
Proceedings of the 8th Python in Science Conference (SciPy 2009)

Convert-XY: type-safe interchange of C++ and Python containers for
NumPy extensions
Damian Eads (eads@soe.ucsc.edu) – University of California, 1156 High Street, Santa Cruz USA
Edward Rosten (er258@cam.ac.uk) – University of Cambridge, Trumpington Street, Cambridge UK

We present Convert-XY: a new, header-only tem-
plate library for converting containers between C++
and Python with a simple, succinct syntax. At compile-
time, template-based recursive pattern matching is
performed on the static structure of the C++ type
to build dynamic type checkers and conversion func-
tions.
Note: proper C++ syntax encloses template param-
eters with angle brackets. We omit the extra space
placed between two adjacent right brackets for space
purposes, e.g. vector<map<int, vector<int>>> in-
stead of vector<map<int, vector<int> > >.

Introduction

We present Convert-XY: a library for converting ar-
bitrary containers between C++ and Python. Here
is a simple “hello world” example of Convert-XY in
action; it converts a Python dictionary x to a C++
object y:

void hello_world(PyObject *x) {
map <string, vector<int>> y;
convert(x, y);

}

This function can be called from Python with a dic-
tionary (or any object obeying the mapping protocol)
with key objects that can be converted to strings and
sequence protocol objects containing objects that can
be converted to numbers:

hello_world({"a": [1,2,3], "b": (4,5),
"c": np.array([6,7]),
"d": (x for x in (8,9))})

At compile time, pattern matching is applied to the
structure of the C++ type of y. This yields two pieces
of information: how to check for compatible struc-
ture in the Python type (e.g. a dictionary mapping
strings to lists, tuples, arrays or sequences is com-
patible with map<string, vector<int>>) and which
set of converters is applicable (e.g. sequences vs.
dictionaries). Dynamic type checkers and converter
functions can be built with this static type infor-
mation at compile time. Further, the library stati-
cally determines when an array buffer pointer can be
reused, preventing unnecessary copying which can be
very useful for programs operating on large data sets.
LIBCVD, a popular computer vision library used in
our work, provides a BasicImage class, which can
be used to wrap two-dimensional image addressing
around a buffer pointer. Convert-XY avoids copying
and allocation by reusing the NumPy buffer pointer
whenever it can:

void example(PyObject *x) {
map <string, BasicImage<float>> y;
convert(x, y);

}

In this example, the type of the target object for con-
version is known at compile time; it’s an STL map.
The compiler’s template pattern matching algorithm
matches on the structure of this type to build a dy-
namic type checker to ensure every part of the source
Python object x follows compatible protocols, e.g. the
outermost part of x follows the mapping protocol. In
Python, we construct a dictionary of NumPy arrays
containing integers.:

def example():
hello = np.zeros((50,50), dtype=’i’)
x = {’hello’: hello}

Use your favorite wrapping tool to call C++
(e.g. Boost, Weave, Python C API)
cpp.example(x);

Since the buffer is reused in this example and the
NumPy array contains elements of a different type
than the BasicImage objects in the STL map, a
run time exception results, “Expected a contiguous
NumPy array of type code (f)”.
Unlike BasicImage objects, LIBCVD’s Image objects
allocate and manage their own memory. In this situa-
tion, the source x can be discontiguous and the array
elements can be of a different type than in the source
x.

