Proceedings of the 7" Python in Science Conference (SciPy 2008)

The SciPy Documentation Project

Joseph Harrington (jh@physics.uct.edu) — University of Central Florida, USA

The SciPy Documentation Project seeks to provide
NumPy and SciPy with professional documentation
and documentation access tools in a variety of for-
mats. As our first effort, we have sponsored the
SciPy Documentation Marathon 2008, whose goal
is to produce reference documentation for the most-
used portions of NumPy. | present an overview of
current efforts and future plans.

Introduction and Motivation

A serious shortcoming of NumPy/SciPy is the state of
its documentation. Not only does this hurt productiv-
ity and make working in NumPy very frustrating at
times, it prevents adoption of the packages by many
who might profitably use them. This means our pool
of volunteers is much smaller than it might be, and
that solving the documentation problem might thus
enable projects of which today we can only dream.
Following a particularly difficult semester teaching a
data analysis class in Python for the first time, I be-
came motivated to begin the problem’s resolution in
the Spring 2008 semester. Below I discuss my moti-
vating case, the requirements and design for a project
to document NumPy and SciPy, our current (Summer
2008) timeline and plans, the people involved, results
to date, our challenge to future development, and some
issues to think about for the future.

I teach a course called Astronomical Data Analysis to
upperclass physics and astronomy majors. The course
initially used the Interactive Data Language, an expen-
sive and somewhat clunky proprietary language that
is popular in the astronomy community. The class is
very challenging, and the focus is data analysis and
how the physics of astronomical detectors affects data.
Although most of the exercises are programming tasks,
it is not a course in computer programming. Our use
of programming is kept simple and even though about
half the students typically have little programming ex-
perience, they manage to learn enough to write good
and clear code (an emphasis of the course). It is per-
haps a benefit that at this level the programs are kept
simple and the focus is kept on analysis. The IDL
course was highly effective. For example, students of-
ten reported having taught their advisors important
aspects of data analysis of which the faculty advisors
apparently had not been aware, and of becoming re-
sources for their fellow students in external summer
programs, graduate school, etc.

In Fall 2007, having moved institutions, I took the op-
portunity to switch the class to NumPy. I was pleased
that most of the students in my class were compara-
bly capable to those at my former institution. As re-
sources for learning NumPy, they received the Guide
to NumPy, the scipy.org web site, the mailing lists,

me, source code, and the astronomy tutorial. They
were also encouraged to work together. It was not
enough, and the class suffered badly. Students of-
ten spent 2 hours to find and learn a simple routine.
This prevented their rapid acquisition of the language,
which the class depended upon. Despite their (and
my) heroic efforts, none completed the final project,
something that even the worst students had always
been able to do. This included several students expe-
rienced in languages like C++-. The problem was sim-
ple: the reference documentation was in many cases
not even poor, it was nonexistent, and the other re-
sources were insufficient to make the language acces-
sible in the time currently expected of students and
many other programmers. The conclusion was sim-
ple: I must either have documentation the next time I
taught it or go back to IDL.

Requirements and Design

If I can’t find a reindeer, I’ll make one instead. -T. Grinch,
1957

I was unwilling to return to IDL, but at the same time
as a pre-tenure professor with a very active research
program, my time was far too constrained to take on
the job myself. So, I would be leading a project, not
doing one. My resources were the SciPy community,
some surplus research funding, and about 8 months.

The needs were similarly clear: reference pages and
a reference manual for each function, class, and mod-
ule; tutorial user guide; quick “Getting Started” guide;
topic-specific user guides; working examples; “live”
collection of worked examples (the scipy.org cook-
book); tools to view and search docs interactively; vari-
ety of access methods (help(), web, PDF, etc.); mecha-
nisms for community input and management; coverage
first of NumPy, then SciPy, then other packages.

Completing the reference documentation for the rou-
tines used in the course would be sufficient to teach the
class in NumPy. The requirements for the reference
documentation were: a reference page per function,
class, and module (“docstrings”); thorough, complete,
professional text; each page accessible one level be-
low the lowest-level expected user of the documented
item; examples, cross references, mathematics, and im-
ages in the docstrings; pages for general topics (slicing,
broadcasting, indexing, etc.); a glossary; a reference
manual compiled from the collected pages; organized
by topic areas, not alphabetically; indexed.

