
12 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Divisi: Learning from Semantic Networks and Sparse
SVD

Rob Speer‡∗, Kenneth Arnold§, Catherine Havasi§

F

Abstract—Singular value decomposition (SVD) is a powerful technique for
finding similarities and patterns in large data sets. SVD has applications in text
analysis, bioinformatics, and recommender systems, and in particular was used
in many of the top entries to the Netflix Challenge. It can also help generalize
and learn from knowledge represented in a sparse semantic network.

Although this operation is fundamental to many fields, it requires a signif-
icant investment of effort to compute an SVD from sparse data using Python
tools. Divisi is an answer to this: it combines NumPy, PySparse, and an exten-
sion module wrapping SVDLIBC, to make Lanczos’ algorithm for sparse SVD
easily usable within cross-platform Python code.

Divisi includes utilities for working with data in a variety of sparse formats,
including semantic networks represented as edge lists or NetworkX graphs. It
augments its matrices with labels, allowing you to keep track of the meaning of
your data as it passes through the SVD, and it can export the labeled data in a
format suitable for separate visualization GUIs.

Index Terms—SVD, sparse, linear algebra, semantic networks, graph theory

Introduction

Singular value decomposition (SVD) is a way of factoring an
arbitrary rectangular matrix, in order to express the data in terms
of its principal components. SVD can be used to reduce the
dimensionality of a large matrix, a key step in many domains,
including recommender systems, text mining, search, statistics,
and signal processing.

The truncated SVD, in which only the largest principal
components are calculated, is a particularly useful operation in
many fields because it can represent large amounts of data using
relatively small matrices. In many applications, the input to the
truncated SVD takes the form of a very large, sparse matrix, most
of whose entries are zero or unknown.

Divisi provides the Lanczos algorithm [Lan98] for performing
a sparse, truncated SVD, as well as useful tools for constructing
the input matrix and working with the results, in a reusable Python
package called divisi2. It also includes important operations
for preparing data such as normalization and mean-centering.
More experimentally, Divisi also includes implementations of
some SVD-inspired algorithms such as CCIPCA [Wen03] and
landmark multi-dimensional scaling [Sil04].

* Corresponding author: rspeer@mit.edu
‡ MIT Media Lab
§ MIT

Copyright © 2010 Rob Speer et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Using singular value decomposition, any matrix A can be
factored into an orthonormal matrix U , a diagonal matrix Σ, and an
orthonormal matrix V T , so that A =UΣV T . The singular values in
Σ can be ordered from largest to smallest, where the larger values
correspond to the vectors in U and V that are more significant
components of the initial A matrix. The largest singular values,
and their corresponding rows of U and columns of V , represent
the principal components of the data.

To create the truncated SVD, discard all but the first k compo-
nents—the principal components of A—resulting in the smaller
matrices Uk, Σk, and V T

k . The components that are discarded
represent relatively small variations in the data, and the principal
components form a low-rank approximation of the original data.
One can then reconstruct a smoothed version of the input matrix
as an approximation: A ≈UkΣkV T

k = Ak.
To make it easier to work with SVD in understandable

Python code, Divisi provides an abstraction over sparse and dense
matrices that allows their rows and columns to be augmented
with meaningful labels, which persist through various matrix
operations.

The documentation for installing and using Divisi is hosted at
http://csc.media.mit.edu/docs/divisi2/.

Architecture

Divisi is built on a number of other software packages. It
uses NumPy [Oli10] to represent dense matrices, and PySparse
[Geu08] to represent sparse ones, and uses a Cython wrapper
around SVDLIBC [Roh10] to perform the sparse SVD. It can
optionally use NetworkX [Net10] to take input from a directed
graph such as a semantic network.

Divisi works with data in the form of labeled arrays. These
arrays can be sparse or dense, and they can be 1-D vectors or 2-D
matrices.

Figure 1 shows the relationships between classes in Divisi2.
The yellow-highlighted classes are the ones that are intended to be
instantiated. The core representations use multiple inheritance: for
example, the properties of a SparseMatrix are separately defined
by the fact that it is sparse and the fact that it is a 2-D matrix.