Background

NumPy offers a succinct syntax for writing fast, vec-
torized numerical algorithms in pure Python. Low-
level operations on large data structures happen in
C, hidden from the user. The broader SciPy toolset
(SciPy, NumPy, Mayavi, Chaco, Traits, Matplotlib,
etc.) is a framework for developing scientific applica-
tions, simulations, GUIs, and visualizations [Jon01].
The simplicity and expressiveness of Python makes
scientific computation more accessible to traditionally
non-programmer scientists.
Writing extensions is tedious and inherently error-
prone, but sometimes necessary when an algorithm
can’t be expressed in pure Python and give good
performance. Additionally, a significant number of
physics and computer vision codes are already written
in C++ so Python/C++ integration is an unavoidable
problem in need of good solutions.
Interfacing between C/C++ and Python can mean
several different things; the figure illustrates three
cases. First, wrapping C/C++ functions exposes their

29 D. Eads, E. Rostenin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 29–36

eads@soe.ucsc.edu
er258@cam.ac.uk

Convert-XY: type-safe interchange of C++ and Python containers for NumPy extensions

MyCppFunction(x,y,z)

Python Code

x y getX() getY()
MethodsAttributes

Point Class
C++ Code

Calling C++ Functions Wrapping C++ Classes Exposing
Python Interface

Figure 1 Existing tools expose C/C++ functions,
structures, and objects from Python and Python
functions and data from C/C++. Convert-XY con-
verts between arbitrary C++ and Python containers.

interface so they can be called from Python. This
is a well-explored problem with several mature tools
in mainstream use including Boost Python [Abr03],
SWIG [Bea95], Cython [Ewi08], Weave [Jon01], ctypes
[Hel00], Py++ [Yak09], and the Python C API
[GvR92] to name a few. Second, wrapping C++
structs and classes exposes user-defined data struc-
tures in Python. Boost, SWIG, and Py++ are very
well-suited to interface problems of this kind. Third,
exposing Python from C++ enables C++ code to
manipulate Python objects. PyCXX serves this pur-
pose. It wraps the Python Standard Library with
C++ classes, performing reference counting and mem-
ory management automatically using C++ language
features [Sco04].

map

string vector

BasicImage

float

dictionary

string list

NDArray

Numpy Float

C++ Python

Figure 2 Helper templates deduce sensible mappings
and conversion behavior between Python and C++
types at compile time.

Convert-XY is not meant to replace any of the other
extension tools because it addresses a different problem
altogether: how to convert objects between Python
and C++ automatically.
SWIG supports typemaps which enable the developer
to define how data is converted from Python to C++
and vice versa.:

namespace CVD {
template<class T> class BasicImage;
%typemap(in) BasicImage<float> {

// Conversion code goes here.
}

}

However the task of conversion must be specified man-
ually. Convert-XY is a solution which can be used
to automatically build converters for SWIG typemaps.

Differences in Type-checking

Python and C++ use fundamentally different type sys-
tems. In dynamic typing (Python), types are not pre-
specified and can change as the program runs. Thus,
checks for type errors happen at run time. In static
typing (C++), types never change throughout the ex-
ecution of a program so type errors are found at com-
pile time but type checks are omitted at run time be-
cause type correctness guarantees are made before the
program starts. The template facility within C++ is
a language in itself because templates are just com-
pile time programs. Templates can be used to express
sophisticated code generation and compile time logic.
Convert-XY exploits the template facility to build
conversion functions and dynamic type checkers for
converting between C++ and Python objects at com-
pile time.

Convert-XY

Convert-XY’s names and functions are declared
within the ConvertXY namespace. For the rest of
this paper, we assume its symbols have been imported
into the local namespace with using namespace
ConvertXY;. We will be explicit when introducing a
Convert-XY class or function for the first time.
The standard API for converting from a Python object
to a C++ object is:

// From Python to C++
void ConvertXY::convert(PyObject *x, CPPType &y);

Reference counts are updated to ensure a consistent
state in cases where the flow of execution returns to
Python during conversion.
The ConvertXY::convert function is also used to con-
vert from a C++ object back to a Python object; it
returns an unowned reference to the Python object it
creates:

// From C++ to Python
PyObject *ConvertXY::convert(CPPType &x);

In cases where an object of type CPPType does not sup-
port a default constructor, the ConvertXY::Holder
class can be used:

void convert(PyObject *x, Holder<CPPType> &y);

