
6 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Astrodata
Craig Allen‡∗

F

Abstract—The astrodata package is a part of the Gemini Telescope’s python-
based Data Reduction Suite. It is designed to help us deal in a normalized
way with data from a variety of instruments and instrument-modes. All Gemini
specific code configurations are isolated in configuration packages separate
from the astrodata source. The configuration packages define a lexicon of
terms associated with a family of dataset types and implements the behaviors
associated with each terms.

Index Terms—Python, Scientific Computing

The Problem Domain: Handling Data Across Instrument-
Modes

Gemini

Gemini Observatory is a multinational partnership which operates
two telescopes, Gemini North from Hilo, Hawaii, and Gemini
South from La Serena, Chile. We mount multiple instruments
simultaneously, and have a suite of instruments which rotate onto
the telescopes periodically. These instruments have been made
by a variety of different teams and institutions from our partner
countries.

Multi-Extension FITS

Gemini Observatory relies on a file format called "Multi-Extension
FITS" (MEF) format to store all datasets, one standard all instru-
ments obey. MEF is a common file format in Astronomy and is an
extension of the older "single extension" FITS file format. Signle
extension FITS files consited of a single expandable ASCII header
section and single binary data section. MEF extends this so that
the file appears as a list of such header-data units (HDUs).

The FITS standard contains definitions for standardized meta-
data in HDU headers. For example, standard header keys are
defined for the telescope, observer, object name, the RA and
DEC, and some other properties one expects to be associated with
an astronomical observation. There are also suffient standardized
headers to describe the binary data section such as needed to
load it, such as its dimensions and pixel type (if it is pixel data).
However, many other bits of metadata which are ubiquitous for
Gemini data, such as "gain" and "filter name", do not have standard
headers names in the FITS standard.

Since the FITS headers are expandable there is ample infor-
mation in the datasets to retreive the desired information, but
the retrieval is subject to incidental differences in naming and

* Corresponding author: callen@gemini.edu
‡ Gemini Observatory

Copyright © 2010 Craig Allen. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

storage layout. While helpful, the list-like shape of the associated
HDUList is merely one incremental improvement toward the goal
of associating these related HDUs into a cohesive whole. MEF is
limited in this regard by the fact that standard metadata to describe
relationships between extensions have not been developed. Such
metadata could for example introduce a heirarchical relationship
and explicit dependencies among extensions. Metadata to infer
such relationships does exist in the headers but for the reasons
mentioned it tends to be instrument-mode specific.

The problem domain is dominated by processes which are
conceptually the same across instrument-modes from the perspec-
tive of the user and scientist, but which require implementations
unique to the instrument-mode.

Removing Incidental Differences

Our goal with a new abstraction higher than the level of the
"HDU list" is to remove the incidental differences for the user
of the new abstraction, and move handling of the differences into
type-specific compartments. Within the compartments it is safe to
make type-specific assumptions and use mode-specific heuristics
without compromising the generality of the system.

We also seek to extend the scopes at which a particular differ-
ence can be considered "incidental". For example, in the case of
dataset transformation (reduction), most instrument-modes involve
a step to "subtract the sky". This is generally done by taking
a picture of the sky near the object and literally subtracting its
pixel values from the exposure. However, the details of doing sky
subtraction do depend on the particular instrument-mode. There
exist important differences between imaging and spectroscopy,
and between different wavelengths, which means performing this
step is type-dependent.

Nevertheless, at the higher level of consideration, and scientif-
ically, the step is "the same". Thus while the differences regarding
how one performs the sky subtraction are not, ultimately, to be
accurately described as "incidental", they can still be generalized
over. At some scopes the differences are not considered significant
so long as they are performed properly.

At the same time, we want to maintain flexibility about which
scopes we commit to implementing in either generic or specific
ways. We want safe refactoring paths available so that we can,
for example, safely integrate instrument-mode specific code into
generalized code when possible. But we also want a system
that allows patching an instrument-mode specific solution over
a general solution that may be failing for that instrument mode,
as a quick way to address problems to for example support time-
critical nightime operation.

These goal are accomplished by the adopting of a core classi-
fication system which is used to assign behavior to dataset types

mailto:callen@gemini.edu


ASTRODATA 7

which can be general, e.g. "GEMINI", or a specific instrument
mode, "GMOS_IFU".