Sparse arrays encapsulate a PysparseMatrix from the
pysparse package, while dense arrays are a subclass of
numpy.ndarray and therefore support most NumPy opera-
tions. Both representations support NumPy-style "fancy indexing".

A vector contains a single, optional list of labels: if it exists,
each entry in the list corresponds to one entry in the vector. A
matrix may have two lists of labels: one assigns a label to each

mailto:rspeer@mit.edu
http://csc.media.mit.edu/docs/divisi2/


DIVISI: LEARNING FROM SEMANTIC NETWORKS AND SPARSE SVD 13

Fig. 1: Relationships between the main classes in Divisi 2.0, as well
as some externally-defined classes.

row, and another assigns a label to each column. The purpose of
these labels is to associate a meaning with each entry in a vector
or matrix, so that code can look up entries by what they mean
instead of simply by their position in the matrix.

The label lists themselves are instances of Divisi’s OrderedSet
class, which augments a list with a dictionary of its values, so
that it can perform the .index() operation—finding an entry
by its value—in constant time. This enables methods such as
SparseMatrix.row_named(label), efficiently returning
the row with a particular label.

One more important class is ReconstructedMatrix, which
lazily evaluates the matrix product of two DenseMatrices. This
allows using the SVD as an approximation to a large matrix,
but stores that large approximate matrix as a product of its SVD
factors instead, which requires much less memory.

Next, we will explain the features of Divisi through three
examples: performing latent semantic analysis (LSA) over doc-
uments from the Brown corpus, making movie recommendations
from a MovieLens data set, and drawing conclusions based on
ConceptNet (a semantic network of general knowledge).

Latent semantic analysis

One common use for Divisi is to make a topic model from a
number of documents using latent semantic analysis (LSA). LSA
typically consists of constructing a bag-of-words matrix of the
words that appear in various documents, normalizing that matrix
using tf-idf, and taking the SVD.

We’ll use as an example a collection of 44 documents from
the "news" section of the Brown corpus, a sample of which is
available through NLTK:

>>> import nltk
>>> nltk.download('brown')
>>> len(nltk.corpus.brown.fileids(['news']))
44

When searching for articles about, say, books, we don’t generally
care whether the document contained "book" or "books". NLTK
includes the Porter stemmer, which strips off endings:

>>> stemmer = nltk.PorterStemmer()
>>> stemmer.stem('books')
'book'

In the most basic form of LSA, each document is treated as a "bag
of words", ignoring all sequence and punctuation. The following
function yields all the stemmed words from a document in the
Brown corpus:

>>> import re; word_re = re.compile(r'[A-Za-z]')
>>> categories=['news']
>>> fileids = nltk.corpus.brown.fileids(categories)
>>> def normalized_words(fileid):
... for word in nltk.corpus.brown.words(fileid):
... if word_re.match(word):
... yield stemmer.stem(word.lower())

Now that we have the input data, we can load it into a Divisi
sparse matrix. The function divisi2.make_sparse1 creates
a sparse matrix from a list of entries, each of which is a tuple of
(value, row, col):

>>> from csc import divisi2
>>> entries = ((1, term, doc)
... for doc in fileids
... for term in normalized_words(doc))
>>> matrix = divisi2.make_sparse(entries)
>>> print matrix
SparseMatrix (8976 by 44)

ca01 ca02 ca03 ca04 ...
the 1.55e+02 1.34e+02 1.50e+02 1.60e+02
fulton 14.000000 --- --- ---
counti 17.000000 8.000000 2.000000 ---
grand 4.000000 --- 3.000000 ---
juri 19.000000 --- 5.000000 ---
said 24.000000 14.000000 17.000000 3.000000
...