The Holder class defers construction until more in-
formation is known about the source x, e.g. its
dimensions, contiguity, or striding. A specialized
ConvertXY::ObjectFactory<CPPType> class invokes
a non-default constructor of CPPType with the infor-
mation needed for construction. For example, an im-
age size and buffer pointer are both needed to con-
struct a BasicImage object. The Holder class conve-
niently enables us to declare a target without immedi-
ately constructing its innards. For example,

c©2009, D. Eads, E. Rosten 30

Proceedings of the 8th Python in Science Conference (SciPy 2009)

void example(PyObject *x) {
Holder<BasicImage <float>> y;
convert(x, y);
BasicImage <float> &yr(y.getReference());
display_image(yr);

}

The BasicImage object in the Holder object is not
created until convert is called. The getReference()
method returns a BasicImage reference created
in convert. Holder ’s destructor destroys the
BasicImage object it contains. The display_image
function opens up a viewer window to display the im-
age. We assume that the control of execution never
returns to Python while the viewer is still open. In a
later section, we explain how to handle cases when this
cannot be safely assumed.

ToCPP and ToCPPBase classes

ConvertXY::ToCPPBase<CPPType, Action> and
ConvertXY::ToCPP<CPPType, PyType, Action>
are the most fundamental classes in Convert-XY.
Inheritence enables us to manage conversion between
statically-typed C++ objects and dynamically-typed
Python objects. The base class ToCPPBase assumes
a C++ type but makes no assumptions about a
Python type or protocol. Its derived class ToCPP
assumes the Python object follows a protocol or has
a specific type. There is a separate derived class
for each possible (C++, Python) type pair. This
effective design pattern mixes static polymorphism
(templates) and dynamic polymorphism (inheritence)
to properly handle two different typing paradigms.
The Action template argument specifies how the
conversion takes place; providing it is optional as an
action specification is automatically generated for you
by default.

::convert(PyObject *x)=0

ToCPP<T,PyList>

Base Class

ToCPP<T,PyTuple>

ToCPP<T,PySequence>

Derived Class

ToCPPDispatch<T>

ListCode TupleCode SeqCode
STL Map

Pure virtual

Finds appropriate
ToCPP<T,*> instance.

ToCPPBase<T>

::convert(PyObject *x) ::convert(PyObject *x)

::convert(PyObject *x)

dispatchMap

::convert(PyObject* x)

Base Class Derived Class Dispatcher Class

Performs conversion
given Python type

or protocol
assumptions

Figure 3 The fundamental design pattern of Convert-
XY: mixing dynamic polymorphism (inheritence)
and static polymorphism (templates). The
ToCPPDispatch class determines which types and
protocols are applicable, and finds the appropriate
ToCPP converter instance.

ConvertXY::ToCPPDispatch<CPPType, Action>
maintains an associative array between Python

object types/ protocols and ToCPP derived classes.
When the call convert(x,y) is compiled, pat-
tern matching is applied on the type of y to
recursively deduce which base converters could
be needed at run-time. The convert function calls
ToCPPDispatch<CPPType,Action>::getConverter(x),
which examines at run time the type and pro-
tocol information of the Python object x and
returns a ToCPP<CPPType,T,Action> instance as
a ToCPPBase<CPPType> reference, call it z. Then,
the code z.convert(x,y) converts x to y with type
assumptions of x (encoded with the type T) deduced
at run-time.
At compile time, a Python object is converted to a
C++ object of type CPPType, ToCPP classes are in-
stantiated recursively for each subpart of CPPType,
and this is repeated until no more containing types
remain. The end result from this recursive instantia-
tion is a compiled chain of converters for interchanging
C++ objects of a specific type. Figure 4 illustrates
how recursive instantiation works on a map<string,
vector<BasicImage<float>>>>.

