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Stéfan van der Walt
Jarrod Millman





PROCEEDINGS OF THE 9TH PYTHON IN SCIENCE CONFERENCE
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Keeping the Chandra Satellite Cool with Python

Tom Aldcroft‡∗

F

Abstract—The Chandra X-ray Observatory has been providing groundbreaking
astronomical data since its launch by NASA in July of 1999. Now starting the
second decade of science the Chandra operations team has been using Python
to create predictive thermal models of key spacecraft components. These mod-
els are being used in the mission planning and command load review process
to ensure that the series of planned observations and attitudes for each week
will maintain a safe thermal environment. Speaking from my perspective as a
scientist working to create and calibrate the models, I will discuss the process
and the key off-the-shelf tools that made it all possible. This includes fitting
many-parameter models with the Sherpa package, parallel computation with
mpi4py/MPICH2, large table manipulations with pytables/HDF5, and of course
fast array math with NumPy.

Index Terms—telescope, NASA, MPI, astronomy, control

Motivation

This paper describes the use of off-the-shelf tools in Python
to tackle a relatively challenging engineering problem facing
the Chandra X-ray Observatory satellite [CHANDRA]. While
presenting no fundamentally new algorithms or packages, the goal
here is to take this as a case study for understanding how scientists
and engineers can make Python the foundation of their analysis
toolkit.

Chandra

The Chandra satellite was launched in July of 1999 as one of
NASA’s four "Great Observatories". This satellite can be com-
pared in size and scope to the Hubble Space Telescope except that
it views the universe in X-rays instead of optical or UV light. Some
people will argue that the universe is a much more exciting place
when viewed with X-ray photons, for then the sky comes alive
with black holes, supernova explosions, massive galaxy clusters,
pulsars, and many other highly energetic phenomena.

Early in the mission it became apparent that temperatures on
the spacecraft, particularly on the side which normally faces the
Sun, were increasing at a rate well above pre-launch predictions.
It turned out that the ionizing particle radiation environment was
higher than expected and that it was degrading the silverized teflon
insulation which wraps much of the spacecraft. Since this time the
constraint of keeping spacecraft components within safe operating
temperatures has been a major driver in operations and schedule

* Corresponding author: aldcroft@head.cfa.harvard.edu
‡ Smithsonian Astrophysical Observatory

Copyright © 2010 Tom Aldcroft. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Fig. 1: Artist’s rendering of the Chandra X-ray satellite. The silverized
teflon which wraps the spacecraft has degraded so it is now far less
reflective than shown.

planning. Note that Chandra is in a high elliptical orbit, so unlike
Hubble no repair is possible.

Different parts of the spacecraft are heated at different pitch
angles (the angle that the telescope boresight axis makes to the
sun line). This is shown in Figure 2 which presents a side view of
Chandra along with the subsystems that are sensitive over different
pitch ranges. Temperatures can be maintained within limits by
ping-ponging to different attitudes, never letting one part get too
hot. Thus in order to plan the weekly observing schedule a few
simple models were created to predict temperatures or otherwise
constrain the observing duration at certain attitudes.

As the constraints became more significant a need developed
to improve the models in order to maintain the highest scientific
output without endangering the spacecraft. In response, about
three years ago the CXC Science Operations Team (SOT, scientists
closely involved in satellite operations) and the engineers of the
Flight Operations Team (FOT) formed a joint working group to
study thermal issues and to develop higher fidelity thermal models.
This paper discusses one facet of the results coming out of the
thermal modeling working group.

Early in the process the author chose Python as the program-
ming language for supporting this effort. Around this time NumPy
had emerged as a strong (and consolidated) numeric array manip-
ulation tool for Python. Adding in IPython, Matplotlib and SciPy
provided a development and interactive analysis environment that
was ideal for the task.
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Fig. 2: Thermal constraint regions depending on the pitch angle to
the sun line.

Telemetry access

A key starting point for developing complex thermal models is
fast access to thermal and other engineering data from the satellite.
The Chandra satellite records a 32 kbit/s stream of telemetry that
contains both the science data and satellite engineering (house-
keeping) data. Although the data volumes are meager by modern
standards, the tools and data structure used for processing and
access were largely designed with mid-1990’s era hardware and
storage capabilities in mind.

Two standard methods exist for retrieving archival telemetry.
Within the Flight Operations Team (FOT) environment at the
Operations Control Center the primary tool stores no intermediate
products and instead always falls back to the raw telemetry
stream. This stream contains over 6000 individual engineering
telemetry items (MSIDs) that are interleaved according to different
sampling rates and sub-formats. FOT engineers using this system
are accustomed to waiting hours or more to retrieve a year of data
needed for analysis.

Within the Chandra X-ray Center (CXC) which is responsible
for processing the science data, the situation is somewhat better.
In this case the "Level-0 decommutation" process is done just
once and the results stored in FITS [FITS] files available through
an archive server. These files each contain about two hours of
data for MSIDs that are related by subsystem (thermal, pointing
control, etc) and sampling rate. However, access to a single MSID
of interest (e.g. a particular thermistor readout) requires retrieving
and unzipping a large amount of uninteresting data.

The solution to this problem was found in the pytables [PYT]
package which provides a robust interface to the powerful Hier-
archical Data Format [HDF5] library. Pytables/HDF5 is designed
to create, update, and access very large data tables with ease. The
key here was creating a separate HDF5 table for each MSID which
could easily store all the readouts for that MSID for the entire
mission. This is especially optimal because many of the MSIDs
change infrequently and thus compress very well. HDF5 natively
supports an assortment of compression options which makes this
a snap. Initially creating the table based on a NumPy data array is
simple using the createEArray method to create an extendible
homogenous dataset:

filts = tables.Filters(complevel=5, complib='zlib')
h5 = tables.openFile(filename, mode='w', filters=filts)
h5shape = (0,) + data.shape[1:]
h5type = tables.Atom.from_dtype(data.dtype)

Fig. 3: Schematic diagram of the thermal Chandra thermal model.
Boxes (T0, T1, T2) represent physical nodes on the spacecraft where
a thermistor is located. External solar heat input is shown as Pi(p),
conductances are Ui, j, and external heat bath temperatures are Te,i.

h5.createEArray(h5.root, 'data', h5type, h5shape,
title=colname, expectedrows=n_rows)

h5.createEArray(h5.root, 'quality', tables.BoolAtom(),
(0,), title='Quality', expectedrows=n_rows)

h5.close()

A minor complication seen here is the boolean quality table
which accounts for bad or missing telemetry. Once the table has
been created it is a simple matter to extend it with new data values
after a communication pass:

h5 = tables.openFile(filename, mode='a')
h5.root.data.append(new_data)
h5.root.quality.append(new_quality)
h5.close()

At this time the largest individual tables have about 1.3×109 rows
(for the highest sampling rate of 4 times per second). The data
retrieval speed from this archive of HDF5 tables is approximately
107 items per second. This means that typical data retrieval
requests can be handled in seconds rather than hours. Such an
improvement changes the landscape of questions that can be asked
and then answered.

In addition to the data acquisition back-end, a user-friendly
front-end was needed to access the telemetry data in the HDF5
archive. A challenge in this regard was that most of the intended
user community (FOT engineers) had absolutely no experience
with Python. Thus the interface, documentation and examples
had to be clear and explicit. The final documentation package
included a tutorial covering the telemetry access interface as well
as IPython, NumPy, and Matplotlib.

Creating a thermal model

The thermal model which was developed for modeling Chandra
subsystems is illustrated in Figure 3.

Here each of the boxes (T0, T1, T2) represents a physical
node on the spacecraft where a thermistor is located. It is then
assumed that each node i has an external heat input Pi(p) and has
conductances Ui, j to other nodes and an external heat bath with
temperature Te,i. For most models the external heat input is Solar
and depends purely on the spacecraft pitch angle with respect to
the Sun. In some cases, however, the heat input due to internal
electronics is also included. Given these definitions and the nodal
connectivity the temperatures can be written in matrix form as a
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simple first order differential equation:

Ṫ = ÃT+b

T(t) =
∫ t

0 eÃ(t−u)bdu+ eÃt T(0)

= [v1 v2]




eλ1t−1
λ1

0

0 eλ2t−1
λ2


 [v1 v2]

−1 b

+[v1 v2]

[
eλ1t 0

0 eλ2t

]
[v1 v2]

−1 T(0)

Here T is a vector of node temperatures, Ã is the matrix
describing the coupling between nodes, b is a vector describing
the heat inputs, vi and λi are the eigenvectors and eigenvalues of
Ã, and t is time.

The solution can be expressed analytically as long as the model
parameters (external heat inputs, conductances) are constant. Most
of the time Chandra dwells at a particular attitude and so this
is a good assumption during such a dwell. The computational
strategy for making a model prediction of temperatures is to
identify "states" where the parameters are constant and propagate
temperatures from the beginning to the end of the state, then use
the end temperatures as the starting point for the next state.

The first implementation of this core model calculation was
a literal transcription of the analytic solution for each time step
within a state. This was quite inefficient because of repeated
creation and computation of intermediate 2-d arrays. A slight
modification allowed for adding the time dimension into the arrays
and computing all time steps at once with a single expression of
NumPy dot products. This resulted in a factor of 10-20 speed in-
crease. Further optimization to avoid repeating certain calculations
within inner loops plus caching of results eventually yielded code
that is 50 times faster than in the initial literal version. In the end
the code takes less than a second to predict a year of temperatures
at 5-minute resolution for a 5-node model of the sun-pointed side
of the spacecraft.

Fitting the model parameters

The next step is to tune the model parameters to best fit the existing
thermal data for the subsystem of interest. In typical cases there
are two to five thermistors whose data are averaged over 5 minute
intervals. Up to five years of such data are fit at once.

What is not immediately apparent in the concise matrix for-
mulation Ṫ = ÃT+b of the thermal model is that it contains a lot
of free parameters. In addition to the conductances and external
heat bath temperatures, the external Solar power input for each
node is complicated. First it is a function of the pitch angle with
respect to the Sun, but it also has an annual variation term (due
to the elliptical orbit) as well as a long-term change due to the
continued slow degradation of the protective insulation. All this
needs to be fit in order to predict temperature profiles at any time,
including years in advance. One key 5-node model being used in
planning operations has a total of 80 free parameters. All of those
parameters need to calibrated using at least 5 years of existing
thermal data to train the model.

Two immediate objections can be raised. First, that with so
many free parameters one can fit almost anything. In a sense for
this application that is just fine, as long as the resultant model
has stable predictive power beyond the time range over which
it is calibrated. But at a more fundamental level experience has
shown that it is simply not true that the complex and coupled
time-dependent behavior of temperatures on the spacecraft can

Fig. 4: Long-term comparison of the actual spacecraft thermistor data
(red) with the model prediction (blue). This span of data is used for
fitting the model coefficients.

necessarily be captured by any model with a large number of
parameters.

The second objection is that fitting for so many parameters
is bound for failure. However, what makes this problem tractable
is that many of the parameters are only loosely coupled. This
makes it possible to selectively fit for subsets of the parameters
and iteratively home in on a reasonable global set of parameters.
Unlike many problems in parameter estimation where the derived
parameter values and uncertainties are the primary goal, in this
case it is the model prediction that matters.

The Sherpa [SHP] package is used to handle the actual
optimization of parameters to achieve the best model fit to the
data. Sherpa is a modeling and fitting application for Python that
contains a powerful language for combining simple models into
complex expressions that can be fit to the data using a variety
of statistics and optimization methods. It is easily extendible to
include user models, statistics and optimization methods. For this
application the key feature is a robust implementation of the
Nelder-Mead (aka Simplex) optimization method that is able to
handle many free parameters. Sherpa provides within the model
language a natural way of manipulating and linking model param-
eters using Python expressions.

The result of the fitting process is a calibrated thermal model
that can be used to accurately predict the system temperatures
given the planned sequence of maneuvers and instrument configu-
rations. Figure 4 shows an example of the data for one thermistor
"1PDEAAT" in red with the model prediction in blue.

Figure 5 now shows the post-facto model prediction (blue) for
a two-week period of data (red) that is outside the calibration
time range. Most of the features are well reproduced and the
distribution of residuals is roughly gaussian.

Parallelization of fitting

Despite the good model calculation performance with vectorized
NumPy, fitting for 5 years of data and dozens of parameters can
benefit from the further speed increase of parallelization. This is
particularly helpful for the exploratory phase of developing a new
model and getting the parameters in the right ball park.

The thermal models being discussed here can easily be par-
allelized by splitting into independent time segments. There is
a slight issue with the starting conditions for each segment,
but there are straightforward ways to finesse this problem. In
the context of a fitting application a master-worker architecture
works well. Here the master is responsible for controlling the fit
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Fig. 5: Detailed comparison of the actual spacecraft thermistor data
(red) with the model prediction (blue). The thermistor is located within
the power-supply box for one of the main science instruments.

Fig. 6: Schematic illustration of parallelizing the fitting process by
breaking the data and model generation into smaller time slices.

optimization process while each of the workers takes care of all
model computations for a particular time segment. The worker is
initially sent the time range and model definition and it is then
responsible for retrieving the appropriate telemetry data. After
initialization the model parameters for each fit iteration are sent
and the worker computes the model and Chi2 fit statistic. All
of the individual Chi2 values are then summed. In this way the
communication overhead between master and workers is minimal.
Figure 6 illustrates the process.

The actual job of handling the interprocess communication and
job creation is done with the mpi4py [MPI4PY] package using the
MPICH2 [MPICH2] library. As is often the case, the choice of
these particular packages over other similar ones was driven by the
depth of documentation, availability of relevant looking examples,
and ease of installation. Starting with no previous experience with
distributed computing, a working prototype of the parallel fitting
code was created in less than a day. This is a testament largely to
the quality of documentation.

As for computing resources, our division within SAO is
perhaps like other academic science institutes with a collection of
similarly configured linux machines on a local network. These are
often available off-hours for "borrowing" CPU cycles with consent
of the primary user. A more formal arrangement (for instance
using an application like Condor for distributed job scheduling)
has been in consideration but not yet adopted. For this application
up to twelve 4-core machines were used. Dynamic worker creation
was supported by first starting up mpd servers on the target hosts
(from file mpd.hosts) with a command like the following:

mpdboot --totalnum=12 --file=mpd.hosts --maxbranch=12

An abridged version of three key functions in the main parallel fit-
ting code is shown below. These functions support communication
with and control of the workers:

def init_workers(metadata)
"""Init workers using values in metadata dict"""
msg = {'cmd': 'init', 'metadata': metadata}
comm.bcast(msg, root=MPI.ROOT)

def calc_model(pars):
"""Broadcast a message to each worker to calculate

the model for given pars."""
comm.bcast(msg={'cmd': 'calc_model', 'pars': pars},

root=MPI.ROOT)

def calc_stat()
"""Broadcast message to calculate chi^2 diff between

model and data. After that collect the sum of
results from workers using the Reduce function."""

msg = {'cmd': 'calc_statistic'}
comm.bcast(msg, root=MPI.ROOT)
fit_stat = numpy.array(0.0, 'd')
comm.Reduce(None, [fit_stat, MPI.DOUBLE],

op=MPI.SUM, root=MPI.ROOT)
return fit_stat

After defining the above functions the main processing code first
uses the MPI Spawn method to dynamically create the desired
number of worker instances via the previously created mpd
servers. Then the workers receive an initialization command with
the start and stop date of the data being used in fitting. The Sherpa
user model and fit statistic are configured, and finally the Sherpa
fit command is executed:
comm = MPI.COMM_SELF.Spawn(sys.executable,

args=['fit_worker.py'],
maxprocs=12)

init_workers({"start": date_start, "stop": date_stop})

# Sherpa commands to register and configure a function
# as a user model for fitting to the data.
load_user_model(calc_model, 'mpimod')
set_model(mpimod)

# Set function to be called to calculate fit statistic
load_user_stat('mpistat', calc_stat)
set_stat(mpistat)

# Do the fit
fit()

The fit_worker.py code is likewise straightforward. First get
a communication object to receive messages, then simply wait
for messages with the expected commands. The init command
calls the get_data() function that gets the appropriate data
given the metadata values and the rank of this worker within
the ensemble of size workers.
comm = MPI.Comm.Get_parent()
size = comm.Get_size()
rank = comm.Get_rank()

while True:
msg = comm.bcast(None, root=0)

if msg['cmd'] == 'stop':
break

elif msg['cmd'] == 'init':
# Get the vectors of times and temperatures
# for this worker node
x, y = get_data(msg['metadata'], rank, size)

elif msg['cmd'] == 'calc_model':
# Calculate the thermal model for times
# covered by this worker
model = worker_calc_model(msg['pars'], x, y)

elif msg['cmd'] == 'calc_statistic':
# Calculate the chi^2 fit statistic and send
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# back to the master process
fit_stat = numpy.sum((y - model)**2)
comm.Reduce([fit_stat, MPI.DOUBLE], None,

op=MPI.SUM, root=0)
comm.Disconnect()

Putting it to work

Using the techniques and tools just described, two flight-certified
implementations of the models have been created and are being
used in Chandra operations. One models the temperature of the
power supply for the ACIS science instrument [ACIS]. The other
models five temperatures on the Sun-pointed side of the forward
structure that surrounds the X-ray mirror. Each week, as the sched-
ule of observations for the following week is assembled the models
are used to confirm that no thermal limits are violated. Separate
cron jobs also run daily to perform post-facto "predictions" of
temperatures for the previous three weeks. These are compared to
actual telemetry and provide warning if the spacecraft behavior is
drifting away from the existing model calibration.

Summary

The current Python ecosystem provides a strong platform for
production science and engineering analysis. This paper discussed
the specific case of developing thermal models for subsystems of
the Chandra X-ray Observatory satellite. These models are now
being used as part of the flight operations process.

In addition to the core tools (NumPy, IPython, Matplotlib,
SciPy) that get used nearly every day in the author’s work, two
additional packages were discussed:

• Pytables / HDF5 is an easy way to handle the very large
tables that are becoming more common in science analysis
(particularly astronomy). It is simple to install and use and
brings high performance to scientists.

• MPI for Python (mpi4py) with the MPICH2 library
provides an accessible mechanism for parallelization of
compute-intensive tasks.
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Astrodata
Craig Allen‡∗

F

Abstract—The astrodata package is a part of the Gemini Telescope’s python-
based Data Reduction Suite. It is designed to help us deal in a normalized
way with data from a variety of instruments and instrument-modes. All Gemini
specific code configurations are isolated in configuration packages separate
from the astrodata source. The configuration packages define a lexicon of
terms associated with a family of dataset types and implements the behaviors
associated with each terms.

Index Terms—Python, Scientific Computing

The Problem Domain: Handling Data Across Instrument-
Modes

Gemini

Gemini Observatory is a multinational partnership which operates
two telescopes, Gemini North from Hilo, Hawaii, and Gemini
South from La Serena, Chile. We mount multiple instruments
simultaneously, and have a suite of instruments which rotate onto
the telescopes periodically. These instruments have been made
by a variety of different teams and institutions from our partner
countries.

Multi-Extension FITS

Gemini Observatory relies on a file format called "Multi-Extension
FITS" (MEF) format to store all datasets, one standard all instru-
ments obey. MEF is a common file format in Astronomy and is an
extension of the older "single extension" FITS file format. Signle
extension FITS files consited of a single expandable ASCII header
section and single binary data section. MEF extends this so that
the file appears as a list of such header-data units (HDUs).

The FITS standard contains definitions for standardized meta-
data in HDU headers. For example, standard header keys are
defined for the telescope, observer, object name, the RA and
DEC, and some other properties one expects to be associated with
an astronomical observation. There are also suffient standardized
headers to describe the binary data section such as needed to
load it, such as its dimensions and pixel type (if it is pixel data).
However, many other bits of metadata which are ubiquitous for
Gemini data, such as "gain" and "filter name", do not have standard
headers names in the FITS standard.

Since the FITS headers are expandable there is ample infor-
mation in the datasets to retreive the desired information, but
the retrieval is subject to incidental differences in naming and

* Corresponding author: callen@gemini.edu
‡ Gemini Observatory
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storage layout. While helpful, the list-like shape of the associated
HDUList is merely one incremental improvement toward the goal
of associating these related HDUs into a cohesive whole. MEF is
limited in this regard by the fact that standard metadata to describe
relationships between extensions have not been developed. Such
metadata could for example introduce a heirarchical relationship
and explicit dependencies among extensions. Metadata to infer
such relationships does exist in the headers but for the reasons
mentioned it tends to be instrument-mode specific.

The problem domain is dominated by processes which are
conceptually the same across instrument-modes from the perspec-
tive of the user and scientist, but which require implementations
unique to the instrument-mode.

Removing Incidental Differences

Our goal with a new abstraction higher than the level of the
"HDU list" is to remove the incidental differences for the user
of the new abstraction, and move handling of the differences into
type-specific compartments. Within the compartments it is safe to
make type-specific assumptions and use mode-specific heuristics
without compromising the generality of the system.

We also seek to extend the scopes at which a particular differ-
ence can be considered "incidental". For example, in the case of
dataset transformation (reduction), most instrument-modes involve
a step to "subtract the sky". This is generally done by taking
a picture of the sky near the object and literally subtracting its
pixel values from the exposure. However, the details of doing sky
subtraction do depend on the particular instrument-mode. There
exist important differences between imaging and spectroscopy,
and between different wavelengths, which means performing this
step is type-dependent.

Nevertheless, at the higher level of consideration, and scientif-
ically, the step is "the same". Thus while the differences regarding
how one performs the sky subtraction are not, ultimately, to be
accurately described as "incidental", they can still be generalized
over. At some scopes the differences are not considered significant
so long as they are performed properly.

At the same time, we want to maintain flexibility about which
scopes we commit to implementing in either generic or specific
ways. We want safe refactoring paths available so that we can,
for example, safely integrate instrument-mode specific code into
generalized code when possible. But we also want a system
that allows patching an instrument-mode specific solution over
a general solution that may be failing for that instrument mode,
as a quick way to address problems to for example support time-
critical nightime operation.

These goal are accomplished by the adopting of a core classi-
fication system which is used to assign behavior to dataset types
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which can be general, e.g. "GEMINI", or a specific instrument
mode, "GMOS_IFU".

Incidental Dataset Differences Normalized

• differences in how a dataset is recognized as a particular
type

• differences in low level metadata
• differences in the implementation of scientifically similar

transformations
• differences in storage structure

The AstroData Class

MEF I/O

To load a MEF into an AstroData instance one generally gives the
filename to the AstroData contructor:

ad = AstroData("trim_gN20091027S0133.fits")

The instance, referenced in the ad variable will have loaded the
extensions’ headers and have detected type information. However,
the data, represented as a numpy array, is not loaded until refer-
enced. AstroData relies on the python Pyfits Library for this low
level MEF access. Like the HDUList object that pyfits returns, the
AstroData instance is also iterable, behaving as though consisting
of a collection of AstroData instances, one per HDU in the MEF.

To iterate over the list one would write a loop as so:

for ext in ad:
print ext.infoStr()

In this case ext is also an AstroData instance, created by the
iteration-related members of AstroData. The ext instance shares
its single HDU member with the original ad instance, as well
as its primary header unit, but has its own HDUlist object. This
means changes to the shared information will be reflected in the
outer AstroData object, ad, but that new HDUs appended to ext
would not be appended to ad.

This behavior extends the general behavior of numpy and
pyfits, and is considered desirable so that it is possible to avoid
unnecessary copying of memory, but use of the feature does
require care.

The __getitem__(..) member of AstroData is overrid-
den. It creates and returns an AstroData instance with a new
HDUList containing the HDU(s) identified in the argument, i.e.

adsci = ad["SCI"]

This call to __getitem__(..) uses causes it to use the
extension naming information to find all extensions with the name
"SCI", and return an AstroData instance containing just those
found.

Astrodata Grammar

Breaking our knowledge of our datasets into parts involves cre-
ating a language of terms for our family of datasets. The terms
defined will belong to a grammar understood by the astrodata
package, of course. This family of terms, or language, turns out
to be valuable in general as a tool to discuss dataflow, separately
from the implementation details. It turns out we have good reason
to understand what the terms mean prior deciding how they will
perform the action satisfying that meaning.

In practice, the developer of a type-family will work intera-
tively, creating and testing continually improved versions of their

configuration package. This sort of iterative "test and refactor"
process is well supported by the astrodata package, and supporting
"refactoring paths" is part of our intent. Conceptually, however,
the work to define the meaning of the terms is logically prior
to implementation. These definitions are, in fact, the conceptual
specification for all configuration implementations.

The astrodata grammar is expandable, but at this time consists
of three primary types of term:

• the dataset types: AstroData Types

– e.g. GMOS_SPECT is "a GMOS dataset taken in
any spectroscopic mode"

• high level metadata: Descriptors

– e.g. "filter_name" is "a string value concatenation
of all filters in the light path during the exposure"

• transformations: Primitives

– e.g. "skySubtract" is "a transformation where sky
conditions at the time of the observation are sub-
tracted from the exposure"

Each of these terms, once defined, will have a specific behavior
associated:

• for AstroData Type: code to recognize the type of dataset
based on low level metadata

• for AstroData Descriptors: code to calculate and return the
high level-metadata from the low-level metadata

• for Primitives: code to perform the tranformation

AstroData Type

From the user of astrodata’s point of view, AstroData Types are
string names accessed through AstroData members. The objects
used to detect the type criteria and assign the names to the Astro-
Data object are hidden within the RecipeLibrary which AstroData
uses to provide type features. The DataClassification objects which
load the type definition, also check to see if it applies to a given
HDUList object.

