
Proceedings of the 7th Python in Science Conference (SciPy 2008)

How the Large Synoptic Survey Telescope (LSST) is using Python
Robert Lupton (rhl@astro.princeton.edu) – Princeton University, USA

The Large Synoptic Survey Telescope (LSST) is a
project to build an 8.4m telescope at Cerro Pachon,
Chile and survey the entire sky every three days
starting around 2014.
The scientific goals of the project range from char-
acterizing the population of largish asteroids which
are in orbits that could hit the Earth to understand-
ing the nature of the dark energy that is causing the
Universe’s expansion to accelerate.
The application codes, which handle the images
coming from the telescope and generate catalogs
of astronomical sources, are being implemented in
C++, exported to python using swig. The pipeline
processing framework allows these python modules
to be connected together to process data in a par-
allel environment.

The Large Synoptic Survey Telescope (LSST) is a
project to build an 8.4m telescope at Cerro Pachon,
Chile and survey the entire sky every three days start-
ing around 2014.
The scientific goals of the project range from charac-
terizing the population of largish asteroids which are
in orbits that could hit the Earth to understanding the
nature of the dark energy that is causing the Universe’s
expansion to accelerate.
The application codes, which handle the images com-
ing from the telescope and generate catalogs of astro-
nomical sources, are being implemented in C++, ex-
ported to python using swig. The pipeline process-
ing framework allows these python modules to be con-
nected together to process data in a parallel environ-
ment.

Introduction

Over the last twenty-five years Astronomy has been
revolutionized by the introduction of computers and
CCD detectors; the former have allowed us to employ
telescope designs that permit us to build telescopes
with primary mirrors of diameter 8-10m, as well as
handle the enormous volumes generated by the lat-
ter; for eample, the most ambitious imaging project
to date, the Sloan Digital Sky Survey (SDSS [SDSS]),
has generated about 15Tby of imaging data.
There are a number of projects being planned or built
to carry out surveys of the sky, but the most ambitious
is the Large Synoptic Survey Telescope (LSST). This
is a project to build a large telescope at Cerro Pachon,
Chile and survey the entire sky every three days start-
ing around 2014. The telescope is a novel 3-mirror
design with an 8.4m diameter primary mirror and will

be equipped with a 3.2Gpixel camera at prime focus.
The resulting field of view will have a diameter of 3.5
degrees --- 7 times the full moon’s diameter (and thus
imaging an area 50 times the size of the moon with ev-
ery exposure). In routine operations we expect to take
an image of the sky every 15s, generating a data rate
of over 800 Mby/s. In order to handle these data we
will be building a complex software system running on
a large cluster. The LSST project is committed to an
“Open-Data, Open-Source” policy which means that
all data flowing from the camera will be immediately
publically available, as will all of the processing soft-
ware.
The large area imaged by the LSST telescope will al-
low us to image the entire sky every 3 (clear!) nights.
This survey will be carried out through a set of 6 filters
(ultra-violet, green, red, very-near-infrared, nearish-
infrared, near-infrared; 320nm -- 1050nm) allowing us
to characterize the spectral properties of the several
billion sources that we expect to detect --- approxi-
mately equal numbers of stars and galaxies. This un-
precedented time coverage (at the faint levels reached
by such a large telescope, even in as short an exposure
as 15s) will allow us to detect objects that move as
well as those that vary their brightness. Taking the
set of images at a given point, taken over the 10-year
lifetime of the project, will enable us to study the ex-
tremely faint Universe over half the sky in great detail.
It is perhaps worth pointing out that the Hubble Space
Telescope, while able to reach very faint levels, has a
tiny field of view, so it is entirely impractical to dream
of using it2 to carry out such survey projects.
The LSST’s scientific goals range from studies of
the Earth’s immediate neighbourhood to the furthest
reaches of the visible Universe.
The sensitivity to objects that move will allow us to
measure the orbits of most3 asteroids in orbits that
could hit the Earth.4 If it’s any consolation, only ob-
jects larger than c. 1km are expected to cause global
catastrophes, while the main threat from smaller ob-
jects is Tsunamis (the reindeer-killing object that hit
Tunguska in 1908 is thought to have been c. 100m in
diameter). More distant moving objects are interest-
ing too; LSST should be able to characterise moving
objects in our Galaxy at distances of thousands of light
years.
The LSST’s frequent measurement of the brightness of
enormous numbers of sources opens the possibility of
discovering new classes of astronomical objects; a spec-
tacular example would be detecting the flash predicted
to occur when two super-massive black holes merge in