ToCPPBase<map<string,
vector<BasicImage<float>>>>

ToCPPBase<string>

KeyConverter

ToCPPBase<vector<BasicImage<float>>>

ToCPPBase<BasicImage<float>>

ElementConverter

Non-terminal Converters

Terminal Converters

ValueConverter

Figure 4 Illustrates the process of instantiating
Convert classes recursively. In orange are non-
terminal converters which instantiate either non-
terminal or terminal converters, and in yellow, ter-
minal converters.

In most cases, the basic user will never need to use to
ObjectFactory, ToCPP, ToCPPBase, ToCPPDispatch,
or DefaultToCPPAction classes directly.

Default Conversion Actions

Some C++ array classes, such as LIBCVD’s
BasicImage, do not manage their own memory and
can reuse existing buffers such as ones coming from
a different language layer (e.g. Python) or special
memory from a device (e.g. a digital camera). These
are called reference array classes. There are two dif-
ferent ways to convert a NumPy array to a refer-
ence array object: copy the buffer pointer or copy
the data. ConvertXY::DefaultToCPPAction is a tem-
plated class for defining how each part of the conver-
sion chain happens; it serves a purpose only at compile
time. The typedef:

DefaultToCPPAction<map<string,
vector<BasicImage<float>>>>::Action

is expanded recursively, mapping the STL std::map
to the type:

31 http://conference.scipy.org/proceedings/SciPy2009/paper_4

http://conference.scipy.org/proceedings/SciPy2009/paper_4

Convert-XY: type-safe interchange of C++ and Python containers for NumPy extensions

Copy<Copy, Copy<Reuse>>

This compound type specifies that the string keys and
vector elements be copied but the buffer pointer to the
arrays should be reused. Figure 5 illustrates how this
recursive instantiation works.

DefaultToCPPAction<map<string,
 vector<Image<float>>>>::Action

KeyAction ValueAction

Copy<KeyAction,ValueAction>

DefaultToCPPAction
<string>::Action

DefaultToCPPAction
<vector<Image<float>>>::Action

Copy

Action Action

Copy<Copy, Copy<AllocateCopy>>

AllocateCopy

ActionDefaultToCPPAction
<Image<float>>::Action

Copy<ElementAction>

ElementAction

Action

Figure 5 The process of conversion is deduced
at compile time via recursive instantiation of
DefaultToCPPAction.

The process of conversion can be overridden by passing
as a template argument a different Action type. For
example, suppose the target BasicImage was allocated
from elsewhere (e.g. a special malloc function that
properly aligns buffers), we can override the default
conversion action (Reuse) so Copy<> is used as the
Action instead. The ConvertXY::convert_override
function can be used for this purpose:

void example(PyObject *x, BasicImage<float> &y) {
convert_override<Copy<>>(x, y);

}

Suppose a C++ object y of a compound container type
already exists, e.g. an object of type map<string,
BasicImage<float>>. In this case, the keys should
not be copied but we must ensure that the C++ map
contains exactly the same set of keys as the Python
dictionary. This is done by first checking that the size
of the dictionary is the same as the std::map and then
making sure each unique key in the dictionary is equiv-
alent to some unique key in the map.
The contents of a dictionary of arrays can be copied
into a std::map of existing BasicImage buffers as fol-
lows:

void example(PyObject *x,
map<string, BasicImage<float>> &y) {

convert_override
<CheckSize<CheckExists, Copy<>>>(x, y);

}

The CheckSize simple checks that the size of
the std::map and Python map are equivalent.
CheckExists ensures each key in the Python map is
also in the STL map.
Reference counting is automatically handled during
conversion with PyCXX. In cases where the flow of

execution may return to Python after conversion, Py-
CXX can be used to ensure objects that are in use by
C++ routines don’t get prematurely destroyed.:

void example(PyObject *x,
BasicImage<float> &y) {

// The line below is safe.
convert(x,y);

// However, if it can’t be guaranteed that program
// control flow will never return to Python
// for the rest of this function, use PyCXX’s
// Py::Object to increment the reference count.
Py::Object obj(x);

