Proceedings of the 8" Python in Science Conference (SciPy 2009)

The FEMhub Project and Classroom Teaching of Numerical Methods

Pavel Solin (solin@unr.edu) — University of Nevada, Reno, USA
Ondrej Certik (ondrej@certik.cz) — University of Nevada, Reno,, USA
Sameer Regmi (sregmiGunr.edu) — University of Nevada, Reno, USA

We introduce briefly the open source project FEMhub
and focus on describing how it can be used for live
demonstrations of elementary numerical methods in
daily classroom teaching.

The FEMhub Project

FEMhub [femhub] is an open source distribution of
finite element (FEM) codes with unified Python inter-
face, developed by the hp-FEM group at the University
of Nevada, Reno [hpfemorg]. The aim of FEMhub is
to establish common standards in the development of
open source FEM codes, allow for accuracy and per-
formance comparisons of different codes, and provide
a common platform for collaboration and exchange of
modules.

Currently, FEMhub contains the open source codes
FiPy, Hermes [hermes], Phaml and SfePy as FEM
engines, tools to ease visualisation (matplotlib [mpl],
mayavi [mayavi], pyglet [pgl]), standard Python li-
braries Scipy [scipy], Numpy [numpy] and Sympy, and
a web notebook which is based on the Sage notebook.

Interactive Web Notebook

The goal of the FEMhub web notebook [femhub-nb] is
to make all FEM codes in FEMhub available remotely
through any web browser. Inside the web notebook,
one will be able to define geometry, generate a mesh,
specify boundary and initial conditions, define arbi-
trary partial differential equations (PDE) to be solved,
package the components and send them for processing
to a remote high-performance computing facility (cur-
rently UNR Research Grid), and visualize the results
once they are received.

Teaching Numerical Methods

We have found students’ understanding of the funda-
mentals of numerical methods to be an obstacle to
learning hp-FEM algorithms efficiently. As a result,
we decided to use the web notebook to implement a
series of elementary numerical methods that the stu-
dents can work with interactively and thus gain a much
better understanding of the material. The notebook
does not employ the CPU of the machine where it is
executed, and therefore one can use it to compute on
desktop PCs, laptops, netbooks and even iphones. In
particular, one can use it in every classroom that has
Internet access.

The response of the students was very positive, there-
fore we started to add new worksheets systematically
and to utilize the notebook in the classroom regularly.
We found that by running the methods in real time, we
can get much more across about their strengths, weak-
nesses and typical behavior than ever before. Last but
not least, the students stopped grumbling about pro-
gramming homework assignments.

Through this paper, we would like to share our pos-
itive experience with anyone who teaches elementary
numerical methods. All worksheets described below
are freely available at http://nb.femhub.org. Right
now (as of November 2009) you still need to create
an account to access them, but we are working cur-
rently on eliminating this and making the notebook
even more open.

Taylor Polynomial

The Taylor polynomial T(z) is an approximation to a
function f(z) in the vicinity of a given point a, based on
the knowledge of the function value f(a), first deriva-
tive f’(a), second derivative f”(a), etc. In the web
notebook, one has two ways of defining T'(z): Via the
point a, list [f(a), f'(a), f”(a), ...J, and the endpoints:

taylor_1(0, [0, 1, O, -1, 0, 1, 0, -1], -3*pi/2, 3*pi/2)

or by entering the point a, the function f(z), = for
independent variable, degree n, and the endpoints:

taylor__2(0, sin(x), x, 7, -3%pi/2, 3*pi/2).

Both these commands generate the same T'(z) but the
latter also plots the error:

f(x) = sin(x)

T(x) = x - x**3/6 + x**5/120 - x**7/5040

— f(x) = sin(x)
3 - - B — Taylor polynomial T(x) [

P. Solin, O. Certik, S. Regmiin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 58-62

58

solin@unr.edu
ondrej@certik.cz
sregmi@unr.edu
http://nb.femhub.org
http://nb.femhub.org

Proceedings of the 8 Python in Science Conference (SciPy 2009)

— Error E(x) = f(x) - T(x)

Using the notebook, one can demonstrate obvious facts
such as that with increasing n the polynomial T'(z) gets
closer to f(z) in the vicinity of the point a, but also
that the textbook recipe may overestimate the error
/f(x) - T(z)] substantially, that T'(z) usually diverges
from f(z) quickly once /z-a/ exceeds some threshold,
that T'(z) has a special form at a=0 if f(x) is even
or odd, etc. See the Taylor Polynomial worksheet at
[femhub-nb] for more details.

