
Proceedings of the 7th Python in Science Conference (SciPy 2008)

Finite Element Modeling of Contact and Impact Problems Using Python
Ryan Krauss (rkrauss@siue.edu) – Southern Illinois University Edwardsville, USA

This paper discusses an on going project to improve
the accuracy of automotive crash simulations. Two
likely causes for discrepancy between simulations
and the results of real, physical tests are discussed.
An existing Python package for finite element anal-
ysis, SfePy, is presented along with plans to con-
tribute additional features in support of this work,
including nonlinear material modeling and contact
between two bodies.

Background and Motivation

Introduction

Automobile crashes kill 30,000 Americans in an aver-
age year [Kahane]. Motor vehicle crashes are the lead-
ing cause of death in the U.S. for the age group 4-34
[Subramanian]. Some of these deaths might be pre-
ventable. Engineers can save lives through the design
of safer automobiles.
Crashworthiness design is a complicated process
[Bellora] in which many important safety-related de-
cisions must be made before realistic tests can be run.
As a result, reliable virtual tests or simulations are
essential, so that early design decisions can be data
driven and safety countermeasures can be correctly de-
signed.

Problem

Unfortunately, simulations are often not as accurate as
they need to be. This can lead to failure of physical
tests late in the design of a vehicle. Fixing such fail-
ures can be very expensive and extremely challenging.
If the causes of the differences between simulation and
experiment can be identified and removed, simulations
could provide a true virtual test environment and these
late and expensive failures could be avoided.
Two likely sources of the discrepancies between simu-
lation and experiment include determining high speed
material properties and correctly modeling contact be-
tween two bodies during simulation.

Long Term Goal

The long term goal of this research project is to remove
these two obstacles to more reliable virtual tests. This
will include designing a test device for impact testing
of material samples. This device must be very stiff so
that if its natural frequencies are excited during the
impact test, the ringing can be filtered out of the data
without contaminating the data itself.
The second step in achieving the long term goal of
a reliable virtual test environment is creating Python
based simulation software for this work, based on

the SfePy [SfePy] finite element analysis package. A
method for estimating material properties and gener-
ating deformation models will be developed based on
the combination of simulation and experiment.

Designing a Test Device

Many existing devices for high-speed materials testing
contaminate the data with ringing or vibrations when
used for impact testing. It is difficult to design a device
with sufficiently high natural frequencies so that any
ringing can be filter out without significantly altering
the material response data [Maier].
The next graph shows time domain data from a device
with significant ringing problems.

0.000 0.002 0.004 0.006 0.008 0.010 0.012
Time (sec)

�300

�200

�100

0

100

200

300
A

cc
e
le

ra
ti

o
n

 (
g

's
)

Unfiltered
fc =5000 Hz
fc =1000 Hz

Impact tests results from a device with significant
ringing problems

The following graph shows the fast Fourier transform
(FFT) of this same data.

0 2000 4000 6000 8000 10000
Freq (Hz)

�120

�100

�80

�60

�40

�20

0

20

40

M
a
g

n
it

u
d

e
 (

d
B

)

Unfiltered
fc=5000 Hz
fc=1000 Hz

FFT of the data in the preceding figure

The ringing in the data shown above is not well sep-
arated in frequency from the material response data
and it is difficult to filter out the ringing without al-
tering the slope on the leading edge of the impulse.

57 R. Krauss: Proc. SciPy 2008, G. Varoquaux, T. Vaught, J. Millman (Eds), pp. 57–62

Finite Element Modeling of Contact and Impact Problems Using Python

This slope is directly related to estimates of material
properties such as Young’s Modulus.

Small Drop Tester

Several different impact test devices were investigated
as part of this research project in the summer of 2007.
The amplitude of ringing excited in a typical impact
test was compared along with the separation in fre-
quency between the ringing and the rest of the data.
One device stood out: its natural frequencies were sig-
nificantly higher than the rest, because it depends on
a fairly small mass being dropped onto the material
sample.
The device is shown in the next figure. A test con-
sists of a small mass being dropped onto polyurethane
foam samples. The mass is dropped inside a tube that
is used to guide it while it is falling and to keep it ver-
tical. The dropping mass has an accelerometer on the
back of it to measure the force being exerted on the
mass by the foam sample. There is also a metal flag
on the side of the mass used to measure the impact
velocity with a light gate.

