
Proceedings of the 8th Python in Science Conference (SciPy 2009)

Sherpa: 1D/2D modeling and fitting in Python
Brian L. Refsdal (brefsdal@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA
Stephen M. Doe (sdoe@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA
Dan T. Nguyen (dtn@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA
Aneta L. Siemiginowska (aneta@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA
Nina R. Bonaventura (nina@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA
Douglas Burke (dburke@cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA
Ian N. Evans (evans_i@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA
Janet D. Evans (janet@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA
Antonella Fruscione (antonell@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA
Elizabeth C. Galle (egalle@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA
John C. Houck (houck@space.mit.edu) – MIT Kavli Institute, USA
Margarita Karovska (karovska@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA
Nicholas P. Lee (nlee@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA
Michael A. Nowak (mnowak@space.mit.edu) – MIT Kavli Institute, USA

Sherpa is a modern, general purpose fitting and
modeling application available in Python. It con-
tains a set of robust optimization methods that are
critical to the forward fitting technique used in para-
metric data modeling. The Python implementation
provides a powerful software package that is flexible
and extensible with direct access to all internal data
objects. Sherpa affords a highly proficient scientific
working environment required by the challenges of
modern data analysis. It is implemented as a set
of Python modules with computationally-intensive
portions written in C++/FORTRAN as extension
modules using the Python C-API. It also provides a
high level user interface with command-like func-
tions in addition to the classes and functions at
the API level. Sherpa is being developed by the
Chandra X-ray Center (CXC) and is packaged with
the Chandra data analysis software package (CIAO).
Sherpa can also be built as a standalone applica-
tion; it can be extended by the user, or embed-
ded in other applications. It allows for analysis spe-
cific to astronomy, but also supports generic mod-
eling and fitting tasks. The ’astro’ module includes
additional astronomy model functions, FITS image
support, instrument models, and utilities. Sherpa’s
model library includes some commonly used 1D and
2D functions and most of the X-ray spectral mod-
els found in the High Energy Astrophysics Science
Archive Research Center (HEASARC) XSPEC ap-
plication. Sherpa also supports user-defined models
written in Python, C++, and FORTRAN, allowing
users to extend Sherpa with models not included in
our model library. Sherpa has a set of optimization
methods including LMDIF, implementations of Dif-
ferential Evolution (Monte Carlo) and Nelder-Mead
simplex. These functions minimize differences be-
tween data points and model values (as measured by
a fit statistic such as the chi-squared, maximum like-
lihood, or a user-defined statistic). The generic I/O
module includes back-end interfaces to read ASCII
files using NumPy and astronomy image files (FITS)
using PyFITS or CIAO Crates (CXC Data Model li-

brary in C++). Sherpa is general enough to fit and
model data from a variety of astronomical obser-
vatories (e.g., Chandra, ROSAT, Hubble) and over
many wavebands (e.g., X-ray, optical, radio). In
fact, Sherpa can fit and model any data set that can
be represented as collections of 1D or 2D arrays (and
can be extended for data of higher dimensionality).
Data sets can also be simulated with noise using
any model. The visualization module also allows for
multiple back-ends. An interface to Matplotlib and
CIAO ChIPS (CXC plotting package layered on VTK
in C++) are provided for line and histogram plot-
ting. 2D visualization is supported by the Smithso-
nian Astrophysical Observatory (SAO) imager, DS9.
The Sherpa command line uses a configured version
of IPython to provide a high level shell with IPython
’magic’ and readline support.

Introduction

Chandra is one of NASA’s great observatories and as-
tronomers from all over the world continue to use it for
X-ray astronomy since its launch in 1999. Sherpa is
one of many tools included in the Chandra Interactive
Analysis of Observations (CIAO) [ciao] software pack-
age. Sherpa is a multi-dimensional, robust Python ap-
plication that handles the task of modeling and fitting
in Chandra data analysis. It is developed by a team of
programmers and scientists in the Chandra X-ray Cen-
ter (CXC) and many of the algorithms and numerical
methods have been updated and optimized for the lat-
est computing architectures. In past releases, Sherpa
was comprised of a rigid YACC parser and much legacy
C++ code and recently has been re-implemented into
a cleaner, modular form.