Rootfinding Techniques

The three most-widely used methods (interval bisec-
tion, Newton’s method, and fixed-point iteration) are
called as one would expect:

bisection(1/(1+x*x) - x, x, 0, 1, 1e-8)
newton(1/(1+x**2) - x, x, 1, 1le-8)
fixed_point(1/(1+x**2), x, 1, 1e-8)

For the bisection method, we like to illustrate the text-
book formula for the number of steps needed to ob-
tain the root with a given accuracy. For the Newton’s
method we show how extremely fast it usually is com-
pared to the other two techniques but also that it can
fail miserably when the initial guess is far from the
root. For the fixed-point iteration we like to show how
slow it typically is compared to the other two meth-
ods, but also that it may work in situations where the
Newton’s does not. And of course, that it can fail if
the derivative of the underlying function exceeds the
interval (-1,1).

30

— Interval Bisection Method

25}

20

15

10

90.2 0.0 0.2 0.4 0.6 0.8 1.0 12

The previous image illustrates the history of interval
subdivisions produced by the bisection method.

Lagrange Interpolation Polynomial

The Lagrange interpolation polynomial L(z) is a sin-
gle polynomial of degree n passing through n+1 given
points of the form [x, y] with distinct z-coordinates.
The worksheet offers four different problem types:

1. Given is an arbitrary array of z-coordinates and
an arbitrary array of y-coordinates.

2. Given is an arbitrary array of z-coordinates and
a function f(z) for y-coordinates.

3. Given is an array of equally-spaced z-coordinates
and a function f(z) for y-coordinates.

4. Given are Chebyshev points for z-coordinates and
a function f(z) for y-coordinates.

We like to use option #1 to show the elementary in-
terpolation functions that are equal to one at one of
the points and zero at the remaining ones. Option #2
is useful for showing the difference between the La-
grange and Taylor polynomials. Options #3 and #4
can be used to demonstrate the notoriously bad perfor-
mance of equally-spaced interpolation points and that
one should use the Chebyshev points instead. The
following two figures illustrate interpolation of the fa-
mous function 1/(1+x**2) in the interval (-5, 5) on 11
equidistant points and the huge error that one ends up
with:

2.0

— Function f(x)
— Lagrange polynomial L(x)

15

1.0}

0.0

0.5

— Error E(x) = f(x) - L(x)

0.0}

0.5

—1.0F

2.0 I L L I I

59

http://conference.scipy.org/proceedings/SciPy2009/paper_9

http://conference.scipy.org/proceedings/SciPy2009/paper_9

The FEMhub Project and Classroom Teaching of Numerical Methods

The following pair of figures shows the same situation,
only the equidistant points are replaced with Cheby-
shev points. The reader can see that the error E(z) =
f(z) - L(z) drops about 13 times in magnitude:

12

— Function f(x)
— Lagrange polynomial L(x)

1O

0.8

0.6

4L

0.2F

0.0¢

— Error E(x) = f(x) - L(x)

0.05F

0.00

—0.05f

—0.10

013§ ~a =3 0 3 4 6
In option #4, one can demonstrate nicely the optimal-
ity of the Chebyshev points by moving slightly some of
them to the left or right (in the part of the code where
they are actually defined) and observing that the in-
terpolation error always goes up. See the Lagrange
Polynomial worksheet at [femhub-nb] for more details.

Cubic Splines

Interpolation via cubic splines is more popular than
the Lagrange interpolation because the results do not
contain wiggles and look much more natural. The ba-
sic setting is the same as in Lagrange interpolation -
one has n+1 points of the form [z,y/ with distinct z-
coordinates. These points divide the interval into n
subintervals. In each of them, we seek a cubic polyno-
mial via four unknown coefficients. This means that
we have 4n unknowns. The corresponding 4n equa-
tions are obtained by requiring the splines to match
the end point values in every subinterval (2n equa-
tions), requiring the first derivatives from the left and
right to be the same at all interior points (n-1 equa-
tions), and the same for second derivatives (another
n-1 equations). At this point, two conditions are left
to be specified and there is some freedom in them.
For example, one can require the second derivatives

to vanish at interval endpoints, which results into the
so-called natural cubic spline. But one can also set
the first derivatives (slopes) at interval endpoints, etc.
The following pair of images illustrates the interpola-
tion of the function 1/(1+x*z) in the interval (-5, 5)
on 11 equidistant points as above, but now with cubic
splines. Compared to the Chebyshev interpolant, the
error drops 6 times in magnitude.

— Cubic spline C(x)
— Function f(x)

0.8

0.6

041

02

00!