Light Gate
Flag

Tube
Light
Gate

Dropping
Mass

Foam
Specimen

Accelerometer

Small mass drop tester

A picture from just before the dropping mass impacts
a foam sample is shown in the next picture.

The small mass drop tester just before impact

The edges of the dropping mass were painted yellow to
increase visibility in the high speed video. The white
cube with the number 7 on it is the foam sample. A
video clip can be seen here: http://www.siue.edu/
~rkrauss/sfepy/output.avi

Example Data

An example of data from the small mass drop tester is
shown below. Note that the ringing in this data is at a
very high frequency and it has been largely filtered out
without significantly altering the slope of the leading
edge of the impulse.

0.000 0.002 0.004 0.006 0.008
Time (sec)

�20

0

20

40

60

80

100

120

140

160

A
cc

e
le

ra
ti

o
n

 (
g

's
)

Unfiltered
fc =5000 Hz

Impact tests results from a device whose ringing is of
a high enough frequency to be filtered without con-
taminating the data

Python Based Simulations

Along with designing an impact test device that does
not contaminate the data with ringing, the other goal
of this project is to develop Python software modules
for simulating impact tests.
The initial modeling goal is to be able to accu-
rately simulate the small mass drop tester impacting
polyurethane foam samples. This will be pursued for
two reasons. First, it is necessary in order to extract
the parameters for a model of the impact response of
the foam. Second, it is a good candidate for an initial
stepping stone toward modeling more complicated sce-
narios, eventually moving toward simulating in-vehicle
impacts with a dummy head.

A Simple Model

The first step in Python based simulations of the foam
impact tests was to use a really simple model: a mass
with an initial velocity compressing a nonlinear spring
as shown below:

m

v0

k(x)

A simple model of the foam impact test

The spring was modeled as bi-linear: its
force/deflection curve has a linear elastic region near

http://conference.scipy.org/proceedings/SciPy2008/paper_13 58

http://www.siue.edu/~rkrauss/sfepy/output.avi
http://www.siue.edu/~rkrauss/sfepy/output.avi
http://www.siue.edu/~rkrauss/sfepy/output.avi
http://conference.scipy.org/proceedings/SciPy2008/paper_13

Proceedings of the 7th Python in Science Conference (SciPy 2008)

the origin and then a knee representing yielding.
Above the knee, the force deflection curve is still
linear, but with a different slope. The correspond-
ing stress/strain curve can be found by dividing the
force by the cross-sectional area of the foam sample
and the displacement by the initial height. An exam-
ple stress/strain curve is shown below. The data was
curve-fit to find k1, k2, and σy using the Nelder-Mead
simplex algorithm of Scipy’s optimize.fmin.

0.0 0.1 0.2 0.3 0.4
Strain

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
tr

e
ss

 (
M

P
a
)

k1

k2
�
y

Bi-linear curve fit setup

The results of the curve-fit are shown in the next
graph.

0.0 0.1 0.2 0.3 0.4
Strain

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
tr

e
ss

 (
M

P
a
)

Exp.
Fit Res.

Curve fit results

Model Predictions

The estimates for k1, k2, and σy were then used in
an ODE model of the simple system. The resulting
force vs. deflection curve is shown in the next graph.
Note that the model is a fairly good fit, in spite of
it being such a simple model. The primary deficiency
of the model is that it does not fit the back of the
force/deflection curve very well (during the rebound
portion of the curve when the mass is bouncing back
up).

0 1 2 3 4 5 6 7 8 9
Displacement (mm)

�50

0

50

100

150

200

250

300

350

F
o
rc

e
 (

N
)

Exp.
model

Model predictions vs. experiment

Finite Element Modeling

While the simple model does a decent job, the accuracy
of the simulation needs to be improved, especially in
the rebound portion. A model is needed that accounts
for the fact that the foam does not all displace uni-
formly. The foam is continuous and the displacement
within it can vary with position (i.e. the x, y, and
z coordinates of a point within the foam) as well as
with time. This takes the model into the realm of par-
tial differential equations and finite element analysis
(FEA).
FEA is an approach to modeling a real, physical prob-
lem with a collection of small elements. These small
elements are used to discretize a continuous problem.
Ultimately, a partial differential equation model is con-
verted to a matrix expression such as

[K] {D} − {R} = 0 (1)

where [K] is the stiffness matrix, {R} is the forcing
vector, and {D} is the vector of nodal displacements.