// If the flow of execution returns to Python while
// executing the function below, y will always point
// to a valid buffer.
compute(y);

}

The Other Way Around: from C++ to Python

When converting from C++ to Python, the type
structure of the target Python object must be
prespecified at compile time (e.g. the type of the
Python object to be created is static). This is not
straightforward since there is sometimes more than
one compatible Python type for a C++ type. For
example, an STL vector can be converted to a Python
list, tuple, or NumPy object array. In Convert-XY
this is deduced with a compile-time-only Structure
metatype deduced by recursive instantiation of
DefaultToPythonStructure<CPPType>::Structure.
Figure 6illustrates how DefaultToPythonStructure
is recursively instantiated to yield a default Python
target type.

ToPythonDefaultStructure<map<string,
vector<BasicImage<float>>>>::Structure

PyDict<KeyStructure,ValueStructure>

Structure

ToPythonDefaultStructure
<string>::Structure

PyString

Structure

KeyStructure

ToPythonDefaultStructure
<vector<BasicImage<float>>>::Structure

ElementStructure

ValueStructure

PyList<ElementStructure>

Default<BasicImage<float>>::Structure

ElementStructure

PyArray<npy_float>

Structure

Non-terminal Structure Type

Terminal Structure Type

Expanded typedef

PyDict<PyString,
 PyList<PyArray<npy_float>>>

Figure 6 The default Python type when converting
from C++ to Python is deduced by recursive instan-
tiation of ToPythonDefaultStructure<CPPType>.

As the figure illustrates, the default type for a Python
target given a source object that’s an STL map map-
ping string to vectors of images is PyDict<PyString,
PyList<PyArray<npy_float>>>. If a tuple is pre-
ferred over a list, the default structure can be overriden
as follows:

c©2009, D. Eads, E. Rosten 32

Proceedings of the 8th Python in Science Conference (SciPy 2009)

PyObject *y
= convert_override

<PyDict<PyString,
PyTuple<PyArray<npy_float>>>>(x)

If an attempt is made to convert a C++ object to a
Python object that’s incompatible, meaningful com-
piler messages can be generated via a trick involving
incomplete types:

in not_found.hpp:88:
’unsupport_type_or_structure’
has incomplete type
CannotConvertToPython<map<int,vector<int>>,PyInt>.

Allocating Result Arrays

One approach to allocating result arrays is to copy
the result (e.g. image or matrix) into a new NumPy
array. This overhead can be avoided using the
ConvertXY::allocate_numpy_array function. This
function is templated, and pattern matching is per-
formed on the C++ type to generate an alloca-
tor at compile time. In this example, when the
allocate_numpy_array function is called, NumPy
array and BasicImage object are allocated at the
same time, sharing the same buffer pointer. The
image is smoothed using the LIBCVD function
convolveGaussian, as illustrated on figure 7:

PyObject *smooth_image(PyObject *x, double radius) {

// First convert the NumPy array input image
// to a BasicImage<float>.
Holder<BasicImage <float>> y;
convert(x, y);

// Now allocate enough memory to store the
// result. Use the same buffer pointer for
// both the NumPy array and BasicImage.
Holder<BasicImage<float>> result;
PyObject *pyResult =

allocate_numpy_array(result,
y.getReference().size());

// Using LIBCVD, convolve a Gaussian on the
// converted input, store the result in the
// buffer pointed to by both pyResult and
// result.
CVD::convolveGaussian(y.getReference(),

result.getReference(),
radius);

return pyResult;
}

Libraries Supported

Convert-XY supports conversion between Python
and objects from several C++ libraries including
TooN, LIBCVD, and STL. The library is split into
three different headers, all of which are optional.

• ConvertXY/TooN.hpp: for converting between
NumPy arrays and TooN matrices and vectors.