33 J. Harrington: Proc. SciPy 2008, G. Varoquaux, T. Vaught, J. Millman (Eds), pp. 33-36

The SciPy Documentation Project

Timeline and Plans

I hired Stéfan van der Walt, a NumPy developer and
active community member, to spearhead the writ-
ing effort and to coordinate community participation.
Since it was clear that the labor needed would exceed
that of a few people, we agreed that some infrastruc-
ture was needed to ensure quality documentation and
even to make it possible for many non-developers to
participate. This included: wiki for editing and re-
viewing docs, with a link to SVN, ability to generate
progress statistics, etc.; templates and standards for
documentation; addition of indexing, math, and im-
age mechanisms to NumPy doc standard; production
of ASCII, PDF, and HTML automatically; and work-
flow for editing, review, and proofing. Work on the
infrastructure took about 5 weeks and was complete
by June 2008.

We decided first to address NumPy, the core package
needed by everyone, and to provide reference pages,
a “Getting Started Guide”, and a tutorial user guide.
We would also need doc viewing tools beyond Python’s
help() function. These would initially be web browsers
and PDF readers, but perhaps eventually more special-

to allow teams to propose to write the chapters and
communicate with one another to attempt to keep the
document as a whole uniform and coherent.

People

The core documentation team included: Joe Harring-
ton - organization, plans, standards and processes,
funding, whip; Stéfan van der Walt (on UCF con-
tract) - Reliable and available expert, interface with
SVN, PDF and HTML document generation, stan-
dards and processes, wiki, chief writer; Emmanuelle
Gouillart - wiki, wiki hosting; Pauli Virtanen - wiki,
writing; Perry Greenfield - numpy.doc pages

We began the community effort with the Summer
Documentation Marathon 2008, in reference to the
“sprints” sponsored periodically to address particu-
lar needs of NumPy development. Volunteers immedi-
ately signed up on the documentation wiki and began
writing docstrings, and Stéfan finished the UCF prior-
ity list early in the summer. As of this writing (August
2008), the following have signed up on the wiki:

ized tqols would appear. We realizefl that we would Shirt | Name Shirt | Name
not write the latter tool set, but that if we provided an B d David Huard
easily parseable documentation standard, other users Y : J¢(;n " Y avid Huar
likely would provide them. Finally, SciPy would need andsvi
the same set of documents. René Bastian y Alan Jackson
Starting all projects in parallel would dilute our vol- Nathan Bell Teresa Jeffcott
unteer effort to such a degree that the UCF course Joshua Bloom Samuel John
would not have the documents it would need. Many Patrick Bouf- | y Robert Kern
efforts would likely not reach critical mass, and would fard
.fall. Also, the count of NumPy pages surprised us, as Matthew Brett Roban Kramer
it exceeded 2300 pages. A general triage and prioriti- - .
zation of the needs of the course were necessary. The Christopher Vincent Noel
surviving pages of the triage are called NumPyI below: Burns
y Tim Cera y Travis Oliphant
Date Goal Johann Cohen- Scott Sinclair
June 2008 NumPy page triage and prioritization, Tanugi
infrastructure Neil Crighton y Bruce Southey
by Septem- | NumPyl 50%+ to “Needs review” sta- Arnar Flatberg Andrew Straw
ber 2008 tus, included in release Pierre Gerard- | y Janet Swisher
by January | NumPyl 100% to “Needs review" sta- Marquardt
2009 tus, included in release y Ralf Gommers Theodore Test
by June | NumPyl Proofed, included in release y Keith Goodman James Turner
2009 _ > ' _ y Perry Greenfield Gael Varoquaux
by Septem- | SciPy 25A>+ to “Needs review”, in- y Emmanuelle y Pauli Virtanen
ber 2009 cluded in release .
Gouillart
Results of the first stage of the project appear be- y Joe Harrington Nicky van Foreest
low. That effort raised the question of when/if /how /by Robert Hetland | y Stéfan van der
whom would the “unimportant” part of NumPy be Walt
documented? It was also not clear that an effort of y= earned a T-shirt! Hooray and thanks!