Problems with commercial FEA software

While the FEA portion of this project may be con-
sidered solved by some, the correlation between FEA
simulations and the results of real, physical tests is of-
ten not as good as it should be. Most researchers are
satisfied as long as key measures between simulation
and experiment agree, even if the curves do not over-
lay closely [Rathi]. Closed-source software impedes re-
search into the causes of these discrepancies. As such,
this project seeks to add features to an existing Python
FEA tool called SfePy [SfePy] so that it can fully solve
this problem.

Applying FEA to this Problem

In order to apply FEA to this problem, the foam block
will be discretized into many elements using a mesh.
The dropping mass can be represented by one large,
rigid element. The relationship between the FEA

59 http://conference.scipy.org/proceedings/SciPy2008/paper_13

http://conference.scipy.org/proceedings/SciPy2008/paper_13

Finite Element Modeling of Contact and Impact Problems Using Python

model and the physical system is shown in the next
figure.

Dropping Mass

Foam Block
FEA setup for this problem

Introduction to SfePy

SfePy stands for Simple Finite Elements for Python.
It is an FEA solver written primarily by Robert Cim-
rman. Along with the solver it provides a fairly high-
level syntax for problem description that serves as
a sort of pre-processor. SfePy also includes mesh
generation capabilities for simple geometries. Post-
processing must be done by some other software such
as Paraview or Mayavi2.
SfePy can handle nonlinear and time varying prob-
lems and it provides solvers for linear elasticity, acous-
tic band gaps, Poisson’s equation, and simple Navier-
Stokes problems.
This project aims to contribute to SfePy capabilities
for modeling nonlinear materials, multi-body dynam-
ics, and contact between colliding bodies.

Initial FEA Model

The initial FEA model of this problem included only
the foam with the interaction force between the foam
and the dropping mass modeled as a traction load
spread out over the top surface of the foam as shown
in the next figure.

Initial FEA setup with a traction load across the top
surface of the foam

Initial Input Script

Highlights of the input to SfePy are shown below.
First, define the mesh file

filename_mesh = ’3D_mesh.vtk’

Then label important regions of the mesh:
region_1 = {

’name’ : ’Bottom’,
’select’ : ’nodes in (z < 0.001)’

}
region_2 = {

’name’ : ’Top’,
’select’ : ’nodes in (z > 1.999)’,

}

and use those defined regions to specify boundary con-
ditions:

ebc_1 = {
’name’ : ’fixed_u’,
’region’ : ’Bottom’,
’dofs’ : {’u.all’ : 0.0},

}

Material properties can be defined like this:
material_1 = {

’name’ : ’solid’,
’mode’ : ’here’,
’region’ : ’Omega’,
Lame coefficients:
’lame’ : {’lambda’ : lamb, ’mu’ : mu},

}

Understanding FEA/SfePy

FEA is a mathematical tool for solving partial differen-
tial equations (PDEs). In the context of this problem,
that means that the stress (force per unit area) and
strain (change in height divided by initial height) in
the foam sample are functions of more than one vari-
able: σ(x, y, z, t) and ε(x, y, z, t).
SfePy uses the weak formulation for finite element
problems. This means that the problem is stated in
terms of an integral expression that is valid over a vol-
ume. For the case of solid mechanics, this integral is
the potential energy functional:

Πp =
∫
{σ}T {dε} −

∫
{u}T {Φ} dS (2)

where {σ} is stress, {ε} is strain, {u} is displacement,
and {Φ} is a traction vector representing force dis-
tributed over a surface S.
The derivation in this section is based on [Cook], es-
pecially chapters 3 and 4. Discretizing and replacing
the integral over the entire volume with the sum of
integrals over the finite elements gives:

Πp =
Nels∑
i=1

∫ ∫
{σ}T {dε} dV −

Nels∑
i=1

∫
{u}T {Φ} dS

(3)
Substituting a linear elastic material model

{σ} = [E] {ε} (4)

http://conference.scipy.org/proceedings/SciPy2008/paper_13 60

http://conference.scipy.org/proceedings/SciPy2008/paper_13

Proceedings of the 7th Python in Science Conference (SciPy 2008)

