
PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010) 49

Modeling Sudoku Puzzles with Python

Sean Davis‡∗, Matthew Henderson‡, Andrew Smith‡

F

Abstract—The popular Sudoku puzzles which appear daily in newspapers the
world over have, lately, attracted the attention of mathematicians and computer
scientists. There are many, difficult, unsolved problems about Sudoku puzzles
and their generalizations which make them especially interesting to mathemati-
cians. Also, as is well-known, the generalization of the Sudoku puzzle to larger
dimension is an NP-complete problem and therefore of substantial interest to
computer scientists.

In this article we discuss the modeling of Sudoku puzzles in a variety
of different mathematical domains. We show how to use existing third-party
Python libraries to implement these models. Those implementations, which
include translations into the domains of constraint satisfaction, integer pro-
gramming, polynomial calculus and graph theory, are available in an open-
source Python library sudoku.py developed by the authors and available at
http://bitbucket.org/matthew/scipy2010

Index Terms—sudoku, mathematics, graph theory

Introduction

Sudoku puzzles

A Sudoku puzzle is shown near the top of the second column on
this page.

To complete this puzzle requires the puzzler to fill every empty
cell with an integer between 1 and 9 in such a way that every
number from 1 up to 9 appears once in every row, every column
and every one of the small 3 by 3 boxes highlighted with thick
borders.

Sudoku puzzles vary widely in difficulty. Determining the
hardness of Sudoku puzzles is a challenging research problem
for computational scientists. Harder puzzles typically have fewer
prescribed symbols. However, the number of prescribed cells is not
alone responsible for the difficulty of a puzzle and it is not well-
understood what makes a particular Sudoku puzzle hard, either for
a human or for an algorithm to solve.

The Sudoku puzzles which are published for entertainment
invariably have unique solutions. A Sudoku puzzle is said to
be well-formed if it has a unique solution. Another challenging
research problem is to determine how few cells need to be filled
for a Sudoku puzzle to be well-formed. Well-formed Sudoku with
17 symbols exist. It is unknown whether or not there exists a well-
formed puzzle with only 16 clues. In this paper we consider all
Sudoku puzzles, as defined in the next paragraph, not only the
well-formed ones.

* Corresponding author: Sean_Davis@berea.edu
‡ Berea College

Copyright © 2010 Sean Davis et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

2 5 3 9 1

1 4

4 7 2 8

5 2

9 8 1

4 3

3 6 7 2

7 3

9 3 6 4

By Sudoku puzzle of boxsize n, in this paper, is meant a partial
assignment of values from {1, . . . ,n2} to the cells of an n2× n2

grid in such a way that at most one of each symbols occurs in any
row, column or box. A solution of a Sudoku puzzle is a complete
assignment to the cells, satisfying the same conditions on row,
columns and boxes, which extends the original partial assignment.

sudoku.py

With sudoku.py, the process of building models of Sudoku
puzzles, which can then be solved using algorithms for computing
solutions of the models, is a simple matter. In order to understand
how to build the models, first it is necessary to explain the two
different representations of Sudoku puzzles in sudoku.py.

The dictionary representation of a puzzle is a mapping between
cell labels and cell values. Cell values are integers in the range
{1, . . . ,n2} and cell labels are integers in the range {1, . . . ,n4}.
The labeling of a Sudoku puzzle of boxsize n starts with 1 in
the top-left corner and moves along rows, continuing to the next
row when a row is finished. So, the cell in row i and column j is
labeled (i−1)n2 + j.

For example, the puzzle from the introduction can be repre-
sented by the dictionary

>>> d = {1: 2, 2: 5, 5: 3, 7: 9, 9: 1,

http://bitbucket.org/matthew/scipy2010
mailto:Sean\protect _Davis@berea.edu


50 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

... 11: 1, 15: 4, 19: 4, 21: 7, 25: 2,

... 27: 8, 30: 5, 31: 2, 41: 9, 42: 8,

... 43: 1, 47: 4, 51: 3, 58: 3, 59: 6,

... 62: 7, 63: 2, 65: 7, 72: 3, 73: 9,

... 75: 3, 79: 6, 81: 4}

A Sudoku puzzle object can be built from such a dictionary. Note
that the boxsize is a parameter of the Puzzle object constructor.

