetic populations on hundreds of attributes from the American
Community Survey (ACS) and its Public-Use Microdata Sample
(PUMS) and combines them with nighttime/daytime behavioral
routines [3]. Central to UrbanPop’s capabilities is Likeness, a
Python toolkit that combines population synthesis, spatial network
modeling, and activity allocation [6], [7]. Foundational examples
produced for Likeness have explored travel routing from home
locations to anchor activities (e.g., work, school), POI occupancy
characteristics [6], [7], as well as routing incidental travel from
anchor to non-anchor activities (e.g., social, errands, health) [8].
This paper builds from these foundational examples to discuss
scaling our methods to larger areas of interest. Moreover, it
examines the performance of our activity allocation model relative
to real-world POI demographics from digital trace (anonymized
mobile device) data on POI visitation.

Expansion and Scaling of Likeness Capabilities

Synchronous with creating foundational examples for Likeness,
we have developed an integrated workflow that scales the ecosys-
tem (Figure 1) to support microsimulation for any metropolitan
statistical area (MSA) in the United States.

Figure 2 outlines the procedure for agent generation at the
MSA level. As discussed in [6], the livelike.acs.puma class
is the core object for residential population synthesis. It stores
all census microdata and geographic (e.g., block group, tract)
model constraints to support spatial allocation for a single Public-
Use Microdata Area (PUMA) in the United States. Residential
synthetic populations for MSAs are generated as collections of
PUMAs, which are parsed automatically by combining U.S. Cen-
sus metropolitan/micropolitan delineation files1 with the Census
2010 PUMA-to-tract relationship file2. PUMAs parsed for the
target MSA are converted into livelike.acs.puma objects
in bulk via livelike.multi.make_pumas(). This function
accepts the PUMA Federal Information Processing Standards
(FIPS) codes (unique IDs) in list form, along with the target
ACS year. This information is then used to gather the relevant
ACS Summary File (SF) constraints for spatial allocation of
PUMS responses to small census areas of roughly 8,000 people

1. https://www.census.gov/geographies/reference-files/time-
series/demo/metro-micro/delineation-files.html

2. https://www.census.gov/programs-surveys/geography/technical-
documentation/records-layout/2010-tract-to-puma-record-layout.html

94 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Activity Model

livelike
Population
Synthesis

movelike
Travel

Routing

actlike
Activity

Allocation

likeness-
vitals
Utilities

pymedm
Spatial

Allocation

ACS SF 5-Year
API

Geographic
Constraints

Census
Microdata

API
Individual

Constraints

1

TIGER WMS
Custom

Geographies

Problem Formulation

2
TIGER

WMS/FEMA
USA Structures

Residential
Locations

4

3

Agent Generation

OpenStreetMap
(via OSMNX), GTFS,

pandana
Networks/Routes

COIN, PuLP, MIP
Transportation

Problem

Fig. 1: Likeness ecosystem overview.

or less (block groups, tracts). Spatial allocation is subsequently
handled with parallel processing, which is supported by both pack-
ages Likeness offers for Penalized Maximum-Entropy Dasymetric
Modeling (P-MEDM) [9]: pymedm (bleeding-edge, Python-native
version, based on jaxopt [10]) and pmedm_legacy (stable
bridge to original R/C++ routine3 via rpy2). As demonstrated
in [6] and [7], the population synthesis routine also collects
diagnostics on how effectively each P-MEDM solution reproduces
variable estimates from the ACS SF relative to reported Margins
of Error (MOEs). These utilities are available in both pymedm
and pmedm_legacy.

Likeness generates agents for microsimulation in a way that
provides realistic home (origin) locations from which to allo-
cate essential activities on transportation networks. Our initial
approach, based on census block-level housing density [6], [7],
is now implemented in livelike as a housing universe gen-
eration procedure. Additionally, we are actively developing a
method (demonstrated in Integrated Demonstration: Leon County,
Florida) that enhances this capability by matching synthesized
households to residential locations from building footprint data.
These matches are performed by conflating attributes of synthetic
households (e.g., dwelling type, income) with building footprint
attributes (e.g., floor area, number of units). These utilities are
designed to be agnostic to the building footprint provider and can
even support custom building features.

Agent residential locations provided by livelike act as
origin points for simulating travel to essential activities. The next
stage in the Likeness workflow employs network analysis to model
the cost of travel to these activities [11], [12], [13] and allocate
agents to POIs accordingly based on mathematical programming
routines [14], [15], [16], [17]4. In our first iteration of Likeness,

3. https://bitbucket.org/nnnagle/pmedmrcpp
4. The PuLP and Python-MIP open-source optimization Python packages

are cited here, along with COIN-OR (a consortium that supports various
open-source Operations Research projects) and the COIN-OR Branch-and-Cut
solver.

both these tasks were accomplished within actlike. However,
we concluded that the network modeling piece was specialized
enough to be split from the actlike package, which led to the
creation of movelike. With a push for varied modes of network
traversal, three new modes of travel can now be modeled: walking,
biking, and public transit. However, modeling travel behavior
via public transportation is less straightforward than for driving,
biking, and walking networks due to stricter network topology,
including factors like connectivity and directionality of routes.
We have made our foray into modeling more realistic public
transit behavior within movelike through the incorporation of
the General Transit Feed Specification (GTFS)5. GTFS is a data
specification that stipulates the required files, along with their
structure and format6, for publishing, ingesting, and utilizing
public transit datasets. The GTFS datasets can be obtained via
services such as TransitFeeds7 and The Mobility Database Cat-
alogs8. In our current iteration we utilize GTFS data feeds to
implement a pseudo-transit network space by which agents can
engage in limited traversal. This is accomplished through a mask
of OpenStreetMap9 (OSM) street segments known to be associated
with bus routes. The OSM network is masked by passing a
(multi)polygon feature of buffered and unioned bus routes within
the study area into osmnx [12]. This method demonstrates pro-
gression in representing public transit but certainly has room for
improvement, which will be discussed in Development Roadmap:
2023 - 2024.

Finally – and at the heart of it all – expansion and scal-
ing of the Likeness ecosystem led to the development of a
new package for common utilities, likeness-vitals. The
likeness-vitals package provides support for monitoring

5. https://gtfs.org/
6. https://gtfs.org/schedule/reference/#dataset-files
7. https://transitfeeds.com/
8. https://github.com/MobilityData/mobility-database-catalogs
9. https://www.openstreetmap.org/

SPATIAL MICROSIMULATION AND ACTIVITY ALLOCATION IN PYTHON: AN UPDATE ON THE LIKENESS TOOLKIT 95

Fig. 2: Likeness agent generation procedure for Metropolitan Statistical Areas (MSAs) in the United States.

and timing processes, data manipulation, shared spatial function-
ality, and Census API access.

Integrated Demonstration: Leon County, Florida

Following the workflow described in Section Expansion and
Scaling of Likeness Capabilities, we demonstrate the current
capabilities of Likeness and validate our activity allocation routine
for Leon County, Florida. Leon County, whose primary city is
Tallahassee, features a population of just under 300,000 residents,
a compact urban footprint, and a diverse array of transportation
modes (driving, transit, bike, walking). Our mobility validation
exercise is based on grocery store visits from simulated home
locations. Grocery stores provide a useful test case, acting both
as catchments for the general population as well as points of
access to vital services including food and healthcare. We obtained
grocery store visits from Foursquare’s Research Visits feed, which
provides POI visitation data attributed by demographic cohort
(gender by age) for a variety of facility types10,11.

We first simulated a single synthetic population for the Tal-
lahassee Core-Based Statistical Area (CBSA). Spatial allocation
(P-MEDM) was constrained on variables across subjects in-
cluding sampling universe totals (i.e., population, housing units,
households), descriptive factors including demographics, socioe-
conomic status, housing, mobility, and worker and student char-
acteristics. For the remainder of the analysis, we focused on
Leon County alone, removing large outlying areas of the MSA
(PUMA 1206300, “Apalachee Region (Outside Leon County)”).
Agents12 were generated with the Federal Emergency Manage-
ment Agency’s (FEMA) open USA Structures database [18], [19].
Our allocation procedure leveraged livelike utilities to match
synthetic households to single-family residential, multi-family
residential, mobile homes, and group quarters housing types.

We used employment and travel mode characteristics to assign
agents to transportation networks used to access grocery POIs
from home locations. Agents labeled as ‘employed’ possess an
associated flag that identifies reported commute mode that can
take the following values: ‘car_truck_van’, ‘bicycle’, ‘walked’,
‘wfh’, ‘public_transportation’, ‘other’, and ‘motorcycle’. Because
detailed travel modes are unavailable for agents that are not
employed (e.g., retired, active military), we rely on private (i.e.,
household-level) vehicle ownership instead.

Travel modes assigned to each agent were conflated with
four transportation network types: ‘walked’, ‘bicycle’, ‘pub-
lic_transportation’, and ‘drive’. We supported this process by
developing a decision tree, visualized in Figure 3, through which
we assume:

• Employed agents will use the transportation network that
best matches their commute mode to access grocery POIs.

10. https://location.foursquare.com/places/docs/how-does-places-work
11. https://location.foursquare.com/visits/docs/research-feed-schema
12. Agents less than 20 years old were not included in the Foursquare POI

data, thus they are excluded from our analysis.

• Agents that are not employed will use a privately-owned
vehicle, and thus the ‘drive’ network, to access grocery
POIs when available.

• Agents that are not employed and lack a privately-owned
vehicle will use public transportation if they are located in
a block group that is served by Tallahassee’s bus network
(StarMetro) and opt to walk otherwise.

As demonstrated in Table 1, the ‘drive’ network supports the
overwhelming majority of travel to grocery POIs in Leon County,
followed by walking, public transportation, and bicycle access.

TABLE 1: Householder agents >20yo per assigned travel mode

Mode Assignment Agent Count

'walked' 5,325
'bicycle' 1,052
'public_transportation' 3,830
'drive' 101,681

111,888

Figure 4 shows that Leon County’s agent population is dis-
tributed unevenly relative to assigned travel modes. Because Leon
County’s infrastructure primarily supports travel by car, agents
who drive are distributed closest to the area’s general population
density. The spatial distribution of agents who travel by walking
also tends to follow Leon County’s settlement patterns, though
in more limited numbers than for those who drive. Agents using
public transport, meanwhile, are largely present in and near the
center of the county, roughy occupying denser urban areas where
StarMetro service is available. Bicyclists are distributed similarly
to bus takers, but with several individual clusters associated with
smaller outlying towns and settlements.

Grocery store POIs with medium to high visit confidence
(at least 30 device visits per month, n = 53) were obtained
from Foursquare for Leon County in January 2023. Destination
capacities were estimated based on visit counts weighted by
representativeness of the demographic cohort within the state’s
2010 Census population13. Destination capacities were estimated
by the daily average (mean) for each POI during the collection
month (01/2023).

After travel modes were assigned to agents, four network cost
matrices were calculated from origin (residential location) to desti-
nation (grocery store) POIs in movelike. Agents were then allo-
cated to a single probable destination POI based on least cost net-
work travel paths with the actlike.ActivityAllocation
routine, which solves a modified Transportation Problem14 [20],
[21], [22], [23], where destination POI capacities are scaled [24]
by the proportion of assigned travel mode for each scenario. All

13. https://location.foursquare.com/visits/docs/foursquare-data-
normalization

14. This model is formulated in [6].

96 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 3: Agent travel mode assignment decision tree.

Fig. 4: Synthetic population distribution by travel mode.

models were run consecutively on two machines for benchmarking
purposes. These were:

• A personal laptop (macOS) with a 2.3 GHz Quad-core
Intel Core i7 processor (32 GB RAM).

• A virtual machine (Ubuntu) with a 2.8 GHz 22-core
Intel(R) Xeon(R) processor (86 GB RAM).

The large disparity in problem size seen in Table 1 is even
more pronounced in solution runtimes, shown in Table 2. Optimal
solutions for non-drive models were found in a maximum time of
just over 1 minute on both machines, with the drive model taking
more than 17 and 8 hours to solve on the macOS and Ubuntu
machines, respectively. Considering the solution time for the drive
scenario, there is clearly a need for a more effective solution tech-

nique, which will be further discussed in Development Roadmap:
2023 - 2024.

TABLE 2: Allocation Solution Runtimes (min.)

Mode Assignment macOS Ubuntu
4 cores 22 cores

32 GB RAM 86 GB RAM

'walked' 0.72 1.19
'bicycle' 0.05 0.26
'public_transportation' 0.48 0.69
'drive' 1061.43 483.94

Validation procedures

Our validation procedures were designed to quantify the de-
gree to which Likeness 1) resembles reference population esti-
mates provided by the ACS SF with the synthetic populations
(demographic validation) and 2) allocates activities matching
real-world visitation patterns by demographics segments captured
by the Foursquare POI data (mobility validation).

To produce our demographic validation, we followed [3] and
measured our synthetic populations’ degrees of conformity with
90% Margins of Error (MOEs) available from the ACS SF. ACS
MOEs provide bounds for the expected ranges of values that our
variables of interest could take. Tabulating individual attributes
within each block group’s synthetic population results in a recon-
struction of the ACS SF estimates that can be assessed against the
90% MOEs. Greater conformity with the MOEs (“MOE Fit Rate”)
indicates a synthetic population that could plausibly resemble that
block group’s “true” population.

Following [3] and [6], we ran our mobility validation using
Canonical Correlation Analysis (CCA). CCA, which measures
the degree of linear association between two multidimensional
datasets [25], is necessary to compare visitation patterns (n grocery
store locations by m demographic cohorts). We performed CCA

SPATIAL MICROSIMULATION AND ACTIVITY ALLOCATION IN PYTHON: AN UPDATE ON THE LIKENESS TOOLKIT 97

on both the between-destination (relative prevalence) and within-
destination (compositional) characteristics of each POI by demo-
graphic group. Both CCA runs were generated from tabulated
counts of trips from the observed and synthetic datasets, their key
difference being the method of standardization (column-wise for
between-destination, row-wise for within-destination). We used
the CCA coefficient of determination (R2) to measure associations
between synthetic and observed results. To better understand
POI-specific activity allocation performance, we generated an
additional local measure of within-destination correspondence.
The local within-destination statistic compares the relative sizes
of demographic cohorts using Spearman Rank Correlation, a non-
parametric measure of the association between the ranks of two
variables [26]. We opted for Spearman Correlation due to the
relatively small number of demographic cohorts (n = 11).

Results

Demographic Validation

TABLE 3: Demographic validation

PUMA Name ACS 90% MOE Fit Rate

1206300 Leon County (Central) 0.992
1207300 Leon County (Outer) 0.998
1207301 Apalachee Region (Out-

side Leon County)
0.994

Fig. 5: Local demographic validation for Leon County.

Each of the three P-MEDM runs (one for each PUMA in the
Tallahassee CBSA) resulted in a synthetic reconstruction of the
ACS 90% MOEs. Overall, these reconstructions matched with at
least 99% of the published MOEs from the ACS SF (Table 3. At
the more granular level of Leon County block groups (Figure 5),
MOE Fit Rates were relatively lower but still in agreement with
at least 90% of the ACS SF MOEs in each location. We observed
diminished performance in areas with large group quarters popula-
tions (e.g., college dormitories, prisons), as well as more sparsely
populated rural and peri-urban portions of Leon County.

Mobility Validation

Our mobility simulation more faithfully recreated between-
destination demographics (R2 = 0.74) than within-destination

Fig. 6: Local within-POI mobility validation.

demographics (R2 = 0.41) (Table 3). Inspecting the local within-
destination scores, mapped in Figure 6, we observed gener-
ally greater correspondence between synthetic and observed POI
demographics near Tallahassee’s downtown core, Florida State
University, and Florida A&M University, with diminished perfor-
mance in suburban and outlying areas of Leon County.

It is difficult to pinpoint the inconsistency in recreating POIs’
visitation patterns. In addition to urban density, this is potentially
related to diversity of travel modes near the urban core (the
increased biking, walking, and public transit use presented in
Figure 4), but it requires further investigation. Section Limitations
provides some additional confounding factors that are worthy of
exploring relative to these results.

Limitations

We found that overall, Likeness approximates travel to non-
anchor (grocery store) POIs modestly well. However, its per-
formance tends to be weaker relative to travel to anchor ac-
tivities (work/school), demonstrated in [6]. This suggests that
approximating destination capacities for activities like grocery
store visits provide an added challenge for activity allocation,
including when real-world observations from visitation data are
used. Additionally, multiple confounding factors related to data
inputs and model assumptions may have affected our results:

• Data-Specific: Our clearest challenge is temporal mis-
match between the synthetic population (2019) and POI
visit data (2023). We have yet to increment our ACS
year due to issues of non-conforming geography between
the 2010 PUMAs and 2020 block groups/tracts. We hope
to explore solutions to this problem starting with the

98 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

forthcoming 2022 ACS releases, which will adopt 2020
PUMAs across all geographic levels15. We were also
limited to only one month of POI visit data. In future work,
we hope to leverage a longer period of record to account
for POIs with consistently high rates of visitation.

• Model-Specific: Several large assumptions were made that
could confound our results, particularly that 1) agents
simultaneously travel to grocery stores, 2) agents only
select one grocery store to visit, using only one mode of
travel, and 3) travel to grocery stores only occurs between
home and work. These assumptions can be updated by in-
corporating information from time-use and travel surveys
into Likeness. In this way, we can better reflect the times
of day that different demographic cohorts access various
activities [27].

We also hope to tighten our assumptions about the feasibility
of POI access relative to the various travel modes. For example,
in our current assignment process (Figure 3) agents unmatchable
to a defined travel mode were considered walkers as a fallback
for unavailability of a reachable bus route. Future iterations will
refine this decision process by considering a distance threshold for
agents to be labeled as either walkers or transit users. For example,
we could set a rule that walking agents must be located within a
reasonable distance of the closest POI, while agents that use bus
service should reside near a bus stop in addition to being close to
a bus route. To ensure all agents have at least one feasible POI
destination to access, we also plan to incorporate a greater variety
of curated locations from ORNL’s PlanetSense database [28].

Conclusion and Outlook

This paper presented enhancements and scaling approaches for the
Likeness spatial microsimulation toolkit. These include batched
population synthesis runs for MSAs in the United States, residen-
tial allocation, and large-scale transportation network generation.
We demonstrated these new capabilities by developing a mobility
validation exercise for Leon County, FL. Our results provided rea-
sonable representation of neighborhood demographics and routing
to nearby essential services (grocery stores), with more mixed
results related to activity allocation. The activity allocation results,
however, do provide new research directions that we plan to
explore in our future work. These include temporality of POI travel
(travel probabilities relative to demographic cohorts), behavioral
factors (willingness to travel given cost and impedances), and the
use of multiple travel modes to reach activities.

Given the relative success of our population synthesis proce-
dures in Section Integrated Demonstration: Leon County, Florida,
we are interested in also applying Likeness to explore trans-
portation equity in the context of access to essential services
like food and healthcare. Such an approach would aim to en-
hance existing research on transportation and accessibility [29],
[30] with a cross-sectional representation of social, demographic,
housing, and mobility characteristics. Assuming an agent with
some blend of socio-demographic and economic characteristics
resides in a particular section of a neighborhood, how many
essential services can be readily accessed using their assigned
transportation network? Using the Likeness ecosystem, we could
develop such a measure for all agents in a synthetic population,

15. https://www.census.gov/programs-surveys/acs/news/data-
releases/2022/release.html

allowing the comparison of accessibility to population metrics
like mobility difficulty. These insights could in turn be used to
guide urban/regional infrastructure planning, pinpointing areas
where drive, transit, or bike/walk services could be improved or
expanded.

Development Roadmap: 2023 - 2024

• Tooling for custom geographic extents. The MSA-
specific workflow demonstrated in this paper is limited
in that it does not support custom geographic extents.
This prevents analysis, for example, of predominantly
rural areas. We are actively developing an approach to
create residential synthetic populations for custom areas of
interest (AOIs), supported by USA Structures. This func-
tionality will also support the development of synthetic
populations with national-scale coverage.

• Open-sourcing core packages. Though we have yet to
meet our goal of open-sourcing the suite of Likeness
packages [6], we are still on track to release the core
packages for residential population synthesis, pymedm
and livelike, in 2023. Releases of movelike and
actlike are likely to follow in 2024.

• Packaging schema. A further consideration related to
open-sourcing is whether we should migrate from a con-
federated toolkit schema where each module is a semi-
independent Python package, as is seen in the modern im-
plementation of PySAL [31], to a single monolithic Python
package with submodules. Each schema has benefits, and
this decision will require much consideration. With regards
to the current confederated schema, the main benefit is
modularity and reduced burden for continuous integration
testing runtimes. This primary benefit is from a developer
standpoint. However, providing a single package to install
and use is a clear benefit to the user.

• Consolidating visualization functionality. We are in the
process of consolidating functionality related to the visu-
alization of input, processing, and results that have been
used in an ad-hoc manner in the past. An initial push will
be made for the inclusion of “made-to-order” population
density hexbin plots and network-space allocation routes.

• Improving mobility modeling. Modeling public transit
is a key area where we intend to develop increasingly
more realistic agent “choices.” As stated previously in
Expansion and Scaling of Likeness Capabilities, there is
significant potential in exploring further integration of
GTFS data for locally-accurate modeling.

• Optimization bottleneck. As demonstrated in Results,
there is a clear hit in computational performance and run-
time when solving actlike.ActivityAllocation
problems on increasingly larger model instances (e.g.,
more agents and more POIs). There are two paths to
resolving this issue (which may be considered in concert):
1) Reviewing our modified Transportation Problem mixed-
integer program (formulated in [6]); and 2) Utilizing a
new underlying solver engine, such as HiGHS16 [32]. In
reviewing our formulation we will first investigate the
potential for generating fewer constraints in the model.
Following this, as stated above, we may consider formulat-
ing the model in a new solver. Depending on the outcome

16. https://highs.dev/

SPATIAL MICROSIMULATION AND ACTIVITY ALLOCATION IN PYTHON: AN UPDATE ON THE LIKENESS TOOLKIT 99

of these experiments we may consider a new underlying
optimization problem or implement a heuristic.

Acknowledgements

The authors would like to thank Ty Frazier for his contributions
to scoping the incorporation of General Transit Feed Specification
(GTFS) data during an earlier phase of this project.

The authors would also like to thank the two volunteer re-
viewers for their constructive feedback and the SciPy Proceedings
editorial team for their ongoing support.

Notice: Research reported in this publication was supported
by the National Center For Advancing Translational Sciences
of the National Institutes of Health under Award Number UL1-
TR001409, KL2-TR001432 & TL1-TR001431. The content is
solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

This manuscript has been authored by UT-Battelle, LLC under
Contract No. DE-AC05-00OR22725 with the U.S. Department
of Energy. The United States Government retains and the pub-
lisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for
United States Government purposes. The Department of Energy
will provide public access to these results of federally spon-
sored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-publicaccess-plan).

REFERENCES

[1] T. C. Germann, M. Z. Smith, L. R. Dauelsberg, G. Fairchild, T. L. Turton,
M. E. Gorris, C. W. Ross, J. P. Ahrens, D. D. Hemphill, C. A. Manore,
et al., “Assessing k-12 school reopenings under different covid-19 spread
scenarios–united states, school year 2020/21: A retrospective modeling
study,” Epidemics, vol. 41, p. 100632, 2022. https://doi.org/10.1016/j.
epidem.2022.100632.

[2] J. Ozik, J. M. Wozniak, N. Collier, C. M. Macal, and M. Binois, “A
population data-driven workflow for covid-19 modeling and learning,”
The International Journal of High Performance Computing Applications,
vol. 35, no. 5, pp. 483–499, 2021.

[3] J. V. Tuccillo, R. Stewart, A. Rose, N. Trombley, J. Moehl, N. N.
Nagle, and B. Bhaduri, “UrbanPop: A spatial microsimulation framework
for exploring demographic influences on human dynamics,” Applied
Geography, vol. 151, p. 102844, 2023. https://doi.org/10.1016/j.apgeog.
2022.102844.

[4] United States Department of Energy, “Foundational Science
for Biopreparedness and Response: Report from the March
2022 Roundtable.” https://science.osti.gov/-/media/Initiatives/
pdf/Bioprepardeness_Roundtable_Report_092722.pdf, Mar. 2022.
https://doi.org/10.2172/1868508.

[5] L. Pappalardo, F. Simini, S. Rinzivillo, D. Pedreschi, F. Giannotti, and
A.-L. Barabási, “Returners and explorers dichotomy in human mobility,”
Nature communications, vol. 6, no. 1, p. 8166, 2015. https://doi.org/10.
1038/ncomms9166.

[6] J. V. Tuccillo and J. D. Gaboardi, “Likeness: a toolkit for connecting the
social fabric of place to human dynamics,” in Proceedings of the 21st

Python in Science Conference (M. Agarwal, C. Calloway, D. Niederhut,
and D. Shupe, eds.), pp. 125–135, 2022. https://doi.org/10.25080/majora-
212e5952-014.

[7] J. V. Tuccillo and J. D. Gaboardi, “Likeness: a toolkit for connecting
the social fabric of place to human dynamics.” https://doi.org/10.25080/
majora-212e5952-02d, Aug. 2022. https://doi.org/10.25080/majora-
212e5952-02d.

[8] J. D. Gaboardi and J. V. Tuccillo, “Spatial Microsimulation and Activity
Allocation for Examining COVID-19 Vaccine Access Profiles,” Mar.
2023. https://doi.org/10.5281/zenodo.7768810.

[9] N. N. Nagle, B. P. Buttenfield, S. Leyk, and S. E. Spielman, “Dasymet-
ric modeling and uncertainty,” Annals of the Association of American
Geographers, vol. 104, no. 1, pp. 80–95, 2014.

[10] M. Blondel, Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer, F. Llinares-
López, F. Pedregosa, and J.-P. Vert, “Efficient and Modular Implicit
Differentiation.” arXiv preprint arXiv:2105.15183, 2021.

[11] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org.” https://www.openstreetmap.org, 2023.

[12] G. Boeing, “OSMnx: New methods for acquiring, constructing, ana-
lyzing, and visualizing complex street networks,” Computers, Environ-
ment and Urban Systems, vol. 65, pp. 126–139, Sept. 2017. https:
//doi.org/10.1016/j.compenvurbsys.2017.05.004.

[13] F. Foti and P. Waddell, “A Generalized Computational Framework
for Accessibility: From the Pedestrian to the Metropolitan Scale,” in
Transportation Research Board Annual Conference, pp. 1–14, 2012.

[14] S. Mitchell, M. O’Sullivan, and I. Dunning, “PuLP: A Linear Program-
ming Toolkit for Python.” https://optimization-online.org/?p=11731,
2011.

[15] H. G. Santos and T. A. Toffolo, “Mixed Integer Linear Programming
with Python.” https://www.python-mip.com/, 2020.

[16] R. Lougee-Heimer, “The Common Optimization INterface for Opera-
tions Research: Promoting open-source software in the operations re-
search community,” IBM Journal of Research and Development, vol. 47,
no. 1, pp. 57–66, 2003. https://doi.org/10.1147/rd.471.0057.

[17] J. Forrest, T. Ralphs, H. G. Santos, S. Vigerske, J. Forrest, L. Hafer,
B. Kristjansson, jpfasano, EdwinStraver, M. Lubin, Jan-Willem, rlougee,
jpgoncal1, S. Brito, h-i gassmann, Cristina, M. Saltzman, tost-
tost, B. Pitrus, F. Matsushima, and to st, “coin-or/cbc: Release re-
leases/2.10.10,” Apr. 2023. https://doi.org/10.5281/zenodo.7843975.