Many features are assigned to datasets by AstroData Type,
such that behind a common name lies implicitly type-specific
behavior. Different implementations of what is conceptually the
same descriptor, or primitive, are assigned to the same descrip-
tor or primitive name, meaning the interfaces to invoking them
are regular. Since the descriptor or high-level metadata system
requires the dataset type to know which particular descriptor
calculator to load, the type system cannot in turn rely on high-
level metadata to recognize datasets, as that would be circular.
Thus, the classification system uses low level metadata, ideally
from the PHU, which is the 0-th HDU in the HDUList.

A typical type definition is stored as a class descending
from astodata’s DataClassification class, allowing it the ability
to overwrite the base methods if need be. However, the general
intention is that in the typical case the known members of the
DataClassification parent are set in the child class so the definition
is essentially a data structure used by the parent class. Members
of DataClassification parent class execute the type check.

Here is a relatively typical type definition from our type library,
in this case for GMOS_IMAGE:
class GMOS_IMAGE(DataClassification):
name="GMOS_IMAGE"
usage = """Any datset from the GMOS_N or GMOS_S

instruments."""
parent = "GMOS"
requirement = ISCLASS("GMOS") & PHU(GRATING="MIRROR")
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Name,

The name member specifies the string name used to identify this
type.

Usage

The usage member is a printable string containing information
about the meaning of the type, used to generate documentation.

Parent

The parent member is the string name of the parent classifi-
cation, if any. The parent member is used to build the overall
classification hierarchy. This hierarchy is in turn used to resolve
conflicts in feature assignments, children overriding parents.

Requirements

The requirement member contains a single instance of an as-
trodata Requirement class, which is how the classification actually
checks the dataset in question. Use Requirement subclasses for
logical operators allows the appearance of compound requirments
using and, or, and not.

Specific checks are performed by the ISCLASS and PHU
Requirement subclasses which, respectively, check for adherance
to another type definition, and check primary header unit headers
for key-value matches. The all caps naming convention was
adopted to help these classes stand out due to their peculiar use in
the classification definitions.

PHU Requirements:: The PHU class is a Requirement
subclass which ultimately is the workhorse of the system. Clas-
sifications generally resolve to sets of PHU header checks, since
ideally, being the header for the dataset as a whole, the PHU will
contain complete identifying information. The PHU constructor
accepts a dictionary containing keys and values to check, or will
roll one from its argument list. Values are regular expressions, keys
are strings but allow modifiers to prohibit the specified match or
to use regular expressions for matching keys as well as values.

ISCLASS Requirements:: ISCLASS in this example is a
Requirement subclass which checks that the dataset in question
is also the type named in the ISCLASS constructor argument.
No hierarchical or other relationships are assumed due to the
ISCLASS requirement. The classification named is considered as
merely shorthand for whatever checks are associated with it.

Often the type specified in an ISCLASS Requirement will in
fact be the parent, but this is not universally true. For example
below, in the case of the base GMOS instrument type itself, the
parent and requirement classes are distinct:

class GMOS(DataClassification):
name="GMOS"
usage = '''

Applies to all data from either GMOS-North
or GMOS-South instruments in any mode.
'''

parent = "GEMINI"
requirement = ISCLASS("GMOS_N") | ISCLASS("GMOS_S")

Since the GMOS type is an abstraction meaning "from either
GMOS North or GMOS South" this appears in the require-
ments. However, the parental relationship cannot be GMOS_N
or GMOS_S as parent, because features such as Primitives or De-
scriptors, if assigned to GMOS_N, for example, would be intended
to override the GMOS assignments. Instead, GMOS overrides the
instrument-agnostic GEMINI type, which is therefore given as its
explicit parent.

Fig. 1: NIFS Type Tree A minimal type tree for the NIFS instrument:
One each to identify the Instrument itself, its imaging and spectro-
scopic mode, as well as the general GEMINI type which acts as NIFS’
parent type.

Logical Requirements:: Three Requirement subclasses ex-
ecute logical operations to combine other requirements, AND,
OR, and NOT. These each override the "&", "|", and "!" operators
respectively, for convienience. By design the constructors take a
list of requirements to combine logically, though they will, again
for convienience, roll the list from arguments.

Adding New Requirements:: This general arrangement
allows easy addition of other types of requirement classes. We
know, for example, that for some types we must detect we will
have to create an "EHU" requirement object to check headers in
data extensions.It will be a simple matter to add such a class and
utlize it in combination with other requirement subclasses.

The DataClassification classes are passed the pyfits HDUList
object to perform the detection and so have complete access to
the dataset. Therefore, a classification can technically look at
any characteristic of the data. However, by policy, for efficiency
reasons we specifically do not look at pixel data.

Examples

Access to type (aka "classification") information goes throug the
AstroData instance. The AstroData class relies internally on the
Classification Library to provide type information:

>>> from astrodata import AstroData
>>> ad = AstroData("trim_gN20091027S0133.fits")
>>> ad.types
['GEMINI_NORTH', 'GEMINI', 'IMAGE', 'GMOS_N',

'GMOS_IMAGE', 'GMOS', 'PREPARED']

Also, a single type can be checked in a call to the "isType" member
of AstroData. The single line replaces groups of conditional
checks that otherwise appear in reduction scripts at Gemini:

>>> ad.isType("GMOS_IMAGE")
True

This saves lines in scripts but more importantly, it centralizes the
type checking heuristics.

Gemini Types Trees:: The following is a simple type tree
for our NIFS instrument (Near-Infrared Integral Field Spectrome-
ter). It is an example of a minimalist type tree, which covers only
the instrument and its general IMAGE and SPECT modes.

The text and detail in Figure 2 will be difficult to read, but I
have included it to shows a more complete tree of types, in this
case for GMOS, the Gemini Multi-Object Spectrometer.
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Fig. 2: GMOS Type Tree This is a fully defined type tree, taken from
the Gemini AstroData Type Library, the GMOS instrument tree,.

Fig. 3: NIFS Type Tree The simple NIFS type tree showing which
type has the Descriptor calculator assigned.

AstroData Descriptors

AstroData Descriptors are terms naming high-level metadata
which should be accessible for any dataset in the dataset family,
either with generic or classification-specific calculators. The code
implementing descriptors are functions bundled together in classes
called Descriptor Calculators which are assigned to particular
AstroData types.

This design allows a mix of generic and special-case descriptor
implementations, using python’s object oriented class definition
to inherit generic implementations while overwriting descriptor
functions that require special processing for that type.

For example, currently the NIFS descriptor calculator is a
single calculator assigned to all NIFS data. This means this
calculator has to handle both imaging and spectroscopic data.
This can of course be done by placing type-specific code within
conditionals and using AstroData to check classifications. Still the
code can and will get convoluted if the different types rely on very
different methods to return the information.

If a particular instrument-mode requires a special calculation,
and if the developers do not want to complicate the more generic
code, then another descriptor calculator descending from the NIFS
general descriptor calculator class would be created, and the
descriptor requiring special handling would be overriden, and this
class would be assigned to the type which requires a special case,
e.g. NIFS_SPECT.

Fig. 4: Descriptor Calls: The Descriptors are called as members of
type-specific Descriptor Calculators through the type-agnostic Calcu-
lator Interface, which is melded into AstroData via metaprogramming
techniques.

Descriptor Calculator Classes

A descriptor function, associated and named with the official
descriptor name, is implemented as a member function of a "De-
scriptor Calculator" (descending from the astrodata "Calculator"
base-class). An instance of the correct calculator is stored in
a private AstroData member, with there being just one correct
calculator for any given AstroData instance. The classification
hierarchy is used if multiple calculator assignments are found to
apply to a dataset. Child nodes override parent nodes, siblings or
cousin nodes with conflicting feature assignments will cause the
system to complain and an exceptions to be thrown.

Interfaces to the descriptor functions are added as members
at runtime to the AstroData instance using metaprogramming
techniques. The configuration’s "CalculatorInterface" class is used
as an AstroData "base" class at runtime (this is called a mixin pat-
tern). Currently the class is generated by a script, but in the future
this class will be dynamically generated by the infrastructure from
descriptor metadata.

After construction of the AstroData instance, descriptors such
as gain and filter_name are available to call as member
functions, e.g. continuing from the previous examples:

gain = ad.gain()

This line will call the correct gain implementation, having loaded
the correct calculator for the dataset loaded into the "ad" variable.
The calculator interface is constructed of "thunk" functions which
proxy calls to the calculator and are called for all types of dataset.
This makes the calculator interface a potential place to perform
global features such as validation of descriptor inputs and values or
processing globally supported parameters. These thunk functions
call the appropriate descriptor in the calculator.

Examples

Correctly defined and assigned descriptors ensure high level meta-
data can be retrieved in the same way regardless of datatype, e.g.
to retrieve the filter_name descriptor regardless of dataset type:

>>> from astrodata import AstroData
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>>> ad = AstroData("trim_gN20091027S0133.fits")
>>> ad.filter_name()
'i_G0302'

Descriptors are presented as functions rather than data members to
emphasize that they are indeed functions and to allow arguments
which modify the return value, e.g. to get the filtername without
the unique filter ID, filter_name accepts the "stripID" argument:

>>> ad.filter_name(stripID=True)
'i'

Some descriptors apply at the header-data unit level and only work
on AstroData instances with a single extension. For example, a
GMOS image prior to being mosaic-ed, will have three science
extensions, one for each CCD in the GMOS instruments, and each
of these has its own associated gain relating to the amp it was read
out with. A descriptor will in this case have to return a collection if
asked to return gain for the whole dataset. By default Descriptors
only return single values of a specific type, so gain must return
a double. In general this is not an issue, since it’s more common
in such a case to be iterating over AstroData-wrapped header-
data units, in which case one naturally gets single-HDU AstroData
instances:

>>> for ext in ad["SCI"]:
... print ext.gain()
...
2.1
2.337
2.3

Similarly single extension AstroData instances can be picked out
of the dataset by their naming information, if present, or by the
integer index:

>>> gain_sci_1 = ad[("SCI", 1)].gain()
>>> gain_sci_1
2.1000000000000001
>>> gain_1 = ad[0].gain()
>>> gain_1
2.1000000000000001

To override the default descriptor return type to return collections
when called on a multiple-extension dataset, affected descriptors
support "asList" and "asDict" arguments:

>>> gainlist = ad.gain(asList=True)
>>> gainlist
[2.1000000000000001, 2.3370000000000002, 2.2999999999999998]

Lists are returned in order of the extensions for which there is a
gain value (e.g. "SCI" extensions), and dictionaries returned are
keyed by the extension naming information if present, or integer
location in the list otherwise.

Primitives

Primitives are the third type of term defined in the astrodata gram-
mar. Primitives name transformations, and conceptually recieve a
list of input data and produce a list of output data. More technically
primitives recieve a ReductionContext, and this is what they
transform. Thus, strictly speaking they do not have to transform
datasets, and even may not transform the ReductionContext (i.e.
they may perform "the identity transformation").

The motivation for such primitives is to execute useful code
during a reduction, for example primitives that print information to
the log don’t modify the reduction context at all, much less the data
in the data stream. Also, some primitives can make queries about
which files to process, and put these filenames in the datastream.

This type of primitive will not have modified any datasets, but will
have modified the reduction context which contains all information
about an ongoing primitive-based reduction.

Nevertheless, most primitives exist to reduce data, so we still
think of primitives as transforming data, and the fact that they
actually transform reduction contexts is a technical detail only
sometimes important. As with descriptors different implementa-
tions share a common name. This is so type-specific implementa-
tions can be executed in a regular way at higher scopes where the
differences are not significant so long as incidental differences in
the dataset types are accomodated.

Unlike descriptors, primitives are not added as AstroData
members but are instead arranged into "recipes", which are simple
sequential lists of primitives. As mere lists of steps, recipes contain
no explicit conditionals. However, since each primitive executed
is guaranteed to load an implimentation appropriate for the input
dataset, recipes have an implicit type-based conditionality, or "type
adaptativity".

Take for example our "prepare" recipe. The "prepare" transfor-
mation is meant to take raw data from any instrument and produce
a somewhat normalized dataset, e.g. with standard namings, order,
some validation performed, and standard headers set correctly.

The prepare recipe:

validateData(repair=True)
standardizeStructure
standardizeHeaders
validateWCS

All Gemini data needs to be "prepared", and this recipe descibes
the procedure for them all. When executing this recipe, a list of
files are fed into the first primitive. This primitive does whatever
work on the inputs it is designed to do, and places its outputs in
the reduction context, where they are used as input for the next
step.

At each step the system checks the AstroData type of the
inputs for the about-to-be-executed step to ensure the correct
primitive implementation for that type is loaded and will be
executed.

Some of the primitives in "prepare" are general pur-
pose primitives, shared by all Gemini datasets and assigned
to the general purpose GEMINI Primitive Set. For example
standardizeHeaders is a fairly generic operation applying
to all Gemini data. The meager type-sensitive differences are
easilly handled in a single all purpose primitive.

On the other hand, the standardizeStructure primitive
will not be the same for all types of dataset, nor even for all
the modes within an instrument. For example, in the case of
SPECT types (spectroscopy), standardizeStructure will
add the appropriate Mask Definition File from our mask definition
database, while the implementation of the same primitive for
IMAGE types will not do this, since that table-HDU does not
apply to imaging.

Final Thoughts

Current and Future Activities

We are currently deploying the astrodata package internally at
Gemini for development and preliminary dataflow operations.
We have a medium term project to use astrodata’s primitive
transformation and automation features (aka "the Recipe System")
for Night Time Operations, but this is not in place at the moment.
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The astrodata infrastructure code is largely stable. Though
there is ongoing work, most work finishing the package is going
into the astrodata_Gemini configuration package. Descriptors for
all instruments already exist, and we are creating primitives for
the GMOS instrument’s imaging mode. We are making primitives
needed by GMOS-imaging as general as possible, and will hope-
fully benefit from some momentum as we work through primitive
sets for other instruments and modes. The type library of any given
instrument will be filled in detail during creation of primitives for
the given types. At the moment there are at least one type for
each instrument, and one for their IMAGE and SPECT modes as
applicable.

A fourth foundational term in the astrodata grammar exists in
prototype form and will be developed in the near future, called
"AstroData Structures", used for validation and also projecting
hierarchical structure onto the dataset.

As we develop AstroData and deploy it for Gemini-specific
purposes, we are interested in working with others in the future
to extend the system’s infrastructure and to support more types
of data with configuration packages designed to handle other
telescope’s data. Anyone interested should contact Craig Allen,
callen@gemini.edu, at Gemini Observatory, Data Processing Soft-
ware Group.

Speaking About Data

Creating a language about our data in order to inform the astrodata
software how our data should be organized has already helped us
to be more efficient and apt in our own communication about
dataflow, in our design and on our work to finished parts of the
system under development. We can apply terms directly, because
they map one to one with features AstroData can provide.

A large part of the advantage that has emerged from designing
the terms and details within the configuration in the way described
is that it focuses us on concepts first, seperately from implementa-
tion. Recipes, turn out to be good conceptual lynchpins for human
discussion on the type of reduction the recipe performs. Software
engineering details are compartmentalized to other discussions
about how to provide a well defined transformation in the case
of a particular AstroData Type.

Recipes support defining common steps separately from steps
that tend to requiring specialization, but moreover they promote
the practice since the system rewards proper granularity decisions
with more effective type adaptation. The result is that we are
concieving of better ways to describe transformations and what
we are transforming.

Prior to discussing recipes as such, the high concept, four or
five step description of a particlar reduction was hidden somewhat
opaquely in the machinations of the reduction script itself. Such
a script will tend to have the high level concepts obscured by
low level software plumbing. The ability to describe reductions
in terms of reasonably short recipes allows us to focus on this
descriptive level, and yet to know that the recipe discussed in
principle is actually what is executed.

Our configurations are becoming not merely where the astro-
data software system is told how to support a given instrument-
mode. They are instead becoming the official location of such
knowledge, because the configurations are largely human read-
able, and insofar as otherwise this knowledge is not recorded
clearly in a centralized way, but lives in the minds and distributed
web pages of Gemini instrument scientists and data analysts.

By inspiring us to think in terms of the abstract concepts
behind our data, we create and benefit from a language about
Gemini data. This in turn is affecting how we think about our data.
In the future, when we have incorporated the current state of affairs
into our AstroData configuration package, I suspect it will greatly
inform how we incorporate new instruments into the Gemini data
family, and to match their new, powerful, observations modes,
with the new powerful data reduction features needed to support
them.

Terms

astrodata

• astrodata, uncapitalized, is the astrodata pack-
age, i.e. import astrodata or "when im-
porting astrodata the Classification Li-
brary will be discovered and loaded".

• AstroData, with "CamelCase" names
the AstroData class, i.e.e ad =
AstroData("f.fits") or "When
loading a MEF into AstroData, the type
information is always loaded and available
after instantiation".

• Astrodata, with an initial capital names the
package in a general way, such as in a title or
description, e.g. "The Astrodata Package can
be imported using the name, ’astrodata’".

Note, it’s a subtle distinction, and probably best to
rely primarily on context to know which sense was
intended.

HDU
from pyfits, "Header Data Unit"

HDUList
from pyfits, list-like structure returned from py-
fits.open(..), and used internally by AstroData as the
open file handle.

pyfits
A library for loading MEF files in python, using
numpy for data sections. see STScI, http://www.stsci.
edu/resources/software_hardware/pyfits
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Divisi: Learning from Semantic Networks and Sparse
SVD

Rob Speer‡∗, Kenneth Arnold§, Catherine Havasi§
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Abstract—Singular value decomposition (SVD) is a powerful technique for
finding similarities and patterns in large data sets. SVD has applications in text
analysis, bioinformatics, and recommender systems, and in particular was used
in many of the top entries to the Netflix Challenge. It can also help generalize
and learn from knowledge represented in a sparse semantic network.

Although this operation is fundamental to many fields, it requires a signif-
icant investment of effort to compute an SVD from sparse data using Python
tools. Divisi is an answer to this: it combines NumPy, PySparse, and an exten-
sion module wrapping SVDLIBC, to make Lanczos’ algorithm for sparse SVD
easily usable within cross-platform Python code.

Divisi includes utilities for working with data in a variety of sparse formats,
including semantic networks represented as edge lists or NetworkX graphs. It
augments its matrices with labels, allowing you to keep track of the meaning of
your data as it passes through the SVD, and it can export the labeled data in a
format suitable for separate visualization GUIs.

Index Terms—SVD, sparse, linear algebra, semantic networks, graph theory

Introduction

Singular value decomposition (SVD) is a way of factoring an
arbitrary rectangular matrix, in order to express the data in terms
of its principal components. SVD can be used to reduce the
dimensionality of a large matrix, a key step in many domains,
including recommender systems, text mining, search, statistics,
and signal processing.

The truncated SVD, in which only the largest principal
components are calculated, is a particularly useful operation in
many fields because it can represent large amounts of data using
relatively small matrices. In many applications, the input to the
truncated SVD takes the form of a very large, sparse matrix, most
of whose entries are zero or unknown.

Divisi provides the Lanczos algorithm [Lan98] for performing
a sparse, truncated SVD, as well as useful tools for constructing
the input matrix and working with the results, in a reusable Python
package called divisi2. It also includes important operations
for preparing data such as normalization and mean-centering.
More experimentally, Divisi also includes implementations of
some SVD-inspired algorithms such as CCIPCA [Wen03] and
landmark multi-dimensional scaling [Sil04].

* Corresponding author: rspeer@mit.edu
‡ MIT Media Lab
§ MIT

Copyright © 2010 Rob Speer et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Using singular value decomposition, any matrix A can be
factored into an orthonormal matrix U , a diagonal matrix Σ, and an
orthonormal matrix V T , so that A =UΣV T . The singular values in
Σ can be ordered from largest to smallest, where the larger values
correspond to the vectors in U and V that are more significant
components of the initial A matrix. The largest singular values,
and their corresponding rows of U and columns of V , represent
the principal components of the data.

To create the truncated SVD, discard all but the first k compo-
nents—the principal components of A—resulting in the smaller
matrices Uk, Σk, and V T

k . The components that are discarded
represent relatively small variations in the data, and the principal
components form a low-rank approximation of the original data.
One can then reconstruct a smoothed version of the input matrix
as an approximation: A≈UkΣkV T

k = Ak.
To make it easier to work with SVD in understandable

Python code, Divisi provides an abstraction over sparse and dense
matrices that allows their rows and columns to be augmented
with meaningful labels, which persist through various matrix
operations.

The documentation for installing and using Divisi is hosted at
http://csc.media.mit.edu/docs/divisi2/.

Architecture

Divisi is built on a number of other software packages. It
uses NumPy [Oli10] to represent dense matrices, and PySparse
[Geu08] to represent sparse ones, and uses a Cython wrapper
around SVDLIBC [Roh10] to perform the sparse SVD. It can
optionally use NetworkX [Net10] to take input from a directed
graph such as a semantic network.

Divisi works with data in the form of labeled arrays. These
arrays can be sparse or dense, and they can be 1-D vectors or 2-D
matrices.

Figure 1 shows the relationships between classes in Divisi2.
The yellow-highlighted classes are the ones that are intended to be
instantiated. The core representations use multiple inheritance: for
example, the properties of a SparseMatrix are separately defined
by the fact that it is sparse and the fact that it is a 2-D matrix.

Sparse arrays encapsulate a PysparseMatrix from the
pysparse package, while dense arrays are a subclass of
numpy.ndarray and therefore support most NumPy opera-
tions. Both representations support NumPy-style "fancy indexing".

A vector contains a single, optional list of labels: if it exists,
each entry in the list corresponds to one entry in the vector. A
matrix may have two lists of labels: one assigns a label to each
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Fig. 1: Relationships between the main classes in Divisi 2.0, as well
as some externally-defined classes.

row, and another assigns a label to each column. The purpose of
these labels is to associate a meaning with each entry in a vector
or matrix, so that code can look up entries by what they mean
instead of simply by their position in the matrix.

The label lists themselves are instances of Divisi’s OrderedSet
class, which augments a list with a dictionary of its values, so
that it can perform the .index() operation—finding an entry
by its value—in constant time. This enables methods such as
SparseMatrix.row_named(label), efficiently returning
the row with a particular label.

One more important class is ReconstructedMatrix, which
lazily evaluates the matrix product of two DenseMatrices. This
allows using the SVD as an approximation to a large matrix,
but stores that large approximate matrix as a product of its SVD
factors instead, which requires much less memory.

Next, we will explain the features of Divisi through three
examples: performing latent semantic analysis (LSA) over doc-
uments from the Brown corpus, making movie recommendations
from a MovieLens data set, and drawing conclusions based on
ConceptNet (a semantic network of general knowledge).

Latent semantic analysis

One common use for Divisi is to make a topic model from a
number of documents using latent semantic analysis (LSA). LSA
typically consists of constructing a bag-of-words matrix of the
words that appear in various documents, normalizing that matrix
using tf-idf, and taking the SVD.

We’ll use as an example a collection of 44 documents from
the "news" section of the Brown corpus, a sample of which is
available through NLTK:

>>> import nltk
>>> nltk.download('brown')
>>> len(nltk.corpus.brown.fileids(['news']))
44

When searching for articles about, say, books, we don’t generally
care whether the document contained "book" or "books". NLTK
includes the Porter stemmer, which strips off endings:

>>> stemmer = nltk.PorterStemmer()
>>> stemmer.stem('books')
'book'

In the most basic form of LSA, each document is treated as a "bag
of words", ignoring all sequence and punctuation. The following
function yields all the stemmed words from a document in the
Brown corpus:

>>> import re; word_re = re.compile(r'[A-Za-z]')
>>> categories=['news']
>>> fileids = nltk.corpus.brown.fileids(categories)
>>> def normalized_words(fileid):
... for word in nltk.corpus.brown.words(fileid):
... if word_re.match(word):
... yield stemmer.stem(word.lower())

Now that we have the input data, we can load it into a Divisi
sparse matrix. The function divisi2.make_sparse1 creates
a sparse matrix from a list of entries, each of which is a tuple of
(value, row, col):

>>> from csc import divisi2
>>> entries = ((1, term, doc)
... for doc in fileids
... for term in normalized_words(doc))
>>> matrix = divisi2.make_sparse(entries)
>>> print matrix
SparseMatrix (8976 by 44)

ca01 ca02 ca03 ca04 ...
the 1.55e+02 1.34e+02 1.50e+02 1.60e+02
fulton 14.000000 --- --- ---
counti 17.000000 8.000000 2.000000 ---
grand 4.000000 --- 3.000000 ---
juri 19.000000 --- 5.000000 ---
said 24.000000 14.000000 17.000000 3.000000
...