A Divisi sparse matrix behaves like a NumPy array, but has
additional facilities for labeling entries. Notice that row and col
were both specified as strings (a term and a filename) rather than
numbers. The row_labels and col_labels attributes keep
track of what label is assigned to each row or column index:2:

>>> matrix.row_labels
<OrderedSet of 8976 items like the>
>>> matrix.col_labels
<OrderedSet of 44 items like ca01>
>>> matrix[0,0]
155.0
>>> matrix.entry_named('the', 'ca01')
155.0

That entry indicates that the word "the" appeared 155 times in
the first document alone. Such common words would overwhelm
the analysis: we should give less weight to words that appear in
nearly every document. Also, a document that is twice as long
as average should not necessarily be twice as influential. The
standard solution to these problems is called tf-idf normalization
and is one of several normalization capabilities provided by Divisi:

>>> normalized = matrix.normalize_tfidf().squish()

All Divisi normalization routines return a copy of their input. The
final .squish() call deals with words like "the": since they
appear in every document, their idf value, and thus the value of
every entry in the corresponding row, is 0. Rows and columns that
are all zeros leave part of the SVD result unconstrained, so we
remove them for numerical stability.

Next we can compute the SVD. The only parameter is the
number of singular values ("components") to keep. The optimal
value depends on the corpus and task at hand; it essentially
controls how much you want to fill in gaps in your data. Since
the corpus is small, we arbitrarily choose 10 for this example.

>>> u, sigma, v = normalized.svd(k=10)

1. The version of Divisi described in this paper, Divisi 2.0, would be
installed in a namespace package called csc. Divisi 2.2 can now be imported
directly as divisi2, but references to csc.divisi2 still work.

2. Example output in this paper is truncated or rounded for brevity.



14 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Here, sigma is an array of diagonal entries; the actual diagonal
matrix Σ is given by np.diag(sigma).

Since A ≈ UΣV T , we can execute various queries simply by
matrix multiplication. For example, which documents are likely
to contain terms like "book"? That’s just a row of A. Using the
approximation, we can compute that row:

>>> from pprint import pprint
>>> booky = divisi2.dot(u.row_named('book'),

divisi2.dot(np.diag(sigma), v.T))
>>> pprint(booky.top_items(3))
[('ca44', 0.0079525209393728428),
('ca31', 0.0017088410316380212),
('ca18', 0.0010004880691358573)]

divisi2.dot is a wrapper around numpy.dot that ensures
that labels are maintained properly.

Reconstructing an approximate matrix

Divisi provides simpler ways of working with matrix reconstruc-
tions: the ReconstructedMatrix class:

>>> reconstructed = divisi2.reconstruct(u, sigma, v)
>>> booky2 = reconstructed.row_named('book')
>>> assert np.allclose(booky, booky2)

Another common query, often seen in blog posts, is which articles
are similar to the one in question. Mathematically, which other
document has the term vector with the highest dot product with
the term vector of this document? The answer is again found in a
matrix slice, this time of

AT A =V ΣUT UΣV T =V Σ
2V T .

Again, Divisi provides functionality for easily slicing similar-
ity matrices:

>>> similar_docs = \
... divisi2.reconstruct_similarity(v, sigma)\
... .row_named('ca44')
>>> pprint(similar_docs.top_items(3))
[('ca44', 0.99999999999999978),
('ca31', 0.82249752503164653),
('ca33', 0.6026564223332086)]

By default, reconstruct_similarity normalizes the result
values to lie between -1 and 1.

Making recommendations

In the above example, we assumed that unspecified entries in
the input matrix were zero, representing a lack of knowledge.
When using SVD over a data set whose numeric values do not
meaningfully start at zero, some adjustments are necessary.

In the domain of movie recommendations, for example, the
input data often takes the form of star ratings that people assign
to movies, ranging from 1 to 5. A 5-star rating and a 1-star rating
are as different as can be, so a 5-star rating certainly does not have
the meaning of "a 1-star rating, but five times more so".

In fact, the scale of ratings differs among people and movies.
A movie rater may be very stingy with high ratings, so if they give
a movie five stars it is very meaningful. Likewise, a movie could
be widely panned, receiving a 1.1 star rating on average, so when
someone gives the movie five stars it says that there is something
very different about their taste in movies.