• ConvertXY/STL.hpp: for converting between STL
structures and Python objects.

float buffer

BasicImage
data float*

PyArrayObject*
datafloat*

C++ Computation

Python
Computation

Figure 7 allocate_numpy_array constructs a new
Python and C++ array at the same time, to wit, a
NumPy array and a BasicImage object. The NumPy
array owns the buffer allocated so when its reference
count goes to zero, its memory buffer will be freed.

• ConvertXY/CVD.hpp: for converting between
NumPy arrays and CVD::Image C++ objects.

The compiler can convert combinations
of STL, CVD, and TooN structures (e.g.
vector<pair<BasicImage<float>,Matrix<>>>)
only when their respective headers are included
together.

Tom’s object-oriented Numerics Library (TooN)

TooN is a header-only linear algebra library that
is very fast on small matrices making it particu-
larly useful for real-time Computer Vision applications
[Dru03]. TooN provides templated classes for static
and dynamically-sized vectors and matrices, and uses
templated-based pattern matching to catch for com-
mon linear algebra errors at compile time. For exam-
ple, when converting the result of an a matrix multipli-
cation involving two matrices X and Y of incompatible
dimensions:

Matrix <3,5> X;
Matrix <6,3> Y;
PyObject *Z;
Z = convert(X * Y);

an easy-to-understand compiler error results,
“dimension_mismatch has incomplete type
SizeMismatch<5,6>”.
Dimension checking is performed at compile time even
when some dimensions are not known beforehand as
the following example shows:

Matrix <Dynamic,5> X;
Matrix <6,Dynamic> Y;
PyObject *Z;
Z = convert(X * Y);

If a dimension check passes at compile time, it is omit-
ted at run time. A buffer pointer of a NumPy array
can be reused in a TooN::Matrix by specifying a lay-
out type as the third template argument to Matrix
(which is matched with DefaultAction):

33 http://conference.scipy.org/proceedings/SciPy2009/paper_4

http://conference.scipy.org/proceedings/SciPy2009/paper_4

Convert-XY: type-safe interchange of C++ and Python containers for NumPy extensions

void example(PyObject *x) {
Holder<Matrix <Dynamic,

Dynamic,
Reference::RowMajor>> y;

convert(x, y);
cout << "The matrix is: "

<< y.getReference() << endl;
}

Calling the function above from Python with a very
large NumPy array incurs practically no overhead be-
cause the NumPy array buffer pointer is copied.

Cambridge Video Dynamics Library (LIBCVD)

LIBCVD is a C++ library popular in the frame-
rate, real-time computer vision community [Ros04].
The three main classes of the library are BasicImage,
Image, and ImageRef. The base class BasicImage
does not manage its own memory and can reuse buffer
pointers from other objects such as NumPy arrays.
The Image class inherits from the BasicImage, allo-
cates its own memory, keeps a reference count of the
number of Image objects referring to it, and deletes
its buffer when the reference count drops to zero.
ImageRef is simply a location in an image, i.e. an
(x,y) pair. Image inherits from BasicImage so algo-
rithms can be written to generically operate on both
Image and BasicImage objects. Invoking size() on
an image returns an ImageRef. The ImageRef objects
are also used to index the image.
LIBCVD contains many of the most common image
processing algorithms including convolution, morphol-
ogy, camera calibration and connected components. It
can load and process streaming video in many formats
as well as PNG, JPEG, BMP, and PNM image for-
mats.
The example below converts a NumPy array to a Ba-
sicImage, finds all local maxima within a 3 by 3 win-
dow above a threshold, converts the result to a Python
object, and returns it:

template <class T>
PyObject* large_local_maxima(PyObject *pyImage,

PyObject *pyThresh) {
Holder<BasicImage<T>> image;
double thresh;

convert(pyImage, image);
convert(pyThresh, thresh);