[18] H. L. Yang, J. Yuan, D. Lunga, M. Laverdiere, A. Rose, and B. Bhaduri,
“Building extraction at scale using convolutional neural network: Map-
ping of the United States,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 11, no. 8, pp. 2600–2614,
2018. https://doi.org/10.1109/jstars.2018.2835377.

[19] H. L. Yang, M. Tuttle, M. Laverdiere, T. Hauser, B. Swan, E. Schmidt,
J. Moehl, A. Reith, J. McKee, and M. Whitehead, “ORNL USA Struc-
tures 2022.” https://figshare.com/collections/ORNL_USA_Structures_
2022/6139131/2, Sept. 2022. https://doi.org/10.6084/m9.figshare.c.
6139131.v2.

[20] F. L. Hitchcock, “The Distribution of a Product from Several Sources
to Numerous Localities,” Journal of Mathematics and Physics, vol. 20,
no. 1-4, pp. 224–230, 1941. https://doi.org/10.1002/sapm1941201224.

[21] T. C. Koopmans, “Optimum Utilization of the Transportation System,”
Econometrica, vol. 17, pp. 136–146, 1949. https://doi.org/10.2307/
1907301.

[22] H. J. Miller and S.-L. Shaw, Geographic Information Systems for Trans-
portation: Principles and Applications, ch. 6: Network Flows and Facility
Location. New York: Oxford University Press, 2001.

[23] H. J. Miller and S.-L. Shaw, “Geographic Information Systems for
Transportation in the 21st Century,” Geography Compass, vol. 9, no. 4,
pp. 180–189, 2015. https://doi.org/10.1111/gec3.12204.

[24] R. Lovelace and D. Ballas, “‘Truncate, replicate, sample’: A method
for creating integer weights for spatial microsimulation,” Computers,
Environment and Urban Systems, vol. 41, pp. 1–11, Sept. 2013. https:
//doi.org/10.1016/j.compenvurbsys.2013.03.004.

[25] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical correlation
analysis: An overview with application to learning methods,” Neural
computation, vol. 16, no. 12, pp. 2639–2664, 2004. https://doi.org/10.
1162/0899766042321814.

[26] J. H. Zar, “Significance testing of the spearman rank correlation coeffi-
cient,” Journal of the American Statistical Association, vol. 67, no. 339,
pp. 578–580, 1972. https://doi.org/10.1080/01621459.1972.10481251.

[27] C. M. Macal, N. T. Collier, J. Ozik, E. R. Tatara, and J. T. Murphy,
“Chisim: An agent-based simulation model of social interactions in a
large urban area,” in 2018 winter simulation conference (WSC), pp. 810–
820, IEEE, 2018. https://doi.org/10.1109/wsc.2018.8632409.

[28] G. S. Thakur, B. L. Bhaduri, J. O. Piburn, K. M. Sims, R. N. Stewart,
and M. L. Urban, “Planetsense: a real-time streaming and spatio-temporal
analytics platform for gathering geo-spatial intelligence from open source
data,” in Proceedings of the 23rd SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pp. 1–4, 2015.

[29] M. W. Horner, M. D. Duncan, B. S. Wood, Y. Valdez-Torres, and
C. Stansbury, “Do aging populations have differential accessibility to
activities? Analyzing the spatial structure of social, professional, and
business opportunities,” Travel Behaviour and Society, vol. 2, no. 3,
pp. 182–191, 2015. https://doi.org/10.1016/j.tbs.2015.03.002.

[30] B. S. Wood and M. W. Horner, “Understanding Accessibility to Snap-
Accepting Food Store Locations: Disentangling the Roles of Transporta-
tion and Socioeconomic Status ,” Applied Spatial Analysis and Policy,
vol. 9, pp. 309–327, 2016. https://doi.org/10.1007/s12061-015-9138-2.

100 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

[31] S. J. Rey, L. Anselin, P. Amaral, D. Arribas-Bel, R. X. Cortes, J. D.
Gaboardi, W. Kang, E. Knaap, Z. Li, S. Lumnitz, T. M. Oshan, H. Shao,
and L. J. Wolf, “The PySAL Ecosystem: Philosophy and Implemen-
tation,” Geographical Analysis, vol. 54, no. 3, pp. 467–487, 2022.
https://doi.org/10.1111/gean.12276.

[32] Q. Huangfu and J. A. J. Hall, “Parallelizing the dual revised simplex
method,” Mathematical Programming Computation, vol. 10, no. 1,
pp. 119–142, 2018. https://doi.org/10.1007/s12532-017-0130-5.

PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023) 101

itk-elastix: Medical image registration in Python

Konstantinos Ntatsis‡∗, Niels Dekker‡, Viktor van der Valk‡, Tom Birdsong§, Dženan Zukić§, Stefan Klein¶, Marius
Staring‡, Matthew McCormick§

✦

Abstract—Image registration plays a vital role in understanding changes that
occur in 2D and 3D scientific imaging datasets. Registration involves finding a
spatial transformation that aligns one image to another by optimizing relevant
image similarity metrics. In this paper, we introduce itk-elastix, a user-
friendly Python wrapping of the mature elastix registration toolbox. The
open-source tool supports rigid, affine, and B-spline deformable registration,
making it versatile for various imaging datasets. By utilizing the modular de-
sign of itk-elastix, users can efficiently configure and compare different
registration methods, and embed these in image analysis workflows.

Index Terms—medical imaging, image analysis, registration, elastix, ITK, wrap-
ping, Python

Introduction

Image Registration

Image registration is a fundamental process in the field of sci-
entific imaging that enables the alignment and comparison of
images, facilitating the understanding of changes that occur within
datasets. It involves finding a spatial transformation that optimizes
relevant image similarity metrics, ensuring accurate alignment
between images. A frequent registration type is the parametric
approach where the spatial transformation is explicitly modeled.
Examples of such transformation models are the rigid transform
which allows translations and rotations, the affine transform that
additionally includes shearing and the B-Spline transform that
permits only local deformations. The reader can refer to Mod-
ersitzki [1] for an overview of the nonparametric registration. In
addition to the parametric model, the choice of similarity metric
plays a crucial role in the registration result and is dependent on
the relationship of the pixel intensities between the images. Simple
metrics such as normalized correlation are suitable for images with
a linear intensity relationship, while more complex metrics such as
mutual information [2] are employed for non-linear relationships.

Medical imaging heavily relies on image registration tech-
niques [3] [4] to gain valuable insights and quantitative mea-
surements. By registering medical images acquired at different
time points or using various imaging modalities such as MRI and
CT, researchers can analyze and quantify changes in anatomical

* Corresponding author: k.ntatsis@lumc.nl
‡ Division of Image Processing, Department of Radiology, Leiden University
Medical Center, Leiden, the Netherlands
§ Medical Computing Group, Kitware, Inc, Carrboro, NC, USA
¶ Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear
Medicine, Erasmus MC, Rotterdam, the Netherlands

Copyright © 2023 Konstantinos Ntatsis et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

structures, track disease progression and assess treatment efficacy.
For instance, image registration allows the alignment of medical
volumes across subjects to evaluate the impact of specific treat-
ments, or the registration of sequential brain images to monitor
tumor growth and response to therapy.

elastix

elastix [5] [6] is a well-known and widely used open-source
toolbox dedicated to image registration. It provides a compre-
hensive range of algorithms and utilities designed for aligning
images using diverse transformation models, similarity measures,
and optimization strategies. One of its key strengths is its modular
design, enabling users to easily configure and combine different
registration methods to suit application-specific needs. Parameter
files govern the registration process by specifying transformation
models, similarity measures, optimization strategies, and related
parameters. By customizing these configurations, users can seam-
lessly adapt elastix to their specific requirements, ensuring
optimal registration outcomes.

For example, when aligning an MRI brain scan with a CT
scan using elastix, users can configure the transformation
model, such as an affine or B-spline transformation model, to
capture the geometric relationships between input images. They
can also specify the similarity measure, like mutual information or
normalized correlation, to evaluate the quality of alignment. Addi-
tionally, users have the flexibility to adjust optimization strategies,
including parameters like the maximum number of iterations,
to fine-tune the registration process and achieve optimal results.
elastix supports both the more typical pairwise registration but
also groupwise registration [7] [8], where no image is specified as
fixed but an implicit mean image is used instead as reference.

The elastix codebase is implemented in C++ and serves
as an extension to the Insight Toolkit (ITK) [9]. Through nearly
two decades of development, elastix has achieved a mature
state, characterized by stability, practical effectiveness, main-
tainability, and general backward compatibility. ITK Image data
structures play a crucial role within elastix, representing multi-
dimensional pixel data augmented with spatial information. Acting
as a vital link between the digital pixel space and the physical
space of the imaged object, ITK Images facilitate accurate regis-
tration. By computing transformations that map points from the
physical space of one image to corresponding points in another,
elastix achieves precise and meaningful alignment outcomes
within the physical space. Complementing elastix, a utility
software named transformix was developed to enable the
application of registration results to additional images.

102 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

The original and still-supported method to utilize elastix
and transformix are command line executables. For the end
user, this approach has the advantage that it does not require any
external dependencies to be installed, which eases deployment.
However, one limitation of this executable-based approach is its
reliance on file input/output (I/O) operations. To address this
limitation and enable more efficient in-memory operations, a C++
API was developed for elastix and transformix. This API
follows the paradigm established by ITK and its processing filters.
By adopting this design approach, elastix and transformix
gained the ability to perform operations directly in memory. This
enhancement provides users with greater flexibility and efficiency
in their image registration workflows.

To further accommodate the needs of the users in the con-
tinuously developing scientific computing ecosystem, wrappings
of the C++ code to other languages was developed in the form
SimpleElastix [10], which still exists as part of the SimpleITK
[11] package. More recently, we have embarked on developing a
Python-specific wrapper called itk-elastix. This wrapper ex-
tends the functionality of elastix and offers an ever-expanding
collection of Jupyter [12] examples, along with integration with
other scientific processing libraries and visualization software.
While there are other scientific python image image registra-
tion packages, itk-elastix stands out as a comprehensive
Pythonic package with many image similarity metrics, implemen-
tations for 2D, 3D, and 4D images, and the ability to register
a variety of imaging modalities. The subsequent sections of this
paper delve into these aspects in greater detail.

itk-elastix: Python wrapping

The backend C++ elastix code is wrapped in Python with the
Simplified Wrapper and Interface Generator (SWIG [13]). The
Python wrapping of elastix, itk-elastix, brings the power
of elastix to the Python ecosystem, providing effortless inte-
gration with other scientific processing libraries and visualization
software. The itk-elastix Python packages builds on the itk
Python package’s pythonic interface and seamless integration with
packages in the scientific Python ecosystem such as NumPy [14].
This enables users to leverage the rich functionality of elastix
within their Python workflows, benefiting from its advanced image
registration capabilities alongside popular Python libraries such as
NumPy [14], SciPy [15], and MONAI [16] [17].

The process of updating and distributing the itk-elastix
Python package is as follows: Once a significant number of
changes have been made to the C++ elastix repository, a pull
request is initiated in the itk-elastix repository to update its
version. This triggers the itk-elastix Continuous Integration
(CI) system, which performs builds of Python packages across
various Python versions (ranging from 3.7 to 3.11 at the mo-
ment of writing) and major platforms such as Windows, Linux,
and macOS. When a git version tag is provided, the wrapped
itk-elastix is automatically uploaded to PyPI, accompanied
by a comprehensive summary of updates between the versions.
As a result, users can easily install the latest itk-elastix by
executing pip install itk-elastix within their Python
environment. It is important to note that rigorous testing is con-
ducted on the elastix backend functionality, with hundreds of
tests performed during each pull request or commit, utilizing the
CI system of the C++ repository. The test framework of elastix
consists of various categories of tests, including low-level unit

tests of the elastix library interface, minimal image registration
tests on very small synthetic images, and larger regression tests
of image registrations on realistic medical data. The tests are
implemented using the CMake test driver CTest, the Python
unittest module, and GoogleTest.

The Python wrapping for any ITK filter including elastix
and transformix, offers two APIs: one functional and one
object-oriented. We will describe the two API options and demon-
strate the itk-elastix functionality with examples in the two
following sections.

Functionality

Registration/transformation example

The following example demonstrates the reg-
istration of 2D MRI brain images using the
itk.elastix_registration_method and subsequent
transformation of the corresponding moving mask using the
itk.transformix_filter. The objective is to compare the
overlap measure between the fixed mask and the transformed
moving mask. It is important to note that this is a synthetic
example where the fixed image intentionally exhibits significant
deformations through an artificial non-linear transformation,
solely for illustrative purposes. The masks utilized in this example
represent segmentations of the head, including the brain and the
skull. The procedure begins by reading the fixed and moving
images from disk, followed by configuring a default set of
B-spline registration parameters to be used for the registration
process.
import itk
from scipy.spatial.distance import dice

Load the moving and the fixed image from disk
fixed_image = itk.imread('./data/fixed.mha', itk.F)
moving_image = itk.imread('./data/moving.mha', itk.F)

Configure a (default) parameter map with all the
registration parameters
par_obj = itk.ParameterObject.New()
par_map = par_obj.GetDefaultParameterMap('bspline')
par_obj.AddParameterMap(par_map)

Run the registration
1. The Object Oriented way
elastix_obj = itk.ElastixRegistrationMethod.New(
fixed_image,
moving_image)
elastix_obj.SetParameterObject(param_obj)
elastix_obj.Update()
result_image = elastix_obj.GetOutput()
rtp = elastix_obj.GetTransformParameterObject()

2. The functional way
rtp: result transform parameter object
result_image, rtp = itk.elastix_registration_method(

fixed_image,
moving_image,
parameter_object=par_obj)

Following the registration process, we load the masks from disk
and apply the transformation parameters obtained during registra-
tion to the moving mask. To preserve the binary nature of the
masks and avoid introducing interpolation artifacts, we utilize
the nearest neighbor interpolator. This choice ensures that the
binary properties of the masks are maintained throughout the
transformation process.
Load the corresponding masks
fixed_mask = itk.imread('./data/f_mask.mha', itk.UC)

ITK-ELASTIX: MEDICAL IMAGE REGISTRATION IN PYTHON 103

Fig. 1: Synthetic example of 2D brain registration and transformation of masks.

moving_mask = itk.imread('./data/m_mask.mha', itk.UC)

Transform the moving mask using the result from the
registration
rtp.SetParameter(0,

'ResampleInterpolator',
'FinalNearestNeighborInterpolator')

result_mask = itk.transformix_filter(moving_mask,
rtp)

Compute dice on masks
initial_dice = 1 - dice(fixed_mask[:].ravel(),

moving_mask[:].ravel())
result_dice = 1 - dice(fixed_mask[:].ravel(),

result_mask[:].ravel())

print(initial_dice, result_dice)

The last part of the code above calculates the Dice coefficient
between the fixed mask and the transformed moving mask by
converting the pixel arrays in the ITK Images into NumPy array
views and then call scipy.distance.dice() on them. The
initial Dice score was 97.88% which increased to 99.37% after
registration. Figure 1 visualizes the fixed, moving and result image
as well as an overlay of the fixed image and the transformed mask.

Jupyter Notebook collection

In addition to the core registration and transformation function-
ality demonstrated above, itk-elastix offers other additional
features. To help new users who are starting out, and also keep
existing users up-to-date with the new feature implementations,
we offer an evolving collection of Jupyter Notebooks as usage
examples. Each of the Notebooks covers usually a specific topic,
can be run independently, and includes comments and detailed
explanations. The Notebooks are also tested automatically by CI
with each pull-request or commit, and hence it is ensured that they
always reflect the current API and functionality of the codebase.
Such Notebooks include, but are not limited to:

• specifying masks or point sets for the registration
• transforming point sets and meshes
• groupwise registration
• logging options
• saving output to disk options
• reading/writing transform in hd5f format
• calculation of spatial jacobian
• calculation of deformation field
• calculation of the inverse transform
• visualization of the registration

Interoperability with other packages

ITK Transforms

In addition to the fact that elastix is based on ITK, there is
an ongoing effort to increase the compatibility between the two
libraries even further. One particular example is the Transform
classes [18]. In the following example, we show that ITK Trans-
forms can be used directly by transformix:
Create an ITK (translation) transform
transform = itk.TranslationTransform.New()
transform.SetOffset([50, -60])

Specify the image space of the transform
sp = moving_image.shape
parameter_map = {

"Direction": ("1", "0", "0", "1"),
"Index": ("0", "0"),
"Origin": ("0", "0"),
"Size": (str(sp[1]), str(sp[0])),
"Spacing": ("1", "1")
}

par_obj = itk.ParameterObject.New()
par_obj.AddParameterMap(parameter_map)

Pass an ITK transform directly to transformix
transformix_obj = itk.TransformixFilter.New(

moving_image)
transformix_obj.SetTransformParameterObject(par_obj)
transformix_obj.SetTransform(transform)
transformix_obj.Update()

Get transformed (translated) image
translated_image = transformix_obj.GetOutput()

NumPy & SciPy

Interoperability with NumPy and, consequently, with SciPy li-
braries, comes from functionality in ITK to convert ITK Images
to NumPy arrays and vice versa. The relevant code is:
itk image -> numpy array (deep copy)
image_array = itk.array_from_image(image_itk)

itk image -> numpy array (shallow copy / view)
image_array = image_itk[:]

numpy array -> itk image
image_itk = itk.image_from_array(image_array)

Project MONAI

More and more people work on the application of deep learn-
ing to medical imaging research. To that end, we developed

104 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 2: The user interface of the elastix-napari plugin. For a
larger version of the image: https://github.com/SuperElastix/elastix-
napari#elastix-napari.

itk_torch_bridge as module of the MONAI codebase that allows
conversion 1) of an ITK Image to a MONAI MetaTensor and
the reverse, while making sure that all relevant metadata remain
intact, and 2) an ITK Transform to a MONAI Transform and back.
The latter is necessary since the ITK Transforms are defined in
the world coordinate system while MONAI uses the pixel/voxel
space. Example of a relevant application is performing deep
learning registration (e.g. affine) using MONAI, and passing the
Transform as initial Transform for itk-elastix, which can
further register the images (e.g. non-linearly). Below, there is a
short code snippet on how to use the module:
from monai.data import itk_torch_bridge as itb
import torch

itk image <-> MONAI metatensor
image_mt = itb.itk_image_to_metatensor(image_itk)
image_itk = itb.metatensor_to_itk_image(image_mt)

Transform: monai space <-> itk space
affine_matrix: 3x3, matrix: 2x3, translation: 2x1
matrix, translation = itb.monai_to_itk_affine(

image=image,
affine_matrix=affine_matrix)

Integration with other software

Continuous efforts have been made to make itk-elastix ac-
cessible to users of various tools. One notable community-driven
initiative is SlicerElastix, which seamlessly integrates elastix
(as an executable) into 3D Slicer [19] medical image visual-
ization software. In addition to this, recent endeavors focused
on developing the elastix-napari plugin for the Napari
[20] visualization software, which is written in Python. Figure 2
illustrates Napari user interface and showcases an itk-elastix
widget on the right side along with an example visualization of two
input images and a transformed image at the center.

Documentation & reproducibility

elastix has been extensively used and cited for over a decade,
resulting in the accumulation of significant community knowl-
edge. In the spirit of reproducible science, and recognizing the
value of building upon previous work, we have compiled a curated
list of parameter files in a parameter file model zoo, each linked
to its associated publication. This resource allows interested users

to easily filter the list based on factors such as anatomical region,
modality, or image dimensionality, empowering them to find pre-
existing parameter files that suit their needs. By facilitating result
replication on their own datasets and providing guidance for
novel registration tasks, this initiative promotes reproducibility and
collaboration within the community.

The documentation for each parameter, component, and API
functionality is continuously updated using Sphinx, ensuring that
it stays up-to-date with the latest developments in elastix.
This allows users to access accurate and relevant information,
with in-code descriptions automatically rendered as comments
into a website for easy access and query capabilities. In addition,
for a more comprehensive understanding of registration and the
inner workings of elastix, the elastix manual provides in-
depth descriptions covering various aspects, including detailed
explanations of the algorithms and methodologies employed. To
further support users, a community forum hosted as GitHub
discussions serves as a valuable resource for asking questions,
seeking assistance, and engaging in discussions with experienced
users and developers who can provide support, share insights, and
address any concerns or challenges faced by users.

Concluding remarks

We presented itk-elastix, an easy-to-install and easy-to-use
Python package that lowers the entry barrier for multi-dimensional
image registration. Its key features are 1) a robust and well-
established backend codebase that provides stability and reliabil-
ity, 2) an extensive collection of tutorials, a parameter file model
zoo, and up-to-date documentation as comprehensive resources for
user adoption, 3) seamless interoperability with popular scientific
libraries in Python, including NumPy, SciPy, and MONAI, and
4) integration into 3D visualization software, facilitating visual
analysis and interpretation of registered images. Overall, with
itk-elastix, researchers and practitioners can effortlessly
leverage the strengths of Python and seamlessly integrate it with a
wide range of scientific software, which unlocks new possibilities
and accelerates advancements in scientific image analysis. Next
steps will further improve the applicability of itk-elastix on
end-to-end deep learning segmentation and registration pipelines
of diverse medical datasets. In addition, a port to WebAssembly
will enhance the universal accessibility of the package.

Acknowledgment

We gratefully acknowledge the financial support received from
the Chan Zuckerberg Initiative (CZI) through the Essential Open
Source Software for Science award for Open Source Image Reg-
istration: The elastix Toolbox, numbers 2020-218571 and 2021-
237680 and the National Institute of Mental Health (NIMH) of
the National Institutes of Health (NIH) under the BRAIN Initiative
award number 1RF1MH126732.

Useful resources

• itk-elastix repository: https://github.com/
InsightSoftwareConsortium/ITKElastix

• jupyter notebook examples: https://github.com/
InsightSoftwareConsortium/ITKElastix/tree/main/
examples

• elastix-napari plugin: https://github.com/SuperElastix/
elastix-napari

ITK-ELASTIX: MEDICAL IMAGE REGISTRATION IN PYTHON 105

• elastix community forum: https://github.com/SuperElastix/
elastix/discussions

• parameter file model zoo: https://elastix.lumc.nl/
modelzoo/

• elastix documentation and manual: https://elastix.lumc.nl/
doxygen/index.html

REFERENCES

[1] J. Modersitzki, Numerical methods for image registration. OUP Oxford,
2003.

[2] J. P. Pluim, J. A. Maintz, and M. A. Viergever, “Mutual-information-
based registration of medical images: a survey,” IEEE transactions on
medical imaging, vol. 22, no. 8, pp. 986–1004, 2003, https://doi.org/10.
1109/JPROC.2003.817864.

[3] J. A. Maintz and M. A. Viergever, “A survey of medical image
registration,” Medical image analysis, vol. 2, no. 1, pp. 1–36, 1998,
https://doi.org/10.1016/S1361-8415(01)80026-8.

[4] F. P. Oliveira and J. M. R. Tavares, “Medical image registration: a re-
view,” Computer methods in biomechanics and biomedical engineering,
vol. 17, no. 2, pp. 73–93, 2014, https://doi.org/10.1080/10255842.2012.
670855.

[5] S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. Pluim,
“Elastix: a toolbox for intensity-based medical image registration,” IEEE
transactions on medical imaging, vol. 29, no. 1, pp. 196–205, 2009,
https://doi.org/10.1109/TMI.2009.2035616.

[6] D. P. Shamonin, E. E. Bron, B. P. Lelieveldt, M. Smits, S. Klein,
M. Staring, and A. D. N. Initiative, “Fast parallel image registration
on CPU and GPU for diagnostic classification of Alzheimer’s disease,”
Frontiers in neuroinformatics, vol. 7, p. 50, 2014, https://doi.org/10.3389/
fninf.2013.00050.

[7] C. T. Metz, S. Klein, M. Schaap, T. van Walsum, and W. J. Niessen,
“Nonrigid registration of dynamic medical imaging data using nD+ t B-
splines and a groupwise optimization approach,” Medical image analysis,
vol. 15, no. 2, pp. 238–249, 2011, https://doi.org/10.1016/j.media.2010.
10.003.

[8] W. Huizinga, D. H. Poot, J.-M. Guyader, R. Klaassen, B. F. Coolen,
M. van Kranenburg, R. Van Geuns, A. Uitterdijk, M. Polfliet, J. Van-
demeulebroucke et al., “PCA-based groupwise image registration for
quantitative MRI,” Medical image analysis, vol. 29, pp. 65–78, 2016,
https://doi.org/10.1016/j.media.2015.12.004.

[9] M. McCormick, X. Liu, J. Jomier, C. Marion, and L. Ibanez, “ITK:
enabling reproducible research and open science,” Frontiers in neuroin-
formatics, vol. 8, p. 13, 2014, https://doi.org/10.3389/fninf.2014.00013.

[10] K. Marstal, F. Berendsen, M. Staring, and S. Klein, “SimpleElastix:
A user-friendly, multi-lingual library for medical image registration,”
in 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), 2016, pp. 574–582, https://doi.org/10.1109/
CVPRW.2016.78.

[11] B. C. Lowekamp, D. T. Chen, L. Ibáñez, and D. Blezek, “The design
of SimpleITK,” Frontiers in neuroinformatics, vol. 7, p. 45, 2013, https:
//doi.org/10.3389/fninf.2013.00045.

[12] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov,
D. Avila, S. Abdalla, C. Willing, and J. development team, “Jupyter
notebooks - a publishing format for reproducible computational
workflows,” in Positioning and Power in Academic Publishing: Players,
Agents and Agendas, F. Loizides and B. Scmidt, Eds. IOS Press, pp.
87–90. [Online]. Available: https://eprints.soton.ac.uk/403913/

[13] The SWIG development team, “Simplified wrapper and interface
generator.” [Online]. Available: https://www.swig.org/

[14] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” vol. 585,
no. 7825, pp. 357–362, https://doi.org/10.1038/s41586-020-2649-2.
[Online]. Available: https://doi.org/10.1038/s41586-020-2649-2

[15] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,

E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pe-
dregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Funda-
mental Algorithms for Scientific Computing in Python,” Nature Methods,
vol. 17, pp. 261–272, 2020, https://doi.org/10.1038/s41592-019-0686-2.

[16] M. J. Cardoso, W. Li, R. Brown, N. Ma, E. Kerfoot, Y. Wang,
B. Murrey, A. Myronenko, C. Zhao, D. Yang et al., “MONAI: An
open-source framework for deep learning in healthcare,” arXiv preprint
arXiv:2211.02701, 2022, https://doi.org/10.48550/arXiv.2211.02701.

[17] A. Diaz-Pinto, S. Alle, A. Ihsani, M. Asad, V. Nath, F. Pérez-García,
P. Mehta, W. Li, H. R. Roth, T. Vercauteren et al., “MONAI Label: A
framework for AI-assisted interactive labeling of 3D medical images,”
arXiv preprint arXiv:2203.12362, 2022, https://doi.org/10.48550/arXiv.
2203.12362.

[18] B. B. Avants, N. J. Tustison, G. Song, B. Wu, M. Stauffer, M. M.
McCormick, H. J. Johnson, and J. C. Gee, “A unified image registration
framework for itk,” in International Workshop on Biomedical Image
Registration. Springer, 2012, pp. 266–275, https://doi.org/10.3389/fninf.
2014.00044.

[19] A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin,
S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka et al., “3D Slicer
as an image computing platform for the Quantitative Imaging Network,”
Magnetic resonance imaging, vol. 30, no. 9, pp. 1323–1341, 2012, https:
//doi.org/10.1016/j.mri.2012.05.001.