>>> from sudoku import Puzzle
>>> p = Puzzle(d, 3)
>>> p
2 5 . . 3 . 9 . 1
. 1 . . . 4 . . .
4 . 7 . . . 2 . 8
. . 5 2 . . . . .
. . . . 9 8 1 . .
. 4 . . . 3 . . .
. . . 3 6 . . 7 2
. 7 . . . . . . 3
9 . 3 . . . 6 . 4

In practice, however, the user mainly interacts with sudoku.py
either by creating specific puzzles instances through input of
puzzle strings, directly or from a text file, or by using generator
functions.

The string representation of a Sudoku puzzle of boxsize n
is a string of ascii characters of length n4. In such a string a
period character represents an empty cell and other ascii characters
are used to specify assigned values. Whitespace characters and
newlines are ignored when Puzzle objects are built from strings.

A possible string representation of the puzzle from the intro-
duction is:

>>> s = """
... 2 5 . . 3 . 9 . 1
... . 1 . . . 4 . . .
... 4 . 7 . . . 2 . 8
... . . 5 2 . . . . .
... . . . . 9 8 1 . .
... . 4 . . . 3 . . .
... . . . 3 6 . . 7 2
... . 7 . . . . . . 3
... 9 . 3 . . . 6 . 4

"""

A Puzzle object can be built from a puzzle string by providing
the keyword argument format = 's'

>>> p = Puzzle(s, 3, format = 's')

Random puzzles can be created in sudoku.py by the
random_puzzle function.

>>> from sudoku import random_puzzle
>>> q = random_puzzle(15, 3)
>>> q
. . . . 5 . . . 1
. 5 . . . . . . 7
. . 1 9 . 7 . . .
. . . . . . . . .
. . 5 . . . 7 . .
. . 6 . . . . 9 .
. . . . . 5 . . .
5 . . . . . 4 . .
1 . . . . . . . .

The first argument to random_puzzle is the number of pre-
scribed cells in the puzzle.

Solving of puzzles in sudoku.py is handled by the solve
function. This function can use a variety of different algorithms,
specified by an optional model keyword argument, to solve the
puzzle. Possible values are CP for constraint propagation, lp for
linear programming, graph to use a node coloring algorithm on a

graph puzzle model and groebner to solve a polynomial system
model via a Groebner basis algorithm. The default behavior is to
use constraint propagation.

>>> from sudoku import solve
>>> s = solve(q)
>>> s
7 3 2 8 5 6 9 4 1
8 5 9 4 2 1 6 3 7
6 4 1 9 3 7 8 5 2
9 7 8 5 4 3 1 2 6
3 2 5 6 1 9 7 8 4
4 1 6 7 8 2 5 9 3
2 9 4 1 6 5 3 7 8
5 6 3 2 7 8 4 1 9
1 8 7 3 9 4 2 6 5

Sudoku puzzles of boxsize other than 3 can also be modeled with
sudoku.py. Puzzles of boxsize 2 are often called Shidoku.

>>> q2 = random_puzzle(7, 2)
>>> q2
4 . . .
2 1 . .
. 4 . 2
. . 3 4
>>> solve(q2)
4 3 2 1
2 1 4 3
3 4 1 2
1 2 3 4

Sudoku puzzles of boxsize greater than three are less commonly
studied in the literature. In sudoku.py we use printable char-
acters (from string.printable) for the symbols of puzzles
with boxsize greater than 3