A Divisi sparse matrix behaves like a NumPy array, but has
additional facilities for labeling entries. Notice that row and col
were both specified as strings (a term and a filename) rather than
numbers. The row_labels and col_labels attributes keep
track of what label is assigned to each row or column index:2:

>>> matrix.row_labels
<OrderedSet of 8976 items like the>
>>> matrix.col_labels
<OrderedSet of 44 items like ca01>
>>> matrix[0,0]
155.0
>>> matrix.entry_named('the', 'ca01')
155.0

That entry indicates that the word "the" appeared 155 times in
the first document alone. Such common words would overwhelm
the analysis: we should give less weight to words that appear in
nearly every document. Also, a document that is twice as long
as average should not necessarily be twice as influential. The
standard solution to these problems is called tf-idf normalization
and is one of several normalization capabilities provided by Divisi:

>>> normalized = matrix.normalize_tfidf().squish()

All Divisi normalization routines return a copy of their input. The
final .squish() call deals with words like "the": since they
appear in every document, their idf value, and thus the value of
every entry in the corresponding row, is 0. Rows and columns that
are all zeros leave part of the SVD result unconstrained, so we
remove them for numerical stability.

Next we can compute the SVD. The only parameter is the
number of singular values ("components") to keep. The optimal
value depends on the corpus and task at hand; it essentially
controls how much you want to fill in gaps in your data. Since
the corpus is small, we arbitrarily choose 10 for this example.

>>> u, sigma, v = normalized.svd(k=10)

1. The version of Divisi described in this paper, Divisi 2.0, would be
installed in a namespace package called csc. Divisi 2.2 can now be imported
directly as divisi2, but references to csc.divisi2 still work.

2. Example output in this paper is truncated or rounded for brevity.
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Here, sigma is an array of diagonal entries; the actual diagonal
matrix Σ is given by np.diag(sigma).

Since A ≈UΣV T , we can execute various queries simply by
matrix multiplication. For example, which documents are likely
to contain terms like "book"? That’s just a row of A. Using the
approximation, we can compute that row:

>>> from pprint import pprint
>>> booky = divisi2.dot(u.row_named('book'),

divisi2.dot(np.diag(sigma), v.T))
>>> pprint(booky.top_items(3))
[('ca44', 0.0079525209393728428),
('ca31', 0.0017088410316380212),
('ca18', 0.0010004880691358573)]

divisi2.dot is a wrapper around numpy.dot that ensures
that labels are maintained properly.

Reconstructing an approximate matrix

Divisi provides simpler ways of working with matrix reconstruc-
tions: the ReconstructedMatrix class:

>>> reconstructed = divisi2.reconstruct(u, sigma, v)
>>> booky2 = reconstructed.row_named('book')
>>> assert np.allclose(booky, booky2)

Another common query, often seen in blog posts, is which articles
are similar to the one in question. Mathematically, which other
document has the term vector with the highest dot product with
the term vector of this document? The answer is again found in a
matrix slice, this time of

AT A =V ΣUT UΣV T =V Σ2V T .

Again, Divisi provides functionality for easily slicing similar-
ity matrices:

>>> similar_docs = \
... divisi2.reconstruct_similarity(v, sigma)\
... .row_named('ca44')
>>> pprint(similar_docs.top_items(3))
[('ca44', 0.99999999999999978),
('ca31', 0.82249752503164653),
('ca33', 0.6026564223332086)]

By default, reconstruct_similarity normalizes the result
values to lie between -1 and 1.

Making recommendations

In the above example, we assumed that unspecified entries in
the input matrix were zero, representing a lack of knowledge.
When using SVD over a data set whose numeric values do not
meaningfully start at zero, some adjustments are necessary.

In the domain of movie recommendations, for example, the
input data often takes the form of star ratings that people assign
to movies, ranging from 1 to 5. A 5-star rating and a 1-star rating
are as different as can be, so a 5-star rating certainly does not have
the meaning of "a 1-star rating, but five times more so".

In fact, the scale of ratings differs among people and movies.
A movie rater may be very stingy with high ratings, so if they give
a movie five stars it is very meaningful. Likewise, a movie could
be widely panned, receiving a 1.1 star rating on average, so when
someone gives the movie five stars it says that there is something
very different about their taste in movies.

The movie rating problem can be broken down into two steps
[Kor09]: accounting for the biases in ratings inherent to each
movie and each person, and learning how people’s particular
preferences differ from those biases. We can represent the second

step as an SVD where zero does represent a lack of information,
and add the biases back in when we reconstruct the matrix.

To begin the example, load the MovieLens dataset of 100,000
movie ratings [Kon98], which is provided free from http://
grouplens.org:
>>> from csc import divisi2
>>> from csc.divisi2.dataset import movielens_ratings
>>> movie_data = divisi2.make_sparse(

movielens_ratings('data/movielens/u')).squish(5)

The "squish" method at the end discards users and movies with
fewer than 5 ratings.

With this data, for example, we can query for the movies with
the highest row bias (and therefore the highest average rating):
>>> import numpy as np
>>> movie_goodness = movie_data.row_op(np.mean)
>>> movie_goodness.top_items(5)
[('Pather Panchali (1955)', 4.625),
('Close Shave, A (1995)', 4.4910714285714288),
("Schindler's List (1993)", 4.4664429530201346),
('Wrong Trousers, The (1993)', 4.4661016949152543),
('Casablanca (1942)', 4.4567901234567904)]

We use the SparseMatrix.mean_center() method to
remove the biases, leaving only the differences from the mean,
calculate a 20-dimensional truncated SVD from those differences,
and reconstruct an approximate matrix that predicts people’s
movie ratings.
>>> movie_data2, row_shift, col_shift, total_shift =\
... movie_data.mean_center()
>>> recommendations = divisi2.reconstruct(
... U, S, V,
... shifts=(row_shift, col_shift, total_shift))

Let’s look in particular at user number 5, who rated 174 movies.
We can get a vector of their recommendations and query for the
best ones:
>>> recs_for_5 = recommendations.col_named(5)
>>> recs_for_5.top_items(5)
[('Star Wars (1977)', 4.816),
('Return of the Jedi (1983)', 4.549),
('Wrong Trousers, The (1993)', 4.529),
('Close Shave, A (1995)', 4.416),
('Empire Strikes Back, The (1980)', 4.392)]

We see that this user should really like the Star Wars Trilogy,
but this is unsurprising because the user in fact already told
MovieLens they liked those movies. To get true recommendations,
we should make sure to filter for movies they have not yet rated.
>>> recs_for_5 = recommendations.col_named(5)
>>> unrated = list(set(xrange(movie_data.shape[0]))
... - set(recs_for_5.nonzero_indices()))
>>> rec[unrated].top_items(5)
[('Wallace & Gromit: [...] (1996)', 4.197),
('Terminator, The (1984)', 4.103),
('Casablanca (1942)', 4.044),
('Pather Panchali (1955)', 4.004),
('Dr. Strangelove [...] (1963)', 3.998)]

And on the other end of the scale, if we look for the best anti-
recommendation in (-rec[unrated]), we find that user 5
should give "3 Ninjas: High Noon At Mega Mountain" a rating
of 0.24 stars.

SVD alone does not make a cutting-edge, high-quality rec-
ommender system, but it does a reasonable part of the job. This
process has been used as a component of many recommender
systems, including the Netflix Prize-winning system, Bellkor’s
Pragmatic Chaos [Kor09], and Divisi makes it easy to do in
Python.
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Learning from a semantic network

Divisi contains methods for learning from data in a semantic
network in NetworkX format. The network can contain labeled
nodes and labeled edges with weights on each edge, and can build
matrices that relate these to each other in a variety of ways.

This is an important feature of Divisi, because it extends its
scope to data that is not traditionally represented as a matrix. It
can learn from and generalize patterns that appear in any semantic
network, and it is especially effective if that network contains
redundancies or incomplete information. For this reason, we often
use it to learn from ConceptNet [Hav07], a network of people’s
general "common sense" knowledge about the real world. A graph
representation of ConceptNet 4.0 is included with Divisi 2.0.

The divisi2.network module defines the various ways
to extract information from these labeled semantic networks. Its
sparse_triples() function turns the list of edges into a
list of (value, rowlabel, columnlabel) triples that can be used to
build a sparse matrix, and uses the arguments row_labeler and
col_labeler to specify how the values are assigned to labels.
sparse_matrix() goes the extra step to turn these triples into
a matrix.

In many cases, the labeler will give two results for each edge,
because each edge connects two nodes. When the row and column
labelers both give two results, they will be paired up in contrary
order. The next example will clarify why this is useful.

One simple labeler is 'nodes', which extracts the source
and target nodes of each edge. If an edge of weight 1 con-
nects "dog" to "bark", then because of the contrary order rule,
sparse_matrix(graph, 'nodes', 'nodes') will put
a 1 in the entry whose row is "dog" and column is "bark", as well
as the entry whose row is "bark" and whose column is "dog". The
resulting overall matrix is the adjacency matrix of the graph.

'features' is a more complex labeler: it takes the edge
label into account as well, and describes an incoming or outgoing
edge, including the node on the other side of it. The idea is that
a node can be combined with a feature to completely describe an
edge.

For example, consider a weight-1 edge from "dog" to "mam-
mal", labeled with "IsA", expressing the assertion that "a dog is a
mammal". The matrix sparse_matrix(graph, 'nodes',
'features') will then express both the fact that the node "dog"
has the feature "IsA mammal", and that "mammal" has the feature
"dog IsA".

These features are represented with Divisi as 3-tuples of
(direction, edge label, node label), where direction is "left" or
"right" depending on whether this is an incoming or outgoing
edge.

Other possible labelers are "relations", which extracts just the
edge label, and "pairs", extracting the source and target nodes as
tuples, and more can be defined as functions.

The process called AnalogySpace [Spe08] involves making
a node vs. feature matrix of common sense knowledge and
generalizing it with a truncated SVD. We will show an example
of doing this with ConceptNet here.

Learning from ConceptNet

Start by loading the pre-defined ConceptNet 4.0 graph:

>>> conceptnet_graph = divisi2.load(
'data:graphs/conceptnet_en.graph')

We can break this graph down into nodes and features, and see a
sample of what it looks like:
>>> from csc.divisi2.network import sparse_matrix
>>> A = sparse_matrix(graph, 'nodes', 'features',

cutoff=3)
>>> print A
SparseMatrix (12564 by 19719)

IsA/spor IsA/game UsedFor/ UsedFor/
baseball 3.609584 2.043731 0.792481 0.500000
sport --- 1.292481 --- 1.000000
yo-yo --- --- --- ---
toy --- 0.500000 --- 1.160964
dog --- --- --- 0.792481
...

And with that, we can make a truncated SVD and reconstruct an
approximation to A:
>>> U, S, V = A.svd(k=100)
>>> Ak = divisi2.reconstruct(U, S, V)
>>> Ak.entry_named('pig', ('right', 'HasA', 'leg'))
0.15071150848740383
>>> Ak.entry_named('pig',

('right', 'CapableOf', 'fly'))
-0.26456066802309008

As shown in the earlier LSA example, we can also reconstruct
an approximation to the similarity matrix AT A, describing how
similar the nodes are to each other:
>>> sim = divisi2.reconstruct_similarity(U, S)
>>> sim.entry_named('horse', 'cow')
0.827
>>> sim.entry_named('horse', 'stapler')
-0.031
>>> sim.row_named('table').top_items()
[('table', 1.000), ('newspaper article', 0.694),
('dine table', 0.681), ('dine room table', 0.676),
('table chair', 0.669), ('dine room', 0.663),
('bookshelve', 0.636), ('table set', 0.629),
('home depot', 0.591), ('wipe mouth', 0.587)]

Recall that reconstruct_similarity normalizes its values
to between -1 and 1. Here, this normalization makes some nodes,
such as "newspaper article" and "home depot", get a spuriously
high weight because their truncated SVD vectors had low mag-
nitude. When ranking possible similarities—or, for that matter,
predictions for new assertions that could be true—we have found
it more useful to normalize the vectors to unit vectors before the
SVD, so that nodes that are weakly described by the SVD do not
end up magnified.

Divisi allows for pre-SVD normalization with the Sparse-
Matrix methods normalize_rows(), normalize_cols(),
and normalize_all(). (tf-idf normalization, like in the LSA
example, is also an option, but it is inappropriate here because it
de-emphasizes common concepts.) The first two scale the rows
or columns, respectively, of the input so that they become unit
vectors. However, normalizing the rows can further distort the
magnitudes of the columns, and vice versa, and there is no way
to exactly normalize both the rows and columns of an arbitrary
matrix.

We have found that a compromise works best: normalize each
entry by the geometric mean of its row and column magnitudes.
This is what SparseMatrix.normalize_all() does, and
we favor it in this case because not only does it put all the rows
and columns on approximately the same scale, it also increases
the predictive accuracy of the reconstructed SVD (which we will
be able to quantify in a moment).

In this representation, we can look again at the similarities for
"table":
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>>> U, S, V = A.normalize_all().svd(k=100)
>>> sim = divisi2.reconstruct_similarity(U, S)
>>> sim.row_named('table').top_items()
[('table', 1.718), ('desk', 1.195),
('kitchen', 0.988), ('chair', 0.873),
('restaurant', 0.850), ('plate', 0.822),
('bed', 0.772), ('cabinet', 0.678),
('refrigerator', 0.652), ('cupboard', 0.617)]

Choosing parameters

So far, we have used two parameters in this process without
justification: the method of normalization, and the value of k.

Instead of simply tweaking these parameters by hand, we
can bring in some test data and search for the parameters that
maximize the predictive value of the SVD. Because what we
care about is the relative ranking of statements, not the numerical
values they are assigned, a traditional mean-squared evaluation
does not exactly make sense.

However, using Divisi, we can evaluate how often the relative
ranking of a pair of assertions agrees with the ranking that a human
would give them. In the case of ConceptNet, we have already
acquired many such human-evaluated statements from evaluations
such as the one in [Spe08], so we use those as the source of gold-
standard rankings.

The ReconstructedMatrix.evaluate_ranking()
method is what we use to compare pairwise rankings in this way.
We can use it, first of all, to confirm that normalize_all()
performs better than the other possible normalization methods on
ConceptNet, leaving k fixed at 100. The results are:

• Without normalization: 68.47% agreement
• Using normalize_rows: 67.66% agreement
• Using normalize_cols: 67.30% agreement
• Using normalize_all: 70.77% agreement

Then, after applying that normalization method, we can try
truncated SVDs with various values of k.

>>> from csc.divisi2.network import conceptnet_matrix
>>> conceptnet = conceptnet_matrix('en').normalize_all()
>>> testdata = divisi2.load('usertest_data.pickle')
>>> accuracy_data = []
>>> for k in xrange(1, 200):
... U, S, V = conceptnet.svd(k=k)
... rec = divisi2.reconstruct(U, S, V)
... correct, total, accuracy =\
... rec.evaluate_ranking(testdata)
... accuracy_data.append(accuracy)

The plot of the resulting accuracy_data in Figure 2 shows a
plateau of good values of k, roughly between k = 100 and k = 200.

Memory use and scalability

The main use case of Divisi2 is to decompose a sparse matrix
whose entries fit in memory. The objects that primarily consume
memory are:

• The linked lists that comprise the PySparse matrix
• The compressed-sparse-column copy of this matrix used

by SVDLIBC
• The dense matrices U and V, and the vector S, that are

returned by SVDLIBC and used directly by NumPy
• The optional OrderedSets of labels (each using a Python

list and dictionary)

Each nonzero entry in a sparse matrix and each entry in a dense
matrix requires the space of a C double (assumed to be 8 bytes).

Fig. 2: Evaluating the predictive accuracy of the truncated SVD on
ConceptNet for various values of k.

The PySparse matrix also requires an integer (4 bytes), acting as
a pointer, for each entry. (This implementation incidentally limits
matrices to having fewer than 231 nonzero entries.) The non-zero
entries in the compressed-sparse-column matrix also come with
integer row numbers. Finally, each allocated row requires two
integer pointers.

So, without labels, a rank k decomposition of an m×n matrix
with z non-zero entries requires (24z+8m+8k(m+n)) bytes, plus
a negligible amount of overhead from Python and C structures. As
a practical example, it is possible within the 4 GiB memory limit
of 32-bit CPython to take a rank-100 decomposition of a 106×106

matrix with 108 entries, or a rank-10 decomposition of a 107×107

matrix with 108 entries, each of which requires 3.7 to 3.8 GiB plus
overhead.

In order to support even larger, denser data sets, Divisi 2.2
includes an experimental implementation of Hebbian incremental
SVD that does not require storing the sparse data in memory.

Conclusion

The SVD is a versatile analysis tool for many different kinds
of data. Divisi provides an easy way to compute the SVD of
large sparse datasets in Python, and additionally provides Pythonic
wrappers for performing common types of queries on the result.

Divisi also includes a variety of other functionality. For ex-
ample, it can analyze combinations of multiple matrices of data, a
technique called blending, which is useful for drawing conclusions
from multiple data sources simultaneously.

Further documentation about Divisi2, including the presen-
tation from SciPy 2010, is available at http://csc.media.mit.edu/
docs/divisi2/.
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Abstract—Theano is a compiler for mathematical expressions in Python that
combines the convenience of NumPy’s syntax with the speed of optimized
native machine language. The user composes mathematical expressions in a
high-level description that mimics NumPy’s syntax and semantics, while being
statically typed and functional (as opposed to imperative). These expressions
allow Theano to provide symbolic differentiation. Before performing computa-
tion, Theano optimizes the choice of expressions, translates them into C++ (or
CUDA for GPU), compiles them into dynamically loaded Python modules, all
automatically. Common machine learning algorithms implemented with Theano
are from 1.6× to 7.5× faster than competitive alternatives (including those
implemented with C/C++, NumPy/SciPy and MATLAB) when compiled for the
CPU and between 6.5× and 44× faster when compiled for the GPU. This
paper illustrates how to use Theano, outlines the scope of the compiler, provides
benchmarks on both CPU and GPU processors, and explains its overall design.

Index Terms—GPU, CUDA, machine learning, optimization, compiler, NumPy

Introduction

Python is a powerful and flexible language for describing large-
scale mathematical calculations, but the Python interpreter is in
many cases a poor engine for executing them. One reason is that
Python uses full-fledged Python objects on the heap to repre-
sent simple numeric scalars. To reduce the overhead in numeric
calculations, it is important to use array types such as NumPy’s
ndarray so that single Python objects on the heap can stand for
multidimensional arrays of numeric scalars, each stored efficiently
in the host processor’s native format.

[NumPy] provides an N-dimensional array data type, and
many functions for indexing, reshaping, and performing ele-
mentary computations (exp, log, sin, etc.) on entire arrays
at once. These functions are implemented in C for use within
Python programs. However, the composition of many such NumPy
functions can be unnecessarily slow when each call is dominated
by the cost of transferring memory rather than the cost of per-
forming calculations [Alted]. [numexpr] goes one step further by
providing a loop fusion optimization that can glue several element-
wise computations together. Unfortunately, numexpr requires an
unusual syntax (the expression must be encoded as a string within
the code), and at the time of this writing, numexpr is limited to op-
timizing element-wise computations. [Cython] and [scipy.weave]
address Python’s performance issue by offering a simple way to
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hand-write crucial segments of code in C (or a dialect of Python
which can be easily compiled to C, in Cython’s case). While this
approach can yield significant speed gains, it is labor-intensive:
if the bottleneck of a program is a large mathematical expression
comprising hundreds of elementary operations, manual program
optimization can be time-consuming and error-prone, making an
automated approach to performance optimization highly desirable.

Theano, on the other hand, works on a symbolic representation
of mathematical expressions, provided by the user in a NumPy-
like syntax. Access to the full computational graph of an expres-
sion opens the door to advanced features such as symbolic dif-
ferentiation of complex expressions, but more importantly allows
Theano to perform local graph transformations that can correct
many unnecessary, slow or numerically unstable expression pat-
terns. Once optimized, the same graph can be used to generate
CPU as well as GPU implementations (the latter using CUDA)
without requiring changes to user code.

Theano is similar to [SymPy], in that both libraries manipulate
symbolic mathematical graphs, but the two projects have a dis-
tinctly different focus. While SymPy implements a richer set of
mathematical operations of the kind expected in a modern com-
puter algebra system, Theano focuses on fast, efficient evaluation
of primarily array-valued expressions.

Theano is free open source software, licensed under the New
(3-clause) BSD license. It depends upon NumPy, and can option-
ally use SciPy. Theano includes many custom C and CUDA code
generators which are able to specialize for particular types, sizes,
and shapes of inputs; leveraging these code generators requires
gcc (CPU) and nvcc (GPU) compilers, respectively. Theano can
be extended with custom graph expressions, which can leverage
scipy.weave, PyCUDA, Cython, and other numerical libraries
and compilation technologies at the user’s discretion. Theano
has been actively and continuously developed and used since
January 2008. It has been used in the preparation of numerous
scientific papers and as a teaching platform for machine learning
in graduate courses at l’Université de Montréal. Documentation
and installation instructions can be found on Theano’s website
[theano]. All Theano users should subscribe to the announce1

mailing list (low traffic). There are medium traffic mailing lists
for developer discussion2 and user support3.

This paper is divided as follows: Case Study: Logistic Regres-
sion shows how Theano can be used to solve a simple problem in
statistical prediction. Benchmarking Results presents some results
of performance benchmarking on problems related to machine
learning and expression evaluation. What kinds of work does
Theano support? gives an overview of the design of Theano and
the sorts of computations to which it is suited. Compilation by
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theano.function provides a brief introduction to the compilation
pipeline. Limitations and Future Work outlines current limitations
of our implementation and currently planned additions to Theano.

Case Study: Logistic Regression

To get a sense of how Theano feels from a user’s perspective, we
will look at how to solve a binary logistic regression problem.
Binary logistic regression is a classification model parameterized
by a weight matrix W and bias vector b. The model estimates the
probability P(Y = 1|x) (which we will denote with shorthand p)
that the input x belongs to class y = 1 as:

P(Y = 1|x(i)) = p(i) =
eWx(i)+b

1+ eWx(i)+b
(1)

The goal is to optimize the log probability of N training
examples, D = {(x(i),y(i)),0 < i ≤ N}), with respect to W and
b. To maximize the log likelihood we will instead minimize the
(average) negative log likelihood4:

`(W,b) =− 1
N ∑

i
y(i) log p(i)+(1− y(i)) log(1− p(i)) (2)

To make it a bit more interesting, we can also include an `2
penalty on W , giving a cost function E(W,b) defined as:

E(W,b) = `(W,b)+0.01∑
i

∑
j

w2
i j (3)

In this example, tuning parameters W and b will be done
through stochastic gradient descent (SGD) on E(W,b). Stochastic
gradient descent is a method for minimizing a differentiable
loss function which is the expectation of some per-example loss
over a set of training examples. SGD estimates this expectation
with an average over one or several examples and performs a
step in the approximate direction of steepest descent. Though
more sophisticated algorithms for numerical optimization exist, in
particular for smooth convex functions such as E(W,b), stochastic
gradient descent remains the method of choice when the number
of training examples is too large to fit in memory, or in the setting
where training examples arrive in a continuous stream. Even with
relatively manageable dataset sizes, SGD can be particularly ad-
vantageous for non-convex loss functions (such as those explored
in Benchmarking Results), where the stochasticity can allow the
optimizer to escape shallow local minima [Bottou].

According to the SGD algorithm, the update on W is

W ←W −µ
1
N′ ∑i

∂E(W,b,x,y)
∂W

∣∣∣∣
x=x(i),y=y(i)

, (4)

where µ = 0.1 is the step size and N is the number of examples
with which we will approximate the gradient (i.e. the number of
rows of x). The update on b is likewise

b← b−µ
1
N′ ∑i

∂E(W,b,x,y)
∂b

∣∣∣∣
x=x(i),y=y(i)

. (5)

1. http://groups.google.com/group/theano-announce
2. http://groups.google.com/group/theano-dev
3. http://groups.google.com/group/theano-users
4. Taking the mean in this fashion decouples the choice of the regularization

coefficient and the stochastic gradient step size from the number of training
examples.

Implementing this minimization procedure in Theano involves
the following four conceptual steps: (1) declaring symbolic vari-
ables, (2) using these variables to build a symbolic expression
graph, (3) compiling Theano functions, and (4) calling said
functions to perform numerical computations. The code listings
in Figures 1 - 4 illustrate these steps with a working program that
fits a logistic regression model to random data.

1: import numpy
2: import theano.tensor as T
3: from theano import shared, function
4:
5: x = T.matrix()
6: y = T.lvector()
7: w = shared(numpy.random.randn(100))
8: b = shared(numpy.zeros(()))
9: print "Initial model:"
10: print w.get_value(), b.get_value()

Fig. 1: Logistic regression, part 1: declaring variables.

The code in Figure 1 declares four symbolic variables x, y
w, and b to represent the data and parameters of the model. Each
tensor variable is strictly typed to include its data type, its number
of dimensions, and the dimensions along which it may broadcast
(like NumPy’s broadcasting) in element-wise expressions. The
variable x is a matrix of the default data type (float64), and y
is a vector of type long (or int64). Each row of x will store an
example x(i), and each element of y will store the corresponding
label y(i). The number of examples to use at once represents a
tradeoff between computational and statistical efficiency.

The shared() function creates shared variables for W and
b and assigns them initial values. Shared variables behave much
like other Theano variables, with the exception that they also
have a persistent value. A shared variable’s value is maintained
throughout the execution of the program and can be accessed with
.get_value() and .set_value(), as shown in line 10.