Fitting and modeling

Fitting a model to data in Sherpa is done by modify-
ing one or more model parameters until the differences
are minimized between the predicted data points and

51 B. Refsdal, S. Doe, D. Nguyen, et al.in Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 51–58

brefsdal@head.cfa.harvard.edu
sdoe@head.cfa.harvard.edu
dtn@head.cfa.harvard.edu
aneta@head.cfa.harvard.edu
nina@head.cfa.harvard.edu
dburke@cfa.harvard.edu
evans_i@head.cfa.harvard.edu
janet@head.cfa.harvard.edu
antonell@head.cfa.harvard.edu
egalle@head.cfa.harvard.edu
houck@space.mit.edu
karovska@head.cfa.harvard.edu
nlee@head.cfa.harvard.edu
mnowak@space.mit.edu

Sherpa: 1D/2D modeling and fitting in Python

the raw data. Scientists model data to find values that
map to physical quantities, such as temperature, that
cannot easily be measured from the data set alone.
The analysis is not complete until the model expres-
sion contains the appropriate number of parameters,
that the parameter values are known to some degree
of confidence, and the probability of attaining such a
fit by chance is acceptably low.

Use

Sherpa is primarily used for Chandra X-ray data anal-
ysis. Many X-ray astronomers have used it for years
to analyze their data, and have published the results
based on Sherpa fitting and modeling. Sherpa is also
used in the data pipeline of the Chandra Source Cat-
alog (CSC) [csc] to estimate source sizes and spectral
properties.

Design

To achieve an extensible, general purpose fitting and
modeling application, we chose to implement a series
of Python modules that we later joined to form the
fitting application. At the object layer, many of these
modules include C++ extensions for computationally
intensive routines.

Figure 1. Sherpa Module Design

Sherpa can read data from a variety of astronomi-
cal observatories (e.g., Chandra, ROSAT, Hubble), as
they all publish their data in the Flexible Image Trans-
port System (FITS) format; Sherpa can deal with data
in any waveband (X-ray, optical, or radio). Even other
scientific or tabular data in ASCII format are sup-
ported. Data sets can even be simulated using a de-
fined model and added noise.
Sherpa provides a set of 1D and 2D models, as well
as an interface to the XSPEC model library (an X-ray
spectral package published by the High Energy Astro-
physics Science Archive Research Center (HEASARC)
[xspec]. Users can also extend Sherpa by writing mod-
els of their own in Python, C++, or FORTRAN. An
interface to a Fast Fourier Transform (FFT) library is
available for convolutions to model the effects of point
spread functions (PSFs), as well as some physical ef-
fects (e.g., spectral line broadening).

Sherpa provides robust optimization functions to han-
dle the low signal-to-noise often found in X-ray data.
They include Levenberg-Marquardt (LMDIF) [lm] and
in-house implementations of Differential Evolution
(Monte Carlo) [mc] and Nelder-Mead simplex [nm].
To complement the optimization functions, Sherpa in-
cludes native chi-squared and maximum likelihood fit
statistics. The interface is generic enough that users
can also define their own fit statistic functions.
Confidence limits for fitted parameter values can be
calculated with the function, projection. To accurately
estimate confidence limits for a given parameter, a
multidimensional confidence region needs to be pro-
jected onto the parameter’s associated axis in parame-
ter space. For a given parameter, the projection func-
tion searches for the locations on that axis where the
confidence region is projected. A new function, confi-
dence, is a pure Python implementation that takes the
same approach, but is much more efficient in search-
ing parameter space and generally is both more robust
and efficient than the projection function. Both meth-
ods compute confidence limits for each parameter in-
dependently and are currently computed in parallel on
multi-core CPUs.

I/O interface

The I/O interface provides a middle layer where mul-
tiple back-ends can be used to support multiple file
readers. Basic ASCII file reading is available using
NumPy. More complicated astronomy file formats, like
FITS, are standard. For example, Crates is a CXC
FITS reader that supports the Chandra Data Model.
Crates is the default I/O back-end and comes bundled
with the CIAO software package. Alternatively, Py-
FITS [pyfits] can be used in a standalone installation
of Sherpa. Each back-end (for Crates and PyFITS) in-
terfaces to the same front-end that exposes I/O func-
tions to other parts of Sherpa. Top-level I/O functions
such as load_data() are written to use that front-end,
so the choice of a particular back-end for I/O remains
hidden from the rest of the application.

Figure 2. Sherpa I/O Interface

Visualization interface

Similarly, the visualization interface supports multiple
back-ends for line and contour plotting and 2D imag-

c©2009, B. Refsdal, S. Doe, D. Nguyen, et al. 52

Proceedings of the 8th Python in Science Conference (SciPy 2009)

ing. ChIPS is a CIAO package available for line and
contour plotting written in C++ on top of VTK.

