PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Keeping the Chandra Satellite Cool with Python

Tom Aldcroft*

Abstract—The Chandra X-ray Observatory has been providing groundbreaking
astronomical data since its launch by NASA in July of 1999. Now starting the
second decade of science the Chandra operations team has been using Python
to create predictive thermal models of key spacecraft components. These mod-
els are being used in the mission planning and command load review process
to ensure that the series of planned observations and attitudes for each week
will maintain a safe thermal environment. Speaking from my perspective as a
scientist working to create and calibrate the models, | will discuss the process
and the key off-the-shelf tools that made it all possible. This includes fitting
many-parameter models with the Sherpa package, parallel computation with
mpi4py/MPICH2, large table manipulations with pytables/HDF5, and of course
fast array math with NumPy.

Index Terms—telescope, NASA, MPI, astronomy, control

Motivation

This paper describes the use of off-the-shelf tools in Python
to tackle a relatively challenging engineering problem facing
the Chandra X-ray Observatory satellite [CHANDRA]. While
presenting no fundamentally new algorithms or packages, the goal
here is to take this as a case study for understanding how scientists
and engineers can make Python the foundation of their analysis
toolkit.

Chandra

The Chandra satellite was launched in July of 1999 as one of
NASA’s four "Great Observatories". This satellite can be com-
pared in size and scope to the Hubble Space Telescope except that
it views the universe in X-rays instead of optical or UV light. Some
people will argue that the universe is a much more exciting place
when viewed with X-ray photons, for then the sky comes alive
with black holes, supernova explosions, massive galaxy clusters,
pulsars, and many other highly energetic phenomena.

Early in the mission it became apparent that temperatures on
the spacecraft, particularly on the side which normally faces the
Sun, were increasing at a rate well above pre-launch predictions.
It turned out that the ionizing particle radiation environment was
higher than expected and that it was degrading the silverized teflon
insulation which wraps much of the spacecraft. Since this time the
constraint of keeping spacecraft components within safe operating
temperatures has been a major driver in operations and schedule

% Corresponding author: aldcroft@head.cfa.harvard.edu
£ Smithsonian Astrophysical Observatory

Copyright © 2010 Tom Aldcroft. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Fig. 1: Artist’s rendering of the Chandra X-ray satellite. The silverized
teflon which wraps the spacecraft has degraded so it is now far less
reflective than shown.

planning. Note that Chandra is in a high elliptical orbit, so unlike
Hubble no repair is possible.

Different parts of the spacecraft are heated at different pitch
angles (the angle that the telescope boresight axis makes to the
sun line). This is shown in Figure 2 which presents a side view of
Chandra along with the subsystems that are sensitive over different
pitch ranges. Temperatures can be maintained within limits by
ping-ponging to different attitudes, never letting one part get too
hot. Thus in order to plan the weekly observing schedule a few
simple models were created to predict temperatures or otherwise
constrain the observing duration at certain attitudes.

As the constraints became more significant a need developed
to improve the models in order to maintain the highest scientific
output without endangering the spacecraft. In response, about
three years ago the CXC Science Operations Team (SOT, scientists
closely involved in satellite operations) and the engineers of the
Flight Operations Team (FOT) formed a joint working group to
study thermal issues and to develop higher fidelity thermal models.
This paper discusses one facet of the results coming out of the
thermal modeling working group.

Early in the process the author chose Python as the program-
ming language for supporting this effort. Around this time NumPy
had emerged as a strong (and consolidated) numeric array manip-
ulation tool for Python. Adding in IPython, Matplotlib and SciPy
provided a development and interactive analysis environment that
was ideal for the task.

mailto:aldcroft@head.cfa.harvard.edu

Central Cylinder
Propulsion (MUPS)

TEPHIN, FSS

ACIS DPA ?

140

0

Fig. 2: Thermal constraint regions depending on the pitch angle to
the sun line.

Telemetry access

A key starting point for developing complex thermal models is
fast access to thermal and other engineering data from the satellite.
The Chandra satellite records a 32 kbit/s stream of telemetry that
contains both the science data and satellite engineering (house-
keeping) data. Although the data volumes are meager by modern
standards, the tools and data structure used for processing and
access were largely designed with mid-1990’s era hardware and
storage capabilities in mind.