Incidental Dataset Differences Normalized

• differences in how a dataset is recognized as a particular
type

• differences in low level metadata
• differences in the implementation of scientifically similar

transformations
• differences in storage structure

The AstroData Class

MEF I/O

To load a MEF into an AstroData instance one generally gives the
filename to the AstroData contructor:

ad = AstroData("trim_gN20091027S0133.fits")

The instance, referenced in the ad variable will have loaded the
extensions’ headers and have detected type information. However,
the data, represented as a numpy array, is not loaded until refer-
enced. AstroData relies on the python Pyfits Library for this low
level MEF access. Like the HDUList object that pyfits returns, the
AstroData instance is also iterable, behaving as though consisting
of a collection of AstroData instances, one per HDU in the MEF.

To iterate over the list one would write a loop as so:

for ext in ad:
print ext.infoStr()

In this case ext is also an AstroData instance, created by the
iteration-related members of AstroData. The ext instance shares
its single HDU member with the original ad instance, as well
as its primary header unit, but has its own HDUlist object. This
means changes to the shared information will be reflected in the
outer AstroData object, ad, but that new HDUs appended to ext
would not be appended to ad.

This behavior extends the general behavior of numpy and
pyfits, and is considered desirable so that it is possible to avoid
unnecessary copying of memory, but use of the feature does
require care.

The __getitem__(..) member of AstroData is overrid-
den. It creates and returns an AstroData instance with a new
HDUList containing the HDU(s) identified in the argument, i.e.

adsci = ad["SCI"]

This call to __getitem__(..) uses causes it to use the
extension naming information to find all extensions with the name
"SCI", and return an AstroData instance containing just those
found.

Astrodata Grammar

Breaking our knowledge of our datasets into parts involves cre-
ating a language of terms for our family of datasets. The terms
defined will belong to a grammar understood by the astrodata
package, of course. This family of terms, or language, turns out
to be valuable in general as a tool to discuss dataflow, separately
from the implementation details. It turns out we have good reason
to understand what the terms mean prior deciding how they will
perform the action satisfying that meaning.

In practice, the developer of a type-family will work intera-
tively, creating and testing continually improved versions of their

configuration package. This sort of iterative "test and refactor"
process is well supported by the astrodata package, and supporting
"refactoring paths" is part of our intent. Conceptually, however,
the work to define the meaning of the terms is logically prior
to implementation. These definitions are, in fact, the conceptual
specification for all configuration implementations.

The astrodata grammar is expandable, but at this time consists
of three primary types of term:

• the dataset types: AstroData Types

– e.g. GMOS_SPECT is "a GMOS dataset taken in
any spectroscopic mode"

• high level metadata: Descriptors

– e.g. "filter_name" is "a string value concatenation
of all filters in the light path during the exposure"

• transformations: Primitives

– e.g. "skySubtract" is "a transformation where sky
conditions at the time of the observation are sub-
tracted from the exposure"

Each of these terms, once defined, will have a specific behavior
associated:

• for AstroData Type: code to recognize the type of dataset
based on low level metadata

• for AstroData Descriptors: code to calculate and return the
high level-metadata from the low-level metadata

• for Primitives: code to perform the tranformation

AstroData Type

From the user of astrodata’s point of view, AstroData Types are
string names accessed through AstroData members. The objects
used to detect the type criteria and assign the names to the Astro-
Data object are hidden within the RecipeLibrary which AstroData
uses to provide type features. The DataClassification objects which
load the type definition, also check to see if it applies to a given
HDUList object.

Many features are assigned to datasets by AstroData Type,
such that behind a common name lies implicitly type-specific
behavior. Different implementations of what is conceptually the
same descriptor, or primitive, are assigned to the same descrip-
tor or primitive name, meaning the interfaces to invoking them
are regular. Since the descriptor or high-level metadata system
requires the dataset type to know which particular descriptor
calculator to load, the type system cannot in turn rely on high-
level metadata to recognize datasets, as that would be circular.
Thus, the classification system uses low level metadata, ideally
from the PHU, which is the 0-th HDU in the HDUList.

A typical type definition is stored as a class descending
from astodata’s DataClassification class, allowing it the ability
to overwrite the base methods if need be. However, the general
intention is that in the typical case the known members of the
DataClassification parent are set in the child class so the definition
is essentially a data structure used by the parent class. Members
of DataClassification parent class execute the type check.