The movie rating problem can be broken down into two steps
[Kor09]: accounting for the biases in ratings inherent to each
movie and each person, and learning how people’s particular
preferences differ from those biases. We can represent the second

step as an SVD where zero does represent a lack of information,
and add the biases back in when we reconstruct the matrix.

To begin the example, load the MovieLens dataset of 100,000
movie ratings [Kon98], which is provided free from http://
grouplens.org:
>>> from csc import divisi2
>>> from csc.divisi2.dataset import movielens_ratings
>>> movie_data = divisi2.make_sparse(

movielens_ratings('data/movielens/u')).squish(5)

The "squish" method at the end discards users and movies with
fewer than 5 ratings.

With this data, for example, we can query for the movies with
the highest row bias (and therefore the highest average rating):
>>> import numpy as np
>>> movie_goodness = movie_data.row_op(np.mean)
>>> movie_goodness.top_items(5)
[('Pather Panchali (1955)', 4.625),
('Close Shave, A (1995)', 4.4910714285714288),
("Schindler's List (1993)", 4.4664429530201346),
('Wrong Trousers, The (1993)', 4.4661016949152543),
('Casablanca (1942)', 4.4567901234567904)]

We use the SparseMatrix.mean_center() method to
remove the biases, leaving only the differences from the mean,
calculate a 20-dimensional truncated SVD from those differences,
and reconstruct an approximate matrix that predicts people’s
movie ratings.
>>> movie_data2, row_shift, col_shift, total_shift =\
... movie_data.mean_center()
>>> recommendations = divisi2.reconstruct(
... U, S, V,
... shifts=(row_shift, col_shift, total_shift))

Let’s look in particular at user number 5, who rated 174 movies.
We can get a vector of their recommendations and query for the
best ones:
>>> recs_for_5 = recommendations.col_named(5)
>>> recs_for_5.top_items(5)
[('Star Wars (1977)', 4.816),
('Return of the Jedi (1983)', 4.549),
('Wrong Trousers, The (1993)', 4.529),
('Close Shave, A (1995)', 4.416),
('Empire Strikes Back, The (1980)', 4.392)]

We see that this user should really like the Star Wars Trilogy,
but this is unsurprising because the user in fact already told
MovieLens they liked those movies. To get true recommendations,
we should make sure to filter for movies they have not yet rated.
>>> recs_for_5 = recommendations.col_named(5)
>>> unrated = list(set(xrange(movie_data.shape[0]))
... - set(recs_for_5.nonzero_indices()))
>>> rec[unrated].top_items(5)
[('Wallace & Gromit: [...] (1996)', 4.197),
('Terminator, The (1984)', 4.103),
('Casablanca (1942)', 4.044),
('Pather Panchali (1955)', 4.004),
('Dr. Strangelove [...] (1963)', 3.998)]

And on the other end of the scale, if we look for the best anti-
recommendation in (-rec[unrated]), we find that user 5
should give "3 Ninjas: High Noon At Mega Mountain" a rating
of 0.24 stars.

SVD alone does not make a cutting-edge, high-quality rec-
ommender system, but it does a reasonable part of the job. This
process has been used as a component of many recommender
systems, including the Netflix Prize-winning system, Bellkor’s
Pragmatic Chaos [Kor09], and Divisi makes it easy to do in
Python.

http://grouplens.org
http://grouplens.org


DIVISI: LEARNING FROM SEMANTIC NETWORKS AND SPARSE SVD 15

Learning from a semantic network

Divisi contains methods for learning from data in a semantic
network in NetworkX format. The network can contain labeled
nodes and labeled edges with weights on each edge, and can build
matrices that relate these to each other in a variety of ways.

This is an important feature of Divisi, because it extends its
scope to data that is not traditionally represented as a matrix. It
can learn from and generalize patterns that appear in any semantic
network, and it is especially effective if that network contains
redundancies or incomplete information. For this reason, we often
use it to learn from ConceptNet [Hav07], a network of people’s
general "common sense" knowledge about the real world. A graph
representation of ConceptNet 4.0 is included with Divisi 2.0.