BasicImage<T> &I(image.getReference());

vector<ImageRef> maxima;
for(int y=1; y < I.size().y-1; y++)

for(int x=1; x < I.size().x-1; x++) {
T ctr = I[y][x];
if(ctr > thresh && ctr > I[y-1][x-1] &&

ctr > I[y-1][x] && ctr > I[y-1][x+1] &&
ctr > I[y][x-1] && ctr > I[y][x+1] &&
ctr > I[y+1][x-1] && ctr > I[y+1][x] &&
ctr > I[y+1][x+1]) {

maxima.push_back(ImageRef(x, y));
}

}
}
return convert(maxima);

}

The example shows that with LIBCVD’s lightweight,
simple design, computer vision codes can be written
in C++ succinct with good run-time performance.
Convert-XY in combination with an existing wrap-
ping tool greatly simplifies the task of interfacing
Python with a C++ library.
The function is templated so it works on array elements
of any numeric type. Templated functions are harder
to wrap from Python. One simple, flexible approach
involves writing a function that walks across a list of
types specified as a template argument. In this case,
the list of types is called List:

template <class List>
PyObject*

large_local_maxima_walk(PyObject *pyImage,
PyObject *pyThresh) {

typedef List::Head HeadType;
typedef List::Tail TailList;
const bool listEnd = List::listEnd;
if (listEnd) {

throw Py::Exception("type not supported!");
}
try {

return large_local_maxima<HeadType>(pyImage,
pyThresh);

}
catch (ConvertXY::TypeMismatch &e) {

return large_local_maxima_walk<TailList>(pyImage,
pyThresh);

}
}

Then write a C wrapper function:
extern "C"
PyObject* large_local_maxima_c(PyObject *pyImage,

PyObject *pyThresh) {
return large_local_maxima_walk

<ConvertXY::NumberTypes>(pyImage, pyThresh);
}

that calls the walk function on a list of types. This C
function can easily be called with SWIG, the Python C
API, PyCXX, boost, or Cython. When debugging new
templated functions, each error is usually reported by
the compiler for each type in the type list. This can be
avoided by first debugging with a list containing only
a single type:

extern "C"
PyObject* large_local_maxima_c(PyObject *pyImage,

PyObject *pyThresh) {
return large_local_maxima_walk

<ConvertXY::SingletonList<float>>
(pyImage, pyThresh);

}

Improvements and PyCXX Integration

Convert-XY has been refactored considerably since
its first introduction at the SciPy conference in Au-
gust 2009. The most significant improvements include
customizable actions and structures, greatly simplified
semantics, as well as being fully integrated with the
mature C++ package PyCXX. It handles Python ref-
erencing and dereferencing in Convert-XY is handled
to make conversion safe to exceptions and return of ex-
ecution control to Python.

c©2009, D. Eads, E. Rosten 34

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Packages Using Convert-XY

The authors have written several packages that already
use Convert-XY .

• GGFE: grammar guided feature extraction is a tech-
nique for generating image features from generative
grammars. GGFE is a tool for expressing genera-
tive grammars in pure Python. (see http://ggfe.
googlecode.com). Some image features are imple-
mented in C++ using LIBCVD with conversion han-
dled by Convert-XY.

• ACD: a Python package for anomalous change detec-
tion in hyperspectral imagery. All algorithms are
written in pure Python but optional, performance-
enhanced C++ versions of functions make heavy use
of Convert-XY. ACD is property of the Los Alamos
National Laboratory and its release is still being con-
sidered by management.

• ETSE: a package for performing dynamic time warp-
ing and time series clustering in Python. (see http:
//www.soe.ucsc.edu/~eads/software.shtml)

• Tesla: a new object localisation system under de-
velopment as part of our research. The software will
be released upon publication of our algorithm.