[20] napari contributors, “napari: a multi-dimensional image viewer
for python,” 2019, https://doi.org/10.5281/zenodo.3555620. [Online].
Available: https://napari.org/stable/

106 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

PyQtGraph - High Performance Visualization for All
Platforms

Ognyan Moore‡∗, Nathan Jessurun§, Martin Chase§, Nils Nemitz§, Luke Campagnola¶

✦

Abstract—PyQtGraph is a plotting library with high performance, cross-platform
support and interactivity as its primary objectives. These goals are achieved
by connecting the Qt GUI framework and the scientific Python ecosystem. The
end result is a plotting library that supports using native python data types and
NumPy arrays to drive interactive visualizations on all major operating systems.
Whereas most scientific visualization tools for Python are oriented around
publication-quality plotting and browser-based user interaction, PyQtGraph
occupies a niche for applications in data analysis and hardware control that
require real-time visualization and interactivity in a desktop environment.
The well-established framework supports line plots, scatter plots, and images,
including time-series 3D data represented as 4D arrays, in addition to the basic
drawing primitives provided by Qt.
For datasets up to several hundred thousand points, real-time rendering
speed is achieved by optimized interaction with the Python bindings of the Qt
framework. For enhanced image processing capabilities, PyQtGraph optionally
integrates with CUDA. This ensures rendering capabilities are scalable with
increasing data demands. Moreover, this improvement is enabled simply by
installing the CuPy[1] library, i.e. requiring no in-depth user configurations.
PyQtGraph provides interactivity not only for panning and scaling, but also
through mouse hover, click, drag events and other common native interactions.
Since PyQtGraph uses the Qt framework, the user can substitute their own
intended application behavior to those events if they feel the library defaults
are not appropriate. This flexibility allows the development of customized and
streamlined user interfaces for data manipulation.
The included parameter tree framework allows straightforward interactions
with arbitrary user functions and configuration settings. Callbacks execute on
changing parameter values, even asynchronously if requested.
An active developer community and regular release cycles indicate and
encourage further library development. PyQtGraph’s support cycle is
synchronized with the NEP-29[2] standard, ensuring most popular scientific
python modules are continually compatible with each release.
PyQtGraph is available through pypi.org (https://pypi.org/project/pyqtgraph/),
conda-forge (https:/ anaconda.org/conda-forge/pyqtgraph) and GitHub
(https://github.com/pyqtgraph/pyqtgraph).

Index Terms—Visualization, Qt, NumPy, PyData, Python

Introduction

The benefits of interactive exploration of scientific data were
recognized as soon as computer systems gained graphical displays.

* Corresponding author: ognyan.moore@gmail.com
‡ Hobu Inc.
§ Unaffiliated
¶ Allen Institute

Copyright © 2023 Ognyan Moore et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

While early implementations like the PRIM-9 system[3] of the
Stanford Linear Accelerator Center were only available to large
installations, more affordable microcomputers soon found their
place in smaller laboratories also[4][5], controlling experiments
and recording data.

Software packages designed to acquire and process this data
soon appeared, with MATLAB[6] and LabView[7] both imple-
menting graphical representation of data from their very first
versions. The latter was designed to enable data acquisition, pro-
cessing and visualization all in the framework of a single program.
This approach remains common in fields like statistics where
the tools for interaction with data are reasonably well-defined.
In other areas, the advent of high-level programming languages
like Java and Python has enabled researchers to create the tools
for their specific needs with reasonable time investment. This is
facilitated by a continuously growing open-source infrastructure
that provides resources addressing anything from mathematical
methods[8] to full-scale laboratory data infrastructure[9], [10].

With less need to recreate existing solutions, it becomes
feasible to implement software aiming to reduce turn-around times
of iterated experiments: A traditional view of the scientific method
envisions a sequence of detailed experiment design, pain-staking
note-taking, followed by an exhaustive evaluation resulting in a
revised experiment. However, when experiments can be optimized
over a wide parameter space, the evaluation quickly becomes the
dominant factor. Even for established experimental parameters,
external factors such as degraded performance of equipment
result in a significant loss of time if they are discovered only in
subsequent evaluation.

The solution is to provide immediate feedback to the re-
searcher throughout the experiments, and data visualization has
long proven its effectiveness in this regard [Friendly2008]. A chal-
lenge lies in providing tools for a detailed inspection of interesting
data while new information continues to arrive at rates that for
extreme cases are counted in Gb/s even after preselection[11].
These tools also need to provide the flexibility to handle data that
falls outside the range expected in design, as this is the most likely
to indicate failures or to provide the sought-after discovery.

Here we present a visualization library created with these goals
in mind. Although written in Python to allow for easy expansion,
a close integration with the cross-platform Qt UI framework[12] it
provides the capability to interactively handle datasets of hundreds
of thousands of points, or live representation of high-resolution
camera data.

PYQTGRAPH - HIGH PERFORMANCE VISUALIZATION FOR ALL PLATFORMS 107

0 10020 40 60 80

0

-2

2

-1

1

0 10020 40 60 80 120

0

10

0 10020 40 60 80

0

-2

2

-3

-1

1

3

0-1 1-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

0

-1

1

10⁻⁶10⁻⁷ 10⁻⁵

1.02

1.04

1.06

1.03

1.05

1.07

0 20 4010 30 50

0

20

40

10

30

0

-1

1

0 1000200 400 600 800

0

1

-0.2

0.2

0.4

0.6

0.8

0 200 400100 300 500

0

200

400

100

300

500

Fig. 1: A selection of basic plots from PyQtGraph’s suite of examples.

APPROACH

Python

The Python programming language enjoys a large popularity
in scientific research due ease of entry and a robust standard
library combined with access to very comprehensive numerical
computing packages. This makes Python an attractive alternative
to established computational tools such as MATLAB[6] and Math-
ematica.

The set of most commonly used scientific computing tools in
Python are commonly referred to as the SciPy stack. This refers
to SciPy, NumPy, and a variety of other libraries that use the
NumPy ndarray data structure as a container for vectorized
operations. The ndarray gives developers a high level API to
low-level operations with excellent performance. This API allows
NumPy and SciPy to provide a wide variety of standard numerical
computing operations, all of which are very efficient and help
overcome the performance penalty of working with Python as a
cross-platform, interpreted, dynamically typed language.

Qt

The Qt framework is a GUI platform written in C++ that al-
lows the creation of cross-platform applications with a single

shared code-base. Comprehensive Python bindings (PyQt) expose
the complete Qt API. Here, the specific section of interest is
the GraphicsView framework, which provides a surface for
managing and interacting with a large number of custom-made
2D graphical items, with support for zooming and rotation[13].
PyQtGraph is built on this foundation to extend the SciPy stack
with performant cross-platform visualization.

Implementation

GraphicsView renders line segments in a freely scaled coor-
dinate system through QPainterPath objects. The rendering
performance of PyQtGraph results from optimized code to create
such paths directly from NumPy ndarrays describing sets of
x and y coordinates. One illustrative example tightly interfaces
with Qt’s internal pointers through QPolygonF objects to offer
significant speedups for QPainterPath generation. They use
NumPy’s structured array functionality to efficiently create a
binary compatible structure that can serve as an input stream to
a QPainterPath item (see the Appendix section for details).
This QPainterPath is then drawn to the screen by the Graphics
View framework. Note that while arrayToQPolgyonF is a
trivial example of NumPy/Qt integration, a much more complex
usage can be found here.

108 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

CAPABILITIES

All 2d line rendering functions that handle large quantities start
with NumPy arrays and become painter paths through the pow-
erful arrayToQPath conversion. This generic NumPy-to-Qt
data translator covers all common plotting requirements. Figure 1
shows a demonstration from the suite of examples. All graphs in-
cluded in this paper were generated using PyQtGraph’s interactive
export functions, which can store both bitmaps and vector formats,
or provide access to the raw plotted data.

Plot Types

PyQtGraph shows all plots within a PlotItem object consisting
of a ViewBox equipped with a set of axes. This allows dynamic
pan and zoom through the transforms of Qt’s GraphicsView,
with no need to regenerate the QPainterPath objects. Individ-
ual elements of the plot are represented by graphics items that
share the same coordinate systems and shown in any combination
and drawing order.

PyQtGraph represents line plots as PlotCurveItem objects
and offers typical functionality such as color, width and dashing.
"Shadow pen" lines can be underlaid for additional contrast.

Scatter plot items are assigned a default shape, color and size
per data set, but each point can also have a unique attributes.
Shapes are pre-rendered and cached to optimize performance
when the underlying dataset is updated. Depending on the ap-
plication, symbols can be set to scale with the view or maintain
constant size. Functionality is included for items in scatter plots to
recognize mouse hover events.

Plots can be extended by both horizontal and vertical error bars
and annotated by text labels. Built in routines can also transform
the plotted data to provide logarithmic scaling, Fourier transforms,
and to show the gradient dy/dt directly over t or as a phase map
over y.

Bar graphs and images also make use of this framework and
can be added to the same PlotItem, although they are more com-
monly used separately. Users can also create QPainterPath
objects to add their own graphical elements using the well doc-
umented methods of the Qt Graphics View framework. PyQt-
Graph’s suite of examples[14] illustrates this with some demon-
strations.

Performance

We evaluated the plotting performance for line plots of randomly
generated datasets of different length. Figure 2 shows the time
taken from setting new data to the completion of the drawing
process for 1 to 100 separate curves ranging from 100 to 10 million
points. We find that even on common hardware, a curve with
10,000 points can be drawn in less than 10 ms, and an update rate
of 60 Hz can be maintained up to approximately 30,000 points.
Adding more curves introduces additional overhead, such that
the same number of 10,000 points, plotted over 100 curves of
100 points each, increases the update time to just below 40 ms.
Nevertheless, the number of points in each of the 100 curves can
be increased to close to 3,000 before the update rate falls below
10 frames per second (FPS). At this point, the majority of time
is spent processing line segments, and their distribution across
different numbers of curves is of secondary importance: A single
curve allows for 200,000 points to be displayed at 10 FPS.

Plotting the results as the update time divided by the overall
number of data points further illustrates this. As the total number

of points approaches 100,000, where the more or less fixed
overhead of the Qt drawing process is no longer significant, the
update times converges to approximately 200 ns per point drawn
for both 10 curves and 100 curves. We attribute the increased
update time for a single curve to the larger set of data that needs
to be handled simultaneously, which may lead to caching issues.

Although the detailed result will vary with platform, system,
and data, we consider these results to provide a good reference for
the performance that can be expected from PyQtGraph.

Images and Regions of Interest

PyQtGraph also provides the means to display images and other
multi-dimensional data. Handling streams of such data, as in
live video, is similarly enabled by efficient NumPy methods that
convert the input data into a binary representation that can be used
directly by the Qt framework. Various analysis and processing
tools interact with the image arrays, for example regions of
interest (ROIs), look-up tables (LUT) for color-mapped display,
or histograms.

Image Views

The principal object in displaying images, ImageItem, accepts
2-dimensional (interpreted as grayscale) or 3-dimensional (either
color or color and alpha) data of any numeric type. Stored in
NumPy arrays, this data can be pre-processed efficiently using any
available functions in the SciPy stack. Subtracting a background,
for instance, is simply a matter of subtracting the reference frame.
This input is then processed by ImageItem and converted into
Qt’s QImage format for rapid display. A range of colormaps are
provided to enhance detail perception, and can be altered interac-
tively in levels and colors through a HistogramLUTItem.

60 FPS

10 FPS

1 curve
(down-sampled)
10 curves
(down-sampled)
100 curves
(down-sampled)

Time to update frame (ms)

10² 10⁴ 10⁶10³ 10⁵ 10⁷

Points per curve

1

10²

10⁴

10¹

10³

200 ns

1 curve
(down-sampled)
10 curves
(down-sampled)
100 curves
(down-sampled)

Update time per point (µs)

10² 10⁴ 10⁶10³ 10⁵ 10⁷

Total points

0.01

1

0.1

Fig. 2: Line speed benchmark. The time to render 1, 10 or 100
lines of data is shown for varying numbers of points per line. All
data was created using an AMD 5900x Ryzen 9 CPU. Left: Time per
update over points per curve. The thresholds for achieving 10 and 60
frames/s are shown by horizontal lines. Right: Update time per point,
plotted over the total number of points. For more than 100,000 points,
the line-plotting time becomes dominant, and the results converge to
200 ns per point for both 10 and 100 curves, while plotting all points
as a single curve increases the time to 500–600 ns per point.

PYQTGRAPH - HIGH PERFORMANCE VISUALIZATION FOR ALL PLATFORMS 109

CuPy - no LUT
(with LUT)
Numba - no LUT
(with LUT)
NumPy - no LUT
(with LUT)

Float format performance

10⁶10⁵ 10⁷

Pixels in image

1

0.1

10¹

Im
ag
e
U
pd
at
e
D
ur
at
io
n
(m
s)

CuPy - no LUT
(with LUT)
Numba - no LUT
(with LUT)
NumPy - no LUT
(with LUT)

16-bit integer performance

10⁶10⁵ 10⁷

Pixels in image

1

0.1

10¹

Fig. 3: Image speed benchmark. The time to update an image frame
is shown for different data formats. Left: Using optimized NumPy
processing (purple lines), the drawing time is log-scale linear with
the number of pixels over a wide range. GPU accelerated CUDA
processing using CuPy (green lines) describe a more complex re-
lationship with image size. The need to copy data to and from the
GPU creates additional overhead, but as image size grows, the faster
processing speed becomes sufficient to compensate for that overhead.
The choice of various extra processing tasks like LUTs (dashed
lines) show the same basic trends. Alternatively, PyQtGraph’s image
rendering pipeline can be accelerated in Numba is available on the
system. Benchmarks with Numba (blue lines) can be seen as have
performance between that of CuPy and NumPy only. Right: For input
data in uint16 format, CUDA processing is particularly advantageous
and can provide an almost four-fold reduction in drawing time.
Benchmarks were performed on an AMD 5900x Ryzen 9 CPU and
an NVIDIA RTX 3080 discrete GPU.

ROIs

A common image analysis task is to define a ROI in a larger
original image. This is supported by multiple interactive objects
(LineROI, CircleROI, PolygonROI, and others), which pro-
vide NumPy slice objects that reference the selected region within
the image array. Once extracted, the relevant data can then be
further processed. Magnification, live plotting, FFTs and custom
analysis are all simple to implement. Multiple ROIs can be bound
together in groups to provide background correction or region
comparisons both within a single image stream or across many.
These ROI objects remain interactive while attached to the image,
so that resizing, moving and rotating a ROI can prompt immediate
updates of all subsequent plotting and analysis interfaces.

Performance

Numerous factors play into the final performance of a video
stream. Data type conversions, LUTs, scaling, and any custom pre-
processing all need to occur for each frame, and the computational
effort typically scales with image size. A minimum of 20 FPS is
generally required for a usable interactive video stream, although
60 FPS is preferred in many applications. In some cases, data
can be directly passed to the built-in methods of Qt’s QImage.
Otherwise ImageItem relies on the core function makeARGB to
efficiently convert data types, order data properly, rescale levels
and apply a LUT if desired (see the Appendix section for details).

Fig. 4: Performance test with PyQtGraph and Matplotlib widgets
embedded in a Qt5 application. Over a wide range of image sizes,
PyQtGraph completes drawing approximately 75–150 times faster,
taking only 5.4 ms in this example of a 4000×4000 image. The test is
performed without GPU acceleration in a Microsoft Windows environ-
ment, and both libraries are set to sub-sample without interpolation.
Free-to-use test images are provided by the “Unsplash” service.

When integrated as a widget in a Qt application (Figure 4), we
typically find ImageItem to display an image 75–150 times
faster than the FigureCanvas provided by Matplotlib, a plot-
ting library that emphasizes graphical quality over speed.

Some share of the image processing is by necessity done in the
primary event thread of the Qt application, as that thread requires
full access to the data to be displayed. Other calculations can be
moved to other threads to improve performance and maintain the
responsiveness of the UI. For example, larger images can be down-
sampled before handing them to the main thread for display. This
multi-threading consideration extends throughout the application,
and any excessive use of the event thread will impact image
display performance.

To further accelerate the handling of large datasets, PyQt-
Graph can make use of a GPU substrate in one of two ways:
GLImageItem or CuPy. GLImageItem, while limited in its
interactivity, employs OpenGL for rendering. The CuPy library, a
drop-in replacement for NumPy, moves array processing tasks to
a CUDA-enabled GPU. This is not beneficial in all applications,
since the cost of copying the image data between system memory
and the GPU needs to be amortized by a sufficient number of
calculations. In the context of image processing, we find that CuPy

110 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

provides an advantage for images with several hundred thousands
of pixels (Figure 3), depending on target hardware.

Interactivity

Event Driven GUI

The Qt framework is event driven, which allows PyQtGraph to
provide seamless mouse interaction. This also enables users to
develop their own desired behavior in response to mouse move,
hover, leave, enter, double-click, zoom, or drag events. Almost
every aspect of PyQtGraph interacts with the Qt events, or pro-
vides its own in response to e.g. axis adjustments or changes to a
selected region. This interactivity is a core component of the Qt
framework, and adding such behavior to a plot in PyQtGraph is
no more complicated than generating the plot in the first place.

Responsiveness at scale

Recognizing zoom events enables resolution-aware down-
sampling of the plotted data. Multiple available methods provide
different trade-offs of accuracy against performance, and include
a "peak" display that precisely captures the minima and maxima
of the data, a "mean" over the down-sampled interval, and a fast
"sub-sample" that displays only 1 in N data points. Zooming into
the view automatically reveals more detail of the dataset.

Parameter Trees

Another common requirement for user interaction is a
mechanism to interact with for configuration settings or
algorithm parameters. PyQtGraph provides this capability
through the ParameterTree object which hosts any num-
ber of Parameters. Similar to traitlets, PyQtGraph’s
Parameter objects encapsulate a value type and allow regis-
tering callbacks, performing input validation, and more. However,
Parameters are different in that most are coupled to a widget
representation, i.e., allowing users to easily update the values
graphically. Parameter objects can be created through a simple
Python dictionary listing its specifications (type, value, and traits
such as ‘readonly’ or value range). It is then bound to a Qt widget
for editing text, numeric, list-like, and custom data depending
on the parameter type. Parameters can be grouped, linked, and
dynamically instantiated or removed. Callbacks for user actions or
value changes allow results to be recalculated immediately (i.e.,
while a spinbox is changing its value) or after the value has settled.
Parameter trees can save and load their states hierarchically to
easily create persistent configuration files. Since accessing param-
eters mimics a Python dictionary, they can function as a drop-
in replacement for programmatically adjusted settings rather than
forcing users to interface through widgets alone.

EXAMPLES

Rapid iteration of processing parameters

Figure 5 shows such a parameter tree in use. In applications
such as image processing, immediate feedback for a choice of
algorithmic parameters can help to rapidly reduce the exploration
space in the search for viable solutions. For instance, it might
be difficult to tell the appropriate kernel size for a morphological
operation without testing multiple combinations of image types,
parameter values, and more. These factors often make fine-tuning
a laborious process. Parameter trees assist in creating a tool to
integrate the user with the testing space, quickly and without large

amounts of boilerplate code. Using callbacks to provide immediate
response, workable parameter combinations can be explored, and
candidate solutions can be stored to configuration files, both
for comparison to alternative approaches and for application to
specific data types.

Fig. 5: Sample use of parameter trees for user interaction, where
various image processing parameters can be quickly updated. The
displayed image reflects these changes in real-time.

Model Prototyping

The supplementary information contains a similar application of
PyQtGraph’s capabilities to a machine learning model. Here the
parameter trees allows tuning aspects of the input data, model
structure and output formats. The plotting functions provide live
feedback for how these changes affect model accuracy, greatly
assisting a rapid prototyping process.

Monitoring of real-time data

Visualization can provide immediate feedback on measurement
results and the operational state of the equipment involved.
Figure 6 shows an application of the opportunities provided by
PyQtGraph’s interactive facilities in this application. For most
applications, no data reduction is necessary to maintain smooth
display of a sufficiently large buffer, and no additional code is
needed to alternate between monitoring of new data and close
inspection of specific events.

Additional examples

The supplementary information includes video demonstrations of
two additional applications that make heavy use of PyQtGraph
functionality to explore spectral data and to visualize volumetric
data representing the 3d structure of multilayer circuit boards.

SOFTWARE DEVELOPMENT

The original motivation for pyqtgraph was in data acquisition
software, where there is a need to be able to display video and
plots with realtime frame rates and interactivity that allows data
exploration. Interactivity was highly important; the established
matplotlib library already existed and was excellent for vi-
sualizing data in a way that tells a particular story. New data,
though, doesn’t have this story yet. You want to be able to slice it

PYQTGRAPH - HIGH PERFORMANCE VISUALIZATION FOR ALL PLATFORMS 111

def ndarray_from_qpolygonf(polyline):
polyline.data() will be None if the pointer was null.
voidptr(None) is the same as voidptr(0).
vp = Qt.compat.voidptr(polyline.data(), len(polyline)*2*8, True)
return np.frombuffer(vp, dtype=np.float64).reshape((-1, 2))

def create_qpolygonf(size):
polyline = QtGui.QPolygonF()
if hasattr(polyline, 'resize'):

(PySide) and (PyQt6 >= 6.3.1)
polyline.resize(size)

else:
polyline.fill(QtCore.QPointF(), size)

return polyline

def arrayToQPolygonF(x, y):
"""
Utility function to convert two 1D-NumPy arrays representing curve data
(X-axis, Y-axis data) into a single open polygon (QtGui.PolygonF) object.
"""
Validation asserts both x and y are same-shaped and 1D, not shown here
size = x.size
polyline = create_qpolygonf(size)
memory = ndarray_from_qpolygonf(polyline)
memory[:, 0] = x
memory[:, 1] = y
return polyline

TABLE 1: PyQtGraph source code for the core arrayToQPolygonF function.

monitoring

diagnostic

update rate: 31.8 FPS

1720 1740 17601710 1730 1750
0

10

2

4

6

8

m
on

it
or

ed
 c

on
d
it
io

n

0

10

2

4

6

8

1720 1740 17601710 1730 1750

operating time (s)

0

-4

-2

2

4

6

m
ea

su
re

m
en

t

0

-4

-2

2

4

6

Fig. 6: Monitoring and diagnostic of a (simulated) experiment with
intermittent failures. Incoming data at 100 samples/s for two mea-
surement channels is recorded into a rolling 5,000 point buffer and
continuously displayed at 30 frames/s. When a failure is observed,
it can quickly be brought into focus with simple mouse interactions
(click-and-drag and mousewheel zoom) for inspection, or to record
accurate time stamps. Afterwards, a single click returns the view to
automatic scaling without loss of any incoming data.

and stretch it and look at it from every possible angle, quickly and
easily, so that you can decide what story to tell.

At the time, most acquisition software would have been written
in C/C++ for efficiency. However, newer developments meant
python interfaces to Qt’s C++ logic provided a good mix between
speed and ease of use. PyQwt was perfect for this purpose, but
went through a long period without a maintainer (presumably
at the time, it was a huge burden maintaining and distributing
compiled python packages). So pyqtgraph began as a replacement
for PyQwt that would be pure-python, and thus easier to develop
and distribute. Following that template, it was also to include UI
elements that have common use in acquisition/analysis applica-
tions, but are missing from Qt (for example, tools for adjusting
image contrast, parameter trees, etc.).

PyQtGraph was first released in 2012, under the open source
MIT license. It is known to run on systems ranging from the Rasp-
berry Pi to IBM’s s390x architecture. Development is coordinated
by volunteer maintainers, with additional code provided by oc-
casional contributors. A continuous integration system asserts that
the codebase passes a suite of tests for different combinations of Qt
bindings, Python versions and operating systems. PyQtGraph has
adopted NEP-29[2] to establish a support timeline for Python and
NumPy versions in line with the rest of the Python community and
development occurs in close communication with projects such as
ACQ4[15] and Orange3[16] that constitute a large part of the user
base.

OUTLOOK

With a growing number of both maintainers and contributors,
PyQtGraph is well positioned to take advantage of technological
developments. The support of hardware acceleration in recent ver-
sions of NumPy has already been used to add CUDA integration
to some time-critical code, but there is still plenty of potential for
further improvements to performance and capabilities. Increased
use of multi-threaded patterns is a goal in this respect, both
throughout the library, and in user code supported by appropriate

112 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

import cupy as cp
import numpy as np

def makeARGB(data, lut=None, levels=None, scale=None, useRGBA=False, output=None):
condensed variant, full code at:
https://github.com/pyqtgraph/pyqtgraph/blob/pyqtgraph-0.12.0/pyqtgraph/functions.py#L1102-L1331
xp = cp.get_array_module(data) if cp else np

nanMask = None
if data.dtype.kind == "f" and xp.isnan(data.min()):

nanMask = xp.isnan(data)
Scaling
if isinstance(levels, xp.ndarray) and levels.ndim == 2: # rescale each channel independently

newData = xp.empty(data.shape, dtype=int)
for i in range(data.shape[-1]):

minVal, maxVal = levels[i]
if minVal == maxVal:

maxVal = xp.nextafter(maxVal, 2 * maxVal)
rng = maxVal - minVal
rng = 1 if rng == 0 else rng
newData[..., i] = (data[..., i] - minVal) * (scale / rng)

data = newData
else:

minVal, maxVal = levels
rng = maxVal - minVal
data = (data - minVal) * (scale / rng)

LUT
if xp == cp: # cupy.take only supports "wrap" mode

data = cp.take(lut, cp.clip(data, 0, lut.shape[0] - 1), axis=0)
else:

data = np.take(lut, data, axis=0, mode='clip')

imgData = output
if useRGBA:

order = [0, 1, 2, 3] # array comes out RGBA
else:

order = [2, 1, 0, 3] # channels line up as BGR in the final image.
attempt to use library function to copy data into image array
fastpath_success = try_fastpath_argb(xp, data, imgData, useRGBA)
if fastpath_success:

pass
elif data.ndim == 2:

for i in range(3):
imgData[..., i] = data

elif data.shape[2] == 1:
for i in range(3):

imgData[..., i] = data[..., 0]
else:

for i in range(0, data.shape[2]):
imgData[..., i] = data[..., order[i]]

if data.ndim != 3 or data.shape[2] != 4:
imgData[..., 3] = 255

apply nan-mask through alpha channel
if nanMask is not None:

if xp == cp: # Workaround for https://github.com/cupy/cupy/issues/4693
imgData[nanMask, :, 3] = 0

else:
imgData[nanMask, 3] = 0

return imgData

TABLE 2: PyQtGraph source code for the core makeARGB function. For brevity, edge cases and null checks have been omitted.

documentation, examples and API design. The growing maturity
of the Numba just-in-time compiler [17] for Python code provides
additional opportunities for acceleration beyond what NumPy’s
array operations can provide.

APPENDIX

Implementation of arrayToQPolygonF

The function arrayToQPolygonF is one of the simpler cases
that demonstrates the how PyQtGraph bridges the gap between
NumPy and Qt Table 1

Execution takes two ndarray objects of the same length,
representing x- and y-coordinates for a series of line segments.
A QPolygonF object is instantiated and resized to store enough
points that represent the x- and y-coordinates that were passed
in. From there, a void-pointer of the QPolygonF’s internal
memory is retrieved in a NumPy format allowing easy assignment
of the user data. Lastly, we fill that NumPy array with the x-
and y-coordinates that were initially provided. In this process,
we went from NumPy arrays representing x- and y- coordinates
to a QPolygonF object without performing any serialization,
iteration or casting.