The divisi2.network module defines the various ways
to extract information from these labeled semantic networks. Its
sparse_triples() function turns the list of edges into a
list of (value, rowlabel, columnlabel) triples that can be used to
build a sparse matrix, and uses the arguments row_labeler and
col_labeler to specify how the values are assigned to labels.
sparse_matrix() goes the extra step to turn these triples into
a matrix.

In many cases, the labeler will give two results for each edge,
because each edge connects two nodes. When the row and column
labelers both give two results, they will be paired up in contrary
order. The next example will clarify why this is useful.

One simple labeler is 'nodes', which extracts the source
and target nodes of each edge. If an edge of weight 1 con-
nects "dog" to "bark", then because of the contrary order rule,
sparse_matrix(graph, 'nodes', 'nodes') will put
a 1 in the entry whose row is "dog" and column is "bark", as well
as the entry whose row is "bark" and whose column is "dog". The
resulting overall matrix is the adjacency matrix of the graph.

'features' is a more complex labeler: it takes the edge
label into account as well, and describes an incoming or outgoing
edge, including the node on the other side of it. The idea is that
a node can be combined with a feature to completely describe an
edge.

For example, consider a weight-1 edge from "dog" to "mam-
mal", labeled with "IsA", expressing the assertion that "a dog is a
mammal". The matrix sparse_matrix(graph, 'nodes',
'features') will then express both the fact that the node "dog"
has the feature "IsA mammal", and that "mammal" has the feature
"dog IsA".

These features are represented with Divisi as 3-tuples of
(direction, edge label, node label), where direction is "left" or
"right" depending on whether this is an incoming or outgoing
edge.

Other possible labelers are "relations", which extracts just the
edge label, and "pairs", extracting the source and target nodes as
tuples, and more can be defined as functions.

The process called AnalogySpace [Spe08] involves making
a node vs. feature matrix of common sense knowledge and
generalizing it with a truncated SVD. We will show an example
of doing this with ConceptNet here.

Learning from ConceptNet

Start by loading the pre-defined ConceptNet 4.0 graph:

>>> conceptnet_graph = divisi2.load(
'data:graphs/conceptnet_en.graph')

We can break this graph down into nodes and features, and see a
sample of what it looks like:
>>> from csc.divisi2.network import sparse_matrix
>>> A = sparse_matrix(graph, 'nodes', 'features',

cutoff=3)
>>> print A
SparseMatrix (12564 by 19719)

IsA/spor IsA/game UsedFor/ UsedFor/
baseball 3.609584 2.043731 0.792481 0.500000
sport --- 1.292481 --- 1.000000
yo-yo --- --- --- ---
toy --- 0.500000 --- 1.160964
dog --- --- --- 0.792481
...

And with that, we can make a truncated SVD and reconstruct an
approximation to A:
>>> U, S, V = A.svd(k=100)
>>> Ak = divisi2.reconstruct(U, S, V)
>>> Ak.entry_named('pig', ('right', 'HasA', 'leg'))
0.15071150848740383
>>> Ak.entry_named('pig',

('right', 'CapableOf', 'fly'))
-0.26456066802309008

As shown in the earlier LSA example, we can also reconstruct
an approximation to the similarity matrix AT A, describing how
similar the nodes are to each other:
>>> sim = divisi2.reconstruct_similarity(U, S)
>>> sim.entry_named('horse', 'cow')
0.827
>>> sim.entry_named('horse', 'stapler')
-0.031
>>> sim.row_named('table').top_items()
[('table', 1.000), ('newspaper article', 0.694),
('dine table', 0.681), ('dine room table', 0.676),
('table chair', 0.669), ('dine room', 0.663),
('bookshelve', 0.636), ('table set', 0.629),
('home depot', 0.591), ('wipe mouth', 0.587)]

Recall that reconstruct_similarity normalizes its values
to between -1 and 1. Here, this normalization makes some nodes,
such as "newspaper article" and "home depot", get a spuriously
high weight because their truncated SVD vectors had low mag-
nitude. When ranking possible similarities—or, for that matter,
predictions for new assertions that could be true—we have found
it more useful to normalize the vectors to unit vectors before the
SVD, so that nodes that are weakly described by the SVD do not
end up magnified.