Here is a relatively typical type definition from our type library,
in this case for GMOS_IMAGE:
class GMOS_IMAGE(DataClassification):

name="GMOS_IMAGE"
usage = """Any datset from the GMOS_N or GMOS_S

instruments."""
parent = "GMOS"
requirement = ISCLASS("GMOS") & PHU(GRATING="MIRROR")



8 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Name,

The name member specifies the string name used to identify this
type.

Usage

The usage member is a printable string containing information
about the meaning of the type, used to generate documentation.

Parent

The parent member is the string name of the parent classifi-
cation, if any. The parent member is used to build the overall
classification hierarchy. This hierarchy is in turn used to resolve
conflicts in feature assignments, children overriding parents.

Requirements

The requirement member contains a single instance of an as-
trodata Requirement class, which is how the classification actually
checks the dataset in question. Use Requirement subclasses for
logical operators allows the appearance of compound requirments
using and, or, and not.

Specific checks are performed by the ISCLASS and PHU
Requirement subclasses which, respectively, check for adherance
to another type definition, and check primary header unit headers
for key-value matches. The all caps naming convention was
adopted to help these classes stand out due to their peculiar use in
the classification definitions.

PHU Requirements:: The PHU class is a Requirement
subclass which ultimately is the workhorse of the system. Clas-
sifications generally resolve to sets of PHU header checks, since
ideally, being the header for the dataset as a whole, the PHU will
contain complete identifying information. The PHU constructor
accepts a dictionary containing keys and values to check, or will
roll one from its argument list. Values are regular expressions, keys
are strings but allow modifiers to prohibit the specified match or
to use regular expressions for matching keys as well as values.

ISCLASS Requirements:: ISCLASS in this example is a
Requirement subclass which checks that the dataset in question
is also the type named in the ISCLASS constructor argument.
No hierarchical or other relationships are assumed due to the
ISCLASS requirement. The classification named is considered as
merely shorthand for whatever checks are associated with it.

Often the type specified in an ISCLASS Requirement will in
fact be the parent, but this is not universally true. For example
below, in the case of the base GMOS instrument type itself, the
parent and requirement classes are distinct:

class GMOS(DataClassification):
name="GMOS"
usage = '''

Applies to all data from either GMOS-North
or GMOS-South instruments in any mode.
'''

parent = "GEMINI"
requirement = ISCLASS("GMOS_N") | ISCLASS("GMOS_S")

Since the GMOS type is an abstraction meaning "from either
GMOS North or GMOS South" this appears in the require-
ments. However, the parental relationship cannot be GMOS_N
or GMOS_S as parent, because features such as Primitives or De-
scriptors, if assigned to GMOS_N, for example, would be intended
to override the GMOS assignments. Instead, GMOS overrides the
instrument-agnostic GEMINI type, which is therefore given as its
explicit parent.

Fig. 1: NIFS Type Tree A minimal type tree for the NIFS instrument:
One each to identify the Instrument itself, its imaging and spectro-
scopic mode, as well as the general GEMINI type which acts as NIFS’
parent type.

Logical Requirements:: Three Requirement subclasses ex-
ecute logical operations to combine other requirements, AND,
OR, and NOT. These each override the "&", "|", and "!" operators
respectively, for convienience. By design the constructors take a
list of requirements to combine logically, though they will, again
for convienience, roll the list from arguments.

Adding New Requirements:: This general arrangement
allows easy addition of other types of requirement classes. We
know, for example, that for some types we must detect we will
have to create an "EHU" requirement object to check headers in
data extensions.It will be a simple matter to add such a class and
utlize it in combination with other requirement subclasses.

The DataClassification classes are passed the pyfits HDUList
object to perform the detection and so have complete access to
the dataset. Therefore, a classification can technically look at
any characteristic of the data. However, by policy, for efficiency
reasons we specifically do not look at pixel data.

Examples

Access to type (aka "classification") information goes throug the
AstroData instance. The AstroData class relies internally on the
Classification Library to provide type information:

>>> from astrodata import AstroData
>>> ad = AstroData("trim_gN20091027S0133.fits")
>>> ad.types
['GEMINI_NORTH', 'GEMINI', 'IMAGE', 'GMOS_N',

'GMOS_IMAGE', 'GMOS', 'PREPARED']

Also, a single type can be checked in a call to the "isType" member
of AstroData. The single line replaces groups of conditional
checks that otherwise appear in reduction scripts at Gemini:

>>> ad.isType("GMOS_IMAGE")
True

This saves lines in scripts but more importantly, it centralizes the
type checking heuristics.