PYQTGRAPH - HIGH PERFORMANCE VISUALIZATION FOR ALL PLATFORMS 113

Implementation of makeARGB

The function makeARGB provides the data conversions used in
displaying image data. It is included here as Table 2 to show the
approach and the integration of CUDA GPU support discussed in
section .

The segment of memory within a QImage object that will
ultimately be displayed on the screen can be accessed and written
to as a contiguous, row-major, 3-dimensional NumPy ndarray
of unsigned 8-bit integers; i.e. the red, green and blue color values
and alpha value of each pixel, one row at a time. With this array as
the output target, an incoming image data goes through a number
of processing steps. Many of the steps are only conditionally
executed, depending on the shape and type of the incoming data,
as well as the use of LUTs or rescaling. Some of the respective
branches and decision trees have been omitted here for brevity. In
a best-case scenario, the incoming data is already in the correct
format, and the steps converting data type and element order can
then also be omitted. The CuPy library provides CUDA support
by replicating large sections of NumPy functionality, allowing for
near-identical code paths. The two if-statements seen here address
the lack of a ’clip’ mode in CuPy’s ’take’ function, as well as
differing behavior for masks as indices.

ACKNOWLEDGEMENTS

The authors wish to thank all prior, present and future contributors
to the PyQtGraph project. Their efforts enable all that is presented
here. One regular contributor, @pijyoi, has made significant
contributions to the NumPy and Qt interoperability, as well as
reviewed pull requests from other contributors and maintainers
and provided countless bug-fixes. Finally, we would like to thank
maintainers and contributors to the NumPy, SciPy and CuPy
projects.

REFERENCES

[1] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis, “CuPy:
A NumPy-compatible library for NVIDIA GPU calculations,” in
Proceedings of Workshop on Machine Learning Systems (LearningSys)
in The Thirty-first Annual Conference on Neural Information Processing
Systems (NIPS), 2017. [Online]. Available: http://learningsys.org/nips17/
assets/papers/paper_16.pdf

[2] NEP 29 — Recommend Python and NumPy version support as a com-
munity policy standard, available at https://numpy.org/neps/nep-0029-
deprecation_policy.html.

[3] J. H. Friedman and W. Stuetzle, “John W. Tukey’s work on interactive
graphics,” The Annals of Statistics, vol. 30, pp. 1626–1639, 2002, https:
//doi.org/10.1214/aos/1043351250.

[4] J. S. Byrd, “Microcomputers for nuclear instrumentation,” presented
at Conference and Exhibits on Small Computers, May 23-24 1979,
Clemson, USA, 1 1979, available at https://www.osti.gov/biblio/6060192.

[5] A. V. Reed, “On choosing an inexpensive microcomputer for the
experimental psychology laboratory,” Behavior Research Methods &
Instrumentation, vol. 12, pp. 607–613, 1980, https://doi.org/10.3758/
BF03201852.

[6] C. Moler and J. Little, “A history of MATLAB,” in Proceedings of the
ACM on Programming Languages, vol. HOPL 4. ACM New York, NY,
USA, 2020, pp. 81.1–81.67, https://doi.org/10.1145/3386331.

[7] S. Josifovska, “The father of LabView,” IEE Review, vol. 49, pp. 30–33,
2003, https://doi.org/10.1049/ir:20030905.

[8] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant,
“Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–
362, 2020, https://doi.org/10.1038/s41586-020-2649-2.

[9] J. L. Johnson, H. tom Wörden, and K. van Wijk, “PLACE: An open-
source Python package for laboratory automation, control, and experi-
mentation,” Journal of Laboratory Automation, vol. 20, pp. 10–16, 2015,
https://doi.org/10.1177/2211068214553022.

[10] L. J. Koerner, T. A. Caswell, D. B. Allan, and S. I. Campbell, “A Python
instrument control and data acquisition suite for reproducible research,”
IEEE Transactions on Instrumentation and Measurement, vol. 69, pp.
1698–1707, 2020, https://doi.org/10.1109/TIM.2019.2914711.

[11] C. Bozzi, S. Roiser, and the LHCb Collaboration, “The LHCb software
and computing upgrade for run 3: opportunities and challenges,” in IOP
Conf. Series: Journal of Physics: Conf. Series, 2017, https://doi.org/10.
1088/1742-6596/898/11/112002.

[12] Qt widget toolkit, https://www.qt.io.
[13] QGraphicsView Class, Qt documentation, March 2021,

https://doc.qt.io/qt-5/qgraphicsview.html. [Online]. Available: https:
//doc.qt.io/qt-5/qgraphicsview.html

[14] Example Application, PyQtGraph, can be run after installation by
python -m pyqtgraph.examples.

[15] L. Campagnola, M. Kratz, and P. Manis, “Acq4: an open-
source software platform for data acquisition and analysis in
neurophysiology research,” Frontiers in Neuroinformatics, vol. 8, p. 3,
2014, https://doi.org/10.3389/fninf.2014.00003. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fninf.2014.00003

[16] J. Demšar, T. Curk, A. Erjavec, Črt Gorup, T. Hočevar, M. Milutinovič,
M. Možina, M. Polajnar, M. Toplak, A. Starič, M. Štajdohar,
L. Umek, L. Žagar, J. Žbontar, M. Žitnik, and B. Zupan,
“Orange: Data mining toolbox in Python,” Journal of Machine
Learning Research, vol. 14, pp. 2349–2353, 2013. [Online]. Available:
http://jmlr.org/papers/v14/demsar13a.html

[17] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A LLVM-based Python
jit compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, 2015, pp. 1–6.

114 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

aPhyloGeo-Covid: A Web Interface for Reproducible
Phylogeographic Analysis of SARS-CoV-2 Variation

using Neo4j and Snakemake

Wanlin Li‡∗, Nadia Tahiri‡

✦

Abstract—The gene sequencing data, along with the associated lineage tracing
and research data generated throughout the Coronavirus disease 2019 (COVID-
19) pandemic, constitute invaluable resources that profoundly empower phy-
logeography research. To optimize the utilization of these resources, we have
developed an interactive analysis platform called aPhyloGeo-Covid, leveraging
the capabilities of Neo4j, Snakemake, and Python. This platform enables re-
searchers to explore and visualize diverse data sources specifically relevant
to SARS-CoV-2 for phylogeographic analysis. The integrated Neo4j database
acts as a comprehensive repository, consolidating COVID-19 pandemic-related
sequences information, climate data, and demographic data obtained from
public databases, facilitating efficient filtering and organization of input data for
phylogeographical studies. Presently, the database encompasses over 113,774
nodes and 194,381 relationships. Additionally, aPhyloGeo-Covid provides a
scalable and reproducible phylogeographic workflow for investigating the intri-
cate relationship between geographic features and the patterns of variation in di-
verse SARS-CoV-2 variants. The code repository of platform is publicly accessi-
ble on GitHub (https://github.com/tahiri-lab/iPhyloGeo/tree/iPhylooGeo-neo4j),
providing researchers with a valuable tool to analyze and explore the intricate
dynamics of SARS-CoV-2 within a phylogeographic context.

Index Terms—Phylogeography, Neo4j, Snakemake, Dash, SARS-CoV-2

Introduction

Phylogeography is a field of study that investigates the geographic
distribution of genetic lineages within a particular species, in-
cluding viruses. It combines principles from evolutionary biol-
ogy and biogeography to understand how genetic variation is
distributed across various spatial scales [1]. In the context of
viruses, phylogeography aims to uncover the evolutionary history
and spread of viral lineages by analyzing their genetic sequences
and geographical locations. By examining the genetic diversity of
viruses collected from various geographic locations, researchers
can reconstruct the patterns of viral dispersal and track the move-
ment and transmission dynamics of viral populations over time
[2] [3] [4]. In phylogeographic studies of viruses, the integration
of genetic sequences, geographic information, and temporal data
is essential. Integrating genetic sequences with geographical data

* Corresponding author: Nadia.Tahiri@USherbrooke.ca
‡ Department of Computer Science, University of Sherbrooke, Sherbrooke,
Canada

Copyright © 2023 Wanlin Li et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

enables researchers to conduct robust analysis of phylogenetic
relationships among viral strains and uncover intricate patterns of
viral migration and transmission across diverse regions.Through
the integration of genetic and temporal information, researchers
can derive insights into the timescale of viral evolution and
elucidate the origins as well as dispersal patterns of distinct viral
lineages [5].

Throughout the COVID-19 pandemic, researchers worldwide
sequenced the genomes of thousands of SARS-CoV-2 viruses.
These endeavors have significantly enhanced researchers’ ability
to analyze the intricate temporal and geographic dynamics of virus
evolution and dissemination, consequently playing a pivotal role
in informing the development of effective public health strate-
gies for the proactive control of future outbreaks. However, the
abundance of genetic sequences and the accompanying geographic
and temporal data are scattered across multiple databases, making
it challenging to extract, validate, and integrate the information.
For instance, in order to conduct a phylogeographic study in
SARS-CoV-2, a researcher require access to data regarding the
geographic distribution of specific lineages. This includes infor-
mation on the predominant countries in which these lineages are
prevalent, along with the earliest and latest recorded detection
dates. The Pango Lineages Report serves as a valuable resource
for obtaining such data [6]. Following this, researchers can utilize
databases such as NCBI Virus resource [7] or GISAID [8] to
access sequencing data corresponding to the identified country
and lineage. Daily climate data (e.g., humidity, wind speed, and
temperature) for each location involved during the pandemic
can be obtained from reputable sources such as NASA/POWER
DailyGridded Weather [9]. To supplement the analysis, epidemi-
ological information, including COVID-19 testing and vaccina-
tion rates, can be sourced from projects such as Our World in
Data [10]. In summary, conducting phylogeographic research in
viruses entails not only the meticulous screening and selection of
sequencing data but also the proficient management of associated
geographic information and the integration of substantial volumes
of environmental data. This multifaceted process can be time-
consuming and susceptible to errors. The challenges associated
with data collection, extraction, and integration have hindered the
advancement of phylogeographic research within the field [11]
[12].

To tackle these challenges, we employed the highly scalable
and adaptable Neo4j graph database management system [13]

APHYLOGEO-COVID: A WEB INTERFACE FOR REPRODUCIBLE PHYLOGEOGRAPHIC ANALYSIS OF SARS-COV-2 VARIATION USING NEO4J AND SNAKEMAKE 115

for the storage, management, and querying of extensive SARS-
CoV-2 variants-related data. Differing from traditional relational
databases that employ tables and rows, Neo4j represents data
as an interconnected network of nodes and relationships [14].
Graph theory, with its inherent advantages in relation analysis,
has found extensive applications in Phylogeny. For instance,
Laddada et al. (2022) [15] employed Neo4j to track and analyze
mutation occurrences by treating each nucleotide site of SARS-
CoV-2 sequences as a node, thereby exploring the connections
between mutations. In our research, we utilize graph theory to
trace the relationships among location, environmental factors, and
lineages. By leveraging graph theory, this framework offers a
robust foundation for modeling, storing, and analyzing intricate
relationships between entities [16] [17].

On the other hand, while recent phylogeographic studies have
extensively analyzed the genetic data of species across different
geographic regions, many have primarily focused on species dis-
tribution or provided visual representations, without investigating
the correlation between specific genes (or gene segments) and
environmental factors [18] [19] [20] [21]. To bridge this gap,
a novel algorithm applying sliding windows to scan the genetic
sequence information related to their climatic conditions was
developed by our team [22]. This algorithm utilizes sliding win-
dows to scan genetic sequence information in relation to climatic
conditions. Multiple sequences are aligned and segmented into
numerous alignment windows based on predefined window size
and step size. To assess the relationship between variation patterns
within species and geographic features, the Robinson and Foulds
metric [23] was employed to quantify the dissimilarity between the
phylogenetic tree of each window and the topological tree of ge-
ographic features. Nonetheless, this process was computationally
intensive as each window needed to be processed independently.
Additionally, determining the optimal sliding window size and
step size often required multiple parameter settings to optimize
the analysis. Thus, reproducibility played a critical role in this
process.

To address these challenges, we devised a phylogeographic
pipeline that harnesses the capabilities of Snakemake, a modern
computational workflow management system [24]. Distinguishing
itself from other workflow management systems such as Galaxy
[25] and Nextflow [26], Snakemake stands out as a Python-based
solution, guaranteeing exceptional portability and the convenience
of executing Snakefiles with a Python installation [27]. Leveraging
various Python packages, including Biopython [28] and Pandas
[29] [30], the Snakemake workflow efficiently handles tasks such
as sequencing data reading and writing, as well as conducting phy-
logenetic analysis. Given these capabilities, Snakemake serves as
an optimal choice for aPhyloGeo-Covid. Furthermore, Snakemake
supports parallel execution of jobs, significantly enhancing the
performance and speed of the pipeline. This pipeline implementa-
tion facilitates efficient and reproducible analysis, thereby stream-
lining the phylogeographic research workflow of the aPhyloGeo-
Covid.

With a clear focus on addressing the aforementioned lim-
itations, this study aims to develop an integrated, open-source
phylogeographic analysis platform. This platform consists of
two vital components: data pre-processing and phylogeographical
analysis. In the data pre-processing phase, we employ search-
able graph databases, enabling rapid exploration and offering a
visual overview of SARS-CoV-2 lineages and their associated
environmental factors. This efficient approach allows researchers

to navigate through vast datasets and extract pertinent information
for their analyses. In the subsequent phylogeographical analy-
sis phase, our modularized Snakemake workflow is utilized to
examine how genetic variation patterns within different SARS-
CoV-2 variants align with geographic features. Leveraging this
workflow, researchers can systematically and reproducibly inves-
tigate the relationship between viral genetic diversity and specific
geographic factors. By adopting this comprehensive approach,
a deeper understanding of the intricate interplay among viral
evolution, transmission dynamics, and environmental influences
can be achieved.

Methodology

A diverse range of data sources pertaining to SARS-CoV-2,
covering the period from January 1, 2020, to December 31, 2022,
were meticulously extracted, transformed, and loaded into a Neo4j
graph database. These sources encompassed:

(1) SARS-CoV-2 sequences from the SARS-CoV-2 Data
Hub [31]

(2) Lineage development information from Cov-Lineages [6]
(3) Population density by country, positivity rates, vaccina-

tion rates, diabetes rates, aging data from Our World in
Data [10]

(4) Climate data from NASA/POWER [9]

To enable efficient querying, configuration of analysis parame-
ters, and output generation within the database, a driver object was
established using the Neo4j Python driver to establish seamless
connections with the Neo4j database. For phylogeographic analy-
sis, a streamlined workflow was implemented using the Snake-
make workflow management system, ensuring an efficient and
structured analysis process. Moreover, the interactive visualization
capabilities offered by the Dash-Plotly library [32] [33] were
leveraged for data exploration, analysis parameter setting, and
interactive visualization of results, enhancing the interpretability
and user-friendliness of the platform.

Data Integration

Within the Neo4j database, five labels were employed to ef-
fectively organize the data, encompassing Lineage, Protein, Nu-
cleotide, Location, and Location Day (See Figure 1). The Pro-
tein and Nucleotide labels serve as repositories for sequencing
data information, including accession number, sequence length,
collection date, and collected country. The Lineage label stores
lineage development information, encompassing the most com-
mon country, latest date, and earliest date associated with each
lineage. Climate information such as temperature, precipitation,
wind speed, humidity, and sky shortwave irradiance for each
location and specific day is stored under the LocationDay label.
The Location label contains fundamental information regarding
hospitals, health, and the economy of each country, encompass-
ing GDP, median age, life expectancy, population, proportion of
people aged 65 and older, proportion of smokers, proportion of
extreme poverty, diabetes prevalence, human development index,
and other pertinent factors (See Table 1).

Lineage nodes establish connections with Nucleotide and
Protein nodes, representing the relationships between lineages
and their corresponding genetic sequence data. Moreover, Lineage
nodes establish relationships with Location nodes, utilizing the
most common occurrence rate as a property. This design empow-
ers researchers to determine the most common countries based

116 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

TABLE 1: Neo4j schema labels and properties for data integration.

Label Properties List
Protein accession number, sequence length, col-

lection date, collected country
Nucleotide accession number, sequence length, col-

lection date, collected country
Lineage most common country, latest date, earliest

date
Location Day temperature, precipitation, wind speed,

humidity, sky shortwave irradiance
Location GDP, median age, life expectancy, popu-

lation, proportion of people aged 65 and
older, proportion of smokers, proportion
of extreme poverty, diabetes prevalence,
human development index

Fig. 1: Schema of Neo4j Database for Phylogeographic Analysis
of SARS-CoV-2 Variation. The schema includes key entities and
relationships essential for organizing and querying data related to
samples of protein, samples of nucleotide, locations, lineages, analysis
input, output and parameters. Each entity represents a distinct aspect
of the analysis process and facilitates efficient data organization and
retrieval.

on lineage names or search for lineages that were predominant
in specific countries during specific time periods. This well-
structured and interconnected design within the Neo4j database
enhances the ability to explore, analyze, and extract meaningful
insights from the integrated phylogeographic dataset.

Input exploration

An interactive platform using Dash-Plotly [32] [33] was developed
for efficient data exploration and selection. The integration of
the Dash platform with the Neo4j graph database allows for the
seamless retrieval of pertinent data from interconnected nodes
based on user-provided keywords related to lineages or locations.
This functionality enables efficient identification and filtering of
datasets for subsequent phylogeographic analysis. The integration
of the powerful Neo4j database with the user-friendly interactive
platform facilitates seamless data exploration and selection, sup-
porting researchers in their comprehensive analysis of SARS-CoV-
2 variation.

The aPhyloGeo-Covid offers two distinct approaches for se-
lecting input datasets: 1) lineage-based approach for retrieving
corresponding sequences based on selected lineage name and 2)

location-based approach for retrieving corresponding sequences
based on selected location and time period.

1. Lineage-based approach for retrieving corresponding sequences
based on selected lineage name

The multi-step process is facilitated by the Neo4j Python package
[34] and the interactive Dash web page. Initially, specific lineages
of interest are selected from a checklist provided on the Dash
web page. Subsequently, the selected lineages are utilized to query
the graph database, extracting information about the predominant
countries where these lineages are prevalent. The earliest and
latest recorded dates, along with their corresponding predominant
rates, are also retrieved. The obtained results are presented as an
interactive Dash Table, providing an interface for applying column
and row filters. This functionality allows for the exclusion of
irrelevant locations or lineages based on specific research criteria.
Additionally, predominant rates can be applied as a filter to
exclude certain samples. Finally, based on the filtered table and
the selected sequence type, all related sequences are extracted by
accession number. These filtered sequences are then collected as
input data for subsequent phylogeographic analysis.

Updating the sample table based on provided lineage names
and sequence types, as mentioned earlier, is a crucial step in
exploring input data for phylogeographic analysis. The following
callback function accepts a sequence type (amino acid or nu-
cleotide) and a list of selected lineage names as input and generates
a Dash table containing relevant sample information as the output.
@app.callback(

Output('lineage-table', 'data'),
Input('button-confirm', 'n_clicks'),
State('checklist-lineage', 'value'),
State('dropdown-seqType', 'value')

)
def update_lineage_table(n_clicks,

checklist_value,
seqType_value):

...
starts_with_conditions = " OR ".join(

[f'n.lineage STARTS WITH "{char}"'
for char in checklist_value])

query = f"""
MATCH (n:Lineage) - [r] -> (l: Location)
WHERE {starts_with_conditions}
RETURN n.lineage as lineage,

n.earliest_date as earliest_date,
n.latest_date as latest_date,
l.iso_code as iso_code,
n.most_common_country as country,
r.rate as rate

"""
cols = ['lineage', 'earliest_date',

'latest_date', 'iso_code',
'country', 'rate']

if checklist_value and seqType_value:
#Query in Neo4j database
Transform Cypher results to dataframe
df=neo_manager.queryToDataframe(query,cols)
table_data = df.to_dict('records')
return table_data

....

2. Location-based approach for retrieving corresponding se-
quences based on selected location and time period

Specific locations and a date period are defined by employing
the Dash web page. Subsequently, the Neo4j database is queried
to identify lineages prevalent in the specified locations during the

APHYLOGEO-COVID: A WEB INTERFACE FOR REPRODUCIBLE PHYLOGEOGRAPHIC ANALYSIS OF SARS-COV-2 VARIATION USING NEO4J AND SNAKEMAKE 117

defined time period. The retrieved information includes the earliest
and latest detected dates of the lineages in each country, along with
their predominant rates. To present these findings, an interactive
Dash Table is employed, facilitating the application of filters to
exclude study areas or lineages below a predetermined thresh-
old. Subsequently, the accession numbers of the corresponding
sequences are extracted from the graph database. These filtered
sequences are then collected for subsequent phylogeographic
analysis.

The following function updates the sample table by incorpo-
rating selected start and end dates, sequence type and a list of
selected locations. A Cypher query is employed to retrieve lineage
data from the Neo4j database and apply filtering based on specified
location and date criteria. This function empowers researchers to
explore lineage data associated with diverse geographic regions
within a specified date range.
@app.callback(

Output('location-table', 'data'),
Input('button-confirm', 'n_clicks'),
State('date-range-lineage', 'start_date'),
State('date-range-lineage', 'end_date'),
State('checklist-location', 'value'),
State('dropdown-seqType', 'value')

)
def update_table(n_clicks,

start_date,
end_date,
checklist_value,
seqType_value):

...
query = f"""
MATCH (n:Lineage) - [r] -> (l: Location)
WHERE
n.earliest_date > datetime("{start_date}")

AND
n.earliest_date < datetime("{end_date}")

AND
l.location in {checklist_value}

RETURN n.lineage as lineage,
n.earliest_date as earliest_date,
n.latest_date as latest_date,
l.iso_code,
l.location as country,
r.rate

"""
cols = ['lineage', 'earliest_date',

'latest_date', 'iso_code',
'country', 'rate']

if start_date_string and end_date_string
and checklist_value and seqType_value:

Transform Cypher results dataframe
df=neo_manager.queryToDataframe(query,cols)
table_data = df.to_dict('records')
return table_data

...

In summary, these approaches enable user-guided sequencing
searches. Once the input sequences are defined, an Input node
is generated in our graph database and appropriately labeled. This
Input node establishes connections with the relevant sequencing
(Nucleotide or Protein) nodes used in the analysis, highlighting
relationships between the input data and the corresponding se-
quences. Each Input node is assigned a unique ID, which is pro-
vided for reference and traceability. These user-driven approaches
provide a robust framework for sequencing searches, allowing
researchers to define and explore input data relationships.

The generation of unique ID for nodes plays a crucial role
in ensuring traceability for each analysis. To address this re-
quirement, the provided function ensures that every new node is
assigned a traceable ID.

def generate_unique_name(nodesLabel):
driver = GraphDatabase.driver(URI,

auth=("neo4j",
password))

with driver.session() as session:
random_name = generate_short_id()

result = session.run(
"MATCH (u:" + nodesLabel +
" {name: $name})
RETURN COUNT(u)",
name=random_name)

count = result.single()[0]

while count > 0:
random_name = generate_short_id()
result = session.run(

"MATCH (u:" + nodesLabel +
" {name: $name}) RETURN COUNT(u)",
name=random_name)

count = result.single()[0]

return random_name

The following function facilitates the integration of input nodes
with relationships to relevant sequence nodes within the Neo4j
database, thereby enhancing the organization and management of
input data and analysis entities in the network.

def add_Input_Neo(nodesLabel,
inputNode_name,
id_list):

Execute the Cypher query
driver = GraphDatabase.driver(URI,

auth=("neo4j",
password))

Create a new node
with driver.session() as session:

session.run(
"CREATE (userInput:Input {name: $name})",
name=inputNode_name)

Perform MATCH query to retrieve nodes
with driver.session() as session:

result = session.run(
"MATCH (n:" + nodesLabel + ")" +
"WHERE n.accession IN $id_lt RETURN n",
nodesLabel=nodesLabel,
id_lt=id_list)

Create relationship for each matched node
with driver.session() as session:

for record in result:
other_node = record["n"]
session.run(

"MATCH (u:Input {name: $name}),
(n:" + nodesLabel +

" {accession: $id}) "
"CREATE (n)-[r:IN_INPUT]->(u)",
name=inputNode_name,
nodesLabel=nodesLabel,
id=other_node["accession"])

Parameters setting and tuning

After defining the input data, which includes sequence data and
associated location information, researchers can utilize the plat-
form to select the analysis parameters. This pivotal step entails
creating an Analysis label, where the parameter values are stored
as properties. These parameters encompass the step size, window
size, RF distance threshold, bootstrap threshold, and the list of
environmental factors involved in the analysis. Furthermore, a
connection is established between the Input Node and the Analysis
Node, offering several advantages. Firstly, it allows researchers to
compare results obtained from the same input samples but with

118 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

different parameter settings. Secondly, it facilitates the comparison
of analysis results obtained using the same parameter settings
but different input samples. The interconnected Input, Analysis,
and Output nodes (See Figure 1) ensure the repeatability and
comparability of analysis results.

After confirming the parameters, the corresponding sequences
are downloaded from NCBI [7] using the Biopython package [28],
followed by performing multiple sequence alignments (MSA) [35]
using the MAFFT method [36]. Subsequently, the Snakemake
workflow is triggered in the backend, taking the alignment results
and associated environmental data as input. Once the analysis is
completed, a unique output ID is generated, enabling the results
to be queried on the web platform.

The following function performs the preparation and storage of
parameters and input data, subsequently triggering the workflow.
def trigger_workflow(df_params_geo):

df = pd.DataFrame(df_params_geo)
analysisNode = generate_unique_name("Analysis")
outputNode = generate_unique_name("Output")

record parameters in config file
with open('config/config.yaml', 'r') as file:

config = yaml.safe_load(file)
Update the values
config['accession_lt'] = df['id'].tolist()
config['feature_names'] = df.columns.tolist()
config['analysis_name'] = analysisNode
config['output_name'] = outputNode
create geographic input dataset
csv_file_name = config['geo_file']
dff.to_csv(csv_file_name,

index=False,
encoding='utf-8')

create sequence input dataset
aln_file_name = config['seq_file']
seq_beforeMSA_fname = aln_file_name + '_raw'
if config['data_type'] == 'aa':

db_type = "protein"
else:

db_type = "nucleotide"
accession_list = config['accession_lt']

update config dictionary to the YAML file
with open('config/config.yaml', 'w') as file:

yaml.dump(config, file)
(6) download sequences from NCBI

seq_manager.downFromNCBI(
db_type,
accession_list,
seq_beforeMSA_fname)

(6) alignment
seq_manager.align_MAFFT(seq_beforeMSA_fname,

aln_file_name)
(7) run aphylogeo snakemake workflow
os.system("snakemake --cores all")
(8) In Neo4j create :Analysis node
neo_manager.addAnalysisNeo()

(9) When Analysis finished,
#save output dataframe into Output node

neo_manager.addOutputNeo()
...

Output exploration

After each analysis, a unique output node is generated in the Neo4j
graph database, connected to interrelated nodes that store input
and parameter information, forming an intricate network of rela-
tionships. Through the ID of output node, analysis results can be
conveniently traced and accessed. The platform not only facilitates
querying individual results but also empowers the comparison

of multiple analysis outcomes. Furthermore, as the platform is
utilized, this network of input, analysis, and output nodes expands,
enabling the acquisition of valuable insights from the data and fa-
cilitating comprehensive analysis of the phylogeographic patterns
of SARS-CoV-2 variation.