Divisi allows for pre-SVD normalization with the Sparse-
Matrix methods normalize_rows(), normalize_cols(),
and normalize_all(). (tf-idf normalization, like in the LSA
example, is also an option, but it is inappropriate here because it
de-emphasizes common concepts.) The first two scale the rows
or columns, respectively, of the input so that they become unit
vectors. However, normalizing the rows can further distort the
magnitudes of the columns, and vice versa, and there is no way
to exactly normalize both the rows and columns of an arbitrary
matrix.

We have found that a compromise works best: normalize each
entry by the geometric mean of its row and column magnitudes.
This is what SparseMatrix.normalize_all() does, and
we favor it in this case because not only does it put all the rows
and columns on approximately the same scale, it also increases
the predictive accuracy of the reconstructed SVD (which we will
be able to quantify in a moment).

In this representation, we can look again at the similarities for
"table":



16 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

>>> U, S, V = A.normalize_all().svd(k=100)
>>> sim = divisi2.reconstruct_similarity(U, S)
>>> sim.row_named('table').top_items()
[('table', 1.718), ('desk', 1.195),
('kitchen', 0.988), ('chair', 0.873),
('restaurant', 0.850), ('plate', 0.822),
('bed', 0.772), ('cabinet', 0.678),
('refrigerator', 0.652), ('cupboard', 0.617)]

Choosing parameters

So far, we have used two parameters in this process without
justification: the method of normalization, and the value of k.

Instead of simply tweaking these parameters by hand, we
can bring in some test data and search for the parameters that
maximize the predictive value of the SVD. Because what we
care about is the relative ranking of statements, not the numerical
values they are assigned, a traditional mean-squared evaluation
does not exactly make sense.

However, using Divisi, we can evaluate how often the relative
ranking of a pair of assertions agrees with the ranking that a human
would give them. In the case of ConceptNet, we have already
acquired many such human-evaluated statements from evaluations
such as the one in [Spe08], so we use those as the source of gold-
standard rankings.

The ReconstructedMatrix.evaluate_ranking()
method is what we use to compare pairwise rankings in this way.
We can use it, first of all, to confirm that normalize_all()
performs better than the other possible normalization methods on
ConceptNet, leaving k fixed at 100. The results are:

• Without normalization: 68.47% agreement
• Using normalize_rows: 67.66% agreement
• Using normalize_cols: 67.30% agreement
• Using normalize_all: 70.77% agreement

Then, after applying that normalization method, we can try
truncated SVDs with various values of k.

>>> from csc.divisi2.network import conceptnet_matrix
>>> conceptnet = conceptnet_matrix('en').normalize_all()
>>> testdata = divisi2.load('usertest_data.pickle')
>>> accuracy_data = []
>>> for k in xrange(1, 200):
... U, S, V = conceptnet.svd(k=k)
... rec = divisi2.reconstruct(U, S, V)
... correct, total, accuracy =\
... rec.evaluate_ranking(testdata)
... accuracy_data.append(accuracy)

The plot of the resulting accuracy_data in Figure 2 shows a
plateau of good values of k, roughly between k = 100 and k = 200.

Memory use and scalability

The main use case of Divisi2 is to decompose a sparse matrix
whose entries fit in memory. The objects that primarily consume
memory are:

• The linked lists that comprise the PySparse matrix
• The compressed-sparse-column copy of this matrix used

by SVDLIBC
• The dense matrices U and V, and the vector S, that are

returned by SVDLIBC and used directly by NumPy
• The optional OrderedSets of labels (each using a Python

list and dictionary)

Each nonzero entry in a sparse matrix and each entry in a dense
matrix requires the space of a C double (assumed to be 8 bytes).

Fig. 2: Evaluating the predictive accuracy of the truncated SVD on
ConceptNet for various values of k.