Figure 3. ChIPS line plot of X-ray data with fitted
model

Sherpa includes a back-end to matplotlib [mpl] as an
alternative for standalone installations. DS9 [ds9], the
SAO imager, is the primary back-end for image visu-
alization.

Figure 4. DS9 image of X-ray source

With generic interfaces, Sherpa offers users the free-
dom to add their own back-ends as needed.

API

The Sherpa UI that developers can build upon comes
in two levels, the basic API and a set of procedural
functions. The API includes all the additional func-
tionality for X-ray analysis, imported like a normal

Figure 5. Sherpa Visualization Interface

Python package. A typical example of an X-ray spec-
tral fit, such as modeling the redshifted photo-electric
absorption of a quasar, is shown below.
Import the base and astronomy modules

>>> from sherpa.all import *
>>> from sherpa.astro.all import *

Read in a data set from file and setup a filter from
0.3-7.5 keV.

>>> pha = read_pha(’q1127_src1.pi’)
>>> pha.notice(0.3, 7.5)

Instantiate individual model classes and setup initial
parameter values, freezing and thawing parameters as
necessary.

>>> abs1 = XSphabs(’abs1’)
>>> abs1.nH = 0.041
>>> abs1.nH.freeze()
>>> zabs1 = XSzphabs(’zabs1’)
>>> zabs1.redshift=0.312
>>> p1 = PowLaw1D(’p1’)

Inspection of the source data set can provide clues to
the initial parameter values. Some simple Sherpa mod-
els include functions to estimate the initial parameter
values, based on the data. The algorithms for such
“guess” functions are basic (e.g., maximum value, av-
erage, determining full-width half max) and do not
necessarily perform well for composite models.

>>> p1.guess(*pha.to_guess(), limits=True, values=True)

A scripting language like Python allows users to de-
fine their composite models at run time. Here, the
composite model is defined as a product of the three
and convolved with the instrument response.

>>> model = standard_fold(pha, abs1*zabs1*p1)

The Fit object is initialized with class instances of
data, model, statistic, optimization method, and con-
fidence limit method.

>>> f = Fit(pha, model, Chi2DataVar(), LevMar(),
Projection())

>>> results = f.fit()

The fit results object includes the fitted parameter val-
ues and the additional information calculated during
the fit. They include the initial, final, and change
in statistic values, the number of function evaluations

53 http://conference.scipy.org/proceedings/SciPy2009/paper_8

http://conference.scipy.org/proceedings/SciPy2009/paper_8

Sherpa: 1D/2D modeling and fitting in Python

used by the optimization method, the number of data
points, the degrees of freedom, the null hypothesis
probability (Q-value), and the reduced statistic value.

>>> print(results.format())
Method = levmar
Statistic = chi2datavar
Initial fit statistic = 17917.4
Final fit statistic = 686.013 at function evaluation 22
Data points = 494
Degrees of freedom = 491
Probability [Q-value] = 1.27275e-08
Reduced statistic = 1.39717
Change in statistic = 17231.4

zabs1.nH 0.094812
p1.gamma 1.28615
p1.ampl 0.000705228

In determining if the model suitably represents the
data, the maximum likelihood ratio (MLR) can be
computed. Given two models, the MLR can deter-
mine which model better describes a particular data
set. The more complex model should be picked when
the ratio is less than 0.05. Once a fit has been run
and the model selected that best describes the data
set, Sherpa can estimate the confidence limits using
the projection algorithm.
Estimate 1 sigma confidence limits using projection.
The projection results object displays the upper and
lower parameter bounds with the best-fit values.

>>> results = f.est_errors()
>>> print(results.format())
Confidence Method = projection
Fitting Method = levmar
Statistic = chi2datavar
projection 1-sigma (68.2689%) bounds:

Param Best-Fit Lower Bound Upper Bound
----- -------- ----------- -----------
zabs1.nH 0.094812 -0.00432843 0.00436733
p1.gamma 1.28615 -0.00968215 0.00970885
p1.ampl 0.000705228 -6.63203e-06 6.68319e-06

Procedural UI

The same script can be run in a more compact form
using the procedural UI. Users can perform common
operations --such as reading files, defining models, and
fitting --by calling predefined fuctions, without having
to write their own code in Python.
Import all astronomy procedural functions

>>> from sherpa.astro.ui import *

Read data set from file and setup a filter
>>> load_data(’q1127_src1.pi’)
>>> notice(0.3, 7.5)

Model instantiation uses a unique syntax of the form
’modeltype.identifier’ to create a model and label it in
a single line. xsphabs is a model class with abs1 as
the identifier and the expression xsphabs.abs1 returns
an instance of the class with rich comparison methods.
Model parameter values are initialized similarly to the
API.