Two standard methods exist for retrieving archival telemetry.
Within the Flight Operations Team (FOT) environment at the
Operations Control Center the primary tool stores no intermediate
products and instead always falls back to the raw telemetry
stream. This stream contains over 6000 individual engineering
telemetry items (MSIDs) that are interleaved according to different
sampling rates and sub-formats. FOT engineers using this system
are accustomed to waiting hours or more to retrieve a year of data
needed for analysis.

Within the Chandra X-ray Center (CXC) which is responsible
for processing the science data, the situation is somewhat better.
In this case the "Level-0 decommutation” process is done just
once and the results stored in FITS [FITS] files available through
an archive server. These files each contain about two hours of
data for MSIDs that are related by subsystem (thermal, pointing
control, etc) and sampling rate. However, access to a single MSID
of interest (e.g. a particular thermistor readout) requires retrieving
and unzipping a large amount of uninteresting data.

The solution to this problem was found in the pytables [PYT]
package which provides a robust interface to the powerful Hier-
archical Data Format [HDF5] library. Pytables/HDFS5 is designed
to create, update, and access very large data tables with ease. The
key here was creating a separate HDF5 table for each MSID which
could easily store all the readouts for that MSID for the entire
mission. This is especially optimal because many of the MSIDs
change infrequently and thus compress very well. HDFS natively
supports an assortment of compression options which makes this
a snap. Initially creating the table based on a NumPy data array is
simple using the createEArray method to create an extendible
homogenous dataset:
filts = tables.Filters (complevel=5,
h5 = tables.openFile (filename, mode='w',

h5shape = (0,) + data.shape[l:]
h5type = tables.Atom.from_dtype (data.dtype)

complib='z1lib")

filters=filts)

PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

P.p) P.(p) P_(p)
U U

Tu o1 T1 12 T2

TaG T;J T;E

Fig. 3: Schematic diagram of the thermal Chandra thermal model.
Boxes (Ty, T1, Ty) represent physical nodes on the spacecraft where
a thermistor is located. External solar heat input is shown as Pi(p),
conductances are Uy j, and external heat bath temperatures are T, ;.

h5.createEArray (h5.root, 'data',
title=colname, expectedrows=n_rows)

h5.createEArray (h5.root, 'quality', tables.BoolAtom(),

(0,), title='Quality', expectedrows=n_rows)

h5type, hbshape,

h5.close()

A minor complication seen here is the boolean quality table
which accounts for bad or missing telemetry. Once the table has
been created it is a simple matter to extend it with new data values
after a communication pass:

h5 = tables.openFile(filename, mode='a')
h5.root.data.append (new_data)

h5.root.quality.append (new_quality)
h5.close()

At this time the largest individual tables have about 1.3 x 10° rows
(for the highest sampling rate of 4 times per second). The data
retrieval speed from this archive of HDF5 tables is approximately
107 items per second. This means that typical data retrieval
requests can be handled in seconds rather than hours. Such an
improvement changes the landscape of questions that can be asked
and then answered.

In addition to the data acquisition back-end, a user-friendly
front-end was needed to access the telemetry data in the HDFS
archive. A challenge in this regard was that most of the intended
user community (FOT engineers) had absolutely no experience
with Python. Thus the interface, documentation and examples
had to be clear and explicit. The final documentation package
included a tutorial covering the telemetry access interface as well
as [Python, NumPy, and Matplotlib.

Creating a thermal model

The thermal model which was developed for modeling Chandra
subsystems is illustrated in Figure 3.