The PySparse matrix also requires an integer (4 bytes), acting as
a pointer, for each entry. (This implementation incidentally limits
matrices to having fewer than 231 nonzero entries.) The non-zero
entries in the compressed-sparse-column matrix also come with
integer row numbers. Finally, each allocated row requires two
integer pointers.

So, without labels, a rank k decomposition of an m×n matrix
with z non-zero entries requires (24z+8m+8k(m+n)) bytes, plus
a negligible amount of overhead from Python and C structures. As
a practical example, it is possible within the 4 GiB memory limit
of 32-bit CPython to take a rank-100 decomposition of a 106×106

matrix with 108 entries, or a rank-10 decomposition of a 107×107

matrix with 108 entries, each of which requires 3.7 to 3.8 GiB plus
overhead.

In order to support even larger, denser data sets, Divisi 2.2
includes an experimental implementation of Hebbian incremental
SVD that does not require storing the sparse data in memory.

Conclusion

The SVD is a versatile analysis tool for many different kinds
of data. Divisi provides an easy way to compute the SVD of
large sparse datasets in Python, and additionally provides Pythonic
wrappers for performing common types of queries on the result.

Divisi also includes a variety of other functionality. For ex-
ample, it can analyze combinations of multiple matrices of data, a
technique called blending, which is useful for drawing conclusions
from multiple data sources simultaneously.

Further documentation about Divisi2, including the presen-
tation from SciPy 2010, is available at http://csc.media.mit.edu/
docs/divisi2/.

REFERENCES

[Kor09] Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization Techniques
for Recommender Systems. Computer, 42(8):30-37, August 2009.

[Kon98] J. Konstan, J. Riedl, A. Borchers, and J. Herlocke. Recommender
Systems: A GroupLens Perspective. Papers from the 1998 Workshop
on Recommender Systems, Chapel Hill, NC. 1998.

[Net10] NetworkX Developers. NetworkX. Viewable online
at:http://networkx.lanl.gov/, 2010.

[Roh10] Doug Rohde. SVDLIBC. Viewable online at: http://tedlab.mit.edu/
~dr/SVDLIBC/, 2010.

[Geu08] Roman Geus, Daniel Wheeler, and Dominique Orban. PySparse.
Viewable online at: http://pysparse.sourceforge.net/, 2008.

http://csc.media.mit.edu/docs/divisi2/
http://csc.media.mit.edu/docs/divisi2/
http://tedlab.mit.edu/~dr/SVDLIBC/
http://tedlab.mit.edu/~dr/SVDLIBC/
http://pysparse.sourceforge.net/


DIVISI: LEARNING FROM SEMANTIC NETWORKS AND SPARSE SVD 17

[Oli10] Travis Oliphant. Guide to Numpy. Viewable online at: http://www.
tramy.us/, 2010.

[Sil04] Vin de Silva and Joshua B. Tenenbaum. Sparse multidimensional
scaling using landmark points. Stanford University Technical Report,
2004.

[Wen03] Juyang Weng and Yilu Zhang and Wey-Shiuan Hwang. Can-
did covariance-free incremental principal component analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(8):1034-1040, August 2003.

[Lan98] Cornelius Lanczos and William R. Davis (ed). Collected published
papers with commentaries. North Carolina State University, 1998.

[Hav07] Catherine Havasi, Robert Speer, and Jason Alonso. ConceptNet 3: a
Flexible, Multilingual Semantic Network for Common Sense Knowl-
edge. Recent Advances in Natural Language Processing, September
2007.

[Spe08] Robert Speer and Catherine Havasi and Henry Lieberman. AnalogyS-
pace: Reducing the Dimensionality of Common Sense Knowledge.
Proceedings of AAAI 2008, July 2008.

http://www.tramy.us/
http://www.tramy.us/

	Introduction
	Architecture
	Latent semantic analysis
	Reconstructing an approximate matrix

	Making recommendations
	Learning from a semantic network
	Learning from ConceptNet
	Choosing parameters
	Memory use and scalability

	Conclusion
	References