>>> q4 = random_puzzle(200, 4)
>>> q4
. . e d . . a 9 8 . . 5 . 3 2 1
c b a 9 4 . 2 1 g . e d 8 7 6 .
8 . 6 5 g f e d 4 3 2 1 c b a 9
. . 2 1 8 7 6 5 c . a . g f e d
f d g . 9 8 7 c 3 6 . b . 2 . .
2 6 . . 1 d g b f 4 c . 9 . 8 7
. 4 1 8 3 6 . 2 9 e 7 . . . 5 c
9 c 7 b e a 5 . 2 1 . 8 f g 3 6
e g 9 f 7 . 8 a 6 d 3 4 5 1 b .
b a . 7 . 2 9 e 5 . 1 f . 8 c .
3 8 . 6 5 1 4 f . 9 b 2 7 a d g
. . 4 . d g b 3 7 a 8 c e 6 9 f
. e f c 2 9 3 8 a 5 g 7 6 4 . b
7 9 . 4 a . 1 6 d 8 . e 2 c g 3
6 2 8 g b . d . . c 9 3 . . f .
5 1 3 a f e c g b 2 4 6 . . 7 8

Solving puzzles of this size is still feasible by constraint propoga-
tion

>>> solve(q4)
g f e d c b a 9 8 7 6 5 4 3 2 1
c b a 9 4 3 2 1 g f e d 8 7 6 5
8 7 6 5 g f e d 4 3 2 1 c b a 9
4 3 2 1 8 7 6 5 c b a 9 g f e d
f d g e 9 8 7 c 3 6 5 b 1 2 4 a
2 6 5 3 1 d g b f 4 c a 9 e 8 7
a 4 1 8 3 6 f 2 9 e 7 g b d 5 c
9 c 7 b e a 5 4 2 1 d 8 f g 3 6
e g 9 f 7 c 8 a 6 d 3 4 5 1 b 2
b a d 7 6 2 9 e 5 g 1 f 3 8 c 4
3 8 c 6 5 1 4 f e 9 b 2 7 a d g
1 5 4 2 d g b 3 7 a 8 c e 6 9 f
d e f c 2 9 3 8 a 5 g 7 6 4 1 b
7 9 b 4 a 5 1 6 d 8 f e 2 c g 3
6 2 8 g b 4 d 7 1 c 9 3 a 5 f e
5 1 3 a f e c g b 2 4 6 d 9 7 8



MODELING SUDOKU PUZZLES WITH PYTHON 51

Models

In this section we introduce several models of Sudoku and
show how to use existing Python components to implement
these models. The models introduced here are all implemented
in sudoku.py. Implementation details are discussed in this
section and demonstrations of the components of sudoku.py
corresponding to each of the different models are given.

Constraint models

Constraint models for Sudoku puzzles are discussed in [Sim05].
A simple model uses the AllDifferent constraint.

A constraint program is a collection of constraints. A con-
straint restricts the values which can be assigned to certain
variables in a solution of the constraint problem. The AllDifferent
constraint restricts variables to having mutually different values.

Modeling Sudoku puzzles is easy with the AllDifferent con-
straint. To model the empty Sudoku puzzle (i.e. the puzzle with
no clues) a constraint program having an AllDifferent constraint
for every row, column and box is sufficient.

For example, if we let xi ∈ {1, . . . ,n2} for 1 ≤ i ≤ n4, where
xi = j means that cell i gets value j then the constraint model for
a Sudoku puzzle of boxsize n = 3 would include constraints:

AllDifferent(x1,x2,x3,x4,x5,x6,x7,x8,x9)

AllDifferent(x1,x10,x19,x28,x37,x46,x55,x64,x73)

AllDifferent(x1,x2,x3,x10,x11,x12,x19,x20,x21)

These constraints ensure that, respectively, the variables in the
first row, column and box get different values.

The Sudoku constraint model in sudoku.py is implemented
using python-constraint v1.1 by Gustavo Niemeyer.
This open-source library is available at http://labix.org/python-
constraint.

With python-constraint a Problem having variables
for every cell {1, . . . ,n4} of the Sudoku puzzle is required. The
list of cell labels is given by the function cells in sudoku.py.
Every variable has the same domain {1, . . . ,n2} of symbols. The
list of symbols in sudoku.py is given by the symbols function.

The Problem member function addVariables provides a
convenient method for adding variables to a constraint problem
object.