0.015

— Error E(x) = ftx) - C(x)

0.010
0.005 frvoeeveeeoe]
0.000 -
—0.005 -
I 0 5 0) R IO S
—0.015f-

—0.020 -

—0.025¢ Za) 0 3 7 6
The following figure shows the sparsity structure of the
4n times 4n matrix (zeros in white, nonzeros in black).
We like to highlight the underlying matrix problems
because in our experience the students usually do not
know that matrices can be used outside of a linear
algebra course.

(©2009, P. Solin, O. Certik, S. Regmi

60

Proceedings of the 8 Python in Science Conference (SciPy 2009)

See the Cubic Splines worksheet at [femhub-nb] for
more details.

Least-Squares Approximation

The least-squares approximation technique is very dif-
ferent from interpolation - it finds in a given set of
polynomials an element that is closest to the approxi-
mated function f(x). (There is nothing about matching
the function values of f(z) exactly.) Typically, the set
of polynomials is chosen to be the Legendre polyno-
mials because of their orthogonality, and the distance
between is measured in the so-called L2-norm. The
following commands are used to define a function f(z)
and calculate its least-squares polynomial approxima-
tion of degree n in an interval (a,b):

Define function f(x)
def f(x): return -sin(x)

Calculate and plot in interval (a, b) the
least-squares polynomial approximation P(x) of f(x)

least_squares(-pi, pi, f, x, 3)

The output for these parameters looks as follows:

1.0

— Approximation P(x)
— Function f(x)

051

0.0

0.5 e e

— i i i i i { i
1'0—4 -3 -2 -1 [} 1 2 3 4

0.3

— Error E(x) = f(x) - P(x)

0.2}

0.1 e

0.0

—0.1})

02

“037 =3 =2 -1 o 1 2 3 4
This worksheet also plots the underlying basis func-
tions (Legendre polynomials). One can use elemen-
tary integration functions to show the students that
indeed the Legendre polynomials are orthogonal in the
L2-product. We also like to use this opportunity to
explain the importance of numerical quadrature by

projecting a complicated function that cannot be in-
tegrated analytically. For more details see the Least
Squares worksheet at [femhub-nb].

Fourier Expansion

This is an excellent opportunity to show the students
that the Fourier expansion is nothing else than the
least-squares approximation. One just replaces the
Legendre polynomials with the functions 1, cos(z),
sin(x), cos(2z), sin(2z), ..., and considers the peri-
odicity interval (-pi, pi) instead of a general interval
(a, b). Otherwise everything is the same. It is use-
ful to demonstrate to the students that the Fourier
basis above indeed is orthogonal in the L2-product.
The following figure shows the approximation of a
piecewise-constant discontinuous signal. The work-
sheet also plots the error as usual, not shown here for
space limitations.

12

— Fourier series F(x)
— Function f(x)

10—

0.8

06 -

0.4

—0.2 L L L L I L 1

See the Fourier Expansion worksheet at [femhub-nb]
for more details.

References

[femhub)] http://femhub.org/.

[femhub-nb] http://nb.femhub.org/.

[hermes] http://hpfem.org/main/hermes.php.

[hpfemorg] http://hpfem.org/.

[mpl] J.D. Hunter (2007). Matplotlib: A 2D graph-
ics environment. Computing in Science and
Engineering. 9: 90-95. http://matplotlib.
sourceforge.net/.

[mayavi] P. Ramachandran, G. Varoquaux, Mayavi:
Making 3D Data Visualization Reusable,
in Proceedings of the 7th Python in Sci-
ence conference (SciPy 2008) http://code.
enthought.com/projects/mayavi/.

[numpy] T. Oliphant et al., NumPy, http://numpy.
scipy.org/.

[pgl] http://wuw.pyglet.org/.

[scipy] E. Jones, T. Oliphant, P. Peterson, SciPy:

Open source scientific tools for Python http:
//www.scipy.org/.

61

http://conference.scipy.org/proceedings/SciPy2009/paper_9

http://femhub.org/
http://femhub.org/
http://nb.femhub.org/
http://nb.femhub.org/
http://hpfem.org/main/hermes.php
http://hpfem.org/main/hermes.php
http://hpfem.org/
http://hpfem.org/
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://code.enthought.com/projects/mayavi/
http://code.enthought.com/projects/mayavi/
http://code.enthought.com/projects/mayavi/
http://code.enthought.com/projects/mayavi/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://www.pyglet.org/
http://www.pyglet.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://conference.scipy.org/proceedings/SciPy2009/paper_9

	The FEMhub Project and Classroom Teaching of Numerical Methods
	The FEMhub Project
	Interactive Web Notebook
	Teaching Numerical Methods
	Taylor Polynomial
	Rootfinding Techniques
	Lagrange Interpolation Polynomial
	Cubic Splines
	Least-Squares Approximation
	Fourier Expansion

	References