Here each of the boxes (Tp, T, T>) represents a physical
node on the spacecraft where a thermistor is located. It is then
assumed that each node i has an external heat input P;(p) and has
conductances U; ; to other nodes and an external heat bath with
temperature 7, ;. For most models the external heat input is Solar
and depends purely on the spacecraft pitch angle with respect to
the Sun. In some cases, however, the heat input due to internal
electronics is also included. Given these definitions and the nodal
connectivity the temperatures can be written in matrix form as a

KEEPING THE CHANDRA SATELLITE COOL WITH PYTHON

simple first order differential equation:

T = AT+b
() = fée‘;(”“)bdu-&-e‘;’T(O)
i
0
A _
= [V] Vz] ! iy [V] Vz} lb
v
At 0
¢ -1
+[v1 v2] |: 0 o } [vi v2] " T(0)

Here T is a vector of node temperatures, A is the matrix
describing the coupling between nodes, b is a vector describing
the heat inputs, v; and A; are the eigenvectors and eigenvalues of
A, and 7 is time.

The solution can be expressed analytically as long as the model
parameters (external heat inputs, conductances) are constant. Most
of the time Chandra dwells at a particular attitude and so this
is a good assumption during such a dwell. The computational
strategy for making a model prediction of temperatures is to
identify "states" where the parameters are constant and propagate
temperatures from the beginning to the end of the state, then use
the end temperatures as the starting point for the next state.

The first implementation of this core model calculation was
a literal transcription of the analytic solution for each time step
within a state. This was quite inefficient because of repeated
creation and computation of intermediate 2-d arrays. A slight
modification allowed for adding the time dimension into the arrays
and computing all time steps at once with a single expression of
NumPy dot products. This resulted in a factor of 10-20 speed in-
crease. Further optimization to avoid repeating certain calculations
within inner loops plus caching of results eventually yielded code
that is 50 times faster than in the initial literal version. In the end
the code takes less than a second to predict a year of temperatures
at 5S-minute resolution for a 5-node model of the sun-pointed side
of the spacecraft.

Fitting the model parameters

The next step is to tune the model parameters to best fit the existing
thermal data for the subsystem of interest. In typical cases there
are two to five thermistors whose data are averaged over 5 minute
intervals. Up to five years of such data are fit at once.

What is not immediately apparent in the concise matrix for-
mulation T = AT +b of the thermal model is that it contains a lot
of free parameters. In addition to the conductances and external
heat bath temperatures, the external Solar power input for each
node is complicated. First it is a function of the pitch angle with
respect to the Sun, but it also has an annual variation term (due
to the elliptical orbit) as well as a long-term change due to the
continued slow degradation of the protective insulation. All this
needs to be fit in order to predict temperature profiles at any time,
including years in advance. One key 5-node model being used in
planning operations has a total of 80 free parameters. All of those
parameters need to calibrated using at least 5 years of existing
thermal data to train the model.

Two immediate objections can be raised. First, that with so
many free parameters one can fit almost anything. In a sense for
this application that is just fine, as long as the resultant model
has stable predictive power beyond the time range over which
it is calibrated. But at a more fundamental level experience has
shown that it is simply not true that the complex and coupled
time-dependent behavior of temperatures on the spacecraft can

1PDEAAT validation

g 1
w
2 30 | i
o
2 20
10 -
0 L L L L L L
QE-" xa"‘ _{,e.“ _.,p\a‘ 2 P _.,-\ﬁ'i
o P o 2 > o

Fig. 4: Long-term comparison of the actual spacecraft thermistor data
(red) with the model prediction (blue). This span of data is used for
fitting the model coefficients.

necessarily be captured by any model with a large number of
parameters.

The second objection is that fitting for so many parameters
is bound for failure. However, what makes this problem tractable
is that many of the parameters are only loosely coupled. This
makes it possible to selectively fit for subsets of the parameters
and iteratively home in on a reasonable global set of parameters.
Unlike many problems in parameter estimation where the derived
parameter values and uncertainties are the primary goal, in this
case it is the model prediction that matters.

The Sherpa [SHP] package is used to handle the actual
optimization of parameters to achieve the best model fit to the
data. Sherpa is a modeling and fitting application for Python that
contains a powerful language for combining simple models into
complex expressions that can be fit to the data using a variety
of statistics and optimization methods. It is easily extendible to
include user models, statistics and optimization methods. For this
application the key feature is a robust implementation of the
Nelder-Mead (aka Simplex) optimization method that is able to
handle many free parameters. Sherpa provides within the model
language a natural way of manipulating and linking model param-
eters using Python expressions.