11: p_1 = 1 / (1 + T.exp(-T.dot(x, w)-b))
12: xent = -y*T.log(p_1) - (1-y)*T.log(1-p_1)
13: cost = xent.mean() + 0.01*(w**2).sum()
14: gw,gb = T.grad(cost, [w,b])
15: prediction = p_1 > 0.5

Fig. 2: Logistic regression, part 2: the computation graph.

The code in Figure 2 specifies the computational graph re-
quired to perform stochastic gradient descent on the parame-
ters of our cost function. Since Theano’s interface shares much
in common with that of NumPy, lines 11-15 should be self-
explanatory for anyone familiar with that module. On line 11,
we start by defining P(Y = 1|x(i)) as the symbolic variable p_1.
Notice that the matrix multiplication and element-wise exponential
functions are simply called via the T.dot and T.exp functions,
analogous to numpy.dot and numpy.exp. xent defines the
cross-entropy loss function, which is then combined with the `2
penalty on line 13, to form the cost function of Eq (3) and denoted
by cost.

Line 14 is crucial to our implementation of SGD, as it performs
symbolic differentiation of the scalar-valued cost variable with
respect to variables w and b. T.grad operates by iterating
backwards over the expression graph, applying the chain rule of
differentiation and building symbolic expressions for the gradients
on w and b. As such, gw and gb are also symbolic Theano vari-
ables, representing ∂E/∂W and ∂E/∂b respectively. Finally, line
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15 defines the actual prediction (prediction) of the logistic
regression by thresholding P(Y = 1|x(i)).

16: predict = function(inputs=[x], 
17:                    outputs=prediction)
18: train = function(
19:             inputs=[x,y],
20:             outputs=[prediction, xent],
21:             updates={w:w-0.1*gw, b:b-0.1*gb})

Fig. 3: Logistic regression, part 3: compilation.

The code of Figure 3 creates the two functions required
to train and test our logistic regression model. Theano func-
tions are callable objects that compute zero or more outputs
from values given for one or more symbolic inputs. For exam-
ple, the predict function computes and returns the value of
prediction for a given value of x. Parameters w and b are
passed implicitly - all shared variables are available as inputs to
all functions as a convenience to the user.

Line 18 (Figure 3) which creates the train function high-
lights two other important features of Theano functions: the
potential for multiple outputs and updates. In our example, train
computes both the prediction (prediction) of the classifier
as well as the cross-entropy error function (xent). Computing
both outputs together is computationally efficient since it allows
for the reuse of intermediate computations, such as dot(x,w).
The optional updates parameter enables functions to have side-
effects on shared variables. The updates argument is a dictionary
which specifies how shared variables should be updated after all
other computation for the function takes place, just before the
function returns. In our example, calling the train function will
update the parameters w and b with new values as per the SGD
algorithm.

22: N = 4
23: feats = 100
24: D = (numpy.random.randn(N, feats),
25:      numpy.random.randint(size=N,low=0, high=2))
26: training_steps = 10
27: for i in range(training_steps):
28:     pred, err = train(D[0], D[1])
29: print "Final model:",
30: print w.get_value(), b.get_value()
31: print "target values for D", D[1]
32: print "prediction on D", predict(D[0])

Fig. 4: Logistic regression, part 4: computation.

Our example concludes (Figure 4) by using the functions
train and predict to fit the logistic regression model. Our
data D in this example is just four random vectors and labels.
Repeatedly calling the train function (lines 27-28) fits our
parameters to the data. Note that calling a Theano function is
no different than calling a standard Python function: the graph
transformations, optimizations, compilation and calling of efficient
C-functions (whether targeted for the CPU or GPU) have all been
done under the hood. The arguments and return values of these
functions are NumPy ndarray objects that interoperate normally
with other scientific Python libraries and tools.

Benchmarking Results

Theano was developed to simplify the implementation of com-
plex high-performance machine learning algorithms. This section
presents performance in two processor-intensive tasks from that

Fig. 5: Fitting a multi-layer perceptron to simulated data with various
implementations of stochastic gradient descent. These models have
784 inputs, 500 hidden units, a 10-way classification, and are trained
60 examples at a time.

domain: training a multi-layer perceptron (MLP) and training a
convolutional network. We chose these architectures because of
their popularity in the machine learning community and their
different computational demands. Large matrix-matrix multiplica-
tions dominate in the MLP example and two-dimensional image
convolutions with small kernels are the major bottleneck in a
convolutional network. More information about these models and
their associated learning algorithms is available from the Deep
Learning Tutorials [DLT]. The implementations used in these
benchmarks are available online [dlb].

CPU timing was carried out on an an Intel(R) Core(TM)2 Duo
CPU E8500 @ 3.16GHz with 2 GB of RAM. All implementations
were linked against the BLAS implemented in the Intel Math Ker-
nel Library, version 10.2.4.032 and allowed to use only one thread.
GPU timing was done on a GeForce GTX 285. CPU computations
were done at double-precision, whereas GPU computations were
done at single-precision.

Our first benchmark involves training a single layer MLP
by stochastic gradient descent. Each implementation repeatedly
carried out the following steps: (1) multiply 60 784-element input
vectors by a 784×500 weight matrix, (2) apply an element-wise
hyperbolic tangent operator (tanh) to the result, (3) multiply the
result of the tanh operation by a 500×10 matrix, (4) classify the
result using a multi-class generalization of logistic regression, (5)
compute the gradient by performing similar calculations but in
reverse, and finally (6) add the gradients to the parameters. This
program stresses element-wise computations and the use of BLAS
routines.

Figure 5 compares the number of examples processed per sec-
ond across different implementations. We compared Theano (re-
vision #ec057beb6c) against NumPy 1.4.1, MATLAB 7.9.0.529,
and Torch 5 (a machine learning library written in C/C++) [torch5]
on the CPU and GPUMat 0.25 for MATLAB ([gpumat]) on the
GPU.

When running on the CPU, Theano is 1.8x faster than NumPy,
1.6x faster than MATLAB, and 7.5x faster than Torch 5.5 Theano’s
speed increases 5.8x on the GPU from the CPU, a total increase
of 11x over NumPy (CPU) and 44x over Torch 5 (CPU). GPUmat
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Fig. 6: Fitting a convolutional network using different software. The
benchmark stresses convolutions of medium-sized (256 by 256) images
with small (7 by 7) filters.

brings about a speed increase of only 1.4x when switching to
the GPU for the MATLAB implementation, far less than the 5.8x
increase Theano achieves through CUDA specializations.

Because of the difficulty in implementing efficient convolu-
tional networks, we only benchmark against known libraries that
offer a pre-existing implementation. We compare against EBLearn
[EBL] and Torch, two libraries written in C++. EBLearn was
implemented by Yann LeCun’s lab at NYU, who have done exten-
sive research in convolutional networks. To put these results into
perspective, we implemented approximately half (no gradient cal-
culation) of the algorithm using SciPy’s signal.convolve2d
function. This benchmark uses convolutions of medium sized
images (256× 256) with small filters (7× 7). Figure 6 compares
the performance of Theano (both CPU and GPU) with that of
competing implementations. On the CPU, Theano is 2.2x faster
than EBLearn, its best competitor. This advantage is owed to the
fact that Theano compiles more specialized convolution routines.
Theano’s speed increases 4.9x on the GPU from the CPU, a
total of 10.7x over EBLearn (CPU). On the CPU, Theano is
5.8x faster than SciPy even though SciPy is doing only half the
computations. This is because SciPy’s convolution routine has not
been optimized for this application.

We also compared Theano with numexpr and NumPy for
evaluating element-wise expressions on the CPU (Figure 7). For
small amounts of data, the extra function-call overhead of numexpr
and Theano makes them slower. For larger amounts of data, and
for more complicated expressions, Theano is fastest because it
uses an implementation specialized for each expression.

What kinds of work does Theano support?

Theano’s expression types cover much of the same functionality as
NumPy, and include some of what can be found in SciPy. Table 1
lists some of the most-used expressions in Theano. More extensive
reference documentation is available online [theano].

Theano’s strong suit is its support for strided N-dimensional
arrays of integers and floating point values. Signed and unsigned

5. Torch was designed and implemented with flexibility in mind, not speed
(Ronan Collobert, p.c.).
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Fig. 7: Speed comparison between NumPy, numexpr, and Theano for
different sizes of input on four element-wise formulae. In each subplot,
the solid blue line represents Theano, the dashed red line represent
numexpr, and performance is plotted with respect to NumPy.

integers of all native bit widths are supported, as are both
single-precision and double-precision floats. Single-precision and
double-precision complex numbers are also supported, but less so
- for example, gradients through several mathematical functions
are not implemented. Roughly 90% of expressions for single-
precision N-dimensional arrays have GPU implementations. Our
goal is to provide GPU implementations for all expressions sup-
ported by Theano.

Random numbers are provided in two ways: via NumPy’s
random module, and via an internal generator from the
MRG family [Ecu]. Theano’s RandomStreams replicates the
numpy.random.RandomState interface, and acts as a proxy
to NumPy’s random number generator and the various random
distributions that use it. The MRG_RandomStreams class im-
plements a different random number generation algorithm (called
MRG31k3p) that maps naturally to GPU architectures. It is
implemented for both the CPU and GPU so that programs can
produce the same results on either architecture without sacrificing
speed. The MRG_RandomStreams class offers a more limited
selection of random number distributions than NumPy though:
uniform, normal, and multinomial.

Sparse vectors and matrices are supported via SciPy’s
sparse module. Only compressed-row and compressed-column
formats are supported by most expressions. There are expressions
for packing and unpacking these sparse types, some operator
support (e.g. scaling, negation), matrix transposition, and matrix
multiplication with both sparse and dense matrices. Sparse expres-
sions currently have no GPU equivalents.

There is also support in Theano for arbitrary Python objects.
However, there are very few expressions that make use of that
support because the compilation pipeline works on the basis of
inferring properties of intermediate results. If an intermediate
result can be an arbitrary Python object, very little can be inferred.
Still, it is occasionally useful to have such objects in Theano
graphs.

Theano has been developed to support machine learning re-
search, and that has motivated the inclusion of more specialized
expression types such as the logistic sigmoid, the softmax func-



22 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Operators +, -, /, *, **, //, eq, neq, <, <=, >, >=,
&, |, ^

Allocation alloc, eye, [ones,zeros]_like,
identity{_like}

Indexing* basic slicing (see set_subtensor and
inc_subtensor for slicing lvalues); lim-
ited support for advanced indexing

Mathematical
Functions

exp, log, tan[h], cos[h], sin[h],
real, imag, sqrt, floor, ceil,
round, abs

Tensor
Operations

all, any, mean, sum, min, max,
var, prod, argmin, argmax, reshape,
flatten, dimshuffle

Conditional cond, switch

Looping Scan

Linear Al-
gebra

dot, outer, tensordot, diag,
cholesky, inv, solve

Calculus* grad

Signal
Processing

conv2d, FFT, max_pool_2d

Random RandomStreams,
MRG_RandomStreams

Printing Print

Sparse compressed row/col storage, limited opera-
tor support, dot, transpose, conversion
to/from dense

Machine
Learning

sigmoid, softmax, multi-class hinge loss

TABLE 1: Overview of Theano’s core functionality. This list is not ex-
haustive, and is superseded by the online documentation. More details
are given in text for items marked with an asterisk. dimshuffle is
like numpy.swapaxes.

tion, and multi-class hinge loss.

Compilation by theano.function

What happens under the hood when creating a function? This
section outlines, in broad strokes, the stages of the compilation
pipeline. Prior to these stages, the expression graph is copied so
that the compilation process does not change anything in the graph
built by the user. As illustrated in Figure 8, the expression graph
is subjected to several transformations: (1) canonicalization, (2)
stabilization, (3) specialization, (4) optional GPU transfer, (5) code
generation. There is some overlap between these transformations,
but at a high level they have different objectives. (The interested
reader should note that these transformations correspond roughly,
but not exactly to the optimization objects that are implemented in
the project source code.)

Canonicalization

The canonicalization transformation puts the user’s expression
graph into a standard form. For example, duplicate expres-
sions are merged into a single expression. Two expressions

Canonicalization

Stabilization

Specialization

GPU Transfer

Code Generation

Fig. 8: The compilation pipeline for functions compiled for GPU.
Functions compiled for the CPU omit the GPU transfer step.

are considered duplicates if they carry out the same opera-
tion and have the same inputs. Since Theano expressions are
purely functional (i.e., cannot have side effects), these expres-
sions must return the same value and thus it is safe to per-
form the operation once and reuse the result. The symbolic
gradient mechanism often introduces redundancy, so this step is
quite important. For another example, sub-expressions involv-
ing only multiplication and division are put into a standard
fraction form (e.g. a / (((a * b) / c) / d) -> (a *
c * d) / (a * b) -> (c * d) / (b)). Some useless
calculations are eliminated in this phase, for instance cancelling
out uses of the a term in the previous example, but also reducing
exp(log(x)) to x, and computing outright the values of any
expression whose inputs are fully known at compile time. Canon-
icalization simplifies and optimizes the graph to some extent, but
its primary function is to collapse many different expressions into
a single normal form so that it is easier to recognize expression
patterns in subsequent compilation stages.

Stabilization

The stabilization transformation improves the numerical stability
of the computations implied by the expression graph. For instance,
consider the function log(1 + exp(x)), which tends toward
zero as limx→−∞, and x as limx→−∞. Due to limitations in the
representation of double precision numbers, the computation as
written yields infinity for x > 709. The stabilization phase
replaces patterns like one with an expression that simply returns x
when x is sufficiently large (using doubles, this is accurate beyond
the least significant digit). It should be noted that this phase cannot
guarantee the stability of computations. It helps in some cases, but
the user is still advised to be wary of numerically problematic
computations.

Specialization

The specialization transformation replaces expressions with faster
ones. Expressions like pow(x,2) become sqr(x). Theano also
performs more elaborate specializations: for example, expressions
involving scalar-multiplied matrix additions and multiplications
may become BLAS General matrix multiply (GEMM) nodes and
reshape, transpose, and subtensor expressions (which
create copies by default) are replaced by constant-time versions
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that work by aliasing memory. Expressions subgraphs involv-
ing element-wise operations are fused together (as in numexpr)
in order to avoid the creation and use of unnecessary tempo-
rary variables. For instance, if we denote the a + b operation
on tensors as map(+, a, b), then an expression such as
map(+, map(*, a, b), c) would become map(lambda
ai,bi,ci: ai*bi+ci, a, b, c). If the user desires to
use the GPU, expressions with corresponding GPU implemen-
tations are substituted in, and transfer expressions are introduced
where needed. Specialization also introduces expressions that treat
inputs as workspace buffers. Such expressions use less memory
and make better use of hierarchical memory, but they must be used
with care because they effectively destroy intermediate results.
Many expressions (e.g. GEMM and all element-wise ones) have
such equivalents. Reusing memory this way allows more compu-
tation to take place on GPUs, where memory is at a premium.

Moving Computation to the GPU

Each expression in Theano is associated with an implementation
that runs on either the host (a host expression) or a GPU device
(a GPU expression). The GPU-transfer transformation replaces
host expressions with GPU expressions. The majority of host
expression types have GPU equivalents and the proportion is
always growing.

The heuristic that guides GPU allocation is simple: if any input
or output of an expression resides on the GPU and the expression
has a GPU equivalent, then the GPU equivalent is substituted
in. Shared variables storing float32 tensors default to GPU
storage, and the expressions derived from them consequently
default to using GPU implementations. It is possible to explicitly
force any float32 variable to reside on the GPU, so one can start
the chain reaction of optimizations and use the GPU even in graphs
with no shared variables. It is possible (though awkward, and
discouraged) to specify exactly which computations to perform
on the GPU by disabling the default GPU optimizations.

Tensors stored on the GPU use a special internal data type with
an interface similar to the ndarray. This datatype fully supports
strided tensors, and arbitrary numbers of dimensions. The support
for strides means that several operations such as the transpose and
simple slice indexing can be performed in constant time.

Code Generation

The code generation phase of the compilation process produces
and loads dynamically-compiled Python modules with specialized
implementations for the expressions in the computation graph.
Not all expressions have C (technically C++) implementations, but
many (roughly 80%) of Theano’s expressions generate and com-
pile C or CUDA code during theano.function. The majority
of expressions that generate C code specialize the code based on
the dtype, broadcasting pattern, and number of dimensions of their
arguments. A few expressions, such as the small-filter convolution
(conv2d), further specialize code based on the size the arguments
will have.

Why is it so important to specialize C code in this way?
Modern x86 architectures are relatively forgiving of code that
does not make good use techniques such as loop unrolling and
prefetching contiguous blocks of memory, and only the conv2d
expression goes to any great length to generate many special case
implementations for the CPU. By comparison, GPU architectures
are much less forgiving of code that is not carefully specialized

for the size and physical layout of function arguments. Conse-
quently, the code generators for GPU expressions like GpuSum,
GpuElementwise, and GpuConv2d generate a wider variety
of implementations than their respective host expressions. With
the current generation of graphics cards, the difference in speed
between a naïve implementation and an optimal implementation of
an expression as simple as matrix row summation can be an order
of magnitude or more. The fact that Theano’s GPU ndarray-like
type supports strided tensors makes it even more important for the
GPU code generators to support a variety of memory layouts.
These compile-time specialized CUDA kernels are integral to
Theano’s GPU performance.

Limitations and Future Work

While most of the development effort has been directed at making
Theano produce fast code, not as much attention has been paid
to the optimization of the compilation process itself. At present,
the compilation time tends to grow super-linearly with the size of
the expression graph. Theano can deal with graphs up to a few
thousand nodes, with compilation times typically on the order of
seconds. Beyond that, it can be impractically slow, unless some
of the more expensive optimizations are disabled, or pieces of the
graph are compiled separately.

A Theano function call also requires more overhead (on the
order of microseconds) than a native Python function call. For
this reason, Theano is suited to applications where functions
correspond to expressions that are not too small (see Figure 7).

The set of types and operations that Theano provides continues
to grow, but it does not cover all the functionality of NumPy and
covers only a few features of SciPy. Wrapping functions from
these and other libraries is often straightforward, but implementing
their gradients or related graph transformations can be more
difficult. Theano does not yet have expressions for sparse or dense
matrix inversion, nor linear algebra decompositions, although
work on these is underway outside of the Theano trunk. Support
for complex numbers is also not as widely implemented or as well-
tested as for integers and floating point numbers. NumPy arrays
with non-numeric dtypes (strings, Unicode, Python objects) are
not supported at present.

We expect to improve support for advanced indexing and linear
algebra in the coming months. Documentation online describes
how to add new operations and new graph transformations. There
is currently an experimental GPU version of the scan operation,
used for looping, and an experimental lazy-evaluation scheme for
branching conditionals.

The library has been tuned towards expressions related to
machine learning with neural networks, and it is not as well tested
outside of this domain. Theano is not a powerful computer algebra
system, and it is an important area of future work to improve its
ability to recognize numerical instability in complicated element-
wise expression graphs.

Debugging Theano functions can require non-standard tech-
niques and Theano specific tools. The reason is two-fold: 1) defi-
nition of Theano expressions is separate from their execution, and
2) optimizations can introduce many changes to the computation
graph. Theano thus provides separate execution modes for Theano
functions, which allows for automated debugging and profiling.
Debugging entails automated sanity checks, which ensure that
all optimizations and graph transformations are safe (Theano
compares the results before and after their application), as well
as comparing the outputs of both C and Python implementations.
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We plan to extend GPU support to the full range of C data
types, but only float32 tensors are supported as of this writing.
There is also no support for sparse vectors or matrices on the
GPU, although algorithms from the CUSPARSE package should
make it easy to add at least basic support for sparse GPU objects.

Conclusion

Theano is a mathematical expression compiler for Python that
translates high level NumPy-like code into machine language
for efficient CPU and GPU computation. Theano achieves good
performance by minimizing the use of temporary variables, mini-
mizing pressure on fast memory caches, making full use of gemm
and gemv BLAS subroutines, and generating fast C code that
is specialized to sizes and constants in the expression graph.
Theano implementations of machine learning algorithms related
to neural networks on one core of an E8500 CPU are up to 1.8
times faster than implementations in NumPy, 1.6 times faster than
MATLAB, and 7.6 times faster than a related C++ library. Using
a Nvidia GeForce GTX285 GPU, Theano is an additional 5.8
times faster. One of Theano’s greatest strengths is its ability to
generate custom-made CUDA kernels, which can not only sig-
nificantly outperform CPU implementations but alternative GPU
implementations as well.
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A High Performance Robot Vision Algorithm
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Abstract—A crucial behavior for assistive robots that operate in unstructured
domestic settings is the ability to efficiently reconstruct the 3D geometry of novel
objects at run time using no a priori knowledge of the object. This geometric
information is critical for the robot to plan grasping and other manipulation
maneuvers, and it would be impractical to employ database driven or other prior
knowledge based schemes since the number and variety of objects that system
may be tasked to manipulate are large.

We have developed a robot vision algorithm capable of reconstructing the
3D geometry of a novel object using only three images of the object captured
from a monocular camera in an eye-in-hand configuration. The reconstructions
are sufficiently accurate approximations such that the system can use the re-
covered model to plan grasping and manipulation maneuvers. The three images
are captured from disparate locations and the object of interest segmented from
the background and converted to a silhouette. The three silhouettes are used to
approximate the surface of the object in the form of a point cloud. The accuracy
of the approximation is then refined by regressing an 11 parameter superquadric
to the cloud of points. The 11 parameters of the recovered superquadric then
serve as the model of the object.

The entire system is implemented in Python and Python related projects.
Image processing tasks are performed with NumPy arrays making use of
Cython for performance critical tasks. Camera calibration and image segmen-
tation utilize the Python bindings to the OpenCV library which are available
in the scikits.image project. The non-linear constrained optimization uses the
fmin_l_bfgs_b algorithm in scipy.optimize. The algorithm was first vetted in a
simulation environment built on top of Enthought Traits and Mayavi.

The hardware implementation utilizes the Python OpenOPC project to
communicate with and control a Kuka KR 6/2 six axis industrial manipulator.
Images are captured via an Axis 207MW wireless network camera by issuing
cgi requests to the camera with the urllib2 module. The image data is converted
from JPEG to RGB raster format with the Python Imaging Library. The core
algorithm runs as a server on a standalone machine and is accessed using
the XML-RPC protocol. Not including the time required for the robot to capture
the images, the entire reconstruction process is executed, on average, in 300
milliseconds.

Index Terms—computer vision, real-time, geometry, robotics

1. Introduction

Recently, the robotics and automation literature has seen an
increase in research focus on the autonomous pose and shape
estimation of general objects. The intent of these studies is that
the pose and shape information of objects can be used to plan
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grasping and manipulation maneuvers. In this context, such object
recognition abilities have a plethora of applications that span mul-
tiple domains including, but not limited to: industrial automation,
assistive devices, and rehabilitation robotics. Up to this point, a
large portion of the research has focused on recognizing objects in
which the system has some form of a priori knowledge; usually
a 3D model or set of images of the object taken from various
angles along with a database of information describing the objects.
Recent examples of work in this area can be found in eg. [Kim09],
[Effendi08], [Schlemmer07], [Liefhebber07], [Kragic05].

We approach this problem with the goal that the system need
not have any prior knowledge of the object it wishes to manipulate.
In the context of assistive or service robotics, requiring such 3D
models or a database of information for every possible object
would be prohibitively tedious and time consuming, thus severely
limiting its usefulness and applicability. In order to achieve this
goal, we attempt to describe generic objects in a bulk fashion. That
is, to autonomously model an object’s actual physical form at run
time with a simplified shape that is an approximation; one which
is also sufficiently accurate to allow for the planning and execution
of grasping maneuvers. In our previous works [Colbert10_1],
[Colbert10_2], we describe in detail the development of an al-
gorithm that accomplishes just this. Only a brief overview of
that theoretical work is presented here. Rather, the majority of
this paper focuses on the implementation of that algorithm on an
industrial manipulator and the accuracy of the reconstruction that
results.

The paper progresses as follows: Section 2 provides the high
level overview of the algorithm with some diagrams and a step-
by-step visual example to ease conceptual understanding, Section
3 describes the software implementation of the algorithm, Sec-
tion 4 describes the robotic hardware implementation to include
networking and control, Section 5 elaborates on the testing and
overall accuracy of the platform and algorithm under real-world
conditions. We round out the paper with some conclusions in
Section 6.

2. Algorithm Overview

This section provides a high-level overview of the theory behind
our object reconstruction algorithm. No equations are presented.
Rather the algorithm is explained qualitatively and the interested
reader is directed to one of our previous works that develop the
theory in detail: [Colbert10_1], [Colbert10_2].
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2.1 Shape from Silhouettes

The first phase or our algorithm generates a rough approximation
to the surface of an object using a method that falls under the
category of shape from silhouettes. Algorithms of this class use
a number of silhouettes of an object of interest captured from
various vantage points and, by back-projecting the visual cones
and finding their union, reconstruct the geometry of the object. As
the number of available silhouettes increases to infinity, the recon-
struction converges on the visual hull of the object [Laurentini94].
That is, the reconstruction will converge to the true shape of the
object, minus any concavities. The method by which the visual
cones are back projected varies from algorithm to algorithm, but
most have typically used a variation of voxel coloring or space
carving [Dyer01]. Our method is a modified version of a recently
introduced new method of shape from silhouettes [Lippiello09].
Our modification to this algorithm utilizes projective geometry to
eliminate the iteration step required in the original algorithm. The
result is a shape from silhouettes algorithm that is conceptually
easier to understand and computationally more efficient than
historical methods.