Snakemake workflow for phylogeographic analysis

To investigate the potential correlation between the diversity of
specific genes or gene fragments and their geographic distribution,
a sliding window strategy was employed in addition to traditional
phylogenetic analyses. As depicted in Figure 2, firstly, the multiple
sequence alignment (MSA) was partitioned into windows by
specifying the sliding window size and sliding window progress
step size. Then a phylogenetic tree for each window was con-
structed. Secondly, cluster analyses for each geographic factor
were performed by calculating a distance matrix and creating a
reference tree based on the distance matrix and the Neighbor-
Joining clustering method [37] [38]. Reference trees (based on
geographic factors) and phylogenetic trees (based on sliding
windows) were defined on the same set of leaves (i.e., names
of species). Subsequently, the correlation between phylogenetic
and reference trees was evaluated using the Robinson and Foulds
(RF) distance calculation [23]. RF distances were calculated for
each combination of the phylogenetic tree and the reference tree.
Finally, bootstrap and RF thresholds were applied to identify gene
fragments in which patterns of variation within species coincided
with a particular geographic feature. These fragments can serve as
informative reference points for future studies.

By scanning the complete Multiple Sequence Alignment se-
quences with a sliding window strategy, the phylogeographic
research can effectively focus on sequence information for spe-
cific window lengths. To address the integration of genetic and
environmental data, complex computational workflows are re-
quired, consisting of multiple interdependent processing steps.
The aPhyloGeo snakemake workflow addresses this challenge by
connecting each step through Snakemake rules, resulting in a
comprehensive and easily automatable workflow. This workflow
ensures reproducibility and facilitates result comparability across
different sampling strategies, window sizes, and step sizes. Ad-
ditionally, the aPhyloGeo workflow enables efficient processing
of large datasets on parallel and distributed systems, leading to
reasonable runtime.

Various tools and software were utilized to accomplish these
analysis tasks, including Biopython [28], raxml-ng [39], fast-
tree [40], and Python libraries such as robinson-foulds, NumPy
[41], and Pandas [29] [42]. A manuscript for aPhyloGeo-
pipeline is available on Github Wiki (https://github.com/tahiri-
lab/aPhyloGeo-pipeline/wiki).

Results and discussion

The SARS-CoV-2 virus has a genome size of approximately
30kb (See Figure 3). The first two-thirds of its genome, located
at the 5’-terminal, encodes the instructions for the synthesis
of two major proteins, namely pp1a, and pp1ab. Following vi-
ral enzyme processing, these proteins are transformed into 16
smaller non-structural proteins (Nsps). Specifically, ORF1a en-
codes nsp1–nsp10, while ORF1b encodes nsp1–nsp16, which play
pivotal roles in viral replication and transcription [43]. Conse-
quently, our first assessment of the aPhyloGeo-Covid performance
focused on the pp1a region.

APHYLOGEO-COVID: A WEB INTERFACE FOR REPRODUCIBLE PHYLOGEOGRAPHIC ANALYSIS OF SARS-COV-2 VARIATION USING NEO4J AND SNAKEMAKE 119

Fig. 2: Integrated analysis of genetic data and environmental data.
The aPhyloGeo workflow can analyze both amino acid sequence
alignment data and nucleic acid sequence alignment data. By setting
the window size and step size, the alignment of multiple sequences was
segmented into sliding windows. For each sliding window, Robinson
and Foulds distances are computed for every combination of the
sliding window of phylogenetic tree and the reference tree created
from environmental factors.

Fig. 3: Schematic presentation of the SARS-CoV-2 genome Structure.
SARS-CoV-2 follows the typical Betacoronavirus genome organiza-
tion. The full-length RNA genome of approximately 29,903 nucleotides
contains a replicase complex (composed of ORF1a and ORF1b) and
four genes responsible for the production of structural proteins: Spike
gene (S), Envelope gene (E), Membrane gene (M), and Nucleocapsid
gene (N).

To identify and filter the appropriate datasets for further
phylogeographic analysis around pp1a, 14 lineages starting with
the codes AE, AY, B, BA, BE, DL, or XBB were selected from the
checklist on the aPhyloGeo-Covid web page. Subsequently, with
the Neo4j graph database, eight relevant locations were retrieved,
where at least one of selected lineage was most prevalent (See
Figure 4). An input node was created based on the lineages with
connections of all the nodes of input sequences. The aPhyloGeo-
Covid web page facilitated the definition of specific parameters for
analysis, including a step size of 3 residues, a window size of 100
residues, an RF distance threshold of 100%, a bootstrap threshold
of 0%, and a list of climate factors such as humidity, wind speed,
sky shortwave irradiance, and precipitation (See Figure 5). These
parameters were associated with the node of analysis and stored
as properties within the node. Finally, the Snakemake workflow
was triggered in the backend. At the completion of analysis, an
output node with a unique identifier was generated within the
Neo4j graph database (See Figure 4).

In this analysis experiment, we used aPhyloGeo-Covid to
query preloaded climatic data from our Neo4j database for each
sample connected to the input node. The climatic data was based
on the most prevalent country and the time of initial collection.
The meteorological parameters considered in our analysis included
Precipitation Corrected, Relative Humidity at 2 Meters, Specific
Humidity at 2 Meters, All Sky Surface Shortwave Downward
Irradiance, Wind Speed within a 10-Meter Range, and Wind Speed
within a 50-Meter Range. For statistical analysis, a user-defined

Fig. 4: The networks of a single analysis experiment. For a specific
analysis, the network highlights all entities serving as input data
sources and their relationships. The Input node establishes con-
nections between the data source objects and the specific analysis
object. The Analysis node captures the parameters associated with
the analysis, while the Output node stores the resulting analysis data.

average calculation interval of 3 days was applied. As shown in
Figure 5 the 14 samples exhibited a range of precipitation from 0
mm/day to 8.57 mm/day with an average of 2.13 mm/day. The spe-
cific humidity ranged from 2.44 g/kg to 19.33 g/kg, averaging at
9.77 g/kg. The relative humidity ranged from 45.76% to 94.22%,
with an average of 73.17%. Compared to other parameters, wind
speed variability and sky surface shortwave downward irradiance
showed relatively small variations across the samples. The sky
surface shortwave downward irradiance ranged from 0.67 kW-
hr/m2/day to 7.38 kW-hr/m2/day, with an average of 4.25 kW-
hr/m2/day. The wind speed at 10 meters ranged from 1.90 m/s to
6.32 m/s, averaging at 3.24 m/s, while the wind speed at 50 meters
ranged from 3.22 m/s to 6.40 m/s with an average of 4.39 m/s

At the end of the aPhyloGeo-Covid analysis workflow, a table
was generated containing the RF distance between the phyloge-
netic tree of that window and the reference tree of a particular en-
vironmental feature. The distribution of normalized RF distances
resulting from the phylogeographic analysis of the input dataset
is presented in Figure 6. Windows exhibiting relatively lower RF
distances merit further investigation. As illustrated in Figure 6, the
RF distance range from 87.82% to 100%. Among the six climatic
factors involved in the analysis, the sliding window region with
the lower RF distance was exclusively identified in the integrated
analysis involving precipitation. For this exploration, a scanning
approach was employed, utilizing a window size of 100 residues
and a step size of 3 residues for sequence analysis. Within the
regions identified with low RF distance, special attention should
be given to regions 792-940. Notably, a consistently low RF
distance value of 81.82% was observed across all 17 windows
spanning positions from 792 to 840. Furthermore, in accordance
with SWISS-MODEL [44], the previous research validates the
presence of a specific region of Nsp3 called Ubl1 (110 residues,
position 819-929) within the identified sequence region. Ni et
al. (2023) [45] revealed that the Ubl1 protein of SARS-CoV-2

120 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 5: Climatic conditions of each sample in most common country
at the time of first collection. The climate factors involved include
Precipitation Corrected (mm/day), Relative Humidity at 2 Meters
(%), Specific Humidity at 2 Meters (g/kg), All Sky Surface Shortwave
Downward Irradiance (kW-hr/m^2/day), Wind Speed within 10 Meters
Range (m/s), Wind Speed within 50 Meters Range (m/s).

exhibits competitive binding with RNA molecules to the N protein,
resulting in the dissociation of viral ribonucleoprotein complexes.
Based on these findings, they propose a model that explains how
the N protein binding to the Ubl1 domain of Nsp3 leads to the
dissociation of viral ribonucleoprotein complexes.

Our phylogeography-based exploration revealed a notable cor-
relation between mutations in the region [792-940] and precipi-
tation. As a reproducible phylogeographic platform, aPhyloGeo-
Covid offers the potential to expand the sample size for further
investigation and facilitates the comparability of analysis results.

In addition of correlation analysis between correlation diver-
sity of subfregment of gene and climate condition, we also inferred
the ORF1a phylogeny and window regions 792-940 of ORF1a
using the RAxML-NG method [39], and then conducted a detailed
horizontal gene transfer (HGT) and recombination analyses (See
Figure 7) using the HGT-Detection program available on the T-
Rex web server [46]. The HGT-Detection program allows one
to infer all possible horizontal gene transfer events for a given
group of species by reconciling the species tree (i.e. ORF1a
gene tree in our case) with different gene phylogenies built
for regions of individual genes [47] [48]. Significantly, every
identified horizontal gene transfer event can be understood from
three perspectives: Firstly, it may signify a distinct complete
or partial HGT occurrence between genetically distant species.
Secondly, it could indicate the occurrence of parallel evolution,
where the involved species underwent similar genetic changes
independently. Lastly, it could also indicate the emergence of a
new species (referred to as a gene transfer recipient) resulting
from the recombination of the donor species genome with that of
a neighboring recipient in the species’ evolutionary history [49].

The minimum-cost transfer scenario with five HGTs necessary
to reconcile the variants and gene phylogenies is shown in Figure
7 (HGTs are depicted by numbered arrows). The analysis initially

TABLE 2: Putative horizontal gene transfer events in the window
regions of 792-940 residue (amino acid sequences) of 14 SARS-Cov-
2 variants. Each iteration of the horizontal gene transfer (HGT)
algorithm is accompanied by the Robinson-Foulds distance (RF) and
bipartition distance (BD) values were calculated. The HGT transfer
occurs from the origin of the subtree to the destination of the subtree.

Iteration RF
distance

BD
distance

Origin
Subtree

Destination
Subtree

1 10 7.5 QWP89176 WAV10885
2 6 3.5 QLL26045 (QPJ77309,

QWP89176,
WAV10885)

3 4 2.5 UJS65740 (QLL26045,
QPJ77309,
QPN02498,
QWP89176,
UJW68561,
WAV10885)

4 2 1.5 UTZ18977 UNF85490
5 0 0.0 (UNF85490,

UTZ18977)
UZC43805

measured the Robinson and Foulds distance (RF) between the phy-
logenetic tree of ORF1a and the inferred phylogenetic trees of the
window regions 792-940 of ORF1a, yielding a dissimilarity of 16.
Five iterations led to the identification of HGT events (See Table
2): the first iteration detected an HGT from subtree QWP89176 to
subtree WAV10885 (RF = 10 and BD = 7.5), followed by an HGT
from subtree QLL26045 to subtrees QPJ77309, QWP89176, and
WAV10885 (RF = 6 and BD = 3.5). The third iteration revealed an
HGT from subtree UJS65740 to subtrees QLL26045, QPJ77309,
QPN02498, QWP89176, UJW68561, and WAV10885 (RF = 4
and BD = 2.5). In the fourth iteration, an HGT event occurred
from subtree UTZ18977 to subtree UNF85490 (RF = 2 and BD
= 1.0). Finally, the fifth iteration showed an HGT from subtrees
UNF85490 and UTZ18977 to subtree UZC43805 (RF = 0 and BD
= 0.0). Overall, five HGT events were identified throughout the
analysis.

Conclusions and future work

This project demonstrates the creation of an open-source, inter-
active platform that aims to enhance phylogeographic research.
By integrating graph databases and a modularized Snakemake
workflow, the platform effectively addresses the challenges posed
by manual tools, streamlining the extraction, validation, and inte-
gration of genetic and environmental data. The platform primarily
focuses on advancing the analysis of geographic and environmen-
tal data associated with SARS-CoV-2.

The utilization of the platform leads to the accumulation of
diverse findings, contributed by researchers conducting various
analyses. As more researchers join the platform, this network
of data sources and analysis outputs continues to expand. The
centralized database acts as a repository, providing researchers
with access to a wide range of results and facilitating exploration
and knowledge sharing within the scientific community. Although
the platform is currently undergoing testing, it is expected that the
interconnectedness of analyses will increase as the platform gains
popularity and attracts more researchers. This network enables
researchers to compare their findings and identify meaningful
patterns. Overall, the platform facilitates the dissemination of re-
search findings, encourages collaboration and building upon each

APHYLOGEO-COVID: A WEB INTERFACE FOR REPRODUCIBLE PHYLOGEOGRAPHIC ANALYSIS OF SARS-COV-2 VARIATION USING NEO4J AND SNAKEMAKE 121

Fig. 6: Variation of normalized Robinson and Foulds (RF) distance on the Multiple Sequence Alignment (MSA) for different climate facters. A
sliding window approach with a window size of 100 residues and a step size of 3 residues was applied. X-axis indicates the start position of
sliding windows on the MSA. Various colors represent six analysed climate factors which are relative humidity (blue), specific humidity (green),
wind speed within 10 meters range (yellow), wind speed within 50 meters range (brown), sky shortwave irradiance (red), and precipitation
(purple).

Fig. 7: Putative horizontal gene transfer events found for the window regions of 792-940 residue (amino acid sequences) of 14 SARS-Cov-2
variants. (a) presents the phylogenetic tree of the window regions 792-940 of ORF1a. (b) presents the phylogenetic tree of ORF1a (amino acid
sequences) with putative horizontal gene transfers mapped into it.

previous work, and fosters a sense of community and scientific
advancement.

To further enhance aPhyloGeo-Covid, several potential av-
enues for improvement can be explored:

1) Expanding the scope of available data resources, with a
specific focus on augmenting geographic and environ-
mental data. By enriching and diversifying the dataset,
the aPhyloGeo-Covid project can unlock greater potential
to uncover valuable insights regarding the dynamics of
SARS-CoV-2 transmission and its intricate relationship
with geographical and environmental variables.

2) Broadening the scope of phylogeographic analysis and
comprehensively investigating the evolutionary dynamics
and spatial spread of the virus can be achieved by
expanding the existing pipeline of aPhyloGeo-Covid.
In addition to the current pipeline, which focuses on
exploring the correlation between specific genes or gene
fragments and their geographic distribution, incorporat-
ing additional phylogeographic analysis workflows is rec-
ommended. By incorporating a diverse range of analysis
approaches, aPhyloGeo-Covid can offer a more extensive
toolkit for studying the evolutionary dynamics and spatial
dissemination of SARS-CoV-2. This expanded toolkit
will contribute to a more comprehensive understanding
of the virus and its transmission patterns.

3) To meet the increasing research demands and accommo-

date larger datasets, prioritizing scalability and efficiency
is crucial in the development of aPhyloGeo-Covid. En-
hancing scalability and efficiency will enable the platform
to handle substantial volumes of data while maintain-
ing optimal performance. This capability is vital for
researchers and public health practitioners, as it ensures
fast and reliable analyses, even as the data continues to
grow. By ensuring scalability and efficiency, aPhyloGeo-
Covid can effectively support decision-making processes
and provide valuable insights into the spatial spread and
evolution of SARS-CoV-2.

Acknowledgements

The authors thank SciPy conference and reviewers for their valu-
able comments on this paper. This work was supported by the
Natural Sciences and Engineering Research Council of Canada,
the Université de Sherbrooke grant, and the Centre de recherche
en écologie de l’Université de Sherbrooke (CREUS).

REFERENCES

[1] S. Dellicour, C. Troupin, F. Jahanbakhsh, A. Salama, S. Massoudi, M. K.
Moghaddam, G. Baele, P. Lemey, A. Gholami, and H. Bourhy, “Using
phylogeographic approaches to analyse the dispersal history, velocity and
direction of viral lineages—application to rabies virus spread in iran,”
Molecular ecology, vol. 28, no. 18, pp. 4335–4350, 2019, https://doi.org/
10.1111/mec.15222.

122 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

[2] C. B. Vogels, D. E. Brackney, A. P. Dupuis, R. M. Robich, J. R. Fauver,
A. F. Brito, S. C. Williams, J. F. Anderson, C. B. Lubelczyk, R. E. Lange
et al., “Phylogeographic reconstruction of the emergence and spread of
powassan virus in the northeastern united states,” Proceedings of the
National Academy of Sciences, vol. 120, no. 16, p. e2218012120, 2023,
https://doi.org/10.1073/pnas.2218012120.

[3] G. Franzo, G. Faustini, M. Legnardi, M. Cecchinato, M. Drigo, and
C. M. Tucciarone, “Phylodynamic and phylogeographic reconstruction
of porcine reproductive and respiratory syndrome virus (prrsv) in europe:
Patterns and determinants,” Transboundary and Emerging Diseases,
vol. 69, no. 5, pp. e2175–e2184, 2022, https://doi.org/10.1111/tbed.
14556.

[4] A. Munsey, F. N. Mwiine, S. Ochwo, L. Velazquez-Salinas, Z. Ahmed,
F. Maree, L. L. Rodriguez, E. Rieder, A. Perez, S. Dellicour et al.,
“Phylogeographic analysis of foot-and-mouth disease virus serotype
o dispersal and associated drivers in east africa,” Molecular ecology,
vol. 30, no. 15, pp. 3815–3825, 2021, https://doi.org/10.1111/mec.15991.

[5] E. C. Holmes, “The phylogeography of human viruses,” Molecular ecol-
ogy, vol. 13, no. 4, pp. 745–756, 2004, https://doi.org/10.1046/j.1365-
294X.2003.02051.x.

[6] Á. O’Toole, V. Hill, O. G. Pybus, A. Watts, I. I. Bogoch, K. Khan, J. P.
Messina, T. COVID, B.-U. C. G. Network, H. Tegally et al., “Tracking
the international spread of sars-cov-2 lineages b. 1.1. 7 and b. 1.351/501y-
v2 with grinch,” Wellcome Open Research, vol. 6, 2021, https://doi.org/
10.12688/wellcomeopenres.16661.2.

[7] J. R. Brister, D. Ako-Adjei, Y. Bao, and O. Blinkova, “Ncbi viral
genomes resource,” Nucleic acids research, vol. 43, no. D1, pp. D571–
D577, 2015, https://doi.org/10.1093/nar/gku1207.

[8] S. Khare, C. Gurry, L. Freitas, M. B. Schultz, G. Bach, A. Diallo,
N. Akite, J. Ho, R. T. Lee, W. Yeo et al., “Gisaid’s role in pan-
demic response,” China CDC weekly, vol. 3, no. 49, p. 1049, 2021,
https://doi.org/10.46234/ccdcw2021.255.

[9] O. A. Marzouk, “Assessment of global warming in al buraimi, sul-
tanate of oman based on statistical analysis of nasa power data over
39 years, and testing the reliability of nasa power against meteo-
rological measurements,” Heliyon, vol. 7, no. 3, p. e06625, 2021,
https://doi.org/10.1016/j.heliyon.2021.e06625.

[10] E. Mathieu, H. Ritchie, E. Ortiz-Ospina, M. Roser, J. Hasell, C. Appel,
C. Giattino, and L. Rodés-Guirao, “A global database of covid-19
vaccinations,” Nature human behaviour, vol. 5, no. 7, pp. 947–953, 2021,
https://doi.org/10.1038/s41562-021-01122-8.

[11] J. E. McCormack, S. M. Hird, A. J. Zellmer, B. C. Carstens, and R. T.
Brumfield, “Applications of next-generation sequencing to phylogeogra-
phy and phylogenetics,” Molecular phylogenetics and evolution, vol. 66,
no. 2, pp. 526–538, 2013, https://doi.org/10.1016/j.ympev.2011.12.007.

[12] A. McGaughran, L. Liggins, K. A. Marske, M. N. Dawson, L. M.
Schiebelhut, S. D. Lavery, L. L. Knowles, C. Moritz, and C. Riginos,
“Comparative phylogeography in the genomic age: Opportunities and
challenges,” Journal of Biogeography, vol. 49, no. 12, pp. 2130–2144,
2022, https://doi.org/10.1111/jbi.14481.

[13] J. Guia, V. G. Soares, and J. Bernardino, “Graph databases: Neo4j
analysis.” in ICEIS (1), 2017, pp. 351–356, https://doi.org/10.5220/
0006356003510356.

[14] S. Timón-Reina, M. Rincón, and R. Martínez-Tomás, “An overview
of graph databases and their applications in the biomedical domain,”
Database, vol. 2021, 2021, https://doi.org/10.1093/database/baab026.

[15] W. Laddada, C. Zanni-Merk, and L. F. Soualmia, “Analyzing sars-cov-2
sequence patterns by semantic trajectories.” Stud Health Technol Inform,
pp. 197–200, 2022, https://doi.org/10.3233/SHTI220696.

[16] R. Angles, “A comparison of current graph database models,” in 2012
IEEE 28th International Conference on Data Engineering Workshops.
IEEE, 2012, pp. 171–177, https://doi.org/10.1109/ICDEW.2012.31.

[17] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins, “A
comparison of a graph database and a relational database: a data prove-
nance perspective,” in Proceedings of the 48th annual Southeast regional
conference, 2010, pp. 1–6, https://doi.org/10.1145/1900008.1900067.

[18] O. Uphyrkina, W. E. Johnson, H. Quigley, D. Miquelle, L. Marker,
M. Bush, and S. J. O’Brien, “Phylogenetics, genome diversity and origin
of modern leopard, panthera pardus,” Molecular ecology, vol. 10, no. 11,
pp. 2617–2633, 2001, https://doi.org/10.1046/j.0962-1083.2001.01350.x.

[19] S.-J. Luo, J.-H. Kim, W. E. Johnson, J. v. d. Walt, J. Martenson, N. Yuhki,
D. G. Miquelle, O. Uphyrkina, J. M. Goodrich, H. B. Quigley et al.,
“Phylogeography and genetic ancestry of tigers (panthera tigris),” PLoS
biology, vol. 2, no. 12, p. e442, 2004, https://doi.org/10.1371/journal.
pbio.0020442.

[20] D. J. Taylor, S. J. Connelly, and A. A. Kotov, “The intercontinental

phylogeography of neustonic daphniids,” Scientific Reports, vol. 10,
no. 1, p. 1818, 2020, https://doi.org/10.1038/s41598-020-58743-8.

[21] M. A. Aziz, O. Smith, H. A. Jackson, S. Tollington, S. Darlow, A. Barlow,
M. A. Islam, and J. Groombridge, “Phylogeography of panthera tigris in
the mangrove forest of the sundarbans,” Endangered Species Research,
vol. 48, pp. 87–97, 2022, https://doi.org/10.3354/esr01188.

[22] A. Koshkarov, W. Li, M.-L. Luu, and N. Tahiri, “Phylogeography:
Analysis of genetic and climatic data of sars-cov-2,” 2022, https://doi.
org/10.25080/majora-212e5952-018.

[23] D. F. Robinson and L. R. Foulds, “Comparison of phylogenetic trees,”
Mathematical biosciences, vol. 53, no. 1-2, pp. 131–147, 1981, https:
//doi.org/10.1016/0025-5564(81)90043-2.

[24] J. Köster and S. Rahmann, “Snakemake—a scalable bioinformatics
workflow engine,” Bioinformatics, vol. 28, no. 19, pp. 2520–2522, 2012,
https://doi.org/10.1093/bioinformatics/bty350.

[25] V. Jalili, E. Afgan, Q. Gu, D. Clements, D. Blankenberg, J. Goecks,
J. Taylor, and A. Nekrutenko, “The galaxy platform for accessible,
reproducible and collaborative biomedical analyses: 2020 update,” Nu-
cleic acids research, vol. 48, no. W1, pp. W395–W402, 2020, https:
//doi.org/10.1093/nar/gkaa434.

[26] V. Spišaková, L. Hejtmánek, and J. Hynšt, “Nextflow in bioinformatics:
Executors performance comparison using genomics data,” Future Gener-
ation Computer Systems, 2023, https://doi.org/10.1016/j.future.2023.01.
009.

[27] L. Wratten, A. Wilm, and J. Göke, “Reproducible, scalable, and share-
able analysis pipelines with bioinformatics workflow managers,” Nature
methods, vol. 18, no. 10, pp. 1161–1168, 2021, https://doi.org/10.1038/
s41592-021-01254-9.

[28] P. J. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke,
I. Friedberg, T. Hamelryck, F. Kauff, B. Wilczynski et al., “Biopython:
freely available python tools for computational molecular biology and
bioinformatics,” Bioinformatics, vol. 25, no. 11, pp. 1422–1423, 2009,
https://doi.org/10.1093/bioinformatics/btp163.

[29] Wes McKinney, “Data Structures for Statistical Computing in Python,”
in Proceedings of the 9th Python in Science Conference, Stéfan van der
Walt and Jarrod Millman, Eds., 2010, pp. 56 – 61, https://doi.org/10.
25080/Majora-92bf1922-00a.

[30] P. Lemenkova, “Processing oceanographic data by python libraries
numpy, scipy and pandas,” Aquatic Research, vol. 2, no. 2, pp. 73–91,
2019, https://doi.org/10.3153/AR19009.

[31] E. L. Hatcher, S. A. Zhdanov, Y. Bao, O. Blinkova, E. P. Nawrocki,
Y. Ostapchuck, A. A. Schäffer, and J. R. Brister, “Virus variation
resource–improved response to emergent viral outbreaks,” Nucleic acids
research, vol. 45, no. D1, pp. D482–D490, 2017, https://doi.org/10.1093/
nar/gkw1065.

[32] S. Hossain, C. Calloway, D. Lippa, D. Niederhut, and D. Shupe, “Vi-
sualization of bioinformatics data with dash bio,” in Proceedings of the
18th Python in Science Conference, vol. 126. SciPy, Austin, Texas, pp.
126–133, 2019, p. 133, https://doi.org/10.25080/Majora-7ddc1dd1-012.

[33] V. Liermann and S. Li, “Dynamic dashboards,” in The Digital Journey of
Banking and Insurance, Volume II: Digitalization and Machine Learning.
Springer, 2021, pp. 155–180, https://doi.org/10.1007/978-3-030-78829-
2_9.

[34] G. Jordan and G. Jordan, “Neo4j+ python,” Practical Neo4j, pp. 169–
213, 2014, https://doi.org/10.1007/978-1-4842-0022-3_9.

[35] R. C. Edgar and S. Batzoglou, “Multiple sequence alignment,” Current
opinion in structural biology, vol. 16, no. 3, pp. 368–373, 2006, https:
//doi.org/10.1016/j.sbi.2006.04.004.

[36] K. Katoh and D. M. Standley, “Mafft multiple sequence alignment
software version 7: improvements in performance and usability,” Molec-
ular biology and evolution, vol. 30, no. 4, pp. 772–780, 2013, https:
//doi.org/10.1093/molbev/mst010.

[37] N. Saitou and M. Nei, “The neighbor-joining method: a new method
for reconstructing phylogenetic trees.” Molecular biology and evolution,
vol. 4, no. 4, pp. 406–425, 1987, https://doi.org/10.1093/oxfordjournals.
molbev.a040454.

[38] R. Mihaescu, D. Levy, and L. Pachter, “Why neighbor-joining works,”
Algorithmica, vol. 54, pp. 1–24, 2009, https://doi.org/10.1007/s00453-
007-9116-4.

[39] A. M. Kozlov, D. Darriba, T. Flouri, B. Morel, and A. Stamatakis,
“Raxml-ng: a fast, scalable and user-friendly tool for maximum likeli-
hood phylogenetic inference,” Bioinformatics, vol. 35, no. 21, pp. 4453–
4455, 2019, https://doi.org/10.1093/bioinformatics/btz305.