>>> from constraint import Problem
>>> from sudoku import cells, symbols
>>> cp = Problem()
>>> cp.addVariables(cells(n), symbols(n))

The AllDifferent constraint in python-constraint is
implemented as AllDifferentConstraint(). The
addConstraint(constraint, variables) member
function is used to add a constraint on variables to a
constraint Problem object. So, to build an empty Sudoku puzzle
constraint model we can do the following.

>>> from constraint import AllDifferentConstraint
>>> from sudoku import \
... cells_by_row, cells_by_col, cells_by_box
>>> for row in cells_by_row(n):
... cp.addConstraint(AllDifferentConstraint(), row)
>>> for col in cells_by_col(n):
... cp.addConstraint(AllDifferentConstraint(), col)
>>> for box in cells_by_box(n):
... cp.addConstraint(AllDifferentConstraint(), box)

Here the functions cells_by_row, cells_by_col and
cells_by_box give the cell labels of a Sudoku puzzle or-
dered, respectively, by row, column and box. These three loops,
respectively, add to the constraint problem object the necessary
constraints on row, column and box variables.

To extend this model to a Sudoku puzzle with clues requires
additional constraints to ensure that the values assigned to clue
variables are fixed. One possibility is to use an ExactSum con-
straint for each clue.

The ExactSum constraint restricts the sum of a set of variables
to a precise given value. We can slightly abuse the ExactSum
constraint to specify that certain individual variables are given
certain specific values. In particular, if the puzzle clues are given
by a dictionary d then we can complete our model by adding the
following constraints.

>>> from constraint import ExactSumConstraint as Exact
>>> for cell in d:
... cp.addConstraint(Exact(d[cell]), [cell])

To solve the Sudoku puzzle now can be done by solving the
constraint model cp. The constraint propogation algorithm of
python-constraint can be invoked by the getSolution
member function.

>>> s = Puzzle(cp.getSolution(), 3)
>>> s
2 5 8 7 3 6 9 4 1
6 1 9 8 2 4 3 5 7
4 3 7 9 1 5 2 6 8
3 9 5 2 7 1 4 8 6
7 6 2 4 9 8 1 3 5
8 4 1 6 5 3 7 2 9
1 8 4 3 6 9 5 7 2
5 7 6 1 4 2 8 9 3
9 2 3 5 8 7 6 1 4

The general solve function of sudoku.py knows how to build
the constraint model above, find a solution via the propogation
algorithm of python-constraint and translate the solution
into a completed Sudoku puzzle.

>>> s = solve(p, model = 'CP')

Here, p is a Puzzle instance. In fact, the model = 'CP'
keyword argument in this case is redundant, as 'CP' is the default
value of model.

Graph models

A graph model for Sudoku is presented in [Var05]. In this model,
every cell of the Sudoku grid is represented by a node of the graph.
The edges of the graph are given by the dependency relationships
between cells. In other words, if two cells lie in the same row,
column or box, then their nodes are joined by an edge in the
graph.

In the graph model, a Sudoku puzzle is given by a partial
assignment of colors to the nodes of the graph. The color assigned
to a node corresponds to a value assigned to the corresponding
cell. A solution of the puzzle is given by a coloring of the
nodes with colors {1, . . . ,n2} which extends the original partial
coloring. A node coloring of the Sudoku graph which corresponds
to a completed puzzle has the property that adjacent vertices are
colored differently. Such a node coloring is called proper.

The Sudoku graph model in sudoku.py is implemented
using networkx v1.1. This open-source Python graph library
is available at http://networkx.lanl.gov/

http://labix.org/python-constraint
http://labix.org/python-constraint
http://networkx.lanl.gov/


52 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Modeling an empty Sudoku puzzle as a networkx.Graph
object requires nodes for every cell and edges for every pair of
dependent cells. To add nodes (respectively, edges) to a graph,
networkx provides member functions add_nodes_from (re-
spectively, add_edges_from). Cell labels are obtained from
sudoku.py’s cells function.