Our algorithm begins by capturing three images of the ob-
ject of interest from three disparate locations, and segmenting
the object from the background. The segmented object is then
converted to a silhouette. Then, using these silhouettes along
with the known camera parameters, the 3D centroid of the object
of interest is estimated. Along with the centroid, we estimate a
radius of the object, which we define as a distance from the
estimated centroid that would define the radius of a sphere that
would fully encompass the object. Once this centroid and radius
are determined, a virtual sphere of points can be constructed
which fully encompasses the object. For each of the points in the
sphere, the point is projected into the silhouette image and tested
for intersection. If the point intersects the silhouette, nothing is
done. However, if the point does not intersect the silhouette, its
position in 3-space is modified such that its projected location
in the image lies on the boundary of the silhouette. When this
process is repeated for each silhouette, the resulting set of points
will approximate the surface of the object. The geometry can be
described with the following procedure and associated graphic:

1) Let the center of the camera be c0.
2) Let the center of the sphere be x0.
3) Let xi be any point in the sphere other than x0.
4) Let xinew be the updated position of point xi.
5) Let the projection of the center of the sphere into the

image be x′0.
6) Then, for each point xi:

a) Project xi into the silhouette image to get x′i.
b) If x′i does not intersect the silhouette:

i) Find the pixel point p′ that lies on the edge
of the silhouette along the line segment x′ix′0.

ii) Reproject p′ into R3 to get the point p.
iii) Let the line c0p be L1.
iv) Let the line x0xi be L2.
v) Let xinew be the point of intersection of lines

L1 and L2.

7) Repeat steps 2-6 for each silhouette image.

Fig. 1: The geometry of point xinew , which is the intersection of lines
L1 and L2. The line L2 is defined by known points xi and x0. The line
L1 is defined by point c0, which is the camera center, and point p,
which is the reprojection of the image point p′ into R3.

2.2 Superquadrics

The resulting set of points will, in general, be only a rough ap-
proximation of the surface of the object of interest. As previously
mentioned, as the number of captured images becomes large,
this approximation will become ever more accurate, but at the
expense of increasingly long computation times. Our aim is to
achieve usable results with a minimum number of images. To
achieve a more accurate representation of the object using just
three images, we fit a superquadric to the set of points which
approximate the surface in such a manner that the superquadric
largely rejects disturbances due to perspective projection effects
and localized noise. The fitted superquadric then serves as a
parametrized description of the object which encodes its position,
orientation, shape, and size.

Our fitting routine is based on the methods proposed in
[Jaklic00], whose work on superquadrics is authoritative. We made
a modification to their cost function which heavily penalizes points
lying inside the boundaries of the superquadric. This modification
has the effect of forcing the fitting routine to ignore disturbances
caused by perspective projection effects. For a few number of
images, these disturbances can be large, and thus this modification
is crucial to achieving a satisfactory reconstruction with only three
images.

The reconstruction of a simulated shape is shown in the follow-
ing figure. From the figure, it is clear that the fitted superquadric
provides a substantially better approximation to the original shape
than what can be achieved from the point cloud alone, when only
three images of the object are available.

3. Software Implementation

The algorithm was developed and implemented entirely in Python.
Images take the form of NumPy arrays with FOR loop dependent
geometric image calculations performed in Cython. The Cython
bindings to the OpenCV library (available in the scikits.image
project) were used to build up the image segmentation routine.
The fmin_l_bfgs_b non-linear constrained optimization routine
(available in SciPy) was adopted for purposes of finding the
best fitting superquadric for the point cloud. The gradient of the
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Fig. 2: A simulated reconstruction. Clockwise from upper left: (1) The
original shape. (2) The generated sphere of points. (3) The point cloud
after the points have been shrunk to the silhouette boundaries. Error
due to perspective projection is clearly seen. (4) The superquadric
that was fit to the point cloud. Original shape shown as a wire
frame. Notice the ability of the superquadric to ignore the perspective
projection error.

superquadric function (a hefty 296 SLOC) was implemented in
Cython.

This software stack has proven to be quite performant. The
average reconstruction time takes approximately 300 milliseconds.
This includes image segmentation times but obviously does not
include the time to actually capture the images. Compare this to
the time taken for the reconstruction in [Yamazaki08] where a
reconstruction using over 100 images required ~100 seconds of
processing time for an equivalent accuracy.

A simulation environment was also developed in concert with
the algorithm for testing purposes. The environment uses Mayavi
as a rendering engine and TraitsUI for the GUI. The environment
allows simulating a number of various shapes and modifying their
parameters in real-time. It also allows the images of the object
to be captured from any position. Once the images are captured,
the simulator then performs the reconstruction and displays the
recovered superquadric as an overlay on the current shape. The
computed accuracy of the reconstruction, based on the recovered
superquadric parameters versus the known ground truth, is shown
in a sidebar. Various intermediate stages of the reconstruction
process are also stored as hidden layers for debugging purposes.
These layers can be turned on after the reconstruction via dialog
options. All of the reconstruction images in this text were gener-
ated with either the simulator or the underlying Mayavi engine. A
screenshot of the simulator is shown below.

Fig. 3: A screenshot of the simulator which is built on Mayavi and
TraitsUI.

4. Hardware Implementation

The implementation hardware consists of three main entities: the
robotic manipulator which performs the required motions, the
camera to capture the images, and the network which consists
of the various components responsible for controlling the robot,
the camera, and performing the actual object reconstruction com-
putations.

It is desired to have these various systems interconnected in the
most decoupled and hardware/operating system agnostic manner
in order to facilitate software reuse on and with other platforms,
robots, and cameras. Thus, portability was a chief goal behind the
system design. The following sections describe each subsystem
component in detail.

4.1 Robot

The robotic arm used for testing is a KUKA KR6/2, manufactured
by KUKA Roboter GmbH. It is a six axis, low payload, industrial
manipulator with high accuracy and a repeatability of <0.1mm. It’s
smaller size (though still too large for use on a mobile platform)
and large workspace makes it well suited for laboratory use and a
wide range of experiments. The robot setup, including the camera
described in Section 4.2 is shown in the following figure.

The KUKA control software provides a proprietary user in-
terface environment developed in Windows XP Embedded, which
in turn runs atop the real time VxWorks operating system. The
platform provides a programming interface to the robot utilizing
the proprietary KUKA Robot Language (KRL) as well as an OPC
server that allows for connections from outside computers and
the reading and writing of OLE system variables. As KRL does
not provide facilities for communicating with outside processes or
computers, the OPC server connection was used in conjunction
with a simple KRL program to export control to an outside
machine. The details of this are delayed until Section 4.3.

4.2 Camera

The camera used for image acquisition is an Axis 207MW wireless
network camera. It is relatively inexpensive and has megapixel
resolution. The main beneficial feature of the camera is that it
contains a built in HTTP web server with support for acquiring
images via CGI requests. This means that the camera can be used
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Fig. 4: The robot platform with the camera mounted in the gripper.

by any programming language with libraries supporting HTTP
connections. Needless to say, the list of qualifying languages is
extensive.

In order to transform the camera into a completely wireless
component, a wireless power supply was developed. Namely, a
custom voltage regulator was designed and fabricated to regulate
the voltage of a battery pack down to the required 5V for the
camera. The regulator will operate with any DC voltage from 7 -
25V, allowing interoperation with a wide variety of battery packs.

4.3 Network

In order to achieve our goal of portability, the network was
designed around distributed components that use free and open
source standards for interprocess communication. Each compo-
nent in the network is capable of operating independently on
its own machine from anywhere that has access to the central
switch. In the case of our experiments, the central switch is a local
802.11 router providing WLAN access to the local computers in
the laboratory. In our network setup, there are four components
that share information across the LAN:

1) The KUKA robot computer running KRL programs and
the OPC server

2) The Axis 207MW wireless network camera
3) The object reconstruction software
4) The external KUKA control software

The logical arrangement of these components, their intercon-
nection, and the communication protocols used are illustrated

Fig. 5: Network and communication layout.

in following figure and are explained in detail in the following
sections.

4.3.1 External KUKA Controller and the OPC Server:
As previously mentioned, the KUKA robot software provides an
OPC server that can be used to read and write system variables at
run time. While OPC itself is an open standard, using it remotely
requires extensive DCOM configuration which is both tedious and
error prone, as well as limiting in that it requires the client machine
to run a Microsoft Windows operating system. The OpenOPC
project provides a solution to this problem. Built on Python,
OpenOPC provides a platform agnostic method of making remote
OPC requests. It runs a service on the host machine (in our case
Windows XP embedded) which responds to requests from the
client machine. The host service then proxies the OPC request
to the (now local) OPC server, thus bypassing all DCOM related
issues. The network communication transmits serialized Python
objects ala the Pyro library.

A simple program was written in the KRL language and runs
on the KUKA robot computer in parallel with the OPC server. This
program sits in an idle loop monitoring the system variables until
a command variable changes to True. At this point, the program
breaks out of the loop and moves the robot to a position dictated by
other system variables which are also set by the client machine. At
the completion of the motion, the program re-enters the idle loop
and the process repeats.

The external KUKA controller (the client) runs on a separate
machine under Ubuntu Linux. This machine makes a connection to
the OpenOPC service running on the KUKA computer and makes
the appropriate requests to read and write the system variables.
In this manner, this external machine is able to specify a desired
robot position, either absolute or relative, and then, by setting the
command variable to True, forces the robot to execute the motion.
This machine also acts as the main control logic, synchronizing the
robot motion with the image capturing and object reconstruction.

4.3.2 Wireless Camera and Object Reconstruction: The
wireless camera presents itself on the network as an HTTP server
where images can be obtained by making CGI requests. These
requests are trivial to make using the Python urllib2 module. The
data is received in the form of raw JPEG data which must be
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Fig. 6: The objects used for testing. Clockwise from upper-left: (1) A
battery box. (2) A stack of cups. (3) A cardinal statue. (4) A ball of
yarn.

converted to RGB raster format for purposes of image processing.
This conversion is done using the Python Imaging Library. So
that the data need not traverse the network twice, the connection
to the camera is made from the object reconstruction program
and images are captured and converted upon request by the main
control program.

The connection between the main controller and object re-
construction program utilizes the XML-RPC protocol. The object
reconstruction programs exports the majority of its capability in
the form of methods on a SimpleXMLRPCServer instance from
the Python xmlrpclib module.

5. Testing and Results

After verifying the accuracy of the algorithm in simulation, it was
implemented on the hardware platform and tested on a variety of
real world objects: a prismatic battery box, an elongated cylinder
composed of two stacked cups, a ball of yarn, and a small cardinal
statue. The first three objects represent the range of geometric
shapes frequently encountered in domestic settings: cylindrical,
prismatic, and ellipsoidal. It was expected that the algorithm
would achieve accurate reconstructions for these shapes. The last
object is amorphous and was included to test the robustness of
the algorithm when presented with data that is incapable of being
accurately described by the superquadric model. In all cases, the
test objects were red in color to ease the task of segmentation and
facilitate reliable silhouette generation. The four objects tested are
shown in the following figure.

As seen previously in the simulated reconstruction, the recov-
ered superquadric models the original object to high a degree of
accuracy. On the real world objects, the accuracy of the algorithm
was seen to degrade only slightly. Indeed, most parameters were
recovered to within few percent of known ground truth. It must be
kept in mind, however, that there are several sources of error that

Fig. 7: The reconstruction of the battery box.

Fig. 8: The reconstruction of the yarn ball.

are compounded into these reconstructions which are not present
in the simulation:

• Uncertain camera calibration: intrinsics and extrinsics
• Robot kinematic uncertainty
• Imperfect segmentation
• Ground truth measurement uncertainty

The last bullet is particularly noteworthy. Since the object is
placed randomly in the robot’s workspace, the only practical way
of measuring the ground truth position and orientation is to use a
measuring device attached to the end effector of the robot. Though
more accurate than attempting to manually measure from the robot
base, the error is compounded by both machine inaccuracy and
human error.

In the following figures, the results of the reconstruction for
each of the cases is shown by a rendering of the known ground
truth of the object accompanied by an overlay of the calculated
superquadric. The ground truth is shown as a wire frame and the
reconstruction as an opaque surface.

Fig. 9: The reconstruction of the cup stack.

Fig. 10: The reconstruction of the cardinal statue. This original object
is shown in terms of the computed point cloud, given the difficulty of
modeling the amorphous shape as a wireframe.
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We feel that the results of the cardinal statue reconstruction
are due a bit of explanation. We included this case to test how
our algorithm performs when provided with data that does not fit
well with our reconstruction model and assumptions, e.g. that the
original object can be modeled well by a superquadric. From the
figure, it is clear that there would be no way to infer from the
box shape that is the final reconstruction that the original object
was a cardinal figurine. However, it is interesting to note that the
reconstruction is very close to what a human would likely provide
if asked to select a bounding box that best describes the object.
That is, the reconstructed shape does an excellent job of capturing
the bulk form of the statue despite the fact that the data is ill
formed with respect to our modeling assumptions.

This example shows that, even when the object does not take
a form that can be accurately modeled by a single superquadric,
our proposed algorithm still generates useful results.

6. Conclusions

We have given an overview of our robotic vision algorithm that
is implemented in Python. Our algorithm enables the recovery of
the shape, pose, position and orientation of unknown objects using
just three images of the object. The reconstructions have sufficient
accuracy to allow for the planning of grasping and manipulation
maneuvers.

Both the algorithm and software side of the hardware imple-
mentation are implemented entirely in Python and related projects.
Notable libraries used include: NumPy, SciPy, Cython, OpenOPC,
and scikits.image. This software stack was proven to provide high
performance with our algorithm executing in less time than other
implementations in the literature.
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Abstract—As colonial birds, weaver birds nest in groups in very particular trees
and face specific challenges in the selection and establishment of their nests.
Socially-living individuals may organize themselves in particular configurations
to decrease the probability of events that could be detrimental to their own
fitness. This organization within a selected area could be dictated by biotic
factors (such as predation, parasite invasion and/or thievery), or abiotic ones
(like solar radiation, and protection from rain, among others), leading to a variety
of arrangements. The parameters that individuals might evaluate while estab-
lishing/joining a colony help pick the main evolutionary drivers for colonial living.
Here, the factors that determine the spatial relationships between the nests
in a given tree are computationally modeled. We have built a computational
model that explains the spatial arrangement of the nests with bird species, tree
morphology, and the environment as factors.

Python has been used significantly in the construction of the model, partic-
ularly the machine learning libraries and visualization toolkits. Python is used for
the initial data processing, based on which, statistical analysis and visualization
are done. We use the PCA and regression tree algorithms to build a model that
describes the main factors affecting the spatial arrangement of the nests and
classify the nests based on these factors. Visualization is used for determining
key attributes in the tree morphology, and nest characteristics, that might be
better predictors of overall nest distribution. This aids in guiding other modeling
questions. NumPy arrays are used extensively, during the visualization. Mayavi2
is used for the 3-D visualization and matplotlib is used for the representation of
the results of statistical analysis.

Index Terms—ecology, evolution, biology, ornithology, machine learning, visu-
alization

Introduction

Group living is a strategy that confers various advantages and
disadvantages. These may include better access to mates and
protection from predation, but also increases competition for
resources and higher visibility. As an evolutionary response to
these challenges, socially-living individuals have come to display
certain patterns of organization, such as uniform or clumped
distributions, to decrease the probability of events detrimental
to their own fitness. However, each of these distributions can
be modified or adjusted, depending on the scale at which the
pattern is analyzed [Jovani07] and the physical space to which
the group is confined. Of particular importance are nesting and/or
roosting sites, whose spatial arrangement can be very informative
about the type of biological and environmental pressures that
can determine an organism’s life history. Thus, the aggregation
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patterns of organisms living in groups should be carefully assessed
from the individual’s perspective as well as a communal point of
view.

Determining the key factor(s) that drive the selection of
nesting sites and their location poses a challenge because often
the boundaries defining the group are unclear. However, birds
nesting in a single tree present a unique opportunity to study a
group that shares a single space with discrete edges. Some of
the most extensive (and studied) colonies are found among sea
birds, where it has been established that foraging and predation
are the ultimate factors determining colony structure [Burger85].
In terrestrial birds however, it has been proposed that weather,
competition, and predation may be the key factors for determining
site selection and nest architecture [Crook62], [Schnell73]. Abiotic
factors, such as weather and temperature, present challenges for
the location of the nest [Ferguson89], while biotic factors like
intra- and inter-specific competition and predator deterrence may
also play a role [Pitmanc58], [Collias78].

The biological aim of this study was to determine if the loca-
tion of each weaver bird nest was influenced more by structural
or environmental (abiotic) factors, or by the social and behavioral
interactions (biotic) of the weaver species studied. We have used
computational tools for the analysis of a large dataset and elucidate
the main factors determining the complex nest organization in
weaver colonies. This provides a unique opportunity to incorpo-
rate many computational tools and techniques such as machine
learning and visualization for analyzing various aspects of such
problems. The approach discussed in this paper has widespread
applications in a number of fields and can be modified or ex-
trapolated easily for a range of similar ecological and biological
problems involving analysis and modeling.

Python has been used extensively at every stage of computa-
tion, from the data processing to the analysis and visualizations. It
was the programming language of choice for the data processing
due to the simplicity and ease of use of the language. Similarly,
for the visualization, Python was preferred, with Matplotlib’s
[Hunter07] usability and functionality from a plotting perspective,
and Mayavi2’s [Ramachandran08] scriptability, ease of use, and
compatibility with NumPy, being the driving factors. On the other
hand, R was initially used for the statistical analysis but later
Orange [Orange] (a data mining tool that uses visual programming
and Python scripting for the analysis and visualization), Rpy [RPy]
(a Python interface to the R programming language), and Mayavi2
[Ramachandran08] (a Pythonic 3-D visualization toolkit) were
used for the Principal Component Analysis and the Random Forest
methods, since Python seemed to be the perfect umbrella for
encompassing the data processing, analysis, and visualization of
data. Moreover, Python’s vast array of libraries and the different
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Python-based tools available are appropriate for the diverse set
of techniques that were required for the scientific computing
[Oliphant07] involved.

Study Area and Methods

Nest surveys were conducted at the 20,000 ha Mpala Research
Center in the Laikipia District of central Kenya (0◦20′ N, 36◦53′

E).
We surveyed a total of sixteen trees and 515 nests. For each

nest, its distance from the ground, distance from the trunk, esti-
mated size, entrance direction (entrance facing north, south, west,
east, down or so on), distance to its closest neighbor, and general
condition (ranging from “dilapidated” to “in construction”) were
recorded. All measurements were taken with a telescopic graded
bar and a decameter, along with compasses. We also determined
the species of the bird for each nest, as several trees were cohabited
by more than one species. When assessment by field observation
was not possible, the bird species was determined based on the
nest descriptions given by Zimmerman et al. [Zimmerman96].
Additionally, each tree was mapped and photographed for further
reference.

Studied species

1) Grey-capped Weaver (Pseudonigrita arnaudi): a gregar-
ious weaver that lives in small dense colonies. It is a
common resident of African woodlands below 1400m
elevation [Zimmerman96].

2) Black-capped Weaver (Pseudonigrita cabanisi): a gregar-
ious species that feeds on the ground. They have strong
nests, which are tightly anchored to a single branch. They
are commonly found in grassy savannas below 1300m
elevation [Zimmerman96].

3) White-browed Sparrow Weaver (Plocepasser mahali): a
highly social species that lives in noisy flocks. It feeds on
the ground, mainly on insects, but will also eat seeds. It
is common in bush savannas and dry woodlands below
1400m elevation [Zimmerman96]. This species is known
to have feeding grounds that are defended by the colony
[Collias78].

Computational Methods

The Python programming language was used for the cleaning of
collected data and also for the processing of this cleaned data
to obtain the requisite features in a proper format. This cleaned,
formatted data is used as input for the machine learning and
statistical analysis tools applied. Analysis was done predominantly
using the Principal Component Analysis (PCA) and the Random
Forest (RF) methods, which were initially implemented in R.
This was later completely converted to RPy, and subsequently
implemented using Mayavi2. The process of conversion to RPy
can be avoided in future studies. Since we want to completely
Pythonize the tool suite that we use, we also implemented this
using Orange and while Orange simplifies the obtaining of results
using PCA and RF, our results are not as clean as in RPy, and
require a lot of rework and a better understanding of Orange.
Moreover, having the scripting power of Python combined with
the statistical power of R was instrumental in the data analysis
and speaks volumes of the extensibility of Python. On the other
hand, Mayavi2 simplified process of analysis and all the visuals
required for the analysis were later rewritten using Mayavi2 and

Matplotlib, thereby completely Pythonising the implementation.
The visualization was done using Mayavi2 as the primary tool
for simulating the trees with the weaver bird nests. NumPy was
essential for different aspects of the visualization generation and
analysis, and NumPy arrays were crucial for this. All these helped
bring the whole suite of tools required for scientific computing
under the aegis of Python, where finding another umbrella lan-
guage to incoporate all these different computational techniques
and libraries would have been cumbersome.

Analyses and Interpretation

In order to identify the main factors that explained the local
arrangement of the nests of the weaver birds, we applied two
machine learning techniques: Principal Component Analysis and
Random Forests.

Principal Component Analysis (PCA) is a method for
dimensionality-reduction that identifies the underlying factors (or
components) that explain most of the variance in data. One of
the most widely used versions of this method is the Linear PCA,
which assumes a linear relationship between the new factors and
the original variables, such that

P1 = a11x1 +a12x2 + . . .+a1nxn

P2 = a21x1 +a22x2 + . . .+a2nxn

. . .

Pd = ad1x1 +ad2x2 + . . .+adnxn

On the other hand, the Random Forest (RF) method constructs
an ensemble of decision trees (non-linear models) and outputs
an average of their results. Each decision tree uses a bootstrap
sample from the original dataset. Also, each node in each tree
considers a randomized subset of the original variables. Averaging
and randomization are two critical components that make RF a
very robust machine learning method [Breiman01]. One important
feature of the RF is the computation of variable importance with
respect to prediction.

In order to represent the local arrangement of the weaver
nests, we used the following variables as the predicted (dependent)
variables: normalized nest height with respect to the tree height,
normalized nest height with respect to the height of highest nest,
and normalized distance of nest with respect to distance of farthest
nest.

Visualization

The objective of the visualization was to automate the visualiza-
tion of each tree using the parameters from the dataset. This was
implemented predominantly using the 3D visualization toolkit,
Mayavi2, along with Python scripts.

The 3-D visualization of the scientific data was used to explore
if any attributes of the tree morphology and nest characteristics
could be predictors of the distribution of the nests in a tree and
also analyze the distribution of nests among trees in a grove.
It provided an opportunity to view the data from an alternative
perspective and aided greatly in the analysis. Initially, an idealized
high-level model of a tree was made using just the Mayavi2
user interface, with the canopy approximated to a hemisphere
and the trunk approximated to a cylinder, with standardized tree
coloring. In order to visualize the nests in the trees though, some
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Fig. 1: 3-D visualization of a real tree with weaver bird nests studied
at the Mpala Research Station, based on parameters recorded.

scripting functionality was required and the user interface alone
was insufficient.

The visualization obtained in Fig. 1 involves nests obtained
using Python (and the IPython interface [Perez07]), NumPy, and
Mayavi2’s mlab interface along with a tree generated using mlab.
This involves as input a file containing different parameters such
as the number of nests, the height of the nest from the ground,
the distance of the nests from the trunk, inter-nest distances, etc.,
and any tree with the requisite parameters can be simulated. This
is automated so that each tree is simulated from the parameters
in the dataset. This input from the dataset ensured a geometric
view of a tree, with the trunk as a cylinder, the canopy represented
as a hemisphere, and nests represented by spheres. As a result of
this, we could see the relative position of the nests in each tree
and some additional work included the color coding of the nests
according to species, the climactic conditions, etc., in an attempt
to extend the model for better evaluation and analysis.

Results and Discussion

As shown in Figure 2, there appear to be two or possibly three
main factors explaining as much as 99% of the variance in the
dataset gathered. Based on spatial constraints, our initial prediction
was that tree architecture and requirements of the specific weaver
birdspecies would play the most important roles in determining
nest arrangement. To test this, we looked into the individual
characteristics of the variables predicted by the PCA analysis.

When looking for variables that explain most of the variance,
canopy size (total length of the farthest branches in 2 dimensions),
number of nests (within each tree), and distance between closer
nests emerge as the main variables determining the arrangement
(Figure 3). These variables point to tree architecture and structure
as the main drivers in the organization and nest disposition within a
tree, since they are closely related to the actual space available for
placing of the nests. It is important to notice that the bird species
played no strong role with respect to the arrangement, alluding
to the fact that regardless of the species identity the location of
each nest is determined by common “rules” among weaver birds.

Fig. 2: The proportion of variance explained by the top five principal
components of the weavers nest arrangement at Mpala Research
Station.

In biological terms however, it would be interesting to further
look into the availability of nesting materials and living resources
to determine if the importance of tree architecture deals with its
location in the landscape, or if the parameters hold true regardless
of the proximity and availability of resources, and then to look at
competition between individuals for them.