Gemini Types Trees:: The following is a simple type tree
for our NIFS instrument (Near-Infrared Integral Field Spectrome-
ter). It is an example of a minimalist type tree, which covers only
the instrument and its general IMAGE and SPECT modes.

The text and detail in Figure 2 will be difficult to read, but I
have included it to shows a more complete tree of types, in this
case for GMOS, the Gemini Multi-Object Spectrometer.



ASTRODATA 9

Fig. 2: GMOS Type Tree This is a fully defined type tree, taken from
the Gemini AstroData Type Library, the GMOS instrument tree,.

Fig. 3: NIFS Type Tree The simple NIFS type tree showing which
type has the Descriptor calculator assigned.

AstroData Descriptors

AstroData Descriptors are terms naming high-level metadata
which should be accessible for any dataset in the dataset family,
either with generic or classification-specific calculators. The code
implementing descriptors are functions bundled together in classes
called Descriptor Calculators which are assigned to particular
AstroData types.

This design allows a mix of generic and special-case descriptor
implementations, using python’s object oriented class definition
to inherit generic implementations while overwriting descriptor
functions that require special processing for that type.

For example, currently the NIFS descriptor calculator is a
single calculator assigned to all NIFS data. This means this
calculator has to handle both imaging and spectroscopic data.
This can of course be done by placing type-specific code within
conditionals and using AstroData to check classifications. Still the
code can and will get convoluted if the different types rely on very
different methods to return the information.

If a particular instrument-mode requires a special calculation,
and if the developers do not want to complicate the more generic
code, then another descriptor calculator descending from the NIFS
general descriptor calculator class would be created, and the
descriptor requiring special handling would be overriden, and this
class would be assigned to the type which requires a special case,
e.g. NIFS_SPECT.

Fig. 4: Descriptor Calls: The Descriptors are called as members of
type-specific Descriptor Calculators through the type-agnostic Calcu-
lator Interface, which is melded into AstroData via metaprogramming
techniques.

Descriptor Calculator Classes

A descriptor function, associated and named with the official
descriptor name, is implemented as a member function of a "De-
scriptor Calculator" (descending from the astrodata "Calculator"
base-class). An instance of the correct calculator is stored in
a private AstroData member, with there being just one correct
calculator for any given AstroData instance. The classification
hierarchy is used if multiple calculator assignments are found to
apply to a dataset. Child nodes override parent nodes, siblings or
cousin nodes with conflicting feature assignments will cause the
system to complain and an exceptions to be thrown.

Interfaces to the descriptor functions are added as members
at runtime to the AstroData instance using metaprogramming
techniques. The configuration’s "CalculatorInterface" class is used
as an AstroData "base" class at runtime (this is called a mixin pat-
tern). Currently the class is generated by a script, but in the future
this class will be dynamically generated by the infrastructure from
descriptor metadata.

After construction of the AstroData instance, descriptors such
as gain and filter_name are available to call as member
functions, e.g. continuing from the previous examples:

gain = ad.gain()

This line will call the correct gain implementation, having loaded
the correct calculator for the dataset loaded into the "ad" variable.
The calculator interface is constructed of "thunk" functions which
proxy calls to the calculator and are called for all types of dataset.
This makes the calculator interface a potential place to perform
global features such as validation of descriptor inputs and values or
processing globally supported parameters. These thunk functions
call the appropriate descriptor in the calculator.

Examples

Correctly defined and assigned descriptors ensure high level meta-
data can be retrieved in the same way regardless of datatype, e.g.
to retrieve the filter_name descriptor regardless of dataset type:

>>> from astrodata import AstroData



10 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

>>> ad = AstroData("trim_gN20091027S0133.fits")
>>> ad.filter_name()
'i_G0302'

Descriptors are presented as functions rather than data members to
emphasize that they are indeed functions and to allow arguments
which modify the return value, e.g. to get the filtername without
the unique filter ID, filter_name accepts the "stripID" argument:

>>> ad.filter_name(stripID=True)
'i'

Some descriptors apply at the header-data unit level and only work
on AstroData instances with a single extension. For example, a
GMOS image prior to being mosaic-ed, will have three science
extensions, one for each CCD in the GMOS instruments, and each
of these has its own associated gain relating to the amp it was read
out with. A descriptor will in this case have to return a collection if
asked to return gain for the whole dataset. By default Descriptors
only return single values of a specific type, so gain must return
a double. In general this is not an issue, since it’s more common
in such a case to be iterating over AstroData-wrapped header-
data units, in which case one naturally gets single-HDU AstroData
instances:

>>> for ext in ad["SCI"]:
... print ext.gain()
...
2.1
2.337
2.3

Similarly single extension AstroData instances can be picked out
of the dataset by their naming information, if present, or by the
integer index:

>>> gain_sci_1 = ad[("SCI", 1)].gain()
>>> gain_sci_1
2.1000000000000001
>>> gain_1 = ad[0].gain()
>>> gain_1
2.1000000000000001

To override the default descriptor return type to return collections
when called on a multiple-extension dataset, affected descriptors
support "asList" and "asDict" arguments:

>>> gainlist = ad.gain(asList=True)
>>> gainlist
[2.1000000000000001, 2.3370000000000002, 2.2999999999999998]

Lists are returned in order of the extensions for which there is a
gain value (e.g. "SCI" extensions), and dictionaries returned are
keyed by the extension naming information if present, or integer
location in the list otherwise.

Primitives

Primitives are the third type of term defined in the astrodata gram-
mar. Primitives name transformations, and conceptually recieve a
list of input data and produce a list of output data. More technically
primitives recieve a ReductionContext, and this is what they
transform. Thus, strictly speaking they do not have to transform
datasets, and even may not transform the ReductionContext (i.e.
they may perform "the identity transformation").

The motivation for such primitives is to execute useful code
during a reduction, for example primitives that print information to
the log don’t modify the reduction context at all, much less the data
in the data stream. Also, some primitives can make queries about
which files to process, and put these filenames in the datastream.

This type of primitive will not have modified any datasets, but will
have modified the reduction context which contains all information
about an ongoing primitive-based reduction.

Nevertheless, most primitives exist to reduce data, so we still
think of primitives as transforming data, and the fact that they
actually transform reduction contexts is a technical detail only
sometimes important. As with descriptors different implementa-
tions share a common name. This is so type-specific implementa-
tions can be executed in a regular way at higher scopes where the
differences are not significant so long as incidental differences in
the dataset types are accomodated.

Unlike descriptors, primitives are not added as AstroData
members but are instead arranged into "recipes", which are simple
sequential lists of primitives. As mere lists of steps, recipes contain
no explicit conditionals. However, since each primitive executed
is guaranteed to load an implimentation appropriate for the input
dataset, recipes have an implicit type-based conditionality, or "type
adaptativity".

Take for example our "prepare" recipe. The "prepare" transfor-
mation is meant to take raw data from any instrument and produce
a somewhat normalized dataset, e.g. with standard namings, order,
some validation performed, and standard headers set correctly.

The prepare recipe:

validateData(repair=True)
standardizeStructure
standardizeHeaders
validateWCS

All Gemini data needs to be "prepared", and this recipe descibes
the procedure for them all. When executing this recipe, a list of
files are fed into the first primitive. This primitive does whatever
work on the inputs it is designed to do, and places its outputs in
the reduction context, where they are used as input for the next
step.

At each step the system checks the AstroData type of the
inputs for the about-to-be-executed step to ensure the correct
primitive implementation for that type is loaded and will be
executed.

Some of the primitives in "prepare" are general pur-
pose primitives, shared by all Gemini datasets and assigned
to the general purpose GEMINI Primitive Set. For example
standardizeHeaders is a fairly generic operation applying
to all Gemini data. The meager type-sensitive differences are
easilly handled in a single all purpose primitive.

On the other hand, the standardizeStructure primitive
will not be the same for all types of dataset, nor even for all
the modes within an instrument. For example, in the case of
SPECT types (spectroscopy), standardizeStructure will
add the appropriate Mask Definition File from our mask definition
database, while the implementation of the same primitive for
IMAGE types will not do this, since that table-HDU does not
apply to imaging.

Final Thoughts

Current and Future Activities

We are currently deploying the astrodata package internally at
Gemini for development and preliminary dataflow operations.
We have a medium term project to use astrodata’s primitive
transformation and automation features (aka "the Recipe System")
for Night Time Operations, but this is not in place at the moment.