>>> set_model(xsphabs.abs1*xszphabs.zabs1*powlaw1d.p1)
>>> abs1.nH = 0.041
>>> freeze(abs1.nH)
>>> zabs1.redshift=0.312
>>> guess(p1)

The statistic can be set as an instance of a Sherpa
statistic class or a string identifier to native Sherpa
statistics.

>>> set_stat(’chi2datavar’)

Execute the fit and display the results using a logger.
>>> fit()
...<fit output>

Compute the confidence limits and display the results
using a logger.

>>> proj()
...<confidence limit output>

Confidence

Projection estimates the confidence limits for each pa-
rameter independently (currently this can be done in
parallel). Projection searches for the N-sigma limits,
where N-sigma corresponds to a given change in the
fit statistic from the best-fit value.
For the chi-squared fit statistic, the relation between
sigma and chi-squared is σ =

√
∆χ2. For our maxi-

mum likelihood fit statistics, the relation has the form
σ =

√
2 ∗∆ logL. Projection has the added feature

that if a new minimum is found in the boundary search,
the process will restart using the new found best-fit val-
ues. The accuracy of the confidence limits using the
projection and confidence methods is based on the as-
sumption that the parameter space is quadratic, where
in, the fit statistic function for a given parameter can
be expanded using a Taylor series. Also, Sherpa as-
sumes that the best-fit point is sufficiently far (≈ 3σ)
from the parameter space boundaries. Cases where
these assumptions do not hold, users should use an al-
ternative approach such as Markov Chain Monte Carlo
(MCMC) to map the parameter space using specific
criteria. MCMC support within Sherpa is currently in
research and development and should be available in
future releases.

Fit Statistics

Sherpa has a number of χ2 statistics with different
variances. The χ2 fit statistic is represented as

χ2 ≡
∑
i

(Di −Mi)2

σ2
i

,

where Di represents the observed data, Mi represents
the predicted model counts, and σ2

i represents the vari-
ance of the sampling distribution for Di.

c©2009, B. Refsdal, S. Doe, D. Nguyen, et al. 54

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Sherpa defines many flavors of the χ2 statistic with
different variances. The native flavors of the variance
include leastsq

σ2 ≡ 1,

chi2constvar

σ2 ≡
∑N
i=1 Di
N

,

chi2modvar
σ2 ≡Mi,

chi2gehrels

σ2 ≡ [1 +
√
Di + 0.75]2,

chi2datavar

σ2 ≡ Di for Di > 0,

and chi2xspecvar

σ2 ≡

{
Di if Di > 0
1 if Di = 0

.

Sherpa likelihood statistics include Cash

C ≡ 2
∑
i

[Mi −Di log Mi] ∝ −2 log L,

and the C-statistic

C ≡ 2
∑
i

[Mi −Di +Di(log Di − log Mi)],

where Di represents the observed data, Mi represents
the predicted model counts, and L, the log-likelihood

L ≡
∏
i

MDii
Di!

exp(−Mi).

Visualization

Visualizing the parameter space can help determine
if the assumptions of projection hold or not. 1D line
plots of the statistic against parameter values are avail-
able with the interval projection function. For a given
parameter, the function steps away from the best-fit
value, and refits to find the statistic value at a number
of points in parameter space. Then a curve showing
how the statistic varies with parameter value is drawn.

>>> int_proj(p1.gamma)

2D confidence contours can be drawn with the region
projection function. For any two parameters, a grid is
constructed, such that the function refits at each point
to find the fit statistic. This maps out parameter space
around the best-fit parameter values.
Confidence contours can then be drawn (corresponding
to 1σ, 2σ, 3σ confidence by default. The plot bound-
aries are set to be 4σ by default (assuming that param-
eter space boundaries are no closer than ≈ 4σ from the
best-fit values).

Figure 6. Interval projection line plots typically look
parabolic in a well behaved parameter space.