[40] M. N. Price, P. S. Dehal, and A. P. Arkin, “Fasttree: computing large
minimum evolution trees with profiles instead of a distance matrix,”
Molecular biology and evolution, vol. 26, no. 7, pp. 1641–1650, 2009,
https://doi.org/10.1093/molbev/msp077.

APHYLOGEO-COVID: A WEB INTERFACE FOR REPRODUCIBLE PHYLOGEOGRAPHIC ANALYSIS OF SARS-COV-2 VARIATION USING NEO4J AND SNAKEMAKE 123

[41] S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array:
a structure for efficient numerical computation,” Computing in science
& engineering, vol. 13, no. 2, pp. 22–30, 2011, https://doi.org/10.1109/
MCSE.2011.37.

[42] J. Bernard and J. Bernard, “Python data analysis with pandas,” Python
Recipes Handbook: A Problem-Solution Approach, pp. 37–48, 2016,
https://doi.org/10.1007/978-1-4842-0241-8_5.

[43] M. T. Khan, M. Irfan, H. Ahsan, A. Ahmed, A. C. Kaushik, A. S. Khan,
S. Chinnasamy, A. Ali, and D.-Q. Wei, “Structures of sars-cov-2 rna-
binding proteins and therapeutic targets,” Intervirology, vol. 64, no. 2,
pp. 55–68, 2021, https://doi.org/10.1159/000513686.

[44] A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gu-
mienny, F. T. Heer, T. A. P. de Beer, C. Rempfer, L. Bordoli et al.,
“Swiss-model: homology modelling of protein structures and com-
plexes,” Nucleic acids research, vol. 46, no. W1, pp. W296–W303, 2018,
https://doi.org/10.1093/nar/gky427.

[45] X. Ni, Y. Han, R. Zhou, Y. Zhou, and J. Lei, “Structural insights into
ribonucleoprotein dissociation by nucleocapsid protein interacting with
non-structural protein 3 in sars-cov-2,” Communications Biology, vol. 6,
no. 1, p. 193, 2023, https://doi.org/10.1038/s42003-023-04570-2.

[46] A. Boc, A. B. Diallo, and V. Makarenkov, “T-rex: a web server for
inferring, validating and visualizing phylogenetic trees and networks,”
Nucleic acids research, vol. 40, no. W1, pp. W573–W579, 2012,
https://doi.org/10.1093/nar/gks485.

[47] A. Boc and V. Makarenkov, “Towards an accurate identification of mosaic
genes and partial horizontal gene transfers,” Nucleic acids research,
vol. 39, no. 21, pp. e144–e144, 2011, https://doi.org/10.1093/nar/gkr735.

[48] E. Denamur, G. Lecointre, P. Darlu, O. Tenaillon, C. Acquaviva,
C. Sayada, I. Sunjevaric, R. Rothstein, J. Elion, F. Taddei et al.,
“Evolutionary implications of the frequent horizontal transfer of mis-
match repair genes,” Cell, vol. 103, no. 5, pp. 711–721, 2000, https:
//doi.org/10.1016/S0092-8674(00)00175-6.

[49] V. Makarenkov, B. Mazoure, G. Rabusseau, and P. Legendre, “Horizontal
gene transfer and recombination analysis of sars-cov-2 genes helps
discover its close relatives and shed light on its origin,” BMC ecology
and evolution, vol. 21, pp. 1–18, 2021, https://doi.org/10.1186/s12862-
020-01732-2.

124 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Pandera: Going Beyond Pandas Data Validation

Niels Bantilan‡§∗

✦

Abstract—Data quality remains a core concern for practitioners in machine
learning, data science, and data engineering, and many specialized packages
have emerged to fulfill the need of validating and monitoring data and models.
However, as the open source community creates new data processing frame-
works - notably, new highly performant entrants such as Polars - existing data
quality frameworks need to catch up to support them, and in some cases, the
Python community more broadly creates new data validation libraries for these
new data frameworks. This paper outlines pandera’s motivation and challenges
that took it from being a pandas-only data validation framework [1] to one that
is extensible to other non-pandas-compliant dataframe-like libraries. It also pro-
vides an informative case study of the technical and organizational challenges
associated with expanding the scope of a library beyond its original boundaries.

Index Terms—data validation, data testing, data science, machine learning,
data engineering

Introduction

Data validation is the process of falsifying data against a particular
set of assumptions [2]. Framed differently, it is the act of verifying
data against a set of properties and constraints that are explicitly
established by the data practitioner. In this context, the term "data
practitioner" refers to anyone using a programming language to
analyze, transform, or otherwise process data. It includes, but
is not limited to, data scientists, data engineers, data analysts,
machine learning engineers, and machine learning researchers.
This paper describes the trajectory of pandera from a pandas-only
validation library to a more generic framework that can validate
any dataframe-like object.

Origins

Pandera started as a small project in 2018 with the goal of provid-
ing a lightweight, flexible, and expressive API to validate pandas
DataFrames [3]. This introductory section provides a brief primer
on data validation with pandera, providing insights into how its
design facilitates code-first schema authoring and maintenance.
The operating assumption is that this, in turn, gives rise to safer
and more robust data pipelines.

Why Validate Data?

As stated in the introduction, data validation is the act of falsifying
(or verifying) data against a particular set of assumptions, ex-
pressed as a schema of validation rules. These rules are explicitly

* Corresponding author: niels@union.ai
‡ Union.ai
§ pyOpenSci

Copyright © 2023 Niels Bantilan. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

established by the data practitioner without interference from
automated processes, like data profiling, and verified at runtime
on real-world data.

In machine learning (ML) and statistical analysis use cases,
this is critical because invalid data, e.g. incorrect types, invalid
values, and otherwise corrupted data, can pass silently along a data
pipeline and propagate those errors to various endpoints, which
cause adverse ripple-effects to the downstream consumers that rely
on high-quality data. These endpoints can be models, analyses, and
visualizations, and errors in any of these artifacts call into question
the trustworthiness of the conclusions that they entail. Though this
is especially important in scientific research and business-critical
applications, data validation ought to be a core part of the quality
assurance pipeline of data teams.

Data practitioners build statistical domain knowledge about the
data they are working with by inspecting the data via exploratory
data analysis (EDA), data profiling tools, or a combination of
these two approaches. By building a mental model of how their
data looks like and envisioning a set of constraints that express
what the ideal "clean" dataset looks like, the data practitioner can
then encode this understanding as a schema that they can use
to validate new incoming data. This schema serves not only as
documentation for themselves and future maintainers, but also as
a stateless data drift monitoring system for data transformation,
model training, and production inference pipelines. The benefit of
this statelessness is that the data practitioner can reason about what
counts as valid data through their code and their version control
system of choice, which captures changes in the assumptions about
valid data over time.

However, the process of writing down these schemas is a
laborious and often thankless task and not as exciting as getting
to the modeling/analysis/visualization part of the development
process. As stated in [1], to lower the barrier to explicitly writing
down schemas for maintaining data quality, pandera was created
with the following design principles in mind:

1) Expressing schemas as code should feel familiar to pan-
das users.

2) Data validation should be compatible with the different
workflows and tools in in the data science and ML stack
without a lot of setup or configuration.

3) Defining custom validation rules should be easy.
4) The validation interface should make the debugging pro-

cess easier.
5) Integration with existing code should be as seamless as

possible.

These principles were codified to guide the development of
pandera project towards ease of learning and incremental adoption.

PANDERA: GOING BEYOND PANDAS DATA VALIDATION 125

Pandera’s Programming Model

With these principles in mind, pandera sought to be minimally in-
vasive, quick to integrate into existing data science and ML code-
bases, and easy to learn for data scientists, data engineers, and
ML engineers who use Python (refer to the Related Tools section
of [1] for a discussion of similar projects in the Python space).
The original object-based syntax makes it clear how defining a
DataFrameSchema is similar to defining pandas DataFrames:

import pandera as pa

schema = pa.DataFrameSchema({
"column1": pa.Column(

int, pa.Check.gt(0)
),
"column2": pa.Column(

str, pa.Check.isin([*"ABC"])
),
"column3": pa.Column(

float,
pa.Check.in_range(

min_value=0.0,
max_value=1.0,

)
),

})

In the example above, we expect our data to have three columns
that have specific names, data types, and data value constraints. By
reading the code the data practitioner themselves or their collab-
orators can immediately see what the minimum requirements are
for valid data. For example, the pa.Check.gt(0) constraint
indicates that column1 just always be greater than zero.

Pandera emphasizes code-first schema authoring and mainte-
nance. As opposed to yaml-, json- or UI-based schema authoring,
code-first schemas lower the barrier for DS/ML practitioners to
create and maintain these schemas because they don’t have to
learn a DSL or a set of entirely new concepts.

The hypothesis was that this would give rise to safer and
more robust data pipelines in different parts of the data ecosystem:
from research projects in academia, to nonprofits seeking to create
valuable data assets, or to industry practitioners who want to use
pandas in a production ETL pipeline. Pandera’s core programming
model is simple:

Pandera embraces the data testing development process, which
involves validating real data as well as the functions that produce
them. The process of developing data pipelines with data testing in
mind involves the iterative definition of both data transformations
and schemas, which can be used as "fancy assertions" in your
code, or as reusable components in the pipeline’s unit test suite.

As depicted in 1, this process is roughly as follows: by
whatever means necessary, typically via EDA or data profiling (the
programmatic creation of summary statistics and visualization),
the data practitioner arrives at a schema, which states the columns
and properties that the data should adhere to. The schema is then
used to validate data in-line, or at the interface boundary of critical
functions in the data pipeline. The data practitioner can start
with a basic schema, which may include column names and their
expected types. As they build more statistical domain knowledge
about what counts as valid data, the can refine the schemas to
better fit the requirements of their analysis using Checks.

import pandas as pd

inline validation
data = pd.DataFrame({

"column1": [1, 2, 3],

"column2": ["A", "B", "C"],
"column3": [0.2, 0.41, 0.87],

})
schema.validate(data)

validating the input-output function boundary
@pa.check_input(schema)
def transform(data):

...

pandera automatically validates the input
when the transform function is called
transform(data)

If validation succeeds, the schema returns the valid data. If it
fails, pandera raises a SchemaError or SchemaErrors exception.
These exceptions contain metadata about what caused the failure
at varying levels of granularity: either at the schema-level, e.g.
wrong column types, or at the data-value-level, e.g. numbers being
out of range:
invalid_data = pd.DataFrame({

"column1": [1, -1, 3],
"column2": ["A", "B", "D"],
"column3": [0.2, 0.41, 100.0],

})
try to validate as all columns and constraints
before raising an error with lazy=True
try:

schema.validate(data, lazy=True)
except pa.errors.SchemaErrors as exc:

print("Failure cases")
print(

exc.failure_cases[
["column", "failure_case", "index"]

]
)

Output:
Failure cases

column failure_case index
0 column1 -1 1
1 column2 D 2
2 column3 100.0 2

The exception raised during validation contains several attributes,
including the original failed data in the .data attribute, but more
importantly, it contains a normalized DataFrame view of all the
failure cases in the data via the .failure_cases attribute. This
is reported at the most granular level so that the data practitioner
can quickly understand what’s wrong with their data.

Evolution

After its first set of releases, pandera continued to improve with
bug fixes, feature enhancements, and documentation improve-
ments. This section highlights four major events in pandera’s
development. In chronological order, these events were: documen-
tation improvements, support for a class-based API, data synthesis
strategies, and the pandera type system.

Documentation Improvements

Documentation is one of the most critical pieces to any software
project. Even if the underlying code is well-written, performant,
and useful, ultimately if the documentation is unclear or otherwise
difficult to read and navigate, the software itself will be inaccessi-
ble to end users.

The first set of major contributions came with the help of
Nigel Markey, who helped considerably in documentation efforts,
making pandera easy to learn and adopt through examples, tuto-
rials, and a comprehensive API reference. This helped pandera to

126 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 1: The pandera programming model is an iterative loop between building statistical domain knowledge, implementing data transforms
and schemas, and verifying data.

become part of pyOpenSci [4], which helped further improve its
quality and usability through further review and refinement.

Class-based API

The second major improvement in pandera was contributed by
Jean-Francois Zinque, who implemented the class-based syntax
that’s more akin to Python dataclasses and the pydantic library
[5]. This modernized pandera to use syntax that was familiar
to developers who use classes as types to express the form and
properties of the data structures they want to use.
class Model(pa.DataFrameModel):

column1: int = pa.Field(gt=0, lt=100)
column2: str = pa.Field(isin=[*"ABC"])
column3: float = pa.Field(

in_range={"min_value": 0.0, "max_value": 1.0}
)

This also enabled pandera to take advantage of type hints as a
convenient way of expressing the input-output types of a function
and enforcing data quality at runtime.
from pandera.typing import DataFrame

class Input(pa.DataFrameModel):
x: float
y: float

class Output(Input):
z: float

@pa.dataframe_check
def check_z(cls, df):

"""Column z must be the sum of x and y."""
return df["z"] == (df["x"] + df["y"])

This decorator does runtime checks on the
input and output dataframe.
@pa.check_types
def fn(data: DataFrame[Input]) -> DataFrame[Output]:

return data.assign(z=lambda df: df.x + df.y)

Data Synthesis Strategies

The third major improvement was adding support for data syn-
thesis strategies using the hypothesis library [6]. This expanded
pandera’s scope from a data validation library to a “data test-
ing” toolkit by allowing the data practitioner to easily create
mock data for testing not only real data, but the functions that
produce/clean/transform the data. Note that the hypothesis
library for doing property-based testing is not to be confused with
statistical Hypothesis checks, which were already supported
by pandera.

import pytest
from hypothesis import given

This will generate data for testing the correct
implementation of fn
@given(Input.strategy(size=3))
def test_fn(input_data)

fn(input_data)

class WrongInput(pa.DataFrameModel):
a: int
b: str

This will fail on the output check
@given(WrongInput.strategy(size=3))
def test_fn_wrong_input(input_data)

with pytest.raises(pa.SchemaError):
fn(input_data)

Hypothesis handles generating valid data under the pandera
schema’s constraints, which relieves the developer from manually
hand-crafting dataframes and allows unit tests to catch edge cases
that would not otherwise be caught by the hand-crafted test
cases. This can be seamlessly integrated with pytest, since
one can think of pandera schemas as essentially "fancy assertion"
statements.

Pandera Type System

Finally, the fourth major improvement was contributed by Jean-
Francois Zinque, who implemented pandera’s type system, which
provides a consistent interface for defining semantic and logical
types not only for pandas, but also potentially for other dataframe
libraries like pyspark and modin.

This allows pandera users to, for example, implement an
IPAddress type, which requires both specifying the data type
and checking the actual values of the data to verify:
import re
from typing import Optional, Iterable, Union
from pandera import dtypes
from pandera.engines import pandas_engine

@pandas_engine.Engine.register_dtype
@dtypes.immutable
class IPAddress(pandas_engine.NpString):

REGEX = re.compile(
r"(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})"

)

def check(
self,
pandera_dtype: dtypes.DataType,

PANDERA: GOING BEYOND PANDAS DATA VALIDATION 127

data_container: Optional[pd.Series] = None,
) -> Union[bool, Iterable[bool]]:

ensure that the data container's data
type is correct
correct_type = super().check(pandera_dtype)
if not correct_type:

return correct_type
if data_container is None:

raise ValueError

ensure IP address pattern
return data_container.map(

lambda x: self.REGEX.match(x) is not None
)

using it in a DataFrame model
class IPAddressModel(pa.DataFrameModel):

ip_address: IPAddress

Expanding Scope

After gaining traction over the years, the author, the contributors,
and the growing community of pandera users also began to expand
pandera’s scope to support pandas-compliant data frameworks
such as GeoPandas [7], Dask [8], Modin [9], and Pyspark Pan-
das [10] (formerly Koalas). As requests for other dataframe-like
libraries increased in frequency, it became clear that pandera in
its existing state was not well-suited for extension beyond Pandas
objects.

Design Weaknesses

The fundamental design flaw in pandera’s internals was that
the schema specification and validation engine were interleaved
through out the code base. This presented the following challenges
for supporting non-pandas dataframe libraries:

• Schemas were strongly coupled to pandas: The schema
class had a lot of assumptions about pandas, which man-
ifested as method calls and operations that assumed that
pandera was operating on a pandas DataFrame.

• Checks were strongly coupled to pandas: Pandera has
core checks that are exposed in the schema/schema com-
ponent object, which were all implemented with pandas-
specific code.

• Error reporting assumed in-memory data: Error report-
ing of metadata and value checks assumed in-memory,
small-to-medium-sized datasets. For any larger scale data
that requires a distributed dataframe, the error-reporting
mechanism doesn’t work well because the worst case
scenario of all data values being invalid would produce
an failure case report that was potentially even larger than
the original data.

• Leaky abstractions: The pandera schema API leaked
certain pandas-specific abstractions, e.g. Index and Mul-
tiIndex, which don’t apply to other frameworks, e.g. Spark
and Polars.

These weaknesses were uncovered after-the-fact, when the au-
thor and contributors analyzed the existing codebase to determine
how to best support other dataframe objects.

Design Strengths

With these limitations in mind, it’s also important to note some of
the design choices that significantly eased the subsequent internals
rewrite. In particular:

• Generic schema interface: Within the domain of tabular,
dataframe-like datastructures, pandera’s schema API is
generic enough to support both columnar and row-wise
statistical data objects, which can be defined as objects
that expose methods for statistical analysis.

• Flexible Check abstraction: pandera’s Check object —
the core validator abstraction — was sufficiently flexible.
Check functions assume that it returns a boolean scalar,
Series or DataFrame. This allows data pandera to report
value errors at varying levels of granularity: e.g. for
distributed dataframes, reporting all failure cases incurs
unacceptable overhead for distributed dataframes, which
would require full table scans.

• Flexible type system: The type system was also suffi-
ciently flexible to support types for different dataframe
libraries, allowing for simple types, generic types, param-
eterized types, and logical types.

Rewriting Pandera Internals

For practical purposes, the first set of DataFrame libraries sup-
ported by pandera were pandas-compliant frameworks such as
GeoPandas, Modin, Dask, and Koalas (now pyspark.pandas).
Even though these libraries do deviate somewhat from the pandas
API, they were close enough such that the parts of the pandas
API that pandera leveraged were just a subset of the full API.
Therefore, supporting these additional libraries required only a few
code changes [11]. This approach was the path to least resistance
for making data validation more scalable, and validating the notion
that the community would actually find it useful.

In contrast, in order to support additional non-pandas-
compliant libraries like pyspark, polars, and vaex, pandera needed
to overhaul the schema objects by decoupling the schema speci-
fication from the validation engine. At a high-level, the approach
was to introduce the following abstractions:

• A pandera.api subpackage, which contains the
schema specification that defines the properties of an
underlying data structure.

• A pandera.backends subpackage, which leverages
the schema specification and implements the actual vali-
dation logic.

• A backend registry, which maps a particular API specifi-
cation to a backend based on the DataFrame type being
validated.

• A common type-aware Check namespace and registry,
which registers type-specific implementations of built-in
checks and allows contributors to easily add new built-in
checks.

This new architecture allows contributors to implement a
schema validator for any data structure they want. In pseudo-code,
supporting a fictional dataframe library called sloth would look
something like this:
import sloth as sl
from pandera.api.base.schema import BaseSchema
from pandera.backends.base import BaseSchemaBackend

class DataFrameSchema(BaseSchema):
def __init__(self, **kwargs):

add properties that this dataframe
would contain

class DataFrameSchemaBackend(BaseSchemaBackend):

128 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

def validate(
self,
check_obj: sl.DataFrame,
schema: DataFrameSchema,
*,
**kwargs,

):
implement custom validation logic

register the backend
DataFrameSchema.register_backend(

sloth.DataFrame,
DataFrameSchemaBackend,

)

Similarly, the built-in checks can easily be extended to support
sloth data structures:
import sloth as sl

from pandera.api.extensions import register_builtin_check

@register_builtin_check(
aliases=["eq"],
error="equal_to({value})"

)
def equal_to(

data: sl.Series, value: Any
) -> sl.Series:

return data.equals(value)

Organizational and Development Challenges

Although the road to an internals rewrite was fairly straightfor-
ward from a technical perspective, there were additional meta-
challenges that added to the complexity of implementing the
rewrite in practice:

• Multi-tasking the rewrite with PR reviews: As with any
open source project, there were community-contributed
PRs for bug fixes and feature enhancements, many of
which created merge conflicts since they assumed the pre-
rewrite state of the code base. The author had to block
such contributions until the rewrite was complete and fast-
forward these PRs to fit the structure of the new code base.

• Centralized knowledge: Because the author was the pri-
mary maintainer of the project and was the only maintainer
who understood the codebase as a whole well enough
to make the changes, incorporating non-conflicting pull
requests took time away from the rewrite, further delaying
the timeline that would unblock other would-be contribu-
tors who wanted to implement support for other libraries,
e.g. polars.

• Informal governance: Because pandera has an informal
contributor and governance structure, the author effectively
made unilateral decisions with respect to the abstrac-
tions necessary to decouple the schema specification from
the validation backend. This turned out to be appropri-
ate, with a successful case of a community-contributed
pyspark.sql integration being almost complete as of
the writing of this paper. This integration is planned for
release in the next minor version 0.16.0. However, the
pandera project would benefit from a more formal gov-
ernance structure involving a broader set of stakeholders
when it comes to wide-sweeping internal or user-facing
changes.

Retrospective

With all of these challenges in mind, the internals rewrite was
completed in pull request 913 [12] on January 24th, 2023 and

the follow-up pull request 1109 [13] on March 13th, 2023. A few
factors facilitated the rewrite itself and also reduced the risk of
regressions:

• Unit tests: A comprehensive unit test suite caught many
issues, but not all of them. This was partly due to lack of
complete test coverage, but new tests also had to be written
for abstractions introduced during the re-write process.

• Localized pandas coupling: Pandas-specific code was
mostly localized in easy-to-identify locations in the code-
base.

• Lessons learned from pandas-compliant integrations:
Earlier integrations with pandas-compliant libraries re-
vealed operations/assumptions that are likely to break in
out-of-core DataFrame libraries, which typically involved
indexes and sorting assumptions.

In retrospect, there are additionally things the author would
have done differently to make pandera more flexible and extensi-
ble:

• Thoughtful design work: With some careful design work,
it would have been obvious to decouple schema specifica-
tion from validation backend much sooner.

• Library-independent error reporting: Make error re-
porting more flexible by decoupling error reporting data
structures from the specific DataFrame library, e.g. by us-
ing native python data structures like lists and dictionaries
instead of pandas DataFrames to report failure cases.

• Decoupling metadata from data: Distinguish between
DataFrame metadata schema errors (e.g. missing columns)
and data value errors (e.g. out-of-range values).

• Investing in governance and community: Invest more
in governance and formalize contributor and community
RFC processes sooner to help with design and feature
enhancement efforts.

Updated Design Principles

Given all of the developments and updates that pandera has seen in
recent years, pandera’s design principles also need to be updated
with one amendment and one additions:

1) Amendment: Expressing schemas as code should feel
familiar to Python users, regardless of the dataframe
library they’re using.

2) Data validation should be compatible with the different
workflows and tools in in the data science and ML stack
without a lot of setup or configuration.

3) Defining custom validation rules should be easy.
4) The validation interface should make the debugging pro-

cess easier.
5) Integration with existing code should be as seamless as

possible.
6) Addition: Extending the interface to other statistical data

structures should be easy using a core set of building
blocks and abstractions.

Conclusion

Pandera has evolved from a pandas-specific data validation library
to a comprehensive toolkit that provides a standard schema in-
terface for easily extending and supporting validation backends
for arbitrary statistical data containers. This paper provides an

PANDERA: GOING BEYOND PANDAS DATA VALIDATION 129

overview of data validation and testing, focusing on pandera’s
core programming model and its extended functionality to support
property-based testing. This paper also provides a useful case
study of the technical and organizational challenges associated
with expanding the scope of a library beyond its original bound-
aries.

The author’s hope is that, by highlighting the technical and
organizational dimensions of this evolution, that other open source
authors and maintainers can learn and avoid some of the pitfalls
encountered during the internals rewrite that now enables pandera
to support a whole suite of statistical data containers moving
forward.

REFERENCES

[1] Niels Bantilan, “pandera: Statistical Data Validation of Pandas
Dataframes,” in Proceedings of the 19th Python in Science Conference,
Meghann Agarwal, Chris Calloway, Dillon Niederhut, and David Shupe,
Eds., 2020, pp. 116 – 124, https://doi.org/10.25080/Majora-342d178e-
010.

[2] M. Van der Loo and E. De Jonge, Statistical data cleaning with applica-
tions in R. Wiley Online Library, 2018.

[3] Wes McKinney, “Data Structures for Statistical Computing in Python,”
in Proceedings of the 9th Python in Science Conference, Stéfan van der
Walt and Jarrod Millman, Eds., 2010, pp. 56 – 61, https://doi.org/10.
25080/Majora-92bf1922-00a.

[4] “pyopensci,” accessed: 2 June 2023. [Online]. Available: https:
//www.pyopensci.org/

[5] “pydantic,” accessed: 2 June 2023. [Online]. Available: https:
//docs.pydantic.dev/latest/

[6] D. MacIver, Z. Hatfield-Dodds, and M. Contributors, “Hypothesis: A new
approach to property-based testing,” Journal of Open Source Software,
vol. 4, no. 43, p. 1891, 11 2019, https://doi.org/10.21105/joss.01891.
[Online]. Available: http://dx.doi.org/10.21105/joss.01891

[7] K. Jordahl, J. V. den Bossche, M. Fleischmann, J. Wasserman,
J. McBride, J. Gerard, J. Tratner, M. Perry, A. G. Badaracco, C. Farmer,
G. A. Hjelle, A. D. Snow, M. Cochran, S. Gillies, L. Culbertson,
M. Bartos, N. Eubank, maxalbert, A. Bilogur, S. Rey, C. Ren, D. Arribas-
Bel, L. Wasser, L. J. Wolf, M. Journois, J. Wilson, A. Greenhall,
C. Holdgraf, Filipe, and F. Leblanc, “geopandas/geopandas: v0.8.1,”
Jul. 2020, https://doi.org/10.5281/zenodo.3946761. [Online]. Available:
https://doi.org/10.5281/zenodo.3946761

[8] Matthew Rocklin, “Dask: Parallel Computation with Blocked algorithms
and Task Scheduling,” in Proceedings of the 14th Python in Science
Conference, Kathryn Huff and James Bergstra, Eds., 2015, pp. 126 –
132, https://doi.org/10.25080/Majora-7b98e3ed-013.

[9] D. Petersohn, S. Macke, D. Xin, W. Ma, D. Lee, X. Mo, J. E. Gonzalez,
J. M. Hellerstein, A. D. Joseph, and A. Parameswaran, “Towards scalable
dataframe systems,” 2020, https://doi.org/10.48550/arXiv.2001.00888.