ASTRODATA 11

The astrodata infrastructure code is largely stable. Though
there is ongoing work, most work finishing the package is going
into the astrodata_Gemini configuration package. Descriptors for
all instruments already exist, and we are creating primitives for
the GMOS instrument’s imaging mode. We are making primitives
needed by GMOS-imaging as general as possible, and will hope-
fully benefit from some momentum as we work through primitive
sets for other instruments and modes. The type library of any given
instrument will be filled in detail during creation of primitives for
the given types. At the moment there are at least one type for
each instrument, and one for their IMAGE and SPECT modes as
applicable.

A fourth foundational term in the astrodata grammar exists in
prototype form and will be developed in the near future, called
"AstroData Structures", used for validation and also projecting
hierarchical structure onto the dataset.

As we develop AstroData and deploy it for Gemini-specific
purposes, we are interested in working with others in the future
to extend the system’s infrastructure and to support more types
of data with configuration packages designed to handle other
telescope’s data. Anyone interested should contact Craig Allen,
callen@gemini.edu, at Gemini Observatory, Data Processing Soft-
ware Group.

Speaking About Data

Creating a language about our data in order to inform the astrodata
software how our data should be organized has already helped us
to be more efficient and apt in our own communication about
dataflow, in our design and on our work to finished parts of the
system under development. We can apply terms directly, because
they map one to one with features AstroData can provide.

A large part of the advantage that has emerged from designing
the terms and details within the configuration in the way described
is that it focuses us on concepts first, seperately from implementa-
tion. Recipes, turn out to be good conceptual lynchpins for human
discussion on the type of reduction the recipe performs. Software
engineering details are compartmentalized to other discussions
about how to provide a well defined transformation in the case
of a particular AstroData Type.

Recipes support defining common steps separately from steps
that tend to requiring specialization, but moreover they promote
the practice since the system rewards proper granularity decisions
with more effective type adaptation. The result is that we are
concieving of better ways to describe transformations and what
we are transforming.

Prior to discussing recipes as such, the high concept, four or
five step description of a particlar reduction was hidden somewhat
opaquely in the machinations of the reduction script itself. Such
a script will tend to have the high level concepts obscured by
low level software plumbing. The ability to describe reductions
in terms of reasonably short recipes allows us to focus on this
descriptive level, and yet to know that the recipe discussed in
principle is actually what is executed.

Our configurations are becoming not merely where the astro-
data software system is told how to support a given instrument-
mode. They are instead becoming the official location of such
knowledge, because the configurations are largely human read-
able, and insofar as otherwise this knowledge is not recorded
clearly in a centralized way, but lives in the minds and distributed
web pages of Gemini instrument scientists and data analysts.

By inspiring us to think in terms of the abstract concepts
behind our data, we create and benefit from a language about
Gemini data. This in turn is affecting how we think about our data.
In the future, when we have incorporated the current state of affairs
into our AstroData configuration package, I suspect it will greatly
inform how we incorporate new instruments into the Gemini data
family, and to match their new, powerful, observations modes,
with the new powerful data reduction features needed to support
them.

Terms

astrodata

• astrodata, uncapitalized, is the astrodata pack-
age, i.e. import astrodata or "when im-
porting astrodata the Classification Li-
brary will be discovered and loaded".

• AstroData, with "CamelCase" names
the AstroData class, i.e.e ad =
AstroData("f.fits") or "When
loading a MEF into AstroData, the type
information is always loaded and available
after instantiation".

• Astrodata, with an initial capital names the
package in a general way, such as in a title or
description, e.g. "The Astrodata Package can
be imported using the name, ’astrodata’".

Note, it’s a subtle distinction, and probably best to
rely primarily on context to know which sense was
intended.

HDU
from pyfits, "Header Data Unit"

HDUList
from pyfits, list-like structure returned from py-
fits.open(..), and used internally by AstroData as the
open file handle.

pyfits
A library for loading MEF files in python, using
numpy for data sections. see STScI, http://www.stsci.
edu/resources/software_hardware/pyfits

mailto:callen@gemini.edu
http://www.stsci.edu/resources/software_hardware/pyfits
http://www.stsci.edu/resources/software_hardware/pyfits

	The Problem Domain: Handling Data Across Instrument-Modes
	Gemini
	Multi-Extension FITS
	Removing Incidental Differences
	Incidental Dataset Differences Normalized

	The AstroData Class
	MEF I/O

	Astrodata Grammar
	AstroData Type
	Name,
	Usage
	Parent
	Requirements
	Examples

	AstroData Descriptors
	Descriptor Calculator Classes
	Examples

	Primitives
	Final Thoughts
	Current and Future Activities
	Speaking About Data

	Terms