Figure 7. 2D confidence contours, shown here using
matplotlib, are a typical product of a Sherpa session.
Contours provide the parameter value expectation to
some degree of confidence. The smaller the contour,
the more constrained the best-fit values are.

55 http://conference.scipy.org/proceedings/SciPy2009/paper_8

http://conference.scipy.org/proceedings/SciPy2009/paper_8

Sherpa: 1D/2D modeling and fitting in Python

>>> reg_proj(p1.gamma, p1.ampl)

Once parameter space has been mapped out, then the
line or contour plots can provide users with a visual
of parameter space around the best-fit parameter val-
ues. For 1D line and contour plotting the Sherpa high-
level UI includes many convenience functions that hide
much of the API boiler-plate in the plot module.

>>> plot_fit_delchi()

Figure 8. ChIPS line plot of source data set and error
bars, fitted model, and delta chi-squared residuals

Convenience functions are also available for 2D imag-
ing using an interface to DS9 with the XPA messaging
system [xpa].

>>> image_fit()

User Models

Users who wish to use their own models in Sherpa can
follow the user model interface. User defined models
can be written in Python, C++ or FORTRAN. An
example of a user-defined model in Python using the
Sherpa high-level UI is shown below.

>>> def calc(pars, x, **kwargs):
"""
y = m*x + b
"""
return pars[0]*x + b

>>> load_user_model(calc, "mymodel")
>>> add_user_pars("mymodel", ["m", "b"], [-3, 5])

In the function signature for calc, pars is a list of user
defined parameter values and x is a NumPy array rep-
resenting the model’s grid.

Conclusion

Sherpa is a mature, robust fitting and modeling ap-
plication, with continuing development. The Python

Figure 9. DS9 displays source image with fitted model
and residuals.

code is modular and extensible with plug-in back-ends,
and is flexible enough for general use.
Users can download a source tarball and install Sherpa
standalone [alone] or download it with the many tools
included in the CIAO software package [bundle]. Doc-
umentation is available with Python help, CIAO ahelp
files, and web pages that detail each function [ahelp]
and that show scripting threads [threads].
Users creating standalone installations using distu-
tils are required to install dependencies like Python,
NumPy, and Fastest Fourier Transform in the West
(FFTW) [fftw].
Future plans for Sherpa include an implementation of
MCMC for complicated parameter spaces (provided by
the CHASC astro-statistics group [chasc]); speed and
performance improvements using parallel techniques
for model evaluation; improved documentation (pos-
sibly using Sphinx [sphinx]); and a web-based version
control system that allows users to download the latest
stable version of Sherpa.
Support of the development of Sherpa is provided
by National Aeronautics and Space Administration
through the Chandra X-ray Center, which is operated
by the Smithsonian Astrophysical Observatory for and
on behalf of the National Aeronautics and Space Ad-
ministration contract NAS8-03060.

References

[ahelp] http://cxc.harvard.edu/sherpa/ahelp/
index_python.html

c©2009, B. Refsdal, S. Doe, D. Nguyen, et al. 56

http://cxc.harvard.edu/sherpa/ahelp/index_python.html
http://cxc.harvard.edu/sherpa/ahelp/index_python.html
http://cxc.harvard.edu/sherpa/ahelp/index_python.html
http://cxc.harvard.edu/sherpa/ahelp/index_python.html

Proceedings of the 8th Python in Science Conference (SciPy 2009)

[alone] http://hea-www.harvard.edu/uinfra/
sherpa/Documentation/download/index.
html

[bundle] http://cxc.harvard.edu/ciao/download
[chasc] http://hea-www.harvard.edu/AstroStat/
[ciao] http://cxc.harvard.edu/ciao
[csc] http://cxc.harvard.edu/csc
[ds9] http://hea-www.harvard.edu/RD/ds9/
[fftw] M. Frigo and S.G. Johnson, The Design and

Implementation of FFTW3, Proceedings of the
IEEE 93 (2), 216–231 (2005). Special Issue on
Program Generation, Optimization, and Plat-
form Adaptation. http://www.fftw.org/

[lm] Lecture Notes in Mathematics 630: Numerical
Analysis, G.A. Watson (Ed.), Springer-Verlag:
Berlin, 1978, pp. 105-116

[mc] R. Storn, and K. Price, Differential Evolution: A
Simple and Efficient Adaptive Scheme for Global
Optimization over Continuous Spaces, J. Global
Optimization 11, 1997, pp. 341-359 http://
www.icsi.berkeley.edu/~storn/code.html

[mpl] J.D. Hunter, Matplotlib: A 2D graphics envi-
ronment. Computing in Science and Engineer-
ing. 9: 90-95 (2007). http://matplotlib.
sourceforge.net.