[10] “pysparkpandas,” accessed: 2 June 2023. [Online]. Avail-
able: https://spark.apache.org/docs/latest/api/python/reference/pyspark.
pandas/index.html

[11] “Modin support,” accessed: 26 June 2023. [Online]. Available:
https://github.com/unionai-oss/pandera/pull/660

[12] “core and backend pandera api internals rewrite,” accessed: 2 June 2023.
[Online]. Available: https://github.com/unionai-oss/pandera/pull/913

[13] “internals rewrite: clean up checks and hypothesis functionality,”
accessed: 2 June 2023. [Online]. Available: https://github.com/unionai-
oss/pandera/pull/1109

130 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

libyt: a Tool for Parallel In Situ Analysis with yt

Shin-Rong Tsai‡§∗, Hsi-Yu Schive‡¶∥∗∗, Matthew J. Turk§

✦

Abstract—In the era of exascale computing, storage and analysis of large scale
data have become more important and difficult. We present libyt, an open
source C++ library, that allows researchers to analyze and visualize data using
yt or other Python packages in parallel during simulation runtime. We describe
the code method for organizing adaptive mesh refinement grid data structure
and simulation data, handling data transition between Python and simulation
with minimal memory overhead, and conducting analysis with no additional time
penalty using Python C API and NumPy C API. We demonstrate how it solves
the problem in astrophysical simulations and increases disk usage efficiency.
Finally, we conclude it with discussions about libyt.

Index Terms—astronomy data analysis, astronomy data visualization, in situ
analysis, open source software

Introduction

In the era of exascale computing, storage and analysis of large-
scale data has become a critical bottleneck. Simulations often
use efficient programming language like C and C++, while many
data analysis tools are written in Python, for example yt1 [1].
yt is an open-source, permissively-licensed Python package for
analyzing and visualizing volumetric data. It is a light weight tool
for quantitative analysis for astrophysical data, and it has also been
applied to other scientific domains. Normally, we would have to
dump simulation data to hard disk first before conducting analysis
using existing Python tools. This takes up lots of disk space when
the simulation has high temporal and spatial resolution. This also
forces us to store full datasets, even though our region of interest
might contain only a small portion of simulation domain. It makes
large simulation hard to analyze and manage due to the limitation
of disk space. Is there a way to probe those ongoing simulation
data using robust Python ecosystem? So that we don’t have to
re-invent data analysis tools and solve the disk usage issue at the
same time.

In situ analysis, which is to analyze simulation data on-site,
without intermediate step of writing data to hard disk is a promis-
ing solution. It also reduces the barrier of analyzing data by using
well-developed tools instead of creating our own. We introduce in
situ analysis tool libyt2 , an open source C++ library, that allows

* Corresponding author: srtsai@illinois.edu
‡ National Taiwan University, Department of Physics
§ University of Illinois at Urbana-Champaign, School of Information Sciences
¶ National Taiwan University, Institute of Astrophysics
|| National Taiwan University, Center for Theoretical Physics
** National Center for Theoretical Sciences, Physics Division

Copyright © 2023 Shin-Rong Tsai et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. https://yt-project.org/

researchers to analyze and visualize data by directly calling yt
or any other Python packages during simulations runtime under
parallel computation. Through wrapping ongoing simulation data
using NumPy C API [2], constructing proper Python C-extension
methods and Python objects using Python C API [3], we can reuse
C++ runtime data and realize back-communication of simulation
information, allowing user to define their own data generating C
function, and use it to conduct analysis inside Python ecosystem.
This is like using a normal Python prompt, but with direct access
to simulation data. libyt provides another way for us to interact
with simulations.

In this proceeding, we will describe the methods in Section
Code Method, demonstrate how libyt solve the problem in
Section Applications, and conlude it with Section Discussions.

Code Method

Overview of libyt

libyt serves as a bridge between simulation processes and
Python instances as illustrated in Fig 1. It is the middle layer
that handles data IO between simulations and Python instances,
and between MPI processes. When launching N MPI processes,
each process contains one piece of simulation and one Python
interpreter. Each Python interpreter has access to simulation data.
When doing in situ analysis, every simulation process pauses, and
a total of N Python instances will work together to conduct Python
tasks in the process space of MPI.

libyt

API
Simulation

MPI process 1

MPI process (N-1)

libyt Python module Python (yt)

Simulation

MPI process 0

In Situ Analysis

libyt

API
Simulation libyt Python module Python (yt)

libyt

API
Simulation libyt Python module Python (yt)

Fig. 1: This is the overall structure of libyt, and its relationship
with simulation and Python. It provides an interface for exchanging
data between simulations and Python instances, and between each
process, thereby enabling in situ parallel analysis using multiple
MPI processes. libyt can run arbitrary Python scripts and Python
modules, though here we focus on using yt as its core analysis
platform.

Simulations use libyt API3 to pass in data and run Python
codes during runtime, and Python instances use libyt Python

2. https://github.com/yt-project/libyt

LIBYT: A TOOL FOR PARALLEL IN SITU ANALYSIS WITH YT 131

module to request data directly from simulations using C-
extension method and access Python objects that contain simula-
tion information. Using libyt for in situ analysis is very similar
to running Python scripts in post-processing under MPI platform,
except that data are stored in memory instead of hard drives.
libyt is for general-purpose and can launch arbitrary Python
scripts and Python modules, though here, we focus on using yt as
our core analysis tool.

Connecting Python and Simulation

We can extend the functionality of Python by calling C/C++
functions, and, likewise, we can also embed Python in a C/C++
application to enhance its capability. Python and NumPy provides
C API for users to connect objects in a main C/C++ program to
Python.

Currently, libyt supports only adaptive mesh refinement
(AMR) grid data structure.4 How libyt organizes simulation
with AMR grid data structure is illustrated in Fig 2. It first
gathers and combines local adaptive mesh refinement grid infor-
mation (e.g., levels, parent id, grid edges, etc) in each process,
so that every Python instance contains full information. Next,
it allocates array using PyArray_SimpleNew and stores the
information in a linear fashion according to global grid id. The
array can be easily looked up, and we can retrieve information
by libyt at C side using PyArray_GETPTR2. The opera-
tion only involves reading elements in an array. The array is
accessible both in C/C++ and Python runtimes. For simulation
data, libyt wraps those data pointers using NumPy C API
PyArray_SimpleNewFromData. This tells Python how to
interpret block of memory (e.g., shape, type, stride) and does not
make a copy. libyt also marks the wrapped data as read-only5

to avoid Python accidentally alters it, since they are actual data
used in simulation’s iterative process.

Simulation
(MPI 0) AMR grid

data

Local grid
info

Simulation
(MPI N-1) AMR grid

data

Local grid
info

C
om

bi
ne

 lo
ca

l g
rid

 in
fo

 in
ea

ch
 p

ro
ce

ss

Full
hierarchy

...

Full
hierarchy

l
i
b
y
t

Py
th

on
m

od
ul

e

l
i
b
y
t

Py
th

on
m

od
ul

e

Python
(yt)

Python
(yt)

1 2Collect and combine
local grid info.

Organize full info and
wrap simulation data.

Fig. 2: This diagram shows how libyt loads and organizes
simulation information and data that is based on adaptive mesh
refinement (AMR) grid data structure. libyt collects local AMR
grid information and combines them all, so that each Python instance
contains whole information. As for simulation data, libyt wraps
them using NumPy C API, which tells Python how to interpret block
of memory without duplicating it.

libyt also supports back-communication of simulation in-
formation. Fig 3 shows the mechanism behind it. The process is

3. For more details, please refer to libyt documents. (https://yt-project.
github.io/libyt/libytAPI)

4. We will support more data structures (e.g., octree, unstructured mesh grid,
etc) in the future.

5. This can be done by using PyArray_CLEARFLAGS to clear writable
flag NPY_ARRAY_WRITEABLE.

triggered by Python when it needs the data generated by a user-
defined C function. This usually happens when the data is not
part of the simulation iterative process and requires simulation
to generate it, or the data isn’t stored in a contiguous memory
block and requires simulation to help collect it. When Python
needs the data, it first calls C-extension method in libyt Python
module. The C-extension method allocates a new data buffer and
passes it to user-defined C function, and the function writes data
in it. Finally, libyt wraps the data buffer and returns it back to
Python. libyt makes the data buffer owned by Python6, so that
the data gets freed when it is no longer needed.

Py
th

on

(y
t

)

l
i
b
y
t

C
-e

xt
en

si
on

m

et
ho

d

Request
data

Return
data

New data
buffer

Create

Write

1
2

3

4libyt calls function to
generate data.

Fig. 3: This diagram describes how libyt requests simulation to
generate data using user-defined C function, thus enabling back-
communication of simulation information. Those generated data is
freed once it is no longer used by Python.

Grid information and simulation data are properly organized
in dictionaries under libyt Python module. One can import it
during simulation runtime:
import libyt # Import libyt Python module

In Situ Analysis Under Parallel Computing

Each MPI process contains one simulation code and one Python
instance. Each Python instance only has direct access to the data
on local computing nodes, thus all Python instances must work
together to make sure everything is in reach. During in situ Python
analysis, workloads may be decomposed and rebalanced according
to the algorithm in Python packages. It is not necessary to align
with how data is distributed in simulation. Even though libyt
can call arbitrary Python modules, we focus on how it uses yt
and MPI to do analysis under parallel computation here.

yt supports parallelism feature7 using mpi4py8 as communi-
cation method. libyt borrows this feature and utilizes it directly.
The way yt calculates and distributes jobs to each MPI process
is based on data locality, but it does not always guarantee to do
so9. In other words, in in situ analysis, the data requested by yt
in each MPI process does not always locate in the same process.

Furthermore, there is no way for libyt to know what kind
of communication pattern a Python script needs in advance. For a
much more general case, it is difficult to schedule point-to-point
communications that fit any kind of algorithms and any number
of MPI processes. libyt uses one-sided communication in MPI,
also known as Remote Memory Access (RMA), by which one
no longer needs to explicitly specify senders and receivers. Fig 4

6. This can be done by using PyArray_ENABLEFLAGS to enable own-
data flag NPY_ARRAY_OWNDATA.

7. See Parallel Computation With yt for more details.
8. mpi4py is Python bindings for MPI. (https://mpi4py.readthedocs.io/en/

stable/)
9. yt functionalities like find_max, ProjectionPlot,

create_profile, PhasePlot, etc are based on data locality, others like
OffAxisProjectionPlot, SlicePlot, OffAxisSlicePlot, etc
don’t.

132 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

describes the data redistribution process in libyt. libyt first
collects requested data in each process and askes each process
to prepare it. Then libyt creates an epoch, for which all MPI
processes will enter, and each process can fetch the data located
on different processes without explicitly waiting for the remote
process to respond. The caveat in data exchanging procedure in
libyt is that it is a collective operation, and requires every MPI
process to participate.

libyt collects requested data in each process,
and makes each process prepares the data at shared memory.

MPI process 0 MPI process 1 MPI process (N-1)...

Time line

Open window epoch

Shared memory Shared memory Shared memory

Close window epochGet remote data

Fig. 4: This is the workflow of how libyt redistributes data. It is
done via one-sided communication in MPI. Each process prepares the
requested data from other processes, after this, every process fetches
data located on different processes. This is a collective operation, and
data is redistributed during this window epoch. Since the data fetched
from other processes is only for analysis purpose, it gets freed once
Python doesn’t need it at all.

Executing Python Codes and Handling Errors

libyt imports user’s Python script at the initialization stage.
Every Python statement is executed inside the imported script’s
namespace using PyRun_SimpleString. The namespace
holds Python functions and objects. Every change made will
also be stored under this namespace and will be brought to the
following round.

Using libyt for in situ analysis is just like running Python
scripts in post-processing. The only difference lies in how the data
is loaded. Post-processing has everything store on hard disk, while
data in in situ analysis is distributed in memory space in differ-
ent computing nodes. Though libyt can call arbitrary Python
modules, here, we focus on using yt as the core method. This is
an example of doing slice plot using yt function SlicePlot in
post-processing:
1 import yt
2 yt.enable_parallelism()
3 def do_sliceplot(data):
4 ds = yt.load(data)
5 slc = yt.SlicePlot(ds, "z", ("gamer", "Dens"))
6 if yt.is_root():
7 slc.save()
8 if __name__ == "__main__":
9 do_sliceplot("Data000000")

Converting the post-processing script to inline script is a two-
line change. We need to import yt_libyt10, which is the
yt frontend for libyt. And then we change yt.load to
yt_libyt.libytDataset(). That’s it! Now data is loaded
from libyt instead of loading from hard disk. The following is
the inline Python script:
1 import yt_libyt
2 import yt

10. https://github.com/data-exp-lab/yt_libyt

3 yt.enable_parallelism()
4 def do_sliceplot_inline():
5 ds = yt_libyt.libytDataset()
6 slc = yt.SlicePlot(ds, "z", ("gamer", "Dens"))
7 if yt.is_root():
8 slc.save()

Simulation can call Python function using libyt API
yt_run_Function and yt_run_FunctionArguments.
For example, this calls the Python function
do_sliceplot_inline:
yt_run_Function("do_sliceplot_inline");

Beside calling Python function, libyt also provides interactive
prompt for user to update Python function, enter statements, and
get feedbacks instantly.11 This is like running Python prompt
inside the ongoing simulation with access to data. Fig 5 de-
scribes the workflow. The root process takes user inputs and
checks the syntax through compiling it to code object using
Py_CompileString. If error occurs, it parses the error to see
if this is caused by input not done yet or a real error. If it is
indeed caused by user hasn’t done yet, for example, when using
an if statement, the prompt will continue waiting for user inputs.
Otherwise, it simply prints the error to inform the user. If the
code can be compiled successfully, the root process broadcasts
the code to every other MPI processes. Then they evaluate the
code using PyEval_EvalCode inside the script’s namespace
simultaneously.

Input

Compile source code

Broadcast

Run and print results/error

Parse error

Success

Failed

Cause by user not yet doneTrue

Print error

False

MPI process 0 Other MPI processes

Run and print results/error

Listen to broadcast

Fig. 5: The procedure shows how libyt supports interactive Python
prompt. It takes user inputs on root process and executes Python codes
across whole MPI processes. The root process handles syntax errors
and distinguishes whether or not the error is caused by user hasn’t
done inputing yet.

Applications

libyt has already been implemented in GAMER12 [4] and
Enzo13 [5]. GAMER is a GPU-accelerated adaptive mesh refine-
ment code for astrophysics. It features extremely high performance
and parallel scalability and supports a rich set of physics mod-
ules. Enzo is a community-developed adaptive mesh refinement
simulation code, designed for rich, multi-physics hydrodynamic
astrophysical calculations.

Here, we demonstrate the results from GAMER using libyt,
and we show how libyt solves the problem of limitation in disk
space and improves disk usage efficiency.

11. Currently, libyt interactive prompt only works on local machine or
submitting the job to HPC platforms using interactive queue (e.g., qsub -I
on PBS scheduler). We will support accessing through Jupyter Notebook in
the future.

12. https://github.com/gamer-project/gamer
13. https://enzo-project.org/

LIBYT: A TOOL FOR PARALLEL IN SITU ANALYSIS WITH YT 133

Analyzing Fuzzy Dark Matter Vortices Simulation

Fuzzy dark matter (FDM) is a promising dark matter candidate
[6]. It is best described by a classical scalar field governed by
the Schrödinger-Poisson equation, because of the large de Broglie
wavelength compared to the mean interparticle separation. FDM
halos feature a central compact solitonic core surrounded by fluc-
tuating density granules resulting from wave function interference.
Quantum vortices can form in density voids caused by fully
destructive interference [7] [8]. The dynamics of these vortices
in FDM halo have not been investigated thoroughly, due to the
very high spatial and temporal resolution is required, which leads
to tremendously huge disk space. libyt provides a promising
approach for this study.

We use GAMER to simulate the evolution of an FDM halo on
the Taiwania 314. We use 560 CPU cores by launching 20 MPI
processes with 28 OpenMP threads per MPI process to run the
simulation. The simulation box size is 2.5×105 pc, covered by a
6403 base-level grid with six refinement levels. The highest level
has a maximum resolution of 6.2 pc, so that it is able to resolve the
fine structure and dynamical evolution of vortices within a distance
of 3200 pc from the center. To properly capture the dynamics, we
aim for analyzing vortex properties with a temporal resolution
of 3.5× 10−2 Myr, corresponding to 321 analysis samples. Each
simulation snapshot, including density, real part, imaginary part,
gravitational potential, and AMR grid information, takes 116 GB.
It will take ∼ 37 TB if we do this in post-processing, which is
really expensive. However, it is actually unnecessary to dump all
these snapshots since our region of interest is only the vortex lines
around the halo center.

We solve this by using libyt to invoke yt function
covering_grid to extract a uniform-resolution grid centered
at the halo center and store these grid data instead of simulation
snapshots on disk. The uniform grid has dimension 10243 with
spatial resolution 6.2 pc (i.e., the maximum resolution in the
simulation), correspnding to the full extracted uniform grid width
of 6300 pc. By storing only the imaginary and real parts of the
wave function in single precision, each sample step now consumes
only 8 GB, which is 15 times smaller than the snapshot required
in post-processing.

We further analyze these uniform grids in post-processing, and
do volume rendering and create animation15 using ParaView [9].
Fig 6 is the volume rendering of the result. Vortex lines and rings
are manifest in the entire domain. Fig 7 shows a zoom in version of
Fig 6, where reconnection of vortex lines take place. With the help
of libyt, we are able to achieve a very high temporal resolution
and very high spatial resolution at the same time.

Analyzing Core-Collapse Supernova Simulation

We use GAMER to simulate core-collapse supernova explosions.
The simulations have been performed on a local cluster using 64
CPU cores and 4 GPUs by launching 8 MPI processes with 8
OpenMP threads per MPI process, and having two MPI processes
access the same GPU. The simulations involve a rich set of physics
modules, including hydrodynamics, self-gravity, a parameterized
light-bulb scheme for neutrino heating and cooling with a fixed
neutrino luminosity [10], a parameterized deleptonization scheme
[11], an effective general relativistic potential [12], and a nuclear

14. Supercomputer at the National Center for High-performance Computing
in Taiwan. (https://www.nchc.org.tw/)

15. https://youtu.be/tUjJYGbWgUc

Fig. 6: Volume rendering of quantum vortices in a fuzzy dark
matter halo with GAMER. Here we use libyt to extract uniform-
resolution data from an AMR simulation on-the-fly, and then visualize
it with ParaView in post-processing. The colormap is the logarithm
of reciprocal of density averaging over radial density profile, which
highlights the fluctuations and null density. Tick labels represent cell
indices.

Fig. 7: Vortex reconnection process in a fuzzy dark matter halo. This
is the result we get if we zoom in to one of the vortex lines in Fig 6
where reconnection of lines take place. We are able to clearly capture
the dynamics, and at the same time, preserve high spatial resolution.

equation of state [13]. For the hydrodynamics scheme, we adopt
the van Leer predictor-corrector integrator [14] [15], the piecewise
parabolic method for spatial data reconstruction [16], and the
HLLC Riemann solver [17]. The simulation box size is 2× 104

km. The base-level grid dimension is 1603 and there are eight
refinement levels, reaching a maximum spatial resolution of ∼ 0.5
km.

We use libyt to closely monitor the simulation progress dur-
ing runtime, such as the grid refinement distribution, the status and
location of shock wave (e.g., stalling, revival, breakout), and the
evolution of the central proto-neutron star. libyt calls yt func-
tion SlicePlot to draw entropy distribution every 1.5× 10−2

ms. Fig 8 is the output in a time step. Since entropy is not part
of the variable in simulation’s iterative process, these entropy data
will only be generated through user-defined C function, which in
turn calls the nuclear equation of state defined inside GAMER to get
entropy, when they are needed by yt. libyt tries to minimize
memory usage by generating relevant data only. We can combine
every output figure and animate the actual simulation process16

without storing any datasets.

16. https://youtu.be/6iwHzN-FsHw

134 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

200 100 0 100 200
y (km)

200

100

0

100

200
z

(k
m
)

(a)

2

4

6

8

10

12

En
tro

py
³

k B
ba

ry
on

´

200 100 0 100 200
y (km)

200

100

0

100

200

z
(k
m
)

(b)

2

4

6

8

10

12

En
tro

py
³

k B
ba

ry
on

´

Fig. 8: Entropy distribution in a core-collapse supernova simulated
by GAMER and plotted by yt function SlicePlot using libyt.
Plot (a) shows a thin slice cut through the central proto-neutron in
the post-bounce phase. The proto-neutron star has a radius of ∼ 10
km and the shock stalls at ∼ 200 km. Plot (b) shows the underlying
AMR grid structure, where each grid consists of 163 cells.

Discussions

libyt is free and open source, which does not depend on
any non-free or non-open source software. Converting the post-
processing script to inline script is a two-line change, which lowers
the barrier of using this in situ analysis tool.

Though currently, only simulations that use AMR grid data
structure are supported by libyt, we will extend to more data
structure (e.g., octree, particle, unstructured mesh, etc) and hope
to engage more simulations and data structures in the future.

Using libyt does not add time penalty to the analysis pro-
cess, because using Python for in situ analysis and post-processing
are exactly the same, except that the former one reads data from
memory and the latter one reads data from disks. Fig 9 shows
the strong scaling of libyt. The test compares the performance
between in situ analysis with libyt and post-processing for
computing 2D profiles on a GAMER dataset. The dataset contains
seven adaptive mesh refinement levels with a total of 9.9× 108

cells. libyt outperforms post-processing by ∼ 10 – 30%, since
it avoids loading data from disk to memory. libyt and post-
processing have similar deviation from the ideal scaling since
libyt directly borrows the algorithm in yt. Some improvements
have been made in yt, while some are still undergoing to elim-
inate the scaling bottleneck. But also, due to some parts cannot
be parallelized, like the import of Python and the current data
structure, the speed up is saturated at large number of processors
and can be described by Amdahl’s law.

100 101 102

Number of Processors

100

101

102

Ti
m

e
(s

ec
)

Post-processing
libyt
Ideal scaling

Fig. 9: Strong scaling of libyt. libyt outperforms post-processing
by ∼ 10 – 30% since the former avoids loading data from disk to
memory. The dotted line is the ideal scaling. libyt and post-
processing show a similar deviation from the ideal scaling because it
directly borrows the algorithm in yt. Improvements have been made
and will be made in yt to eliminate the scaling bottleneck.

libyt provides a promising solution that binds simulation to
Python with minimal memory overhead and no additional time
penalty. It makes analyzing large scale simulation feasible, and it
can analyze the data with much higher frequency. It also reduces
the barrier of heavy computational jobs written in C/C++ to use
Python tools, which are normally well-developed. libyt focuses
on using yt as its core analytic method, even though it can
call other Python modules, and has the ability to enable back-
communication of simulation information. A use case of this tool
could be using yt to select data and then make it as an input
source for further analysis. libyt provides us another way to
interact with simulation and data.

REFERENCES

[1] M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W. Skillman, T. Abel,
and M. L. Norman, “yt: A Multi-code Analysis Toolkit for Astrophysical
Simulation Data,” The Astrophysical Journal Supplement Series, vol.
192, p. 9, Jan. 2011, https://doi.org/10.1088/0067-0049/192/1/9.

[2] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant,
“Array programming with NumPy,” Nature, vol. 585, no. 7825,
pp. 357–362, Sep. 2020, https://doi.org/10.1038/s41586-020-2649-2.
[Online]. Available: https://doi.org/10.1038/s41586-020-2649-2

LIBYT: A TOOL FOR PARALLEL IN SITU ANALYSIS WITH YT 135

[3] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009.

[4] H.-Y. Schive, J. A. ZuHone, N. J. Goldbaum, M. J. Turk, M. Gaspari, and
C.-Y. Cheng, “gamer-2: a GPU-accelerated adaptive mesh refinement
code – accuracy, performance, and scalability,” Monthly Notices of
the Royal Astronomical Society, vol. 481, no. 4, pp. 4815–4840,
09 2018, https://doi.org/10.1093/mnras/sty2586. [Online]. Available:
https://doi.org/10.1093/mnras/sty2586

[5] G. L. Bryan, M. L. Norman, B. W. O’Shea, T. Abel, J. H. Wise,
M. J. Turk, D. R. Reynolds, D. C. Collins, P. Wang, S. W. Skillman,
B. Smith, R. P. Harkness, J. Bordner, J.-h. Kim, M. Kuhlen, H. Xu,
N. Goldbaum, C. Hummels, A. G. Kritsuk, E. Tasker, S. Skory, C. M.
Simpson, O. Hahn, J. S. Oishi, G. C. So, F. Zhao, R. Cen, Y. Li, and The
Enzo Collaboration, “ENZO: An Adaptive Mesh Refinement Code for
Astrophysics,” The Astrophysical Journal Supplement Series, vol. 211,
p. 19, Apr. 2014, https://doi.org/10.1088/0067-0049/211/2/19.

[6] H.-Y. Schive, T. Chiueh, and T. Broadhurst, “Cosmic structure as the
quantum interference of a coherent dark wave,” Nature Physics, vol. 10,
pp. 496–499, Jul. 2014, https://doi.org/10.1038/nphys2996.

[7] T. Chiueh, “Dynamical quantum chaos as fluid turbulence,” Phys. Rev.
E, vol. 57, pp. 4150–4154, Apr 1998, https://doi.org/10.1103/PhysRevE.
57.4150. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.
57.4150

[8] L. Hui, A. Joyce, M. J. Landry, and X. Li, “Vortices and waves in light
dark matter,” Journal of Cosmology and Astroparticle Physics, vol. 2021,
no. 1, p. 011, Jan. 2021, https://doi.org/10.1088/1475-7516/2021/01/011.

[9] J. Ahrens, B. Geveci, and C. Law, Visualization Handbook. Burlington,
MA: Elsevier Butterworth–Heinemann, 2005, ch. ParaView: An End-
User Tool for Large-Data Visualization, p. 717.

[10] S. M. Couch, “The Dependence of the Neutrino Mechanism of Core-
collapse Supernovae on the Equation of State,” The Astrophysical Jour-
nal, vol. 765, no. 1, p. 29, Mar. 2013, https://doi.org/10.1088/0004-
637X/765/1/29.

[11] M. Liebendörfer, “A Simple Parameterization of the Consequences
of Deleptonization for Simulations of Stellar Core Collapse,” The
Astrophysical Journal, vol. 633, no. 2, pp. 1042–1051, Nov. 2005,
https://doi.org/10.1086/466517.

[12] E. P. O’Connor and S. M. Couch, “Two-dimensional Core-collapse Su-
pernova Explosions Aided by General Relativity with Multidimensional
Neutrino Transport,” The Astrophysical Journal, vol. 854, no. 1, p. 63,
Feb. 2018, https://doi.org/10.3847/1538-4357/aaa893.

[13] A. W. Steiner, M. Hempel, and T. Fischer, “Core-collapse Supernova
Equations of State Based on Neutron Star Observations,” The Astrophys-
ical Journal, vol. 774, no. 1, p. 17, Sep. 2013, https://doi.org/10.1088/
0004-637X/774/1/17.

[14] S. A. E. G. Falle, “Self-similar jets,” Monthly Notices of
the Royal Astronomical Society, vol. 250, no. 3, pp. 581–596,
1991, https://doi.org/10.1093/mnras/250.3.581. [Online]. Available:
+http://dx.doi.org/10.1093/mnras/250.3.581

[15] B. van Leer, “Upwind and high-resolution methods for compressible
flow: From donor cell to residual-distribution schemes,” Communications
in Computational Physics, vol. 1, pp. 192–206, 2006, https://doi.org/10.
2514/6.2003-3559.

[16] P. Colella and P. R. Woodward, “The piecewise parabolic method (ppm)
for gas-dynamical simulations,” Journal of Computational Physics,
vol. 54, no. 1, pp. 174–201, 1984, https://doi.org/10.1016/0021-
9991(84)90143-8. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0021999184901438

[17] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics.
A Practical Introduction, 3rd ed. Berlin: Springer, 2009.