>>> import networkx
>>> g = networkx.Graph()
>>> g.add_nodes_from(cells(n))

Dependent cells are computed using the dependent_cells
function. This function returns the list of all pairs (x,y) with x < y
such that x and y either lie in the same row, same column or same
box.

>>> from sudoku import dependent_cells
>>> g.add_edges_from(dependent_cells(n))

To model a Sudoku puzzle, we have to be able to assign colors to
nodes. Graphs in networkx allow arbitrary data to be associated
with graph nodes. To color nodes according to the dictionary d of
puzzle clues.

>>> for cell in d:
... g.node[cell]['color'] = d[cell]

There are many node coloring algorithms which can be used to
find a solution of a puzzle. In sudoku.py, a generic node color-
ing algorithm is implemented. This generic coloring algorithm can
be customized to provide a variety of different specific coloring
algorithms. However, none of these algorithms is guaranteed to
find a soolution which uses only symbols from {1, . . . ,n2}. In
general, these algorithms use too many colors

>>> from sudoku import node_coloring, n_colors
>>> cg = node_coloring(g)
>>> n_colors(cg)
13
>>> from sudoku import graph_to_dict
>>> s = Puzzle(graph_to_dict(cg), 3)
>>> s
2 5 6 7 3 a 9 4 1
3 1 8 5 2 4 7 6 a
4 9 7 6 b c 2 3 8
6 3 5 2 4 7 8 9 b
7 2 a b 9 8 1 5 6
8 4 9 a 5 3 c 2 7
5 8 4 3 6 9 a 7 2
a 7 b 4 8 5 d c 3
9 c 3 d 7 b 6 8 4

To solve a Sudoku Puzzle instance p, call the solve function,
with model = graph as a keyword argument.

>>> s = solve(p, model = 'graph')

Polynomial system models

The graph model above is introduced in [Var05] as a prelude to
modeling Sudoku puzzles as systems of polynomial equations.
The polynomial system model in [Var05] involves variables xi for
i ∈ {1, . . . ,n4} where xi = j is interpreted as the cell with label i
being assigned the value j.

The Sudoku polynomial-system model in sudoku.py is imple-
mented using sympy v0.6.7. This open-source symbolic alge-
bra Python library is available at http://code.google.com/p/sympy/

Variables in sympy are Symbol objects. A sympy.Symbol
object has a name. So, to construct the variables for our model,
first we map symbol names onto each cell label.

>>> from sudoku import cell_symbol_name

>>> def cell_symbol_names(n):
... return map(cell_symbol_name, cells(n))

Now, with these names for the symbols which represent the cells
of our Sudoku puzzle, we can construct the cell variable symbols
themselves.

>>> from sympy import Symbol
>>> def cell_symbols(n):
... return map(Symbol, cell_symbol_names(n))

Finally, with these variables, we can build a Sudoku polynomial
system model. This model is based on the graph model of the
previous section. There are polynomials in the system for every
node in the graph model and polynomials for every edge.

The role of node polynomial F(xi) is to ensure that every cell
i is assigned a number from {1, . . . ,n2} :

F(xi) =
n2

∏
j=1

(xi− j)

Node polynomials, for a sympy.Symbol object x are built
as follows.

>>> from operator import mul
>>> from sudoku import symbols
>>> def F(x,n):
... return reduce(mul,[(x-s) for s in symbols(n)])

The edge polynomial G(xi,x j) for dependent cells i and j, ensures
that cells i and j are assigned different values. These polynomials
have the form. :

G(xi,x j) =
F(xi)−F(x j)

xi− x j

In sympy, we build edge polynomials from the node polyno-
mial function F.

>>> from sympy import cancel, expand
>>> def G(x,y,n):
... return expand(cancel((F(x,n)-F(y,n))/(x-y)))

The polynomial model for the empty Sudoku puzzle con-
sists of the collection of all node polynomials for nodes in
the Sudoku graph and all edge polynomials for pairs (x,y)
in dependent_symbols(n). The dependent_symbols
function is simply a mapping of the sympy.Symbol constructor
onto the list of dependent cells.