2Or its planned successor, the James Webb Space Telescope
390% of objects larger than 140m
4There are other projects, such as Pan-STARRS on Haleakala on Maui, that are expected to identify many of these objects

before LSST commences operations

39 R. Lupton: Proc. SciPy 2008, G. Varoquaux, T. Vaught, J. Millman (Eds), pp. 39–42



How the Large Synoptic Survey Telescope (LSST) is using Python

a distant galaxy. Such mergers are expected to be a
normal part of the evolution of galaxies, and should be
detectable with space-based gravitational wave detec-
tors such as LISA. The detection of an optical counter-
part would dramatically increase how much we learn
from such an event.
Finally, the LSST will provide extremely powerful
ways of studying the acceleration of the Universe’s ex-
pansion, which is generally interpreted as a manifesta-
tion of a “dark energy” that currently comprises 70%
of the energy-density of the Universe. Two techniques
that will be employed are studying distant type Ia su-
pernovae (which can be used to measure the expansion
history of the Universe) and measuring the distortions
imposed on distant galaxies by the curvature of space
caused by intervening matter.
The requirements that this system must meet are
rather daunting. The accuracy specified for measure-
ment of astronomical quantities such as brightnesses
and positions of sources significantly exceeds the cur-
rent state of the art, and must be achieved on a scale
far too large for significant human intervention.

LSST’s Computing Needs

Analyzing the data coming from LSST will require
three classes of software: The applications, the mid-
dleware, and the databases. The applications codes
process the incoming pixels, resulting in catalogues of
detected sources’ properties; this is the part of the pro-
cessing that requires a understanding of both astro-
nomical and computing algorithms. The middleware
is responsible for marshalling the applications layer
over a (large) cluster; it’s responsible for tasks such
as disk i/o, load balancing, fault tolerance, and prove-
nance. Finally the astronomical catalogues, along with
all relevant metadata, must be stored into databases
and made available to the astronomical and general
public (including schools --- outreach to students be-
tween Kindergarten and 12th grade is an important
part of the LSST).
The entire system is of course reliant on a build system,
and here we decided to eschew the gnu toolchain (au-
tomake, autoconf, gnumake, libtool) in favour of scons,
a python-based build system that replaces make, much
of the configure part of the auto* tools, and the joys
of building shared libraries with libtool. We felt that
scons support for multi-platform builds was sufficient,
especially in this modern age of ANSI/ISO C++ and
Posix 1003.1 compatibility. Additionally, we are using
a pure python tool eups to manage our dependencies
--- we strongly felt that we needed to support having
multiple sets of dependent libraries simultaneously de-
ployed on our machines (and indeed for a developer to
be able to use one set in one shell, and a different set
in another).

The Application Layer

The application codes are being implemented in C++,
exported to python using swig. This is a different ap-
proach to that employed by the PyRAF group at the
Space Telescope Science Institute [PyRAF] which de-
fines all of its classes in python, making extensive use of
numpy and scipy. For example, if your primary need is
to be able to read images from disk, manipulate them
(e.g. add them together or warp them) and then ei-
ther pass them to an external program or write them
back to disk, a numpy-based approach is a very good
fit. In a similar way, if you wish to read a catalogue
of objects into a python array, then the objects in the
array --- corresponding to the entries in the catalogue
--- are naturally created in python.
However, for the LSST, we rejected this solution as
we felt that the natural place to create many objects
was in C++. For example, given an image of the
sky the first stage of processing (after correcting for
the instrumental response) is detecting all of the ob-
jects present in the image. This isn’t a particularly
hard problem, but it is not one that’s well matched to
python as it involves searching through all the pixels
in the image to determine connected sets --- and iter-
ation through all the elements of an array is not an
array-based extension such as numpy’s strong point.
On the otherhand, it’s very natural in a language such
as C or C++; as you detect each source you add its
data structure to a list. There are many technolo-
gies available for linking python and C/C++ (ctypes,
boost::python, swig, pyrex, cython, ...) with various
strengths and weaknesses. We chose SWIG because of
its non-invasive nature (when it works it simply works
--- you pass it a .h file and out pops the python inter-
face), it’s level of support, and its high-level semantics
--- a C++ std::list<...> becomes a python list; a C++
std::map<string, ...> becomes a python dictionary.