Of the species analyzed, Grey-capped Weavers and Black-
capped Weavers show closest relations with respect to the im-
portance of the variables (Fig. 3), which was also evident in the
field since these two species tend to nest in tree together (85.7% of
the trees examined with one species had the other present), while
the White-browed Sparrow Weaver nests cluster independently in
the PCA analysis (Fig. 3).

If we look at the species difference, we can see that the White-
browed Sparrow Weaver clearly distinguishes itself from the other
studied species (Fig. 4) by building nests closer to one another,
in trees with smaller canopies and fewer nests. In contrast, Grey-
capped Weavers and Black-capped Weavers present a wide variety
of spatial conditions for the nest location (the scattered points in
the tri-dimensional cube shown in Fig 4), with a lot of overlap
between the data points representing the two species, indicating
similar characteristics of the local arrangements of their nests
colonies.

When analysing specific trees, 67% of the trees in which nests
were found, are represented by Acacia mellifera, which generally
has a bigger canopy than the other trees studied, that supports
a larger number of nests (Fig 5). Another tree species widely
surveyed (25% of the total trees) was the Acacia xanthophloea,
where the canopy is taller but smaller than the former. However,
due to its height, it allows for the establishment of nests in multiple
levels, creating a different vertical distribution. Finally, Acacia
etbaica presents a small canopy with reduced number of nests that
are closer to each other, which was overall mostly occupied by the
White-browed sparrow weaver.
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Fig. 3: Projection of data on the top two principal component axes.
Data points are colored by the bird species they represent.

Fig. 4: 3-D plot of the canopy (Canopy), number of nests (TotalNests),
and distance between nests (DNest) for each species of weaver bird.
Data points are colored-coded for the bird species they represent,
with Red denoting the Black-capped Weaver, Green denoting the
Grey-capped Weaver, Blue denoting the Speke’s Weaver, and Yellow
denoting the White-browed Sparrow Weaver.

Fig. 5: 3-D plot of canopy (Canopy), number of nests (TotalNests),
and distance between nests (DNest). Data points are colored-coded
for the tree species in which they exist, with Red denoting Acacia
xanthophloea, Green denoting Acacia mellifera, and Blue denoting
Acacia etbaica.

Summary and Future Work

The data collected from the Mpala Research Station was compiled
into a table based on different parameters. Apart from this data
set, a working database of digital pictures from all trees, rough
visualizations and maps, sketches of the trees, and a bibliography
was also created. This data was used as input for computational
analysis so as to solve different problems such as finding key
predictors of the spatial arrangment of the weaver bird nests and
evaluating if there exists an “algorithm” that weaver bird follows
in choosing a nesting site and building a nest. Machine learning
and statistical analysis techniques were used for this. Visualization
of the scientific data was also done.

Python was used significantly for the cleaning and pre-
processing of the data, the machine learning, and the visualization.
The Python programming language and packages associated with
it, such as Mayavi2, Orange, RPy, IPython [Perez07], NumPy,
etc., were involved in various stages of the scientific computing.
Python’s power as a general-purpose glue language is also brought
out by the variety of tasks it was used for, and also by it’s
ability to interface easily with R. Under the aegis of Python,
the data was visualized, and models for the analysis were built.
The visualization is also used to summarize the results obtained
visually, apart from aid model the tree-bird-nest system along with
other parameters.

A number of features can be built on top of this base model.
For instance, a thermal model can be built using the sun’s azimuth,
wind, rain, and other factors, similar to weather visualization.
From a biological perspective, these results grant further research
on the specific location of each tree. This might help elucidate if
selected trees present specific characteristics within the landscape
that grant them as more suitable for the weavers. It would also
be interesting to be able to differentiate temporal patterns of
occupation in a given tree. It would be informative to determine
if nests are located based on the space available or an active
preference for clustering. From a computational angle, ongoing
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work involves the construction of 3D visualizations of the trees
with the nests, with information on orientation to the sun, wind,
and other climate data, to determine if any of the variation in
the nest arrangement could be due to environmental artifacts.
Moreover, one of the goals of the visualization is to automate
generation of the trees and nests using a user interface with simply
some standard parameters from the dataset. As more data flows in,
different problems will be addressed and additional functionality
required and Python is thus the perfect environment for a bulk of
the computation considering it’s extensibility, ability to interface
with a variety of packages, the variety of packages available, and
it’s extensive documentation.
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Weather Forecast Accuracy Analysis

Eric Floehr‡∗

F

Abstract—ForecastWatch is a weather forecast verification and accuracy anal-
ysis system that collects over 70,000 weather forecasts per day. The system
consists of data capture, verification, aggregation, audit and display compo-
nents. All components are written in Python. The display component consists
of two websites, ForecastWatch.com, the commercial offering, and ForecastAd-
visor.com, the free consumer version, both implemented using the Django web
application framework. In addition to providing comparative forecast accuracy
analysis to commercial weather forecast providers like The Weather Channel,
ForecastWatch data and systems have been instrumental in a number of
research endeavors. Dr. Eric Bickel, of the University of Texas at Austin, Dr.
Bruce Rose of The Weather Channel, and Jungmin Lee of Florida International
University have published research using data from ForecastWatch and software
written by Intellovations.

Index Terms—weather, forecasting, web

Introduction

The author of this paper has been interested in the weather for all
of his life. In 2003, he was curious if there was any difference
between forecasts from Accuweather.com, weather.gov (National
Weather Service), and weather.com (The Weather Channel). He
was also interested in just how accurate weather forecasts were, as
there was very little comprehensive data available on the subject.
There were a few small studies, comprising a single location or
a few locations, and usually only for a period of a few weeks or
months. The National Weather Service had comprehensive data on
accuracy of their own forecasts, but not others, and the data was
not easy to retrieve. At the same time, the author was looking for
a new project, and was just exploring new dynamic programming
languages like Ruby and Python, after having spent most of career
programming in C, C++, and Java. Thus, ForecastWatch was born.

John Hunter, creator of the popular matplotlib library, men-
tioned in a talk to the Chicago Python group that there is a "great
divide" within the people who use Python, with the scientific and
financial programming people on one side, and the web application
people on the other [Hun09]. I’d like to think my company,
Intellovations, through products like ForecastWatch [FW], helps
bridge that "great divide". ForecastWatch consists of much back-
end calculations, calculating metrics like bias, absolute error,
RMS error, odds-ratio skill scores, Brier, and Brier skill scores.
However, it also consists of front-end web components. Forecast-
Watch.com is the commercial front-end to all the calculated qual-
ity, verification, and accuracy data, while ForecastAdvisor.com
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[FA] provides some limited statistics to help consumers make
better sense of weather forecasts and their expected accuracy.

Architectural Overview

All front-end and back-end processes are in Python. Forecasts are
collected through FTP or SFTP feeds from the providers (usually
pull), or via scraping public forecasts from provider websites.
Observations are pulled from a product by the National Climatic
Data Center, consisting of quality-controlled daily and hourly
observations from the ASOS and AWOS observation networks.
Both forecasts and observations are stored in a MySQL database,
along with station meta-data and information that describes how to
collect forecasts from each provider and for each station. All data
is saved in the form it was collected, so that audits can trace the
data back to the source file. Additionally, if errors in parsing are
discovered, the source data can be re-parsed and the data corrected
in place.

Forecasts are pulled from provider feeds and the web at the
same time to ensure that no provider has an unfair advantage.
Each provider forecast request is a separate thread, so that all
forecasts requests occur at the same moment. This also consid-
erably improves collection times for public forecasts, as network
requests are made in parallel. Once the raw file has been collected,
either via HTTP, FTP, or SOAP, it is parsed. Text forecasts are
normalized and forecast measurements standardized by unit. At
time of insertion, a number of sanity checks are performed (low
temperature greater than -150 degrees Fahrenheit, for example)
and the forecast flagged as invalid if any check fails.

Actual observation files are pulled from an FTP site (U.S.)
or via HTTP (Canada) once per month and inserted into the
database. Both daily and hourly observations are inserted. The
hourly values are used to generate values that do not fall in the 24-
hour local time window of the daily observations. For example,
some weather forecast providers POP forecasts are for 24-hour
local time, others are for 7am to 7pm local time, and the National
Weather Service precipitation forecast is for 1200-0000 UTC. The
hourly data is also used and as a audit check against the daily
values. For example, if the high temperature for the 24-hour local
day derived from the hourly data is not within five degrees of
recorded daily high temperature, a flag is raised. If there are not
enough hourly observations, the entire record is flagged invalid.
All this is done in Python using Django’s ORM.

Once the monthly actual observations are in the database,
each forecast is scored. Error values are calculated for high
temperature, low temperature, probability of precipitation, icon
and text forecasts, as well as wind and sky condition forecasts (if
available). Once the scores are calculated a second set of audit



WEATHER FORECAST ACCURACY ANALYSIS 37

checks are performed. Outlier checks are performed on forecast
errors, to determine the validity of the forecast. Forecasts with high
error are not automatically flagged as invalid, but outliers are often
a good indication of an invalid forecast. It has been argued that
invalid forecasts should remain, as these forecasts did go out and
were potentially viewed, but keeping them severely reduces the
utility of the aggregated statistics, as invalid outliers unnecessarily
skew the statistics. For example, queries to the National Digital
Forecast Database (NDFD) [NDFD] via the National Weather
Service web service interface occasionally return a temperature
of three degrees Fahrenheit for both high and low. While that is
indeed the forecast that was retrieved, it is obviously invalid for
most locations and dates. Unfortunately, outlier checking does not
catch invalid forecasts that do not result in outlier error. In the three
degree forecast example above, it would be difficult to determine
an invalid three degree forecast from a valid three degree forecast
in far northern U.S. climates in the winter.

Outlier checking is also used to uncover invalid actual ob-
servations that were not flagged in the initial sanity checks.
It is assumed that forecasts are "reasonable" approximations of
observations, with one day out high temperature forecasts, for
example, averaging only about 3 degrees Fahrenheit of error. Large
one-day out forecast error for any particular observation is flagged
as suspect and checked. Sometimes, large forecast error is just a
blown model that affected every forecast provider, but other times
it is a bad observation. If an observation with large one-day-out
forecast error is flagged, it is checked against observations on
days before and after, as well as nearby observation sites. One
must be careful however, because it is often the outliers that
have the most economic value if they can be better predicted.
An energy utility, for example, is far more interested in days
that fall outside the norm, than the days that are near-normal.
Once the audit is complete, aggregations are performed on the
raw scores. The scores are aggregated by month, and sliced by
nation, state/province, and location, as well as by days out and
type. This is performed with raw SQL generated from Python
code. The complexity is such that an ORM does not provide any
benefit, and in most cases is incapable of generating the queries
at all. These aggregations are then used to generate surface plots
of error and skill using the mapping tools in the GMT (Generic
Mapping Tools) package [GMT].

The aggregate data and maps are primarily displayed in a
web application, used by a number of forecast providers, such
as The Weather Channel, Telvent DTN, The Weather Network,
and CustomWeather. Figure 1 shows a screenshot of how the
aggregated data and generated maps are used in a web interface.
Not shown in the screenshot for space reasons are navigation tabs
above and drill-down links below the screen capture. The user can
click on the map to drill-down to the state (or province) level,
or view the state summary table (not shown) and click on an
individual state in the table to view a list of locations within the
state that can be viewed.

Django [DJ] is the web front-end for both ForecastWatch and
ForecastAdvisor.com. It can be used to quickly build robust, dy-
namic websites. For example, Dr. Bruce Rose, Principal Scientist
and Vice President at The Weather Channel, is studying snowfall
forecast accuracy [Ros10]. There is a common perception that
snowfall forecasts are "overdone". Specifically, that forecasts of
snowfall generally predict more snowfall than actually occurs.
Despite this common perception, little scientific research has been
done to verify snowfall forecasts. Dr. Rose wanted a public site

Fig. 1: Figure 1. screenshot of portion of ForecastWatch web interface.

that would collect the snowfall forecasts and observations, and
provide an intuitive, easy-to-use, dynamic data-driven site that up-
dated automatically when data came in. One of the big challenges
in science and scientific research is the increasingly large amounts
of data research is based on. Challenges of curation, storage, and
accessibility are becoming more frequent. "Climategate" brought
the issue of reproducibility of research when large amounts of
data are used, as the raw data on which several papers were based
was found to have been deleted. While this does not invalidate the
research, it does present a credibility issue, and puts roadblocks in
one of the tenets of the scientific method: that of reproducibility.
Python and Django were used to create a data-driven site that
allowed all the data to be navigated and explored.

Some Findings

ForecastWatch started as an answer to the question "Is there any
difference between weather forecasts from different providers?"
It turns out there is a difference. As an amateur scientist, it has
been interesting to look at all the data in a number of different
ways. While many forecast providers perform continuous internal
verification of forecasts, and the National Weather Service has
an entire group devoted to it, there has been little information
communicated at the popular level regarding weather forecast
accuracy. One of the goals of ForecastWatch is to help meteo-
rologists educate their customers as to their accuracy, and begin to
help dissipate some of the skepticism that is reflected in comments
such as "I wish I could have a job where I’m wrong half the time
an still keep my job".

Figure 2 shows a histogram of one-day-out and four-day-
out high temperature forecast forecast error against 24-hour high
observations from all providers over all of 2009. There are nearly
two million forecasts represented in each day’s histogram. As
expected, but nice to confirm, the histogram of high temperature
forecast error follows a normal distribution. As also might be
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Fig. 2: Figure 2. High temperature error histogram.

expected, the histogram for four-day-out forecasts is more spread
out than that of the one-day-out forecasts. The further out the fore-
cast is for, the greater the standard deviation of error. Eagle-eyed
readers may notice that the histogram "leans" slightly negative,
meaning that average error has a light negative bias. The reason
for this is subtle, and demonstrates the care that must be taken
when interpreting results.

This histogram represents the error of forecasts when com-
pared against the 24-hour high temperature reported in the daily
observations. However, some forecasters’ valid time for high tem-
perature is 7am to 7pm local standard time. While nearly all high
temperatures for the day fall in this period, very rarely they do not.
In this case, the 24-hour high observation will be higher than the
high temperature between 7am and 7pm. Thus, the forecast will
under-predict the high from the perspective of the 24-hour high
temperature verification. This leads to the slight negative bias. In
general, short-term temperature forecasts are well-calibrated and
bias corrected. Generating a high or low temperature observation
between an hourly range (for example, 7am to 7pm) also results in
a slight error bias. This is because hourly observations are taken
at a specific time. The odds are high that the true high or low
temperature in a span will occur intra-hour. The probability that a
single observation each hour will capture the true high temperature
is small, and thus the generated high or low temperature will be
lower than the actual high. The 24-hour high and low temperature
observations are nearly continuous and reflect the true high and
low temperatures of the day.

One fact of weather forecasts that consistently surprises peo-
ple, even people using weather forecasts in quantitative modeling
and decision-making is that weather forecast accuracy is seasonal,
and varies greatly geographically. There are many people using
weather forecasts as input to risk and prediction models that do
not factor in seasonality or location along with the temperature
forecast. Figure 3 shows the accuracy of U.S. and Canadian
temperature forecasts for the past six years. Temperatures are
more accurate in the summer than winter, with high temperature
accuracy swinging by one degree and low temperature accuracy
even more. Additionally, a high temperature forecast for Atlanta

Fig. 3: Figure 3. High and low temperature forecast error by month.

in July has less error on average than a high temperature forecast
for Chicago in December.

ForecastWatch also generates skill measures, by comparing
unskilled forecasts with skilled predictions. An unskilled forecast
is a forecast that requires no skill to produce. The two unskilled
forecasts that are used by ForecastWatch are persistence forecasts
and climatology forecasts. A persistence forecast is a forecast
that says "tomorrow, and the next day, and the next, etc. will
be exactly like today". If the high temperature is 95 degrees
Fahrenheit today, the persistence forecast will be for 95 degrees
Fahrenheit tomorrow. If it is raining today, the prediction will
be that it will be raining tomorrow. The climatology forecast
will predict that the high and low temperature will be exactly
"average". Specifically, the ForecastWatch climatology forecast
uses the daily climatic normals (CLIM84) from the National
Climatic Data Center [NCDC] which are statistically fitted daily
temperatures smoothed through monthly values.

Figure 4 shows high temperature forecast accuracy by days-
out for 2009 between the two unskilled forecasts, and the average
accuracy of all providers’ forecasts. The climatic unskilled fore-
cast is a straight line because the climatic forecast for a given
day never changes. It is always the calculated 30-year average
temperature as expressed by the nearest station in the CLIM84
product. The two intersections between the forecast error lines are
the most interesting features of this figure. The first intersection,
between the unskilled persistence forecast and the climatology
forecast, occurs between the one- and two-day-out forecasts. This
means that a persistence forecast is only better than climatology
at predicting high temperature one day out. After one day out,
climatology has more influence than local weather perturbations.

Possibly the more interesting intersection is between skilled
forecast providers and climatology forecasts between eight and
nine days out. What this graph is saying is that weather forecasts
from weather forecast providers are worse than an unskilled
climatology forecast beyond eight days out. The American Meteo-
rological Society said in 2007 that "the current skill in forecasting
daily weather conditions beyond eight days is relatively low"
[AMS07] in a statement on weather analysis and forecasting.
This graphs shows how "relatively low" the skill really is. One
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Fig. 4: Figure 4. High temperature skilled versus unskilled forecasts.

question that is asked about this is why do forecasters not replace
their forecast with the climatology forecast for their nine-day and
beyond forecasts? One reason is that these extended forecasts
might be skillful in forecasting temperature trends (above or below
normal) which the climatology forecast cannot do. Research is
ongoing on this aspect of longer-term forecasts.
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Abstract—An Exposure Time Calculator (ETC) is an invaluable web tool for
astronomers wishing to submit proposals to use the Hubble Space Telescope
(HST). It provide a means of estimating how much telescope time will be needed
to observe a specified source to the required accuracy. The current HST ETC
was written in Java and has been used for several proposing cycles, but for
various reasons has become difficult to maintain and keep reliable. Last year we
decided a complete rewrite—in Python, of course—was needed and began an
intensive effort to develop a well-tested replacement before the next proposing
cycle this year.

This paper will explain what the ETC does and outline the challenges
involved in developing a new implementation that clearly demonstrates that it
gets the right answers and meet the needed level of reliability (astronomers
get cranky when the calculator stops working on the day before the proposal
deadline). The new ETC must be flexible enough to enable quick updates for
new features and accommodate changing data about HST instruments. The
architecture of the new system will allow Python-savvy astronomers to use the
calculation engine directly for batch processing or science exploration.

Testing is a very large component of this effort, and we discuss how we use
existing test cases, as well as new systematic test generators to properly explore
parameter space for doing test comparisons, and a locally developed test
management system to monitor and efficiently analyze thousands of complex
test cases.

Index Terms—astronomy, telescope, Java, NASA

Introduction

Observing time on the Hubble Space Telescope (HST) is quite
valuable. One orbit of observing time (typically 45 or fewer min-
utes of on-target time) costs on the order of $100K. Understand-
ably, no one would like to waste that. As a result, understanding
how much time is needed to accomplish the planned science is
important. Asking for too little or too much will result in wasted
telescope resources. Hence, the need for exposure time calculators.

ETCs are used to answer important questions such as: how
long must one observe to achieve a desired signal-to-noise ratio,
or what signal-to-noise ratio can one expect for a planned observa-
tion? Computing these quantities requires specifying many input
parameters. These fall into few basic categories.

• What instrument will be used? What kind of observing
mode (e.g., imaging, spectroscopy, coronography, or tar-
get acquisition). What filters or gratings? What detector
parameters?
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• What kind of source? In particular, what are the spectral
details of the source. Any dust extinction or redshifts
involved?

• How bright is the source? How is the brightness to be
specified?

• How much area around an image or spectral feature do
you plan to use to extract signal? Is it a point source or is
it extended?

• What kinds of sky background levels do you expect?

All of these choices affect the answer. Some of them involve
many possible options.

In the past, peak ETC request rates averaged 10 calculations
per minute. Although much computation is involved for each
request, the request rate is never terribly high.

History

Despite the clear utility of ETCs they were not part of the original
HST software plan, and it was several years before they were
officially supported. A number of precursors arose from essentially
grass-roots efforts. By the late 1990s web-based CGI ETCs,
most written in C, had begun appearing for some of the HST
instruments. Around 2000 an effort to provide an integrated GUI-
based proposing environment was started. Since ETCs share many
of the input parameters with the proposing tools, it was believed
that it made sense to integrate these tools into one GUI application,
and a large effort was begun to do just that. It was based on a
prototype application developed in Java by NASA (The Science
Expert Assistant [Gro00]) and became the Astronomers Proposal
Tool (APT, http://apt.stsci.edu).

Despite the original intent to develop an integrated application,
it was eventually judged that a web-based interface was much
more important, and at that point the ETC functionality began a
voyage out of the APT GUI and eventually became an entirely
separate application again. In the process, it had become much
more complicated because of the intrinsic complexity of the design
driven by the GUI interface. Over time much of the GUI heritage
was removed, but it still had many lingering effects on the code
and its design.

The addition of support for more instruments and modes,
along with pressure to meet proposal deadlines, led to increasing
complexity and inconsistencies, particularly with regard to testing
and installations. Unrealized to many, it was quickly becoming
unmaintainable. For the Cycle 16 proposal period (HST runs a
roughly annual proposal cycle), it worked reasonably well and was
quite reliable. That all changed in Cycle 17, where we experienced
server hangs approximately every 5 minutes when under peak
load. Many months of work to improve the reliability of the server
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actually ended up with worse reliability. Even worse, the cycle of
making a change, and then delivering and testing the change could
take weeks or months leading to an unacceptably long iteration
cycle.

At this point an evaluation was made of the underlying
problems. These consisted of:

• Large code base. The number of Java lines of
code had grown to over 130K and was viewed as
unnecessarily complex.

• Database inflexibility. Information was being
stored in it that made it impossible to run more
than one instance or version of an ETC on a
given machine, leading to testing and installation
complications.

• Lack of automated build and testing. Installations
involved many manual, context-dependent steps

• It was difficult to run tests and to examine results.
• Tests were represented in many different formats

and require much massaging by the software to
run.

• Test results varied from one system to another
because of database issues.

• Lack of tests of javascript functionality.
• Resource leaks could hang server.
• Uncaught exceptions would hang server.
• Instrument parameters located in many different

locations in different kinds of files.

Rebuilding

Rather than try to fix these with the existing code base, we decided
to re-implement the ETCs in Python. This was partly because we
(Science Software Branch) write relatively little software in Java
now and have comparatively little expertise in it, Additionally, one
of the key tools used by the ETC (pysynphot [Lai08]) is written
in Python, so interactions with the ETC would be simplified.
Rewriting the entire code base solely in Python also dramatically
decreased the overall length of the code.

A rewrite was begun in April 2009 with a proof of concept
computational prototype. After approval to go ahead in June, a
major effort began to design and implement a new system. The
new design had a number of requirements it had to meet:

• One-step install
• Ability to support multiple installations on the same com-

puter
• Consistent test scheme
• Nightly regression testing
• Separation of web and compute functionality
• Ability to script ETC calculations from Python without a

web server
• Use of standard Apache/Database server schemes to han-

dle failover and load balancing
• Simple database structure
• Concentrate instrument information in one place
• Use automatic test generation for better parameter space

coverage
• No XML
• No cached results
• It had to be ready for Cycle 19 proposal preparation
• Minimal changes to the user interface

• Dispense with interactive form features that weren’t work-
ing well in the old ETCs

Django was used for the web framework and user interface.
Our use of its features is fairly light, but even so, it made the web
side of the system fairly easy. Taking a lesson from the past ETC,
we made the use of Django’s database as simple as possible. One
goal was to minimize the need to change the database schemas
during operations. Since ETCs take many parameters for the
sources and the instruments, there are many potential fields for
a database, and it is likely that many of these would change or be
added. Yet there is rarely any need to query the database for values
of these fields. For those occasions, it would probably be best to
specially create a new database for such queries. All the input and
output information is encapsulated in a string which is then stored
in the database.

Validation Testing

The validation of the new ETCs is simpler in one aspect: we only
need match the results of the previous ETC, even if we believe
the previous results are incorrect. Any identified discrepancies
believed to be errors in the original code were identified as such
and noted for later work. If there is time for the instrument groups
to address the issue, waivers for differences can be obtained.

It might seem counter-intuitive to use this approach, but it
works well in our environment. The software developers cannot
always authoritatively answer scientific questions, so we often
rely on the appropriate instrument group. But they are not always
available to answer our questions quickly due to other priorities.

By using the old ETC as a reference, we can remove the
instrument group from our work flow. This reduces their workload,
because they are not directly involved in the new development. As
software developers, it reduces our cycle time to test a new feature:
Instead of asking a scientist to manually perform a detailed
analysis of a result, we can simply compare it to the same result
from a system that has previously been accepted as correct.

Our target for the maximum difference was generally 1%,
though we were permitted to allow differences as much as 5%
from the HST project if helpful for meeting the schedule.

On the other hand, migrating the existing tests proved more
work than expected because of the many forms such tests took,
and the many issues in determining the proper mapping of test
parameters to the old and new ETCs. The typical test migration
process was to start with custom code to handle any special cases
for parameter migration, run a batch test case migration, run the
tests, and from the errors, fix migration errors and iterate until all
remaining errors were purely computational issues.