[nm] J.A. Nelder and R. Mead, Computer Journal,
1965, vol 7, pp. 308-313. Jeffrey C. La-
garias, James A. Reeds, Margaret H. Wright,
Paul E. Wright Convergence Properties of the
Nelder-Mead Simplex Algorithm in Low Dimen-
sions, SIAM Journal on Optimization, Vol. 9,
No. 1 (1998), pp. 112-147. http://citeseer.
ist.psu.edu/3996.html. Wright, M. H. (1996)
Direct Search Methods: Once Scorned, Now
Respectable in Numerical Analysis 1995 (Pro-
ceedings of the 1995 Dundee Biennial Confer-
ence in Numerical Analysis) (D.F. Griffiths and
G.A. Watson, eds.), 191-208, Addison Wesley
Longman, Harlow, United Kingdom. http://
citeseer.ist.psu.edu/155516.html

[pyfits] http://www.stsci.edu/resources/software_
hardware/pyfits

[sphinx] G. Brandl, Sphinx, Python documentation gen-
erator, http://sphinx.pocoo.org/

[threads] http://cxc.harvard.edu/sherpa/threads/
all.html

[xpa] http://hea-www.harvard.edu/saord/xpa/
[xspec] http://heasarc.gsfc.nasa.gov/docs/

xanadu/xspec/

57 http://conference.scipy.org/proceedings/SciPy2009/paper_8

http://hea-www.harvard.edu/uinfra/sherpa/Documentation/download/index.html
http://hea-www.harvard.edu/uinfra/sherpa/Documentation/download/index.html
http://hea-www.harvard.edu/uinfra/sherpa/Documentation/download/index.html
http://hea-www.harvard.edu/uinfra/sherpa/Documentation/download/index.html
http://hea-www.harvard.edu/uinfra/sherpa/Documentation/download/index.html
http://hea-www.harvard.edu/uinfra/sherpa/Documentation/download/index.html
http://cxc.harvard.edu/ciao/download
http://cxc.harvard.edu/ciao/download
http://hea-www.harvard.edu/AstroStat/
http://hea-www.harvard.edu/AstroStat/
http://cxc.harvard.edu/ciao
http://cxc.harvard.edu/ciao
http://cxc.harvard.edu/csc
http://cxc.harvard.edu/csc
http://hea-www.harvard.edu/RD/ds9/
http://hea-www.harvard.edu/RD/ds9/
http://www.fftw.org/
http://www.fftw.org/
http://www.icsi.berkeley.edu/~storn/code.html
http://www.icsi.berkeley.edu/~storn/code.html
http://www.icsi.berkeley.edu/~storn/code.html
http://www.icsi.berkeley.edu/~storn/code.html
http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://citeseer.ist.psu.edu/3996.html
http://citeseer.ist.psu.edu/3996.html
http://citeseer.ist.psu.edu/3996.html
http://citeseer.ist.psu.edu/3996.html
http://citeseer.ist.psu.edu/155516.html
http://citeseer.ist.psu.edu/155516.html
http://citeseer.ist.psu.edu/155516.html
http://citeseer.ist.psu.edu/155516.html
http://www.stsci.edu/resources/software_hardware/pyfits
http://www.stsci.edu/resources/software_hardware/pyfits
http://www.stsci.edu/resources/software_hardware/pyfits
http://www.stsci.edu/resources/software_hardware/pyfits
http://sphinx.pocoo.org/
http://sphinx.pocoo.org/
http://cxc.harvard.edu/sherpa/threads/all.html
http://cxc.harvard.edu/sherpa/threads/all.html
http://cxc.harvard.edu/sherpa/threads/all.html
http://cxc.harvard.edu/sherpa/threads/all.html
http://hea-www.harvard.edu/saord/xpa/
http://hea-www.harvard.edu/saord/xpa/
http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/
http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/
http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/
http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/
http://conference.scipy.org/proceedings/SciPy2009/paper_8

	Sherpa: 1D/2D modeling and fitting in Python
	Introduction
	Fitting and modeling
	Use
	Design
	I/O interface
	Visualization interface
	API
	Procedural UI
	Confidence
	Fit Statistics
	Visualization
	User Models
	Conclusion
	References