Specifying a Sudoku puzzle requires extending this model by
adding polynomials to represent clues. According to the model
from [Var05], if D is the set of fixed cells (i.e. cell label, value
pairs) then to the polynomial system we need to add polynomials

D(xi, j) = xi− j

Or, with sympy:

>>> def D(i, j):
... return Symbol(cell_symbol_name(i)) - j

To build the complete polynomial system, use the
puzzle_as_polynomial_system function of
sudoku.py:

>>> from sudoku import puzzle_as_polynomial_system
>>> g = puzzle_as_polynomial_system(d, 3)

The sympy implementation of a Groebner basis algorithm can
be used to find solutions of this polynomial system. The Groeb-
ner basis depends upon a variable ordering, here specified as
lexicographic. Other orderings, such as degree-lexicographic, are
possible.

http://code.google.com/p/sympy/


MODELING SUDOKU PUZZLES WITH PYTHON 53

>>> from sympy import groebner
>>> h = groebner(g, cell_symbols(n), order = 'lex')

The solution of the polynomial system g is a system of linear
equations in the symbols xi which can be solved by the linear
solver from sympy.

>>> from sympy import solve as lsolve
>>> s = lsolve(h, cell_symbols(n))

To use the polynomial-system model to find a solution to Puzzle
instance p call the solve function with the keyword argument
model = groebner.

>>> s = solve(p, model = 'groebner')

Integer programming models

In [Bar08] a model of Sudoku as an integer programming problem
is presented. In this model, the variables are all binary.

xi jk ∈ {0,1}

Variable xi jk represents the assignment of symbol k to cell (i, j)
in the Sudoku puzzle.

xi jk =

{
1 if cell (i, j) contains symbol k
0 otherwise

The integer programming (IP) model has a set of equations
which force the assignment of a symbol to every cell.

n

∑
k=1

xi jk = 1, 1≤ i≤ n,1≤ j ≤ n

Other equations in the IP model represent the unique oc-
curence of every symbol in every column:

n

∑
i=1

xi jk = 1, 1≤ j ≤ n,1≤ k ≤ n

every symbol in every row:
n

∑
j=1

xi jk = 1, 1≤ i≤ n,1≤ k ≤ n

and every symbol in every box:
mq

∑
j=mq−m+q

mp

∑
i=mp−m+1

xi jk = 1

1≤ k ≤ n,1≤ p≤ m,1≤ q≤ m

The Sudoku IP model is implemented in sudoku.py us-
ing pyglpk v0.3 by Thomas Finley. This open-source mixed
integer/linear programming Python library is available at http:
//tfinley.net/software/pyglpk/

In pyglpk, an integer program is represented by the matrix
of coefficients of a system of linear equations. Two functions of
sudoku.py provide the correct dimensions of the coefficient
matrix.

>>> from glpk import LPX
>>> from sudoku import \
... lp_matrix_ncols, lp_matrix_nrows
>>> lp = LPX()
>>> lp.cols.add(lp_matrix_ncols(n))
>>> lp.rows.add(lp_matrix_nrows(n))

Columns of the matrix represent different variables. All our
variables are binary and so their bounds are set appropriately,
between 0 and 1.

>>> for c in lp.cols:

... c.bounds = 0.0, 1.0

Rows of the coefficient matrix represent different linear equations.
We require all our equations to have a value of 1, so we set both
the lower and upper bound of every equation to be 1.

>>> for r in lp.rows:
... r.bounds = 1.0, 1.0

With appropriate dimensions and bounds fixed, the coefficient
matrix itself is provided by sudoku.py’s lp_matrix function.

>>> from sudoku import lp_matrix
>>> lp.matrix = lp_matrix(n)

To extend the IP model to a Sudoku puzzle with fixed clues
requires further equations. Fixed elements in the puzzle, given
by a set F of triples (i, j,k), are each represented by an equation
in the system:

xi jk = 1, ∀(i, j,k) ∈ F

To add these equations to the pyglpk.LPX object lp:

>>> from sudoku import lp_col_index
>>> for cell in d:
... lp.rows.add(1)
... r = lp_matrix_ncols(n)*[0]
... r[lp_col_index(cell, d[cell], n)] = 1
... lp.rows[-1].matrix = r
... lp.rows[-1].bounds = 1.0, 1.0

To solve the LPX instance lp requires first solving a linear
relaxation via the simplex algorithm implementation of pyglpk

>>> lp.simplex()

Once the linear relaxation is solved, the original integer program
can be solved.