tens of volunteers could write a monolithic tutorial
user manual. A user manual requires continuity and
coherence throughout, to a much greater degree than
a collection of docstrings. One possibility would be
to divide the manual into around ten chapters and

During the middle of the summer, we decided to offer
an incentive to attract more writers. Teresa Jeffcott at
UCF produced a humorous graphic, and writers con-
tributing over 1000 words or equivalent work in wiki

http://conference.scipy.org/proceedings/SciPy2008/paper_7

34

http://conference.scipy.org/proceedings/SciPy2008/paper_7

Proceedings of the 7*® Python in Science Conference (SciPy 2008)

maintenance, reviewing, etc. would receive one at the
SciPy 2008 conference or by mail. A number of writers
signed up in response, and the offer remains good until
we withdraw it. We encourage even those who simply
want the shirt to sign up and write 1000 (good) words,
an amount that many volunteers have contributed in
a single week.

Results - Summer 2008

As of this writing, the status of the NumPy reference
documentation is:

Status % | Count
Needs editing 42 352
Being written / Changed | 33 | 279
Needs review 20 | 164

2 19

0 2
Reviewed (needs proof) 0 0
Proofed 3 24
Unimportant 1531

Needs review (revised)

Needs work (reviewed)

The quality of the finished documents is easily com-
parable to commercial package documentation. There
are many examples, they work, and the doctest mecha-
nism ensures that they will always work. These should
not be the only tests for a given function, as our educa-
tional tests do not necessarily exercise corner cases or
even all function options. The PDF document has 309
pages. NumPyI should double that number, and it will
triple from there when all documentation is complete.
As of this writing, the doc wiki is the best source for
NumPy documentation. It is linked from the scipy.org
website under the Documentation page.

A Challenge

We would like to kill the doc problem going forward.
“Normal” professional software projects, free or not,
write docs and code together. Good software projects
write docs first and use them as specifications. NumPy

had to start fast to unite Numeric and numarray, but
that era is now over (thank goodness). We thus chal-
lenge the developers to include no new functions or
classes in NumPy or SciPy without documentation.
We further urge those patching bugs to consider the
lack of a docstring to be a major bug and to fix that
problem when they fix other bugs. Those fixing bugs
are particularly knowledgeable about a function, and
should easily be able to write a docstring with a lim-
ited time commitment. This is particularly vital for
the “unimportant” items, where there is likely to be
less interest from the wider community in completing
the documentation. Of course, we never wish to pro-
vide a barrier to fixing bugs. We simply state the case
and ask developers to use their judgement. Likewise,
if reasonable docs come with a new contribution, the
details of doc standards compliance can be waived for
a while, or the contribution can be accepted on a SVN
branch and held until the docs pass review.

Going Forward

Since NumPy is fundamental, its reference pages come
first. Then we will put SciPy on the doc wiki.

We need more writers. NumPy developers should con-
sider addressing the “unimportant” pages, as others
may lack the knowledge or motivation for doing them.
The authors of specialized sections of SciPy should
contribute docs for their work (initially in SVN). In
some cases they are the only ones able to communi-
cate effective use of their packages to users.

We may implement separate technical and writing re-
views. It may be best to limit the reviewers to a small
group, to maintain consistency and a high standard.
Certainly in no case should a reviewer contribute text
to a docstring, as all parts of each docstring must be
seen by at least two brains.

We may need a different approach for the user guides,
and we would like to start work on tools, SciPy, and
user guides. For this, we need still more volunteers. So
we ask you, dear reader, to go to the doc wiki, sign up,
and WRITE! The time you spend will be greatly ex-
ceeded by the time you save by having docs available.
Many thanks to all contributors!

35

http://conference.scipy.org/proceedings/SciPy2008/paper_7

http://conference.scipy.org/proceedings/SciPy2008/paper_7

	The SciPy Documentation Project
	Introduction and Motivation
	Requirements and Design
	Timeline and Plans
	People
	Results - Summer 2008
	A Challenge
	Going Forward