Where we are using Python

As described, our fundamental operations are imple-
mented in terms of C++ classes, and in C++. Where
does python fit in? The first place is in writing tests;
we have used unittest to write the majority of our (ad-
mittedly still small) test suite. Because swig can be
used to wrap low-level as well as high-level interfaces,
we are able to write tests that would usually be coded
directly in C++6. A downside of this is that the devel-
oper has to be sure that problems revealed are in the
C++ code not the interface layer --- but in the long
run we need to test both7.
The next major application of python is as a high-
level debugger8 For example, an C++ object detector
returns an std::list of detections; but are they correct?
It’s easy to write a little piece of python to plot the
objects in an image display programme to see if they

6Using e.g. boost::test or CppUnit
7The classic problems are due to reference counting. E.g. if operator+= is given its usual C++ meaning of returning its

argument, swig will generally get the reference counts wrong.

http://conference.scipy.org/proceedings/SciPy2008/paper_9 40

http://conference.scipy.org/proceedings/SciPy2008/paper_9


Proceedings of the 7th Python in Science Conference (SciPy 2008)

make sense; then to plot the ones that only satisfy
a certain condition, and so on. This is making use
of python’s strengths as a fast-prototyping language,
where we can keep the same list of objects while writ-
ing visualisation code --- if we were doing this in C++,
we’d have to rerun the object detector as well as the
display code at each iteration. A more long-lasting
aspect of the same style of coding is the quality assur-
ance that a project such as LSST is crucially depen-
dent on. We shall have far too much data to dream of
looking at more than a tiny fraction by eye, so exten-
sive suites of analysis programmes will be run looking
for anomolies, and such programmes are also naturally
written in python.

Finally, we have pushed the C++ interfaces down to
quite a low level (e.g. detect objects; measure posi-
tions; merge detections from multiple detection algo-
rithms). The modularity desired by the middleware
is higher --- more at the level of returning all objects
from an image, with properly measured positions. The
solution is to write the modules themselves in python,
making calls to a sequence of C++ primitives.

Conclusions

We have adopted python as the interactive layer in a
large image processing system, and are happy with the
results. The majority of the pixel-level code is written
in C++ for efficiency and type-safetly, while the pieces
are glued together in python. We use python both as
a development language, and as the implementation
language to assemble scientific modules into complete
functioning pipelines capable of processing the torrent
of data expected from the LSST telescope.

Appendix

Integration with numpy

There are of course very good reasons for wanting
our array classes to map seamlessly onto numpy’s
array classes --- having been through the nu-
meric/numarray/numpy wars, we have no wish to start
yet another schism. There are two issues here: How
well our image classes map to (or at least play with)
numpy’s; and the extent to which our C++ function
calls and methods return numpy arrays rather than
pure python lists.
Let us deal with the former first. We have a templated
Image class which looks much like any other; it may
be described in terms of a strided array9. This is simi-
lar to numpy’s 2-D array classes, but not identical. In
the past (prior to swig 1.3.27) it was possible to cre-
ate python classes that inherited from both numpy’s
ndarray and LSST’s Image but this solution was frag-
ile, and we understood the question of exactly who
owned memory and when it could be safely deleted
was only hazily. Another approach would be to make
the LSST image classes inherit from ndarray --- but
there we have problems with the C --- C++ barrier. It
seems likely that a solution can be implemented, but
it may not be clean.
The second question, that of numpy record arrays ver-
sus python lists, seems to be purely a matter of policy,
and writing the proper swig typemaps. However, it
does raise the question of how much one wants numpy’s
arrays to dominate the data structures of what is ba-
sically a python program.

References

[SDSS] http://www.sdss.org
[PyRAF] http://www.stsci.edu/resources/software_

hardware/pyraf

8A similar approach was taken by the SDSS, but using TCL7.4 bound to C
9The internals are in fact currently implemented in terms of NASA’s VisionWorkbench (http://ti.arc.nasa.gov/projects/

visionworkbench)

41 http://conference.scipy.org/proceedings/SciPy2008/paper_9

http://www.sdss.org
http://www.sdss.org
http://www.sdss.org
http://www.stsci.edu/resources/software_hardware/pyraf
http://www.stsci.edu/resources/software_hardware/pyraf
http://www.stsci.edu/resources/software_hardware/pyraf
http://ti.arc.nasa.gov/projects/visionworkbench
http://ti.arc.nasa.gov/projects/visionworkbench
http://ti.arc.nasa.gov/projects/visionworkbench
http://conference.scipy.org/proceedings/SciPy2008/paper_9

	How the Large Synoptic Survey Telescope (LSST) is using Python
	Introduction
	LSST's Computing Needs
	The Application Layer
	Where we are using Python

	Conclusions
	Appendix
	Integration with numpy

	References