>>> for col in lp.cols:
... col.kind = int
>>> lp.integer()

Finally, we need to extract the solution as a dictionary from the
model via the lp_to_dict function from sudoku.py.

>>> from sudoku import lp_to_dict
>>> d = lp_to_dict(lp, n)
>>> s = Puzzle(d, 3)
>>> s
2 5 8 7 3 6 9 4 1
6 1 9 8 2 4 3 5 7
4 3 7 9 1 5 2 6 8
3 9 5 2 7 1 4 8 6
7 6 2 4 9 8 1 3 5
8 4 1 6 5 3 7 2 9
1 8 4 3 6 9 5 7 2
5 7 6 1 4 2 8 9 3
9 2 3 5 8 7 6 1 4

To use the IP model to solve a Puzzle instance, specify the
keyword argument model = lp.

>>> s = solve(p, model = 'lp')

Experimentation

In this section we demonstrate the use of sudoku.py for creating
Python scripts for experimentation with Sudoku puzzles. For the
purposes of demonstration, we discuss, briefly, enumeration of
Shidoku puzzles, coloring the Sudoku graph and the hardness of
random puzzles.

http://tfinley.net/software/pyglpk/
http://tfinley.net/software/pyglpk/


54 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Enumerating Shidoku

Enumeration of Sudoku puzzles is a very difficult computational
problem, which has been solved by Felgenhauer and Jarvis in
[Fel06]. The enumeration of Shidoku, however, is easy. To solve
the enumeration problem for Shidoku, using the constraint model
implemented in sudoku.py, takes only a few lines of code and
a fraction of a second of computation.

>>> s = "from sudoku import Puzzle, count_solutions"
>>> e = "print count_solutions(Puzzle({}, 2))"
>>> from timeit import Timer
>>> t = Timer(e, s)
>>> print t.timeit(1)
288
0.146998882294

Coloring the Sudoku graph

As discussed above in the section on "Graph models", a completed
Sudoku puzzle is equivalent to a minimal proper node coloring of
the Sudoku graph. We have experimented with several different
node coloring algorithms to see which are more effective, with
respect to minimizing the number of colors, at coloring the Sudoku
graph.

Initially, we used Joseph Culberson’s graph coloring programs
(http://webdocs.cs.ualberta.ca/~joe/Coloring/index.html) by writ-
ing Sudoku puzzle graphs to a file in Dimacs format (via the
dimacs_string function of sudoku.py).

Of those programs we experimented with, the program imple-
menting the saturation degree algorithm (DSatur) of Brelaz from
[Bre79] seemed most effective at minimizing the number of colors.

Motivated to investigate further, with sudoku.py we imple-
mented a general node coloring algorithm directly in Python which
can reproduce the DSatur algorithm as well as several other node
coloring algorithms.

Our node coloring function allows for customization of a quite
general scheme. The behavior of the algorithm is specialized by
two parameters. The nodes parameter is an iterable object giving
a node ordering. The choose_color parameter is a visitor
object which is called every time a node is visited by the algorithm.

Several node orderings and color choice selection
schemes have been implemented. The simplest sequential
node coloring algorithm can be reproduced, for example,
by assigning nodes = InOrder and choose_color =
first_available_color. A random ordering on nodes can
be acheived instead by assigning nodes = RandomOrder.
Importantly for our investigations, the node ordering is given by an
iterable object and so, in general, can reflect upon to current graph
state. This mean that online algorithms like the DSatur algorithm
can be realized by our general node coloring scheme. The DSatur
algorithm is obtained by assigning nodes = DSATOrder and
choose_color = first_available_color.