The result of the fitting process is a calibrated thermal model
that can be used to accurately predict the system temperatures
given the planned sequence of maneuvers and instrument configu-
rations. Figure 4 shows an example of the data for one thermistor
"IPDEAAT" in red with the model prediction in blue.

Figure 5 now shows the post-facto model prediction (blue) for
a two-week period of data (red) that is outside the calibration
time range. Most of the features are well reproduced and the
distribution of residuals is roughly gaussian.

Parallelization of fitting

Despite the good model calculation performance with vectorized
NumPy, fitting for 5 years of data and dozens of parameters can
benefit from the further speed increase of parallelization. This is
particularly helpful for the exploratory phase of developing a new
model and getting the parameters in the right ball park.

The thermal models being discussed here can easily be par-
allelized by splitting into independent time segments. There is
a slight issue with the starting conditions for each segment,
but there are straightforward ways to finesse this problem. In
the context of a fitting application a master-worker architecture
works well. Here the master is responsible for controlling the fit

=5 1PDEAAT validation

Degrees (C)

Fig. 5: Detailed comparison of the actual spacecraft thermistor data
(red) with the model prediction (blue). The thermistor is located within
the power-supply box for one of the main science instruments.

Run Sherpa fit engine

—
Determine new fit pars m i

Data split among
workers during init

re G) B8 =
specitied lit pars
=,

Sum fit statistics |

=] ==

Fig. 6: Schematic illustration of parallelizing the fitting process by
breaking the data and model generation into smaller time slices.

optimization process while each of the workers takes care of all
model computations for a particular time segment. The worker is
initially sent the time range and model definition and it is then
responsible for retrieving the appropriate telemetry data. After
initialization the model parameters for each fit iteration are sent
and the worker computes the model and Chi®> fit statistic. All
of the individual Chi*> values are then summed. In this way the
communication overhead between master and workers is minimal.
Figure 6 illustrates the process.

The actual job of handling the interprocess communication and
job creation is done with the mpidpy [MPI4PY] package using the
MPICH2 [MPICH2] library. As is often the case, the choice of
these particular packages over other similar ones was driven by the
depth of documentation, availability of relevant looking examples,
and ease of installation. Starting with no previous experience with
distributed computing, a working prototype of the parallel fitting
code was created in less than a day. This is a testament largely to
the quality of documentation.

As for computing resources, our division within SAO is
perhaps like other academic science institutes with a collection of
similarly configured linux machines on a local network. These are
often available off-hours for "borrowing" CPU cycles with consent
of the primary user. A more formal arrangement (for instance
using an application like Condor for distributed job scheduling)
has been in consideration but not yet adopted. For this application
up to twelve 4-core machines were used. Dynamic worker creation
was supported by first starting up mpd servers on the target hosts
(from file mpd . hosts) with a command like the following:

mpdboot —--totalnum=12 --file=mpd.hosts --maxbranch=12
An abridged version of three key functions in the main parallel fit-

ting code is shown below. These functions support communication
with and control of the workers:

PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

def init_workers (metadata)
"""Init workers using values in metadata dict"""
msg = {'cmd': 'init', 'metadata': metadata}
comm.bcast (msg, root=MPI.ROOT)
def calc_model (pars) :
"""Broadcast a message to each worker to calculate
the model for given pars."""
comm.bcast (msg={'cmd': 'calc_model',
root=MPI.ROOT)

'pars': pars},

def calc_stat ()

"""Broadcast message to calculate chi”2 diff between
model and data. After that collect the sum of
results from workers using the Reduce function."""

msg = {'cmd': 'calc_statistic'}

comm.bcast (msg, root=MPI.ROOT)

fit_stat = numpy.array (0.0, 'd')

comm.Reduce (None, [fit_stat, MPI.DOUBLE],

op=MPI.SUM, root=MPI.ROOT)
return fit_stat

After defining the above functions the main processing code first
uses the MPI Spawn method to dynamically create the desired
number of worker instances via the previously created mpd
servers. Then the workers receive an initialization command with
the start and stop date of the data being used in fitting. The Sherpa
user model and fit statistic are configured, and finally the Sherpa
fit command is executed:
comm = MPI.COMM_SELF.Spawn (sys.executable,
args=['fit_worker.py'l]l,
maxprocs=12)

init_workers ({"start": date_start, "stop": date_stop})