136 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Data Reduction Network
Haoyin Xu‡§, Haw-minn Lu‡∗, José Unpingco§

✦

Abstract—Multidimensional categorical data is widespread but not easily vi-
sualized using standard methods. For example, questionnaire (e.g. survey)
data generally consists of questions with categorical responses (e.g., yes/no,
hate/dislike/neutral/like/love). Thus, a questionnaire with 10 questions, each with
five mutually exclusive responses, gives a dataset of 510 possible observations,
an amount of data that would be hard to reasonably collect. Hence, this type
of dataset is necessarily sparse. Popular methods of handling categorical data
include one-hot encoding (which exacerbates the dimensionality problem) and
enumeration, which applies an unwarranted and potentially misleading notional
order to the data. To address this, we introduce a novel visualization method
named Data Reduction Network (DRN). Using a network-graph structure, the
DRN denotes each categorical feature as a node with interrelationships between
nodes denoted by weighted edges. The graph is statistically reduced to reveal
the strongest or weakest path-wise relationships between features and to reduce
visual clutter. A key advantage is that it does not “lose” features, but rather
represents interrelationships across the entire categorical feature set without
eliminating weaker relationships or features. Indeed, the graph representation
can be inverted so that instead of visualizing the strongest interrelationships,
the weakest can be surfaced. The DRN is a powerful visualization tool for multi-
dimensional categorical data and in particular data derived from surveys and
questionaires.

Index Terms—Data Visualization, Multidimensional Categorical Data

Introduction

The proliferation of Big Data has opened new frontiers in the
analysis of information across numerous disciplines. This surge
of data is most pronounced in areas such as large-scale surveys,
which provide a wealth of multidimensional data capable of
answering diverse research questions that may not be easily tested
in experimental lab settings [1]. However, the size and complexity
of this type of data introduce unique challenges, particularly in the
domain of data visualization and downstream analysis.

For example, questionnaire (e.g., survey) data are generally
categorical with just a few alternatives for each question, as
with the Likert scale that typically consists of five alternatives
for each question (e.g., strongly agree, agree, neutral,
disagree, strongly disagree). Consider a small survey
with ten questions, each with five alternatives, which produces
510(9,765,625) possible distinct completed questionnaires. In
practice, visualizing such a large amount of data in an elegant
format is rarely feasible. Rather, the standard approach is to

‡ Gary and Mary West Health Institute
§ University of California, San Diego
* Corresponding author: hlu@westhealth.org

Copyright © 2023 Haoyin Xu et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

consider a few questions and marginalize (i.e., sum) over the
remaining responses. A summary headline result could be that
“90% of respondents strongly agree with Question 1”. Another
could be “75% of respondents strongly agree with Question 2”
and so on. However, this approach does not provide information
on the respondents who selected strongly agree for both
Questions 1 and 2. Even more troubling, there could be a third
question that is strongly related to both questions but has been
marginalized over, potentially leading to issues like Simpson’s
paradox[2], a phenomenon where a trend or relationship that
appears within different groups reverses or disappears when the
groups are combined, thus misleading the overall analysis.

As with our survey example above, categorical data often
exists in a high-dimensional space. The challenge lies in accurately
representing multiple dimensions on a two or three-dimensional
plane, which carries potential risks, from oversimplification to
cognitive overload [3]. This complexity is amplified by the het-
erogeneous nature of survey data, which may comprise multiple
choice and open-ended responses to Likert scales, each neces-
sitating different visualization techniques [4]. Current common
methods to generate informative visualizations for high dimen-
sional categorical data include manually pre-selecting questions
or dimensional reduction techniques such as principal component
analysis (PCA) and t-distributed stochastic neighbor embedding
[5]. These techniques may help to inform some conclusions, yet
they may still not be fully comprehensible to non-expert audiences
or require excessive human effort to filter the information. In
the filtering process, some important relationships, such as joint
respondents between two questions, may be omitted due to data
oversimplification. Furthermore, such oversimplification may even
lead to bias in the downstream analysis.

One popular method for addressing high-dimensional categor-
ical data is through one-hot encoding. In this method, each level
of the data element is mapped into a string of n-bits where 1
marks the specific response for that row. For example, using the
Likert scale, one-hot encoding produces a string of five bits where
10000 corresponds to strongly agree for that particular
response and 01000 for the agree response. Suppose you have
a data frame with rows corresponding to survey respondents and
columns corresponding to questions. For each question, one-hot
encoding will generate five bits. As a result, for n original columns,
there will now be 5n one-hot encoded columns. Although it is
relatively simple to see this two-dimensional data as a binary array,
the relationships between the respondents (rows) and the survey
questions (columns) may not be apparent from this representation.

Another common technique is label-encoding where each
categorical level is mapped to an integer. For example, if our
category is favorite fruit with levels apple, banana,
and strawberry, then with label encoding, we have apple

DATA REDUCTION NETWORK 137

Unit Question 1 Question 2 . . . Question N

1 yes sometimes . . . responseN

2 no never . . . responseK

3 yes never . . . responseN

.

TABLE 1: Sample Survey Data Table. Each row represents a partic-
ipant’s response record and each column corresponds to questions in
the survey.

Unit Question 1 Question 2 . . . Question N

1 1 3 . . . 6

2 2 4 . . . 2

3 1 4 . . . 6

.

TABLE 2: Survey data table where each response is converted to an
integer number.

→ 1, banana → 2, and strawberry → 3. The problem with
this approach lies in the inherent ordering of integers, which may
not reflect the true nature of the categories. For example, because
2 > 1, does that imply that banana is somehow more than
apple? The downstream numerical analysis relies on numeric
properties and is oblivious to the nuances expressed by the
categorical variable. This lack of sensitivity can lead to spurious
correlations or nonsensical results.

To distill insightful and actionable visualizations from large
survey data, it is essential to balance the trade-off between sim-
plicity and completeness, highlighting the most critical variables
for downstream data processing [6]. One previous attempt involves
using the cobweb diagram to represent the inter-relationships
between nodes [7]. This method effectively distills the complexity
in high dimensional contingency tables, but may not be easily
comprehensible to those without expertise. In this paper, we
propose the Data Reduction Network (DRN) method, a straightfor-
ward visualization for representing multidimensional categorical
data. The DRN method generates a condensed network graph,
emphasizing the strong interrelationships among the variables. By
employing a maximum spanning tree, the network not only avoids
the risk of oversimplification but also retains the most significant
insights from the survey.

Method

The DRN is a graph composed of nodes and edges. Each node
denotes the answer to a particular survey question, whereas the

Unit Question 1 Question 2 . . . Question N

1 Q1-1 Q2-3 . . . QN-6

2 Q1-2 Q2-4 . . . QN-2

3 Q1-1 Q2-4 . . . QN-6

.

TABLE 3: Survey table with labeled response and corresponding
questions.

Unit Question 1 Question 2 Question 3

1 Q1-1 Q2-3 Q3-6

2 Q1-1 Q2-4 Q3-6

3 Q1-2 Q2-4 Q3-2

TABLE 4: Survey table with further transformed responses label. Now
each label will have the question number in them.

1

1

1

Q3-6

Q2-3

Q1-1

Fig. 1: A clique representation of the first respondent in the hypothet-
ical example.

1

2

1

1

1

1

1

Q3-6

Q1-2

Q2-3

Q3-2

Q2-4

Q1-1

1

Fig. 2: Network illustrating responses from the first 3 rows of the
response table.

1

2

1

1

1

Q3-6

Q1-2

Q2-3

Q3-2

Q2-4

Q1-1

Fig. 3: Network after maximum spanning tree.

138 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

edges between nodes indicate the co-occurrence of respective
answers. The DRN maintains a running tally of the number of
times an edge occurs in the dataset, as well as the frequency of a
particular response to a given question.

Suppose we have a set of survey data shown in Table 1.
For the sake of convenience and visual simplicity, we map each
response to an integer (e.g., yes → 1, no → 2, sometimes → 3)
as demonstrated in Table 2. It is worth noting that while this is
technically a label encoding process, it is an optional process.
The node Q1_1 could have been labeled Q1_yes but it is clear
that visual clutter would soon ensue for more complex responses
like Q3_responseK. By employing this encoding technique, we
achieve a concise representation of each question-response pair, as
demonstrated in Table 3. This gives every entry in the table a code
that indicates the question-response pair. Each row in the table
corresponds to a respondent. It is possible for two respondents to
answer the survey in exactly the same way, leading to duplicated
rows in the table.

Once the data is properly encoded, the subsequent step is to
construct the DRN where each entry from the table represents
a node, and the edges symbolize the connections between these
nodes. This means that each row generates a clique, a network of
mutually connected nodes, and these cliques are merged to create
a comprehensive clique whose edges count all joint responses for
the entire table.

The process of constructing a master graph from the table is a
two step process:

(i) Form a clique for every row
(ii) Merge the cliques by accumulating the edge counts

Following a hypothetical example with three questions shown in
Table 4, we start with the first row, each question-response term
becomes a node and there is an edge between every two terms in
this row with weight 1. The clique formed from the first row is
depicted in Figure 1. After completing cliques for all rows, three
in this case, they are merged into a master graph where the edge
counts are accumulated as shown in Figure 2. Please note that in
this case, the edge between Q1_1 and Q3_6 occurs in two of the
cliques so it is weighted 2.

For large datasets, these master graphs can become extremely
dense and impossible to interpret. To simplify the graph and
reveal the key statistically significant relationships, we employ
networkx’s maximum_spanning_tree function, which ap-
plies Prim’s algorithm [8]. This algorithm calculates the maximum
spanning tree where the weights are the edge counts. It’s worth
mentioning that Prim’s algorithm is a greedy algorithm that
finds a maximum spanning tree for a weighted undirected graph.
Furthermore, it’s worth noting that any maximum spanning tree
algorithm could be used. For instance, Kruskal’s algorithm [9],
also supported by networkx[10], is a valid alternative.

The resulting tree maintains the largest edge-weights, which
are the strongest co-occurring responses. It is worth noting that
the maximum spanning tree might not be unique; hence, in the
event of a tie, any competing tree could be chosen. With large
combinatorial complexity associated with large data sets such ties
are unlikely. In the present example, one maximum-spanning tree
is shown in Figure 3

Given that the edges in the DRN represent the tallies of co-
occurring survey responses, these values align with those found in
a contingency table that encompasses the variables represented

Fig. 4: An overview of DRN for the solar flare dataset

by the nodes. Therefore, the DRN effectively unrolls a high-
dimensional contingency table onto a network graph, thereby
facilitating the identification of the strongest inter-relationships.
DRNs facilitate inferential statistics by translating topological
features, such as clusters and connections in the graph, into
statistical quantities of interest.

Example

The Solar Flare Dataset

As an example, a simple dataset is presented. The Solar Flare
Dataset was adopted from University of California at Irvine (UCI)
Machine Learning Repository1. Each entry of the dataset describes
multiple features of an active region on the sun as well as the
number of flares events that occurred within the past 24 hours in
the region. The features were described in Table 5. We’ve also
provided this in an example Jupyter notebook, the link to which
can be found in the conclusion section of this document.

Figure 4 shows the DRN representation of the Solar Flare
Dataset. In addition to the methods mentioned in the previous
section, for clarity edge weights are not explicitly shown but
translated into edge thickness with the most common occurrence
of responses having heavier lines. Additionally, the size of the
nodes is proportional to the number of responses for the particular
question-response. Finally for added clarity, the responses associ-
ated with each question are encoded with the same color making
it easy to discern which responses belong to which question. Each
feature is encoded as a single label. For example, for the feature
act, there are two options: 1 (reduced), and 2 (unchanged). If a
region has reduced solar activity, the feature will be encoded as
act_1. This code will appear in the DRN as nodes and the size of
the node is proportional to the number of entries that contains the
corresponding feature coding. In other words, greater node size
indicates the most prevalent features across all entries.

In Figure 4, the largest node in the center was x_class_0,
which indicates that for most active regions on the sun, 0 x-class

1. http://archive.ics.uci.edu/ml/datasets/solar+flare

DATA REDUCTION NETWORK 139

Feature Description
klass Code for class (modified Zurich class) (A, B, C, D, E, F, H)
size Code for largest spot size (X, R, S, A, H, K)
dist Code for spot distribution (X, O, I, C)
act Activity (1 = reduced, 2 = unchanged)
evo Evolution (1 = decay, 2 = no growth, 3 = growth)
prev Previous 24 hour flare activity code (1 = nothing as big as an M1,2 = one M1,3 = more activity than one M1)
complex Historically-complex (1 = Yes, 2 = No)
hist_complex Did region become historically complex on this pass across the sun’s disk (1 = yes, 2 = no)
area Area (1 = small, 2 = large)
c_class Small with few noticeable consequences on Earth
m_class Medium-sized; cause brief radio blackouts that affect Earth’s polar regions
x_class Big; major events that can trigger planet-wide radio blackouts and long-lasting radiation storms

TABLE 5: Table for the features described in the solar flare dataset.

solar flare activity was observed. While it shows the specific fea-
ture encoding for that feature category, the DRN could also reveal
joint encoding relationships through the edge connection and the
thickness of edges. Thicker edges indicate stronger correlations
between two features. For example, regions that have the feature
label of x_class_0 will also most likely have the features of
area_1, act_1, m_class_0, prev_1, hist_complex_2,
c_class_0, evo_3, as indicated by the thickness of the edge.
This indicates that regions that do not have x-class solar flare
activity, they would most likely be 1) small area, or 2) regions
with reduced activity, or 3) no m-class solar flare activity, or 4)
not as big as M1, or 5) wasn’t considered as historically complex,
or 6) no c-class solar flare activity, or 7) actively growing. Notice
that each edge represents an independent joint relationship with
each other.

Use Case

Telehealth Questionnaire

In this section, we demonstrate an application of the DRN, using
it to analyze a complex survey dataset. This dataset was obtained
from a survey of the perceptions and uses of telehealth in the
care of older adults [6]. The survey used a questionnaire with 29
close-ended questions, spanning multiple-choice, agreement scale,
dichotomous true/false, and rating scale formats. These statements
presented potential challenges associated with using telehealth to
serve older adults, touching on areas like relationship building,
high medical complexity, physical and cognitive impairment, and
fragmentation of care. The survey captured responses from 7246
U.S. clinicians across a range of specialties.2

Figure 5 depicts an overview of the DRN for the entire survey.
We’ve followed a specific convention for labeling each node.
When questions include subquestions, the corresponding response
is represented with a hyphenated label connecting the question
number, subquestion number, and numeric representation of the
response. For instance, a TRUE response for question 11 subques-
tion 4 is labeled as Q11-4_90. The numeric representation of the
response can be arbitrary but to avoid confusion the coding used
in the survey results itself was used where TRUE is represented
as 90. For questions without subquestions, we simply omit the
hyphen and subquestion number, e.g., Q2_91.

2. The exact questionnaire can be found at:
https://pubmed.ncbi.nlm.nih.gov/36493377/

Each node’s size is proportionate to the number of respondents
who chose the associated answer, with larger nodes representing
the most common question-answer combinations (topline results).
For ease of discussion, the most prominent nodes in Figure 5 are
labeled with uppercase letters, and two other nodes of interest with
an uppercase-lowercase pair. Table 6 complements the figure by
detailing the annotation, DRN label, and corresponding question-
answer pairs for these nodes.

The prominent nodes, labeled as A, B, Ba, Bb, C, and D
in the network diagram, are derived from the subquestions of
survey Question 11. This question presented a list of reasons
why providers might choose to exclude older adults from their
telehealth services, and asked respondents to rate their agreement
with each statement, based on their personal and professional
opinions. The full text of Question 11 is as follows:

Q11: The following is the list of reasons why some
providers might choose to exclude older adults from
their telehealth offerings (visits, program, system).
Please read and indicate your personal and professional
opinion about whether you believe each statement is true
or false

The prominent nodes indicate the most frequently selected
responses across all survey participants. Observations from these
responses allow for immediate conclusions to be drawn across all
U.S. clinical specialties. The most common reasons to exclude
telehealth offerings for older patients include: 1) the belief that
telehealth couldn’t provide sufficient healthcare service to older
patients, 2) concerns about whether older patients have enough
resources to properly utilize the service, and 3) possible insuf-
ficiency of resources by the medical staff to offer the telehealth
service. These conclusions serve as the top-line information ex-
tracted from the questionnaires.

Similar to the DRN analysis of the solar flare dataset, the
strength of joint responses among all respondents is visually
emphasized by the width of the lines (i.e., edges) connecting
the nodes. Employing the maximum spanning tree method, the
DRN selectively showcases the most significant joint relationships
within the network. To illustrate, a thicker edge connecting nodes
A and B indicates that respondents who selected response B also
likely selected response A. In terms of raw data, the count of
respondents who selected both responses A and B is notably
higher than any other pairwise combination. In sum, the DRN
not only indicates topline responses but also captures significant
joint responses.

140 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Label Annotation Response description Respondent’s Response

Q11-2 A People over a certain age cannot be well cared for using telehealth TRUE
Q11-3 B The older adults I serve do not always have access to the resources needed to make

a telehealth visit effective
TRUE

Q11-5 C I have concerns about the impact of telehealth on fragmentation of care for older
adults

TRUE

Q11-6 D Relationship building via telehealth is more difficult than in person TRUE
Q11-7 Ba There is a lack of support from my health system leadership or support staff to make

telehealth for my older adults an effective alternative
TRUE

Q11-8 Bb Providing telehealth is dangerous to older adults because their care needs are so
medically complex

TRUE

TABLE 6: Table for response description and annotation used in figure 5.

Label Annotation Response description Respondent’s Response

Q11-4 Da (Subquestion 4) Older adults’ significant physical or cognitive challenges make
telehealth unrealistic

TRUE

Q2 Db For demographic purposes only, select all that describe your ethnic background? White/Caucasian
Q9 Dc Which of the following best describes the top THREE reasons that you feel some

older adults may not use telehealth? Please choose THREE:
Older adults’ physical and/or
cognitive challenges

TABLE 7: Response description for DRN in figure 6

The tree-like structure of the DRN further allows the isolation
of individual trees within the network, thus providing supplemen-
tary visual information for a particular response. For example,
Figure 6 shows a detailed view of the tree segment centered around
node D for closer examination. For clarity, the most prominent
nodes within this tree are annotated according to Table 7.

This tree allows us to see the interconnections between various
survey responses. Notably, respondents who agreed that "rela-
tionship building via telehealth is more difficult than in person"
(D), also agreed with the statements "older adults’ significant
physical or cognitive challenges make telehealth unrealistic" (Da)
and "older adults’ physical and/or cognitive challenges is one of
the reasons why older patients may refuse to use telehealth" (Dc).

In addition, most respondents who agreed with the dif-
ficulties of relationship building via telehealth identified as
White/Caucasian (Db). However, this trend might be reflective of
the ethnic imbalance in our respondents.

Additionally, upon closer inspection of the Da node, we
see that most respondents who expressed concerns about cog-
nitive/physical decline disagreed with the statement "insufficient
resources to effectively use telehealth service" (denoted by the
light green node Q11-3_26 under Da).

A quick glance at the network offers substantial insights. It be-
comes clear that the majority of respondents in this survey shared
opinions on the potential reasons why providers might exclude
older adults from telehealth services (Q11). They largely agreed
on three primary factors that make telehealth less suitable for
people over a certain age: 1) difficulties in relationship building,
2) potential fragmentation of care, and 3) a lack of resources.
Those who indicated a lack of resources as a potential issue
further specified that there is a lack of support from the health
system leadership or support staff to make telehealth effective. For
respondents who indicated the difficulties of relationship building
would be a potential issue, the majority of them further specify that
older adults’ significant physical or cognitive challenges would
make telehealth unrealistic.

The majority of the participants expressing concerns about el-
der physical or cognitive challenges disagreed with the insufficient
resource argument. It is also noteworthy that most participants who
identified difficulties in relationship building as a major concern
reported their ethnic background as white/Caucasian.

This example demonstrates how the DRN offers a clean,
concise visualization that enables users to quickly identify re-
lationships between different questions in a survey. It not only
highlights the topline information but also allows users to explore
additional relevant data associated with each topline piece of
information through the examination of the edges. Compared to
traditional methods, DRN provides a simpler, yet more informa-
tive, visualization of survey data.

Discussion

Data Reduction Networks (DRNs) provide a valuable solution in
the field of data exploration tools, predominantly addressing the
handling of categorical data, which has often been overlooked by
tools focusing on continuous data. As previously noted, the DRN
is adept at rapidly highlighting top-line information. It effectively
highlights significant relationships, which can be challenging to
discern when dealing with high-dimensional contingency tables.
While contingency tables are useful for data analysis, they can
become intractable beyond a few dimensions and may be too
cumbersome for data exploration.

Despite their utility, DRNs share the same limitations common
to data exploration tools. Specifically, a DRN’s purpose isn’t
to act as a standalone data analysis tool, even though it can
highlight interesting aspects of a data set. Instead, its strength lies
in fostering hypotheses that prompt further investigation, either
within the existing data set or via the acquisition of new, targeted
data.

The utility of DRNs is not confined to survey data. In fact,
categorical data can be seen as analogous to survey data, where
features map to questions, and feature values correspond to an-
swers. The example of solar flares showcases this equivalence.

DATA REDUCTION NETWORK 141

Fig. 5: An overview of DRN for the telehealth questionnaire

Although largely a semantic shift, it reframes the data’s context.
By contrast, our telehealth use case involves the use of actual
survey data.

In the presence of continuous data in data sets, discretization
or binning techniques akin to those utilized in decision trees can
be employed to convert this data into a categorical form. However,
this conversion introduces a new challenge - bin formulation. Still,
this can be tackled by using existing techniques from decision tree
methodologies[11].

A unique problem with survey data comes from questions
where multiple responses are permitted. Even visualization meth-
ods that can accommodate categorical data struggle with this.
The DRN elegantly handles this by generating cliques based on
all responses from a respondent, irrespective of whether those
responses are associated with different or the same question.

Regarding data imbalances, especially those of a demographic

nature, traditional methods such as oversampling underrepresented
populations may inadvertently amplify certain relationships in the
DRN. As an alternative, removing the overrepresented node and
its edges from the main graph, creating a new tree devoid of
this node. This action can result in a graphical representation
where the influence of the overrepresented node is neutralized, but
relationships that may involve that overrepresented demographic
are retained. This approach preserves the same weighting of the
relationships without emphasizing the relationship to the over-
represented node. It falls on the analyst to weigh the merits of
this approach versus the traditional oversampling techniques to
determine which approach best fits their problem.

The extraction of a maximum spanning tree from the master
graph within a DRN serves to capture prominent features in the
survey data. However, this method may inadvertently overlook
relationships that, while strong, are not the most dominant, and

142 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 6: A closer look at tree D from the telehealth questionnaire

it would miss subtler, hidden insights. As a potential future
direction, the application of alternative subgraph extraction or
graph partitioning methods to the master graph might address this
concern.

For further enhancement of its utility and streamlining of data
exploration, several features could be incorporated into a DRN’s
graphical interface. An advanced user interface could enable
the omission or disabling of nodes upon a user’s request, and
subsequently generate new trees accordingly. This would enable
users to remove nodes based on their relevance or preference.
Another feature could enable a user to select a node, which would
then prompt the UI to trigger a statistical function - for instance,
constructing a contingency table based on the question associated
with the selected node, and questions associated with all connected
nodes. This feature could facilitate and streamline subsequent
statistical analyses.

Considering the computational demands associated with pro-
cessing large survey data, strategies such as parallel processing
or employing graphics processing unit (GPU)-enhanced graph
packages, like cugraph[12], could significantly enhance processing
efficiency.

DRNs offer a powerful tool for exploring categorical data,
especially in survey data sets. While they have certain limitations,
they excel at revealing important relationships and fostering hy-
potheses for further investigation. The adaptability of DRNs to
various data types, including the treatment of continuous data and
handling of multiple responses, contributes to their effectiveness.
Future improvements to DRN’s graphical interface could further
enhance their utility, while alternative methods for extracting
subgraphs could reveal subtler insights that might be missed by
the current approach. Further studies are needed to explore these
areas and continue refining the DRN methodology.

DRNs serve as potent tools for categorical data exploration,
excelling at revealing key relationships and fostering investigatory
hypotheses. Their versatility to handle various data types and
responses boosts their efficacy. Future enhancements to the DRN
methodology could offer deeper insights, but further research and

development is needed.

Conclusion

DRNs offer significant potential in the exploration of categori-
cal data, as they can reveal crucial relationships and foster the
generation of hypotheses for subsequent investigations. Their
utility in data analysis is promising due to their flexible approach
in accommodating diverse data types and responses. They are
particularly effective in survey data analysis, where their unique
ability to manage categorical data, including continuous data and
multiple responses, is most apparent.

However, DRNs are not without their challenges. There is
potential for future improvements to enhance their functionality
and unlock more profound insights. Potential areas for improve-
ment include the provision of a fully featured graphical interface,
the development of alternative methods for subgraph extraction,
and more sophisticated management of data imbalances and
computational demands. Furthermore, more studies are needed to
fully explore and refine the DRN methodology, ensuring that this
powerful tool continues to evolve and contribute to the field of
data exploration.

An example Jupyter notebook is available at our GitHub repos-
itory: https://github.com/Westhealth/drn-scipy2023/. The efforts to
build the method to a library is documented in the README file.

REFERENCES

[1] J. Manyika, “Big data: The next frontier for innovation, competition, and
productivity,” 2011.

[2] M. A. Hernán et al., “The simpson’s paradox unraveled,” International
Journal of Epidemiology, vol. 40, no. 3, pp. 780–785, 2011, https://doi.
org/10.1093/ije/dyr041.

[3] U. Fayyad, G. G. Grinstein, and A. Wierse, Information Visualization in
Data Mining and Knowledge Discovery. Elsevier, 2002.

[4] B. Shneiderman, “The eyes have it: a task by data type taxonomy for
information visualizations,” in Proceedings 1996 IEEE Symposium on
Visual Languages, 1996, pp. 336–343, https://doi.org/10.1109/VL.1996.
545307.

[5] P. C. Wong and R. D. Bergeron, “Multivariate visualization using metric
scaling,” in Proceedings. Visualization ’97 (Cat. No. 97CB36155), 1997,
pp. 111–118, https://doi.org/10.1109/VISUAL.1997.663866.

[6] L. Wardlow, C. Roberts, L. Archbald-Pannone, C. for Telehealth, and
Aging, “Perceptions and uses of telehealth in the care of older adults,”
Telemedicine journal and e-health : the official journal of the American
Telemedicine Association, 2022, advance online publication. [Online].
Available: https://doi.org/10.1089/tmj.2022.0378

[7] G. J. G. Upton, “Cobweb diagrams for multiway contingency tables,”
Journal of the Royal Statistical Society Series D: The Statistician, vol. 49,
no. 1, pp. 79–85, 2000, https://doi.org/10.1111/1467-9884.00221.

[8] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959, https://doi.
org/10.1007/BF01386390.

[9] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proceedings of the American Mathematical
society, vol. 7, no. 1, pp. 48–50, 1956.

[10] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proceedings of
the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

[11] S. García, J. Luengo, J. A. Sáez, V. López, and F. Herrera, “A survey of
discretization techniques: Taxonomy and empirical analysis in supervised
learning,” IEEE Transactions on Knowledge and Data Engineering,
vol. 25, no. 4, pp. 734–750, 2013, https://doi.org/10.1109/TKDE.2012.
35.

[12] R. D. Team, “cuGraph: Gpu-accelerated graph analytics library,” https:
//github.com/rapidsai/cugraph, 2023, accessed: May 23, 2023.