The reference results from the old ETC were obtained by
running it through its web interface using the mechanize module.
The most important information on the result was the ID of the
request, which was then used to retrieve the very extensive log
files that were generated on the server side which contained the
values of the final results and many intermediate values. These
also proved invaluable in tracking down where results diverged
between the old and the new.

The old ETC had tests in two basic forms (with many varia-
tions in details). Some appeared as XML files with one test per
file. Others as CSV files, with one test per row. In both cases
most were generated manually. We desired a more systematic
way of testing parameter space, so a special module was written
to generate test cases automatically. In this way we can define
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Daily (2010-05-
13)

count pass fail error

8705 7234 865 606
engine/* 7068 5794 668 606
server/* 1626 1429 197 0
web/* 11 11 0 0
Engine Only count pass fail error

7068 5794 668 606
engine.* 2 2 0 0
migrated/* 6963 5690 668 605
spider/* 103 102 0 1

TABLE 1: The report of test results from one night’s test run. Count
refers to the number of tests in that category; pass refers to the
number that run and match the expected results to within the specified
threshold; fail refers to the number of tests that produce results but
do not match all results to the required threshold; and error indicates
the number of tests that fail to produce all necessary results.

whole sets of tests by providing specific lists of parameter values
for specific parameters and construct combination of parameter
sets by using tools to generate specific test sets by varying one
parameter at a time (akin to traveling along parameter axes), or by
generating all combinations (filling the parameter space with a grid
of points). One can combine subspaces of parameters in analogous
ways. There is a mechanism to make concatenating disjoint sets
of parameters that correspond to radio button subsets easy.

We have nightly regression tests running more than 8000 cases
a night. Initially the reference results are those taken from the old
ETC. Once commissioning is complete, the reference results will
be a snapshot of the new ETC results to ensure that future software
updates do not change the results in unexpected ways. Table 1
shows an example of a single night’s run.

Current Status

To date all of the supported instrument modes have been im-
plemented as far as the calculation engine goes. Most reporting
and plotting functionality is in place. Nearly all migrated tests
run, though there are still discrepancies being resolved for a few
modes. These discrepancies are expected to be understood within
a month. The new ETC has approximately 22K lines of code in
the web and engine components. A further 5K lines of code were
written to support the testing effort. This includes conversion of
test data, running tests of the old ETC, comparing results, etc. The
new ETC uses a similar form interface, and generates output pages
similar (though not identical) to that of the previous ETC.

Figure 1 shows an example of an input form. Figure 2 shows
the results obtained from that form, and Figure 3 shows plots of
related information associated with those results.

Plans

The ETC must be operational by December 2010. Future activities
include web security analysis, load testing, through-the-browser
tests (manual and automatic), and documentation.

This ETC framework will be the basis of the James Webb
Space Telescope ETCs. JWST is expected to be launched in 2015.
Work has begun on understanding what features will be needed
for JWST that don’t already exist for the HST ETCs. Besides
providing the instrument performance information, it is already

Fig. 1: Part of the input form for the Advanced Camera for Surveys.
This shows most of the choices available to users.
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Fig. 2: The results page shown corresponding to the input parameters
shown in Figure 1.

clear that much more sophisticated sky background models will
be needed to be developed to determine which of several detector
operations modes will yield the best signal-to-noise ratio.

Furthermore, JWST has requirements to schedule observations
at times that do not degrade signal-to-noise too much (due to
varying sky background levels that depend on the time of year
the target is observed). As such, the scheduling system will need
to obtain this information from the ETC. There is also a desire
for the proposal preparation tool to be able to use the ETC to
determine the optimal detector operating mode for each exposure.

We will be importing all the data regarding instrument perfor-

Fig. 3: One of the plot options for the results shown in Figure 2. In this
case the instrument throughput is shown as a function of wavelength
for the selected observing mode.

mance as it relates to ETC calculations into our Calibration Data
tracking system (not possible with the older ETC because of the
dispersed nature of the data).

The ETC also provides tables of results to the observatory
scheduling system which helps detect when bright sources may
pose a health and safety hazard to the instrument in use.

The ETC computational engine will be made available with an
Open Source License (BSD/MIT) when the production version is
completed.

Conclusions

The rewrite has resulted in a far smaller and consistent code base.
More importantly, we can test on the same system that is used
operationally. The cycle of building, delivering, and testing the
software now can be done in hours instead of weeks giving us far
greater ability to fix problems and add enhancements. Django, and
our pre-existing tools (matplotlib, pysynphot) greatly facilitated
this effort. We will be in a much better position to adapt to JWST
ETC requirements.

There were certainly general lessons to be learned from this
experience and other work we’ve done. In coming up with this
list, we are generalizing about some issues that didn’t necessarily
affect this project. Among them:

• There is a big difference between scientific
programming as most scientists do it, and what
is needed for operational purposes. Table 2 con-
trasts some of the differences in approach that
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Scientist Operations
Ad-hoc changes to
handle various needs

One code base to handle
all needed alternatives

Corner cases often ig-
nored

Special cases given more
attention

Little attention to user
interface

Much more attention to
user interface

Minimal error check-
ing

Extensive error checking

No version control Version Control
No unit or regression
tests

Extensive tests

Minimal documenta-
tion

More extensive documen-
tation

Refactoring rare Hopefully not...

TABLE 2: Comparison of attributes of software developed by re-
searchers to those of software developed for widespread or opera-
tional use.

one usually sees. This isn’t to say that scientists
couldn’t benefit from some of the approaches
and tools for operational software (often they
could), it’s just that that they usually don’t use
them. These differences result in important man-
agement issues discussed later.

• Databases are a double-edged sword. They
clearly have important uses, particularly for web
applications. On the other hand, they introduce
a number of strong constraints on flexibility and
ease of distribution. Think carefully about what
you use them for and when you really need it.

• Resist temptation to continually put new features
over internal coherence. Refactor when needed.

• Routine builds and testing are extremely im-
portant. The installation process needs to be as
automatic as possible.

• Test on the same machine (or as identical an en-
vironment as possible) to be used for operations
(at least a subset of the full tests).

• No matter how much analysis you do up front
about the design, you probably won’t get it right.
Be ready to redo it when you face the real world.

• It has to work for all cases, not just the common
ones. Even crazy input parameters must at least
give a useful error message that will help the
user identify the problem.

Complicating the interface between the astronomers and devel-
opers is the fact that many astronomers have written programs for
their research purposes, but have never had to write programs for
distribution or operational settings, and have never had to support
software they have written. As a result many astronomers do not
appreciate the effort required to produce reliable and distributable
software that can be used by individuals or complex systems.
That effort is typically up to an order of magnitude more than
needed to get software that works for their particular need. It is not
unusual to see astronomers become frustrated at the effort required
for implementation when they think they could have done it in
one fifth the time. As important as any programming, software
engineering, or management technique, is the management of

the expectations of such customers, and resistance against such
expectations driving software into an unmaintainable state.
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Abstract—We will describe how the Space Telescope Science Institute is using
Python in support of the next large space telescope, the James Webb Space
Telescope (JWST). We will briefly describe the 6.5 meter segmented-mirror
infra-red telescope, currently planned for a 2014 launch, and its science goals.
Our experience with Python has already been employed to study the variation
of the mirror and instrument support structures during cyrogenic cool-down from
ambient temperatures to 30 Kelvin with accuracies better than 10 nanometers
using a speckle interferometer. Python was used to monitor, process (initially
in near real-time) and analyze over 15 TB of data collected. We are currently
planning a metrology test that will collect 10 TB of data in 7 minutes. We will
discuss the advantages of using Python for each of these projects.

Index Terms—astronomy, telescope, NASA, measure, real-time, big data

Introduction

The James Webb Space Telescope (JWST) will be NASA’s next
Great Observatory. It will be an infrared-optimized telescope with
a 6.5m primary mirror made up of 18-separate segments which
will be launched no sooner than 2015 by an Ariane 5 into an orbit
at the second Langragian (L2) point. This orbital position, about
1.5 million km from the Earth, keeps the Sun behind the Earth
at all times making it easier to shield the telescope and keep it
cool. The Hubble Space Telescope (HST), by comparison, is a
telescope in a 570km high orbit with a solid 2.4m primary mirror
optimized for UV and optical observations. A lot of effort will go
into building and testing JWST, as it did with HST, to get it to work
as desired and as reliably as possible once launched. However,
unlike HST, there will not be any possibility of performing a repair
mission. The primary structure of JWST will be made of carbon-
fiber composites in order to be lightweight enough for launch
while still providing the necessary strength and rigidity to support
such a large set of mirrors and instrument packages. The primary
mirror itself will be composed of 18 separate hexagonal segments.
These segments will be mounted onto a backplane with actuators
that will allow the segments to be aligned to match one common
optical surface that represents a single mirror with a diameter of
6.5m.

A test article, the Backplane Stability Test Article (BSTA), was
manufactured using the same materials, techniques, and design
principles being developed for constructing the entire telescope.
Extensive thermal-vacuum chamber testing was conducted on the
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Fig. 1: An Ariane 5 launch similar to the launcher that will be used
to place JWST into orbit about the L2 point, the orbital position that
keeps the Sun behind the Earth all the time as viewed from JWST.
Photo: ESA.

BSTA to verify that it will meet the stringent requirements neces-
sary for JWST to work; specifically, that it will remain stable to
within 38nm over the orbital operational temperature range of 30-
60K. These tests required the development of specialized software
to collect and process all the necessary data. Such software was
written in Python and is described in the following sections.

Testing the BSTA

NASA required a test that demonstrated the stability of this engi-
neering article and which verified that the design and construction
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Fig. 2: Engineers move the Backplane Stability Test Article (BSTA)
into position for the thermal vacuum test. This test piece represents
a section of the backplane that will support only 3 of the 18 mirror
segments of the primary mirror for JWST.

techniques will work to meet the requirements of the telescope:
namely, that it will remain stable to within 68nm from 30-50K
(-405 to -370 ◦F). They also wished to track the structural changes
from ambient (~295K) to cryogenic temperatures (~30K) in order
to better understand the accuracy of their structural models. The
primary test equipment, a special interferometer, did have software
to take measurements, but that software was not suited for the
needs of this test. This required the development of specialized
software to support the test.

Normal interferometry is used with optical elements where
the reflected or transmitted laser signal remains spatially coherent
over large areas. Speckle interferometry is intended to be used
with non- optical surfaces, that is, surfaces that are optically rough
on very small spatial scales. When illuminated by a laser, such
surfaces typically show "speckles" that result from random points
where the reflections from the surface are relatively coherent (as
compared to the darker areas where the reflections mostly cancel
out through interference). While the phase of speckles varies
randomly from one spot on the article to the next, and thus cannot
be used for any spatial comparison from a single image, how the
phase for a specific speckle changes, does indicate how the surface
is moving relative to the laser; in this way speckle interferometers
can be used to determine how surfaces are changing in time. The
BSTA, although intended to hold JWST mirror segments, has
no optical surfaces of its own. In order to understand how the
structure changed with temperature it was necessary to use the
Electronic Speckle Pattern Interferometer (ESPI).

The ESPI laser illuminates the surface of the BSTA, then
recombines the reflected signal with a reference beam split from
the same laser pulse, to create an interferometric map of the
surface speckles. As the structure moves, the speckles change
phase reflecting the change in interference between the incident
and reference laser pulses. However, those phases cycle from −π
to π and back as the surface continues to move. This required
the use of phase unwrapping across the surface, spatial phase
unwrapping, using an algorithm developed by the manufacturers
of the ESPI.

As the surface tilted during the test, it produced fringes where

Fig. 3: Schematic of ESPI showing how the ESPI measures the change
in the object due to thermal or mechanical stress by tracking the
speckles’ phase change on the surface.

Fig. 4: Schematic showing how bulk tilt introduces multiple 2π
variations across the structure and how it gets corrected in processing,
allowing for relative variations to be measured across the surface as
described in "Testing the BSTA".

the phases across the structure would transition from π to −π .
This tilt needed to be removed in order to allow us to measure the
relative changes from one region of the structure to another.

Since the measured phase is ambiguous by multiples of 2π ,
special techniques are required to remove these ambiguities. One
is to presume that continuous surfaces have continuous phase, and
any discontinuities on continuous surfaces are due to phase wrap-
ping. Thus such discontinuities can be "unwrapped" to produce
spatially continuous phase variations. Another presumption is that
even though the general position and tilt of the entire structure
may change greatly from one exposure to another, the relative
phase shape of the structure will not change rapidly in time once
bulk tilt and displacement are removed.

The following figures show the consequent phase wraps when
a surface has any significant tilt. One can perform spatial phase
unwrapping on spatially contiguous sections. Gross tilts are fit
to the largest contiguous sections, and then the average tilt is
removed (as well as the average displacement). However, there are
areas of interest (the mirror pad supports) which are discontiguous
and as a result possibly several factors of 2π offset in reality as
a result of the tilt, and thus improperly corrected when tilts are
removed. Since these areas are assumed to change slowly in time,
temporal phase unwrapping is applied to these areas.

The entire ESPI system, hardware and software, was built by
4D Technologies under the guidance of one of our team members,
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Fig. 5: A sample ESPI image illustrating the fringes that build up
due to bulk tilts. These fringes get "unwrapped" to produce spatially
contiguous phase variations across the surface of the object.

Babak. The commercial software from 4D Technologies that came
with the ESPI hardware had algorithms for performing the spatial
unwrapping using a GUI interface for interactive operation. This
interface, though, was unable to support the needs of the test;
namely, that it would need to continuously take 5 images/second
for 24 hours/day for up to 6 weeks at a time. Thus, we needed to
write our own specialized software to support the test.

Python to the Rescue

Many of the requirements for any software that needed to be
written were unknowable, not just unknown, for a number of
reasons. No test had ever been conducted like this before, so there
was no experience to draw upon to foresee what problems may
arise during the test. Concerns ranged from whether the laser
output could be maintained at a stable level over such a long
period of time given that the output was dependent on the ambient
temperature of the test facility. This drove the requirement to
monitor in near-real-time the laser intensity as measured from
the observations themselves. These results were compared with
occasional checks of the laser output using burn paper in the laser
path, creating a bit of smoke in the process, to insure that the
monitoring was accurately tracking the health of the laser.

We also had no certainty about what phase-unwrapping al-
gorithms were going to work until the test actually started. Test
conditions such as residual vibrations in the test rig could seriously
impact our ability to measure the surface changes we were after
and potentially require changes to how the phase-unwrapping al-
gorithms needed to be applied. It was only after the test started that
these effects would be known, requiring the ability to update the
data acquisition and processing code on the fly to accommodate
the quality of the test data.

Finally, the code had to be easily adaptable and capable of
handling massive amounts of data in as close to real time as
possible! Python offered the best possible choice for addressing

Fig. 6: This snapshot of the ESPI Monitoring GUI in operation
illustrates the near-real-time monitoring plots and image display used
to track the health of the laser and quality of the data and subsequent
processing.

these challenges in supporting this test. It allowed us to develop
code rapidly to adjust for the test conditions during the test
with minimal impact. The plotting and array-handling libraries,
specifically matplotlib and numpy, proved robust and fast enough
to keep up with the near-real-time operations. The commercial
software that came with ESPI hardware had also been written in
Python and C, so Python allowed us to interface to that code to run
our own custom processing code using the commercial algorithms
for data acquisition and phase-unwrapping.

Our data acquisition system used custom code to automate
the operation of the commercial software used to interface with
the ESPI camera. This module was run under the commercial
software’s own Python environment in order to most easily access
their camera’s API and stored the images in real time on a storage
server. The remainder of the processing required the use of the
Python API to the commercial software’s functions to perform the
phase unwrapping. As a result of this extended processing, the
remainder of the code could only process and monitor the results
of every 5th image taken during the test. This monitoring was
performed using a custom Tkinter GUI which provided plots of
a couple of key processing results, and an image display of the
latest processed image, all using matplotlib.

This data processing pipeline was set up using 4 PCs and
a 15Tb storage server. A separate PC was dedicated to each
of the processing steps; namely, data acquisition, initial phase
unwrapping, measuring of regions, and monitoring of the pro-
cessing. This distributed system was required in order to support
the data acquisition rate for the test: 5 1004x996 pixel images per
second for 24 hours a day for 6 uninterrupted weeks. A total of
approximately 11Tb of raw data was eventually acquired during
the test. These raw observations were later reprocessed several
times using the original set of 4 PCs from the test as well as
additional PCs all running simultaneously to refine the results in
much less than real time using all the lessons learned while the test
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Fig. 7: Mosaic of sample processed measurements of the BSTA as
the temperature changed from 40K to 60K, matching the operational
temperature range of JWST. This mosaic illustrates how the structure
was measured to change as the temperature changed.

was in progress. This reprocessing effort represented the simplest
possible case of parallel processing, where separate sets of data
could be processed independently on separate systems. No other
use of parallel processing techniques was implemented for the test
or subsequent reprocessing.

Results

BSTA data analysis measured the slope of the data, expansion
due to temperature, with an RMS of 25.2nm/K, well within the
36.8nm/K requirement for meeting NASA’s goals. These mea-
surements were based on calibrations which had RMS values less
than 5 nm around the measured slope.

Python allowed for rapid development of a near-real-time
processing pipeline spread across multiple systems which we were
able to revise quickly as needed during the test. The fact that
the commercial software was written using Python also allowed
us to interface with it to use their C-based algorithms for data
acquisition and phase-unwrapping. Equally importantly, we were
able to implement changes in the processing algorithms while the
test was underway to address aspects of the data quality that were
not expected when the test began. This software, though, can not
be distributed as it was designed explicitly to support the JWST
tests alone. The success of this test, though, resulted in establishing
the ESPI as a resource for later tests, and this software will be used
as the framework for supporting additional tests of JWST in the
coming years.

Future Tests

The development of the software for the ESPI tests validated its
utility to measure the shape of structures to nanometer accuracies.
Additional testing of the actual structure built for use in supporting
all 18 segments of the primary mirror for JWST will require this
level of accuracy, albeit under very different testing conditions.
A new test to map the actual positions and orientations of each
of the mirror segments will use an upgraded version of the ESPI
to monitor the mirror segments after they have been mounted on
the backplane of the telescope. This test will validate that the
actuators controlling the position of each mirror segment can be

controlled sufficiently to align all the segments to create a single
optical surface.

This test will require adjusting the mirror positions, then taking
up to a thousand images a second for a short period of time to
verify the newly updated positions. Such a test can easily generate
10Tb of imaging data in only 7 minutes. The Python software we
developed for previous ESPI tests will be used as the basis for
the data acquisition and data processing systems for this new test,
including synthesizing data from additional measuring devices.
The only way to keep up with this test will be to use multiple
systems processing data in parallel to process the data quickly
enough to allow the test to proceed as needed, much as we did
with the reprocessing of the original ESPI data. In short, Python’s
rapid development capabilities, fast array handling, and ability to
run the same code on multiple systems in parallel will be critical
to the success of this new test.
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Modeling Sudoku Puzzles with Python

Sean Davis‡∗, Matthew Henderson‡, Andrew Smith‡
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Abstract—The popular Sudoku puzzles which appear daily in newspapers the
world over have, lately, attracted the attention of mathematicians and computer
scientists. There are many, difficult, unsolved problems about Sudoku puzzles
and their generalizations which make them especially interesting to mathemati-
cians. Also, as is well-known, the generalization of the Sudoku puzzle to larger
dimension is an NP-complete problem and therefore of substantial interest to
computer scientists.

In this article we discuss the modeling of Sudoku puzzles in a variety
of different mathematical domains. We show how to use existing third-party
Python libraries to implement these models. Those implementations, which
include translations into the domains of constraint satisfaction, integer pro-
gramming, polynomial calculus and graph theory, are available in an open-
source Python library sudoku.py developed by the authors and available at
http://bitbucket.org/matthew/scipy2010

Index Terms—sudoku, mathematics, graph theory

Introduction

Sudoku puzzles

A Sudoku puzzle is shown near the top of the second column on
this page.

To complete this puzzle requires the puzzler to fill every empty
cell with an integer between 1 and 9 in such a way that every
number from 1 up to 9 appears once in every row, every column
and every one of the small 3 by 3 boxes highlighted with thick
borders.

Sudoku puzzles vary widely in difficulty. Determining the
hardness of Sudoku puzzles is a challenging research problem
for computational scientists. Harder puzzles typically have fewer
prescribed symbols. However, the number of prescribed cells is not
alone responsible for the difficulty of a puzzle and it is not well-
understood what makes a particular Sudoku puzzle hard, either for
a human or for an algorithm to solve.

The Sudoku puzzles which are published for entertainment
invariably have unique solutions. A Sudoku puzzle is said to
be well-formed if it has a unique solution. Another challenging
research problem is to determine how few cells need to be filled
for a Sudoku puzzle to be well-formed. Well-formed Sudoku with
17 symbols exist. It is unknown whether or not there exists a well-
formed puzzle with only 16 clues. In this paper we consider all
Sudoku puzzles, as defined in the next paragraph, not only the
well-formed ones.
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2 5 3 9 1

1 4

4 7 2 8

5 2

9 8 1

4 3

3 6 7 2

7 3

9 3 6 4

By Sudoku puzzle of boxsize n, in this paper, is meant a partial
assignment of values from {1, . . . ,n2} to the cells of an n2× n2

grid in such a way that at most one of each symbols occurs in any
row, column or box. A solution of a Sudoku puzzle is a complete
assignment to the cells, satisfying the same conditions on row,
columns and boxes, which extends the original partial assignment.

sudoku.py

With sudoku.py, the process of building models of Sudoku
puzzles, which can then be solved using algorithms for computing
solutions of the models, is a simple matter. In order to understand
how to build the models, first it is necessary to explain the two
different representations of Sudoku puzzles in sudoku.py.

The dictionary representation of a puzzle is a mapping between
cell labels and cell values. Cell values are integers in the range
{1, . . . ,n2} and cell labels are integers in the range {1, . . . ,n4}.
The labeling of a Sudoku puzzle of boxsize n starts with 1 in
the top-left corner and moves along rows, continuing to the next
row when a row is finished. So, the cell in row i and column j is
labeled (i−1)n2 + j.

For example, the puzzle from the introduction can be repre-
sented by the dictionary

>>> d = {1: 2, 2: 5, 5: 3, 7: 9, 9: 1,
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... 11: 1, 15: 4, 19: 4, 21: 7, 25: 2,

... 27: 8, 30: 5, 31: 2, 41: 9, 42: 8,

... 43: 1, 47: 4, 51: 3, 58: 3, 59: 6,

... 62: 7, 63: 2, 65: 7, 72: 3, 73: 9,

... 75: 3, 79: 6, 81: 4}

A Sudoku puzzle object can be built from such a dictionary. Note
that the boxsize is a parameter of the Puzzle object constructor.

>>> from sudoku import Puzzle
>>> p = Puzzle(d, 3)
>>> p
2 5 . . 3 . 9 . 1
. 1 . . . 4 . . .
4 . 7 . . . 2 . 8
. . 5 2 . . . . .
. . . . 9 8 1 . .
. 4 . . . 3 . . .
. . . 3 6 . . 7 2
. 7 . . . . . . 3
9 . 3 . . . 6 . 4

In practice, however, the user mainly interacts with sudoku.py
either by creating specific puzzles instances through input of
puzzle strings, directly or from a text file, or by using generator
functions.

The string representation of a Sudoku puzzle of boxsize n
is a string of ascii characters of length n4. In such a string a
period character represents an empty cell and other ascii characters
are used to specify assigned values. Whitespace characters and
newlines are ignored when Puzzle objects are built from strings.

A possible string representation of the puzzle from the intro-
duction is:

>>> s = """
... 2 5 . . 3 . 9 . 1
... . 1 . . . 4 . . .
... 4 . 7 . . . 2 . 8
... . . 5 2 . . . . .
... . . . . 9 8 1 . .
... . 4 . . . 3 . . .
... . . . 3 6 . . 7 2
... . 7 . . . . . . 3
... 9 . 3 . . . 6 . 4

"""

A Puzzle object can be built from a puzzle string by providing
the keyword argument format = 's'

>>> p = Puzzle(s, 3, format = 's')

Random puzzles can be created in sudoku.py by the
random_puzzle function.

>>> from sudoku import random_puzzle
>>> q = random_puzzle(15, 3)
>>> q
. . . . 5 . . . 1
. 5 . . . . . . 7
. . 1 9 . 7 . . .
. . . . . . . . .
. . 5 . . . 7 . .
. . 6 . . . . 9 .
. . . . . 5 . . .
5 . . . . . 4 . .
1 . . . . . . . .

The first argument to random_puzzle is the number of pre-
scribed cells in the puzzle.

Solving of puzzles in sudoku.py is handled by the solve
function. This function can use a variety of different algorithms,
specified by an optional model keyword argument, to solve the
puzzle. Possible values are CP for constraint propagation, lp for
linear programming, graph to use a node coloring algorithm on a

graph puzzle model and groebner to solve a polynomial system
model via a Groebner basis algorithm. The default behavior is to
use constraint propagation.