Sherpa commands to register and configure a function
as a user model for fitting to the data.
load_user_model (calc_model, 'mpimod')

set_model (mpimod)

Set function to be called to calculate fit statistic
load_user_stat ('mpistat', calc_stat)
set_stat (mpistat)

Do the fit

fit ()

The fit_worker.py code is likewise straightforward. First get
a communication object to receive messages, then simply wait
for messages with the expected commands. The init command
calls the get_data () function that gets the appropriate data
given the metadata values and the rank of this worker within
the ensemble of size workers.

comm = MPI.Comm.Get_parent ()

size = comm.Get_size()
rank = comm.Get_rank ()

while True:

msg = comm.bcast (None, root=0)

if msg['cmd'] == 'stop':
break

elif msg['cmd'] == 'init':

Get the vectors of times and temperatures
for this worker node
x, y = get_data(msg['metadata'], rank, size)
elif msg['cmd'] == 'calc_model':

Calculate the thermal model for times

covered by this worker

model = worker_calc_model (msg['pars'], x, Vy)

elif msg['cmd'] == 'calc_statistic':
Calculate the chi”2 fit statistic and send

KEEPING THE CHANDRA SATELLITE COOL WITH PYTHON

back to the master process
fit_stat = numpy.sum((y — model) x*2)
comm.Reduce ([fit_stat, MPI.DOUBLE], None,
op=MPI.SUM, root=0)
comm.Disconnect ()

Putting it to work

Using the techniques and tools just described, two flight-certified
implementations of the models have been created and are being
used in Chandra operations. One models the temperature of the
power supply for the ACIS science instrument [ACIS]. The other
models five temperatures on the Sun-pointed side of the forward
structure that surrounds the X-ray mirror. Each week, as the sched-
ule of observations for the following week is assembled the models
are used to confirm that no thermal limits are violated. Separate
cron jobs also run daily to perform post-facto "predictions” of
temperatures for the previous three weeks. These are compared to
actual telemetry and provide warning if the spacecraft behavior is
drifting away from the existing model calibration.

Summary

The current Python ecosystem provides a strong platform for
production science and engineering analysis. This paper discussed
the specific case of developing thermal models for subsystems of
the Chandra X-ray Observatory satellite. These models are now
being used as part of the flight operations process.

In addition to the core tools (NumPy, IPython, Matplotlib,
SciPy) that get used nearly every day in the author’s work, two
additional packages were discussed:

« Pytables / HDF5 is an easy way to handle the very large
tables that are becoming more common in science analysis
(particularly astronomy). It is simple to install and use and
brings high performance to scientists.

e MPI for Python (mpidpy) with the MPICH2 library
provides an accessible mechanism for parallelization of
compute-intensive tasks.

Acknowledgments

Thanks to the reviewer James Turner for a detailed evaluation and
helpful comments.

REFERENCES

[ACIS] http://cxc.harvard.edu/proposer/POG/html/ACIS .html
[CHANDRA] http://chandra.harvard.edu/

[FITS] http://fits.gsfc.nasa.gov/

[HDF5] http://www.hdfgroup.org/HDF5/

[MPI4PY] http://mpidpy.scipy.org/

[MPICH2] http://www.mcs.anl.gov/research/projects/mpich2/
[PYT] http://www.pytables.org

[SHP] http://cxc.harvard.edu/contrib/sherpa

http://cxc.harvard.edu/proposer/POG/html/ACIS.html
http://chandra.harvard.edu/
http://fits.gsfc.nasa.gov/
http://www.hdfgroup.org/HDF5/
http://mpi4py.scipy.org/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.pytables.org
http://cxc.harvard.edu/contrib/sherpa

	Motivation
	Chandra
	Telemetry access
	Creating a thermal model
	Fitting the model parameters
	Parallelization of fitting
	Putting it to work
	Summary
	Acknowledgments
	References