Hardness of random puzzles

We introduced the random_puzzle function in the introduc-
tion. The method by which this function produces a random puzzle
is fairly simple. A completed Sudoku puzzle is first generated by
solving the empty puzzle via constraint propagation and then from
this completed puzzle the appropriate number of clues is removed.

An interesting problem is to investigate the behavior of differ-
ent models on random puzzles. A simple script, available in the
investigations folder of the source code, has been written
to time the solution of models of random puzzles and plot the
timings via matplotlib.

Two plots produced by this script highlight the different
behavior of the constraint model and the integer programming
model.

The first plot has time on the vertical axis and the number
of clues on the horizontal axis. From this plot it seems that the
constraint propogation algorithm finds puzzles with many or few
clues easy. The difficult problems for the constraint solver appear
to be clustered in the range of 20 to 35 clues.

A different picture emerges with the linear programming
model. With the same set of randomly generated puzzles it appears
that the more clues the faster the solver finds a solution.

Conclusions and future work

In this article we introduced sudoku.py, an open-source Python
library for modeling Sudoku puzzles. We discussed several models
of Sudoku puzzles and demonstrated how to implement these
models using existing Python libraries. A few simple experiments
involving Sudoku puzzles were presented.

Future plans for sudoku.py are to increase the variety of
models. Both by allowing for greater customization of currently

http://webdocs.cs.ualberta.ca/~joe/Coloring/index.html


MODELING SUDOKU PUZZLES WITH PYTHON 55

implemented models and by implementing new models. For exam-
ple, we can imagine several different Sudoku models as constraint
programs beyond the model presented here. Another approach is to
model Sudoku puzzles as exact cover problems and investigate the
effectiveness of Knuth’s dancing links algorithm. Also important
to us is to compare all our models with models [Lyn06] from
satisfiability theory. In [Kul10] a general scheme is presented
which is highly effective for modeling Sudoku.

There are great many interesting, unsolved scientific problems
involing Sudoku puzzles. Our hope is that sudoku.py can
become a useful tool for scientists who work on these problems.

REFERENCES

[Bar08] A. Bartlett, T. Chartier, A. Langville, T. Rankin. An Integer Program-
ming Model for the Sudoku Problem, J. Online Math. & Its Appl.,
8(May 2008), May 2008

[Bre79] Brelaz, D., New methods to color the vertices of a graph, Communi-
cations of the Assoc. of Comput. Machinery 22 (1979), 251-256.

[Fel06] B. Felgenhauer, F. Jarvis. Enumerating possible Sudoku grids Online
resource 2006 http://www.afjarvis.staff.shef.ac.uk/sudoku/

[Kul10] O. Kullmann, Green-Tao numbers and SAT in LNCS (Springer),
"Theory and Applications of Satisfiability Testing - SAT 2010",
editors O. Strichman and S. Szeider

[Lew05] R. Lewis. Metaheuristics can solve Sudoku puzzles, Journal of
Heuristics (2007) 13: 387-401

[Lyn06] Lynce, I. and Ouaknine. Sudoku as a SAT problem, Proceedings of
the 9th Symposium on Artificial Intelligence and Mathematics, 2006.

[Sim05] H. Simonis. Sudoku as a Constraint Problem, Proceedings of the 4th
International Workshop on Modelling and Reformuulating Constraint
Satisfaction Problems. pp.13-27 (2005)

[Var05] J. Gago-Vargas, I. Hartillo-Hermosa, J. Martin-Morales, J. M. Ucha-
Enriquez, Sudokus and Groebner Bases: not only a Divertimento, In:
Lecture Notes in Computer Science, vol. 4194. pp. 155-165. 2005

http://www.afjarvis.staff.shef.ac.uk/sudoku/

	Introduction
	Sudoku puzzles
	sudoku.py

	Models
	Constraint models
	Graph models
	Polynomial system models
	Integer programming models

	Experimentation
	Enumerating Shidoku
	Coloring the Sudoku graph
	Hardness of random puzzles

	Conclusions and future work
	References