(where [E] is a matrix expressing Hooke’s law in three
dimensions) results in∫

{σ}T {dε} =
1
2
{ε}T [E] {ε} (5)

and

Πp =
Nels∑
i=1

∫
1
2
{ε}T [E] {ε} dV −

Nels∑
i=1

∫
{u}T {Φ} dS

(6)
Defining the matrix [∂] for the relationship between
strain ε and displacement

{ε} = [∂] {u} (7)

and the matrix [N] for interpolation from the displace-
ment of the corners of a brick element {d}, to any point
within it

{u} = [N] {d} (8)

allows the strain tensor to be written as

{ε} = [∂] [N] {d} or {ε} = [B] {d} (9)

where [B] = [∂] [N].
Substituting this expression for {ε} into equation 6
and integrating over each element produces

Πp =
1
2

Nels∑
i=1

{d}T [k]i {d} −
Nels∑
i=1

{d}T {re}i (10)

where

[k]i =
∫

[B]T [E] [B] dV and {re}i =
∫

[N]T {Φ} dS

(11)
Defining a matrix [L]i for each element that selects the
element degrees of freedom from the global displace-
ment vector {D}

{d}i = [L]i {D} (12)

allows equation 10 to be rewritten as

Πp =
1
2
{D}T [K] {D} − {D}T {R} (13)

where

[K] =
Nels∑
i=1

[L]Ti [k]i [L]i and {R} =
Nels∑
i=1

[L]Ti {re}i

(14)
Rendering equation 13 stationary requires that

dΠp = [K] {D} − {R} = 0 (15)

which is the final FEA matrix formulation that will be
solved for the nodal displacement vector {D}.
The interested reader is referred to [Cook] for a more
thorough explanation.

References

[Kahane] Kahane, C. J., “Lives Saved by the Fed-
eral Motor Vehicle Safety Standards and
Other Vehicle Safety Technologies, 1960-
2002,” Tech. rep., National Highway
Traffic Safety Administration, Oct. 2004.

[Subramanian] Subramanian, R., “Motor Vehicle Traffic
Crashes as a Leading Cause of Death in
the United States, 2003,” Traffic Safety
Facts, Research Note, March 2006.

[Bellora] Bellora, V., Krauss, R., and Van Poolen,
L., “Meeting interior head impact require-
ments: A basic scientific approach,” SAE
2001 World Congress & Exhibition, Ses-
sion: Safety Test Methodology (Part C &
D), Society of Automotive Engineers, De-
troit, MI, March 2001.

[SfePy] Cimrman, R., 2008. SfePy Website.
http://sfepy.kme.zcu.cz.

[Rathi] Rathi, K., Lin, T., and Mazur, D., “Eval-
uation of Different Countermeasures and
Packaging Limits for the FMVSS201U,”
SAE 2003 World Congress & Exhibition
Session: Modeling of Plastic Foam and
Cellular Materials for Crash Applications
(Part 2 of 4), Society of Automotive En-
gineers, Detroit, MI, March 2003.

[Maier] Maier, M., Huber, U., Mkrtchyan, L.,
and Fremgen, C., “Recent improvements
in experimental investigation and param-
eter fitting for cellular materials subjected
to crash loads,” Composites Science and
Technology, Vol. 63, No. 14, 2003, pp.
2007-2012.

[Cook] Cook, R. D., Malkus, D. S., Plesha, M.
E., and Witt, R. J., Concepts and Appli-
cations of Finite Element Analysis, 2002
John Wiley & Sons.

61 http://conference.scipy.org/proceedings/SciPy2008/paper_13

http://sfepy.kme.zcu.cz.
http://sfepy.kme.zcu.cz.
http://sfepy.kme.zcu.cz.
http://conference.scipy.org/proceedings/SciPy2008/paper_13

	Finite Element Modeling of Contact and Impact Problems Using Python
	Background and Motivation
	Introduction
	Problem
	Long Term Goal

	Designing a Test Device
	Small Drop Tester
	Example Data

	Python Based Simulations
	A Simple Model
	Model Predictions
	Finite Element Modeling
	Problems with commercial FEA software
	Applying FEA to this Problem
	Introduction to SfePy
	Initial FEA Model

	Initial Input Script
	Understanding FEA/SfePy

	References