Conclusion

Convert-XY is a powerful tool that facilitates au-
tomatic conversion of arbitrarily structured contain-
ers between C++ and Python with a succinct syntax,
convert(x,y). By exploiting template-based pattern
matching in C++, dynamic type checkers and convert-
ers can be recursively built based on the static struc-
ture of a C++ object. At run-time, the dispatcher
class decodes the type of the Python object and de-
duces the protocols it obeys. Additionally, conversion
is customizable by specifying different action or struc-
ture meta-types. Large data sets can be converted be-
tween Python and C++ with minimal copying. When
possible, erroneous conversions are caught at compile
time but otherwise caught at run time. Convert-XY
integrates with PyCXX to improve exception safety

during conversion. It can also be used to automati-
cally facilitate conversion for SWIG typemaps.

License

Convert-XY is offered under the terms of the General
Public License version 2.0 with a special exception.
As a special exception, you may use these files as part of a
free software library without restriction. Specifically, if other
files instantiate templates or use macros or inline functions
from this library, or you compile this library and link it with
other files to produce an executable, this library does not by
itself cause the resulting executable to be covered by the GNU
General Public License. This exception does not however in-
validate any other reasons why the executable file might be
covered by the GNU General Public License.

Future Work

The primary focus of Convert-XY’s development un-
til now has been on greatly improving the safety, sim-
plicity, and flexibility of the interface. Moving forward,
we plan to focus efforts on improving the documenta-
tion, finishing a regression test suite, and writing a
tutorial on how to write custom converters for other
libraries.

References

[Abr03] D. Abrahams. Building Hybrid Systems with
Boost Python. PyCon 2003. 2003.

[Bea95] D. Beazley. Simplified Wrapper and Interface
Generator. http://www.swig.org/. 1995--.

[Dru03] T. Drummond, E. Rosten, et al. TooN: Tom’s
Object-oriented Numerics. http://mi.eng.cam.
ac.uk/~twd20/TooNhtml/. 2003.

[Ewi08] M. Ewing. Cython. 2008--.
[Hel00] T. Heller. ctypes. 2000--.
[Jon01] E. Jones, T. Oliphant, P. Peterson, et al. “SciPy:

Open Source Scientific tools for Python”. 2001--.
[GvR92] G. van Rossum. Python. 1991--.
[Ros04] E. Rosten, et al. LIBCVD. 2004--
[Sco04] B. Scott, P. Dubois. Writing Python Exten-

sions in C++ with PyCXX. http://cxx.sf.
net/. 2004--.

[Yak09] R. Yakovenko. Py++: Language Binding
Project. 2009.

35 http://conference.scipy.org/proceedings/SciPy2009/paper_4

http://ggfe.googlecode.com
http://ggfe.googlecode.com
http://ggfe.googlecode.com
http://ggfe.googlecode.com
http://www.soe.ucsc.edu/~eads/software.shtml
http://www.soe.ucsc.edu/~eads/software.shtml
http://www.soe.ucsc.edu/~eads/software.shtml
http://www.soe.ucsc.edu/~eads/software.shtml
http://www.swig.org/
http://www.swig.org/
http://mi.eng.cam.ac.uk/~twd20/TooNhtml/
http://mi.eng.cam.ac.uk/~twd20/TooNhtml/
http://mi.eng.cam.ac.uk/~twd20/TooNhtml/
http://mi.eng.cam.ac.uk/~twd20/TooNhtml/
http://cxx.sf.net/
http://cxx.sf.net/
http://cxx.sf.net/
http://cxx.sf.net/
http://conference.scipy.org/proceedings/SciPy2009/paper_4

	Convert-XY: type-safe interchange of C++ and Python containers for NumPy extensions
	Introduction
	Background
	Differences in Type-checking

	Convert-XY
	ToCPP and ToCPPBase classes
	Default Conversion Actions
	The Other Way Around: from C++ to Python
	Allocating Result Arrays
	Libraries Supported
	Tom's object-oriented Numerics Library (TooN)
	Cambridge Video Dynamics Library (LIBCVD)

	Improvements and PyCXX Integration
	Packages Using Convert-XY
	Conclusion
	License
	Future Work
	References