>>> from sudoku import solve
>>> s = solve(q)
>>> s
7 3 2 8 5 6 9 4 1
8 5 9 4 2 1 6 3 7
6 4 1 9 3 7 8 5 2
9 7 8 5 4 3 1 2 6
3 2 5 6 1 9 7 8 4
4 1 6 7 8 2 5 9 3
2 9 4 1 6 5 3 7 8
5 6 3 2 7 8 4 1 9
1 8 7 3 9 4 2 6 5

Sudoku puzzles of boxsize other than 3 can also be modeled with
sudoku.py. Puzzles of boxsize 2 are often called Shidoku.

>>> q2 = random_puzzle(7, 2)
>>> q2
4 . . .
2 1 . .
. 4 . 2
. . 3 4
>>> solve(q2)
4 3 2 1
2 1 4 3
3 4 1 2
1 2 3 4

Sudoku puzzles of boxsize greater than three are less commonly
studied in the literature. In sudoku.py we use printable char-
acters (from string.printable) for the symbols of puzzles
with boxsize greater than 3

>>> q4 = random_puzzle(200, 4)
>>> q4
. . e d . . a 9 8 . . 5 . 3 2 1
c b a 9 4 . 2 1 g . e d 8 7 6 .
8 . 6 5 g f e d 4 3 2 1 c b a 9
. . 2 1 8 7 6 5 c . a . g f e d
f d g . 9 8 7 c 3 6 . b . 2 . .
2 6 . . 1 d g b f 4 c . 9 . 8 7
. 4 1 8 3 6 . 2 9 e 7 . . . 5 c
9 c 7 b e a 5 . 2 1 . 8 f g 3 6
e g 9 f 7 . 8 a 6 d 3 4 5 1 b .
b a . 7 . 2 9 e 5 . 1 f . 8 c .
3 8 . 6 5 1 4 f . 9 b 2 7 a d g
. . 4 . d g b 3 7 a 8 c e 6 9 f
. e f c 2 9 3 8 a 5 g 7 6 4 . b
7 9 . 4 a . 1 6 d 8 . e 2 c g 3
6 2 8 g b . d . . c 9 3 . . f .
5 1 3 a f e c g b 2 4 6 . . 7 8

Solving puzzles of this size is still feasible by constraint propoga-
tion

>>> solve(q4)
g f e d c b a 9 8 7 6 5 4 3 2 1
c b a 9 4 3 2 1 g f e d 8 7 6 5
8 7 6 5 g f e d 4 3 2 1 c b a 9
4 3 2 1 8 7 6 5 c b a 9 g f e d
f d g e 9 8 7 c 3 6 5 b 1 2 4 a
2 6 5 3 1 d g b f 4 c a 9 e 8 7
a 4 1 8 3 6 f 2 9 e 7 g b d 5 c
9 c 7 b e a 5 4 2 1 d 8 f g 3 6
e g 9 f 7 c 8 a 6 d 3 4 5 1 b 2
b a d 7 6 2 9 e 5 g 1 f 3 8 c 4
3 8 c 6 5 1 4 f e 9 b 2 7 a d g
1 5 4 2 d g b 3 7 a 8 c e 6 9 f
d e f c 2 9 3 8 a 5 g 7 6 4 1 b
7 9 b 4 a 5 1 6 d 8 f e 2 c g 3
6 2 8 g b 4 d 7 1 c 9 3 a 5 f e
5 1 3 a f e c g b 2 4 6 d 9 7 8
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Models

In this section we introduce several models of Sudoku and
show how to use existing Python components to implement
these models. The models introduced here are all implemented
in sudoku.py. Implementation details are discussed in this
section and demonstrations of the components of sudoku.py
corresponding to each of the different models are given.

Constraint models

Constraint models for Sudoku puzzles are discussed in [Sim05].
A simple model uses the AllDifferent constraint.

A constraint program is a collection of constraints. A con-
straint restricts the values which can be assigned to certain
variables in a solution of the constraint problem. The AllDifferent
constraint restricts variables to having mutually different values.

Modeling Sudoku puzzles is easy with the AllDifferent con-
straint. To model the empty Sudoku puzzle (i.e. the puzzle with
no clues) a constraint program having an AllDifferent constraint
for every row, column and box is sufficient.

For example, if we let xi ∈ {1, . . . ,n2} for 1 ≤ i ≤ n4, where
xi = j means that cell i gets value j then the constraint model for
a Sudoku puzzle of boxsize n = 3 would include constraints:

AllDifferent(x1,x2,x3,x4,x5,x6,x7,x8,x9)

AllDifferent(x1,x10,x19,x28,x37,x46,x55,x64,x73)

AllDifferent(x1,x2,x3,x10,x11,x12,x19,x20,x21)

These constraints ensure that, respectively, the variables in the
first row, column and box get different values.

The Sudoku constraint model in sudoku.py is implemented
using python-constraint v1.1 by Gustavo Niemeyer.
This open-source library is available at http://labix.org/python-
constraint.

With python-constraint a Problem having variables
for every cell {1, . . . ,n4} of the Sudoku puzzle is required. The
list of cell labels is given by the function cells in sudoku.py.
Every variable has the same domain {1, . . . ,n2} of symbols. The
list of symbols in sudoku.py is given by the symbols function.

The Problem member function addVariables provides a
convenient method for adding variables to a constraint problem
object.

>>> from constraint import Problem
>>> from sudoku import cells, symbols
>>> cp = Problem()
>>> cp.addVariables(cells(n), symbols(n))

The AllDifferent constraint in python-constraint is
implemented as AllDifferentConstraint(). The
addConstraint(constraint, variables) member
function is used to add a constraint on variables to a
constraint Problem object. So, to build an empty Sudoku puzzle
constraint model we can do the following.

>>> from constraint import AllDifferentConstraint
>>> from sudoku import \
... cells_by_row, cells_by_col, cells_by_box
>>> for row in cells_by_row(n):
... cp.addConstraint(AllDifferentConstraint(), row)
>>> for col in cells_by_col(n):
... cp.addConstraint(AllDifferentConstraint(), col)
>>> for box in cells_by_box(n):
... cp.addConstraint(AllDifferentConstraint(), box)

Here the functions cells_by_row, cells_by_col and
cells_by_box give the cell labels of a Sudoku puzzle or-
dered, respectively, by row, column and box. These three loops,
respectively, add to the constraint problem object the necessary
constraints on row, column and box variables.

To extend this model to a Sudoku puzzle with clues requires
additional constraints to ensure that the values assigned to clue
variables are fixed. One possibility is to use an ExactSum con-
straint for each clue.

The ExactSum constraint restricts the sum of a set of variables
to a precise given value. We can slightly abuse the ExactSum
constraint to specify that certain individual variables are given
certain specific values. In particular, if the puzzle clues are given
by a dictionary d then we can complete our model by adding the
following constraints.

>>> from constraint import ExactSumConstraint as Exact
>>> for cell in d:
... cp.addConstraint(Exact(d[cell]), [cell])

To solve the Sudoku puzzle now can be done by solving the
constraint model cp. The constraint propogation algorithm of
python-constraint can be invoked by the getSolution
member function.

>>> s = Puzzle(cp.getSolution(), 3)
>>> s
2 5 8 7 3 6 9 4 1
6 1 9 8 2 4 3 5 7
4 3 7 9 1 5 2 6 8
3 9 5 2 7 1 4 8 6
7 6 2 4 9 8 1 3 5
8 4 1 6 5 3 7 2 9
1 8 4 3 6 9 5 7 2
5 7 6 1 4 2 8 9 3
9 2 3 5 8 7 6 1 4

The general solve function of sudoku.py knows how to build
the constraint model above, find a solution via the propogation
algorithm of python-constraint and translate the solution
into a completed Sudoku puzzle.

>>> s = solve(p, model = 'CP')

Here, p is a Puzzle instance. In fact, the model = 'CP'
keyword argument in this case is redundant, as 'CP' is the default
value of model.

Graph models

A graph model for Sudoku is presented in [Var05]. In this model,
every cell of the Sudoku grid is represented by a node of the graph.
The edges of the graph are given by the dependency relationships
between cells. In other words, if two cells lie in the same row,
column or box, then their nodes are joined by an edge in the
graph.

In the graph model, a Sudoku puzzle is given by a partial
assignment of colors to the nodes of the graph. The color assigned
to a node corresponds to a value assigned to the corresponding
cell. A solution of the puzzle is given by a coloring of the
nodes with colors {1, . . . ,n2} which extends the original partial
coloring. A node coloring of the Sudoku graph which corresponds
to a completed puzzle has the property that adjacent vertices are
colored differently. Such a node coloring is called proper.

The Sudoku graph model in sudoku.py is implemented
using networkx v1.1. This open-source Python graph library
is available at http://networkx.lanl.gov/
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Modeling an empty Sudoku puzzle as a networkx.Graph
object requires nodes for every cell and edges for every pair of
dependent cells. To add nodes (respectively, edges) to a graph,
networkx provides member functions add_nodes_from (re-
spectively, add_edges_from). Cell labels are obtained from
sudoku.py’s cells function.

>>> import networkx
>>> g = networkx.Graph()
>>> g.add_nodes_from(cells(n))

Dependent cells are computed using the dependent_cells
function. This function returns the list of all pairs (x,y) with x < y
such that x and y either lie in the same row, same column or same
box.

>>> from sudoku import dependent_cells
>>> g.add_edges_from(dependent_cells(n))

To model a Sudoku puzzle, we have to be able to assign colors to
nodes. Graphs in networkx allow arbitrary data to be associated
with graph nodes. To color nodes according to the dictionary d of
puzzle clues.

>>> for cell in d:
... g.node[cell]['color'] = d[cell]

There are many node coloring algorithms which can be used to
find a solution of a puzzle. In sudoku.py, a generic node color-
ing algorithm is implemented. This generic coloring algorithm can
be customized to provide a variety of different specific coloring
algorithms. However, none of these algorithms is guaranteed to
find a soolution which uses only symbols from {1, . . . ,n2}. In
general, these algorithms use too many colors

>>> from sudoku import node_coloring, n_colors
>>> cg = node_coloring(g)
>>> n_colors(cg)
13
>>> from sudoku import graph_to_dict
>>> s = Puzzle(graph_to_dict(cg), 3)
>>> s
2 5 6 7 3 a 9 4 1
3 1 8 5 2 4 7 6 a
4 9 7 6 b c 2 3 8
6 3 5 2 4 7 8 9 b
7 2 a b 9 8 1 5 6
8 4 9 a 5 3 c 2 7
5 8 4 3 6 9 a 7 2
a 7 b 4 8 5 d c 3
9 c 3 d 7 b 6 8 4

To solve a Sudoku Puzzle instance p, call the solve function,
with model = graph as a keyword argument.

>>> s = solve(p, model = 'graph')

Polynomial system models

The graph model above is introduced in [Var05] as a prelude to
modeling Sudoku puzzles as systems of polynomial equations.
The polynomial system model in [Var05] involves variables xi for
i ∈ {1, . . . ,n4} where xi = j is interpreted as the cell with label i
being assigned the value j.

The Sudoku polynomial-system model in sudoku.py is imple-
mented using sympy v0.6.7. This open-source symbolic alge-
bra Python library is available at http://code.google.com/p/sympy/

Variables in sympy are Symbol objects. A sympy.Symbol
object has a name. So, to construct the variables for our model,
first we map symbol names onto each cell label.

>>> from sudoku import cell_symbol_name

>>> def cell_symbol_names(n):
... return map(cell_symbol_name, cells(n))

Now, with these names for the symbols which represent the cells
of our Sudoku puzzle, we can construct the cell variable symbols
themselves.

>>> from sympy import Symbol
>>> def cell_symbols(n):
... return map(Symbol, cell_symbol_names(n))

Finally, with these variables, we can build a Sudoku polynomial
system model. This model is based on the graph model of the
previous section. There are polynomials in the system for every
node in the graph model and polynomials for every edge.

The role of node polynomial F(xi) is to ensure that every cell
i is assigned a number from {1, . . . ,n2} :

F(xi) =
n2

∏
j=1

(xi− j)

Node polynomials, for a sympy.Symbol object x are built
as follows.

>>> from operator import mul
>>> from sudoku import symbols
>>> def F(x,n):
... return reduce(mul,[(x-s) for s in symbols(n)])

The edge polynomial G(xi,x j) for dependent cells i and j, ensures
that cells i and j are assigned different values. These polynomials
have the form. :

G(xi,x j) =
F(xi)−F(x j)

xi− x j

In sympy, we build edge polynomials from the node polyno-
mial function F.

>>> from sympy import cancel, expand
>>> def G(x,y,n):
... return expand(cancel((F(x,n)-F(y,n))/(x-y)))

The polynomial model for the empty Sudoku puzzle con-
sists of the collection of all node polynomials for nodes in
the Sudoku graph and all edge polynomials for pairs (x,y)
in dependent_symbols(n). The dependent_symbols
function is simply a mapping of the sympy.Symbol constructor
onto the list of dependent cells.

Specifying a Sudoku puzzle requires extending this model by
adding polynomials to represent clues. According to the model
from [Var05], if D is the set of fixed cells (i.e. cell label, value
pairs) then to the polynomial system we need to add polynomials

D(xi, j) = xi− j

Or, with sympy:

>>> def D(i, j):
... return Symbol(cell_symbol_name(i)) - j

To build the complete polynomial system, use the
puzzle_as_polynomial_system function of
sudoku.py:

>>> from sudoku import puzzle_as_polynomial_system
>>> g = puzzle_as_polynomial_system(d, 3)

The sympy implementation of a Groebner basis algorithm can
be used to find solutions of this polynomial system. The Groeb-
ner basis depends upon a variable ordering, here specified as
lexicographic. Other orderings, such as degree-lexicographic, are
possible.
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>>> from sympy import groebner
>>> h = groebner(g, cell_symbols(n), order = 'lex')

The solution of the polynomial system g is a system of linear
equations in the symbols xi which can be solved by the linear
solver from sympy.

>>> from sympy import solve as lsolve
>>> s = lsolve(h, cell_symbols(n))

To use the polynomial-system model to find a solution to Puzzle
instance p call the solve function with the keyword argument
model = groebner.

>>> s = solve(p, model = 'groebner')

Integer programming models

In [Bar08] a model of Sudoku as an integer programming problem
is presented. In this model, the variables are all binary.

xi jk ∈ {0,1}
Variable xi jk represents the assignment of symbol k to cell (i, j)

in the Sudoku puzzle.

xi jk =

{
1 if cell (i, j) contains symbol k
0 otherwise

The integer programming (IP) model has a set of equations
which force the assignment of a symbol to every cell.

n

∑
k=1

xi jk = 1, 1≤ i≤ n,1≤ j ≤ n

Other equations in the IP model represent the unique oc-
curence of every symbol in every column:

n

∑
i=1

xi jk = 1, 1≤ j ≤ n,1≤ k ≤ n

every symbol in every row:
n

∑
j=1

xi jk = 1, 1≤ i≤ n,1≤ k ≤ n

and every symbol in every box:
mq

∑
j=mq−m+q

mp

∑
i=mp−m+1

xi jk = 1

1≤ k ≤ n,1≤ p≤ m,1≤ q≤ m

The Sudoku IP model is implemented in sudoku.py us-
ing pyglpk v0.3 by Thomas Finley. This open-source mixed
integer/linear programming Python library is available at http:
//tfinley.net/software/pyglpk/

In pyglpk, an integer program is represented by the matrix
of coefficients of a system of linear equations. Two functions of
sudoku.py provide the correct dimensions of the coefficient
matrix.

>>> from glpk import LPX
>>> from sudoku import \
... lp_matrix_ncols, lp_matrix_nrows
>>> lp = LPX()
>>> lp.cols.add(lp_matrix_ncols(n))
>>> lp.rows.add(lp_matrix_nrows(n))

Columns of the matrix represent different variables. All our
variables are binary and so their bounds are set appropriately,
between 0 and 1.

>>> for c in lp.cols:

... c.bounds = 0.0, 1.0

Rows of the coefficient matrix represent different linear equations.
We require all our equations to have a value of 1, so we set both
the lower and upper bound of every equation to be 1.

>>> for r in lp.rows:
... r.bounds = 1.0, 1.0

With appropriate dimensions and bounds fixed, the coefficient
matrix itself is provided by sudoku.py’s lp_matrix function.

>>> from sudoku import lp_matrix
>>> lp.matrix = lp_matrix(n)

To extend the IP model to a Sudoku puzzle with fixed clues
requires further equations. Fixed elements in the puzzle, given
by a set F of triples (i, j,k), are each represented by an equation
in the system:

xi jk = 1, ∀(i, j,k) ∈ F

To add these equations to the pyglpk.LPX object lp:

>>> from sudoku import lp_col_index
>>> for cell in d:
... lp.rows.add(1)
... r = lp_matrix_ncols(n)*[0]
... r[lp_col_index(cell, d[cell], n)] = 1
... lp.rows[-1].matrix = r
... lp.rows[-1].bounds = 1.0, 1.0

To solve the LPX instance lp requires first solving a linear
relaxation via the simplex algorithm implementation of pyglpk

>>> lp.simplex()

Once the linear relaxation is solved, the original integer program
can be solved.

>>> for col in lp.cols:
... col.kind = int
>>> lp.integer()

Finally, we need to extract the solution as a dictionary from the
model via the lp_to_dict function from sudoku.py.

>>> from sudoku import lp_to_dict
>>> d = lp_to_dict(lp, n)
>>> s = Puzzle(d, 3)
>>> s
2 5 8 7 3 6 9 4 1
6 1 9 8 2 4 3 5 7
4 3 7 9 1 5 2 6 8
3 9 5 2 7 1 4 8 6
7 6 2 4 9 8 1 3 5
8 4 1 6 5 3 7 2 9
1 8 4 3 6 9 5 7 2
5 7 6 1 4 2 8 9 3
9 2 3 5 8 7 6 1 4

To use the IP model to solve a Puzzle instance, specify the
keyword argument model = lp.

>>> s = solve(p, model = 'lp')

Experimentation

In this section we demonstrate the use of sudoku.py for creating
Python scripts for experimentation with Sudoku puzzles. For the
purposes of demonstration, we discuss, briefly, enumeration of
Shidoku puzzles, coloring the Sudoku graph and the hardness of
random puzzles.
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Enumerating Shidoku

Enumeration of Sudoku puzzles is a very difficult computational
problem, which has been solved by Felgenhauer and Jarvis in
[Fel06]. The enumeration of Shidoku, however, is easy. To solve
the enumeration problem for Shidoku, using the constraint model
implemented in sudoku.py, takes only a few lines of code and
a fraction of a second of computation.

>>> s = "from sudoku import Puzzle, count_solutions"
>>> e = "print count_solutions(Puzzle({}, 2))"
>>> from timeit import Timer
>>> t = Timer(e, s)
>>> print t.timeit(1)
288
0.146998882294

Coloring the Sudoku graph

As discussed above in the section on "Graph models", a completed
Sudoku puzzle is equivalent to a minimal proper node coloring of
the Sudoku graph. We have experimented with several different
node coloring algorithms to see which are more effective, with
respect to minimizing the number of colors, at coloring the Sudoku
graph.

Initially, we used Joseph Culberson’s graph coloring programs
(http://webdocs.cs.ualberta.ca/~joe/Coloring/index.html) by writ-
ing Sudoku puzzle graphs to a file in Dimacs format (via the
dimacs_string function of sudoku.py).

Of those programs we experimented with, the program imple-
menting the saturation degree algorithm (DSatur) of Brelaz from
[Bre79] seemed most effective at minimizing the number of colors.

Motivated to investigate further, with sudoku.py we imple-
mented a general node coloring algorithm directly in Python which
can reproduce the DSatur algorithm as well as several other node
coloring algorithms.

Our node coloring function allows for customization of a quite
general scheme. The behavior of the algorithm is specialized by
two parameters. The nodes parameter is an iterable object giving
a node ordering. The choose_color parameter is a visitor
object which is called every time a node is visited by the algorithm.

Several node orderings and color choice selection
schemes have been implemented. The simplest sequential
node coloring algorithm can be reproduced, for example,
by assigning nodes = InOrder and choose_color =
first_available_color. A random ordering on nodes can
be acheived instead by assigning nodes = RandomOrder.
Importantly for our investigations, the node ordering is given by an
iterable object and so, in general, can reflect upon to current graph
state. This mean that online algorithms like the DSatur algorithm
can be realized by our general node coloring scheme. The DSatur
algorithm is obtained by assigning nodes = DSATOrder and
choose_color = first_available_color.

Hardness of random puzzles

We introduced the random_puzzle function in the introduc-
tion. The method by which this function produces a random puzzle
is fairly simple. A completed Sudoku puzzle is first generated by
solving the empty puzzle via constraint propagation and then from
this completed puzzle the appropriate number of clues is removed.

An interesting problem is to investigate the behavior of differ-
ent models on random puzzles. A simple script, available in the
investigations folder of the source code, has been written
to time the solution of models of random puzzles and plot the
timings via matplotlib.

Two plots produced by this script highlight the different
behavior of the constraint model and the integer programming
model.

The first plot has time on the vertical axis and the number
of clues on the horizontal axis. From this plot it seems that the
constraint propogation algorithm finds puzzles with many or few
clues easy. The difficult problems for the constraint solver appear
to be clustered in the range of 20 to 35 clues.

A different picture emerges with the linear programming
model. With the same set of randomly generated puzzles it appears
that the more clues the faster the solver finds a solution.

Conclusions and future work

In this article we introduced sudoku.py, an open-source Python
library for modeling Sudoku puzzles. We discussed several models
of Sudoku puzzles and demonstrated how to implement these
models using existing Python libraries. A few simple experiments
involving Sudoku puzzles were presented.

Future plans for sudoku.py are to increase the variety of
models. Both by allowing for greater customization of currently
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implemented models and by implementing new models. For exam-
ple, we can imagine several different Sudoku models as constraint
programs beyond the model presented here. Another approach is to
model Sudoku puzzles as exact cover problems and investigate the
effectiveness of Knuth’s dancing links algorithm. Also important
to us is to compare all our models with models [Lyn06] from
satisfiability theory. In [Kul10] a general scheme is presented
which is highly effective for modeling Sudoku.

There are great many interesting, unsolved scientific problems
involing Sudoku puzzles. Our hope is that sudoku.py can
become a useful tool for scientists who work on these problems.
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Data Structures for Statistical Computing in Python
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Abstract—In this paper we are concerned with the practical issues of working
with data sets common to finance, statistics, and other related fields. pandas
is a new library which aims to facilitate working with these data sets and to
provide a set of fundamental building blocks for implementing statistical models.
We will discuss specific design issues encountered in the course of developing
pandas with relevant examples and some comparisons with the R language.
We conclude by discussing possible future directions for statistical computing
and data analysis using Python.

Index Terms—data structure, statistics, R

Introduction

Python is being used increasingly in scientific applications tra-
ditionally dominated by [R], [MATLAB], [Stata], [SAS], other
commercial or open-source research environments. The maturity
and stability of the fundamental numerical libraries ([NumPy],
[SciPy], and others), quality of documentation, and availability of
"kitchen-sink" distributions ([EPD], [Pythonxy]) have gone a long
way toward making Python accessible and convenient for a broad
audience. Additionally [matplotlib] integrated with [IPython] pro-
vides an interactive research and development environment with
data visualization suitable for most users. However, adoption of
Python for applied statistical modeling has been relatively slow
compared with other areas of computational science.

A major issue for would-be statistical Python programmers in
the past has been the lack of libraries implementing standard mod-
els and a cohesive framework for specifying models. However,
in recent years there have been significant new developments in
econometrics ([StaM]), Bayesian statistics ([PyMC]), and machine
learning ([SciL]), among others fields. However, it is still difficult
for many statisticians to choose Python over R given the domain-
specific nature of the R language and breadth of well-vetted open-
source libraries available to R users ([CRAN]). In spite of this
obstacle, we believe that the Python language and the libraries
and tools currently available can be leveraged to make Python a
superior environment for data analysis and statistical computing.

In this paper we are concerned with data structures and tools
for working with data sets in-memory, as these are fundamental
building blocks for constructing statistical models. pandas is a
new Python library of data structures and statistical tools initially
developed for quantitative finance applications. Most of our ex-
amples here stem from time series and cross-sectional data arising
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in financial modeling. The package’s name derives from panel
data, which is a term for 3-dimensional data sets encountered
in statistics and econometrics. We hope that pandas will help
make scientific Python a more attractive and practical statistical
computing environment for academic and industry practitioners
alike.

Statistical data sets

Statistical data sets commonly arrive in tabular format, i.e. as
a two-dimensional list of observations and names for the fields
of each observation. Usually an observation can be uniquely
identified by one or more values or labels. We show an example
data set for a pair of stocks over the course of several days. The
NumPy ndarray with structured dtype can be used to hold this
data:

>>> data
array([('GOOG', '2009-12-28', 622.87, 1697900.0),

('GOOG', '2009-12-29', 619.40, 1424800.0),
('GOOG', '2009-12-30', 622.73, 1465600.0),
('GOOG', '2009-12-31', 619.98, 1219800.0),
('AAPL', '2009-12-28', 211.61, 23003100.0),
('AAPL', '2009-12-29', 209.10, 15868400.0),
('AAPL', '2009-12-30', 211.64, 14696800.0),
('AAPL', '2009-12-31', 210.73, 12571000.0)],
dtype=[('item', '|S4'), ('date', '|S10'),

('price', '<f8'), ('volume', '<f8')])

>>> data['price']
array([622.87, 619.4, 622.73, 619.98, 211.61, 209.1,

211.64, 210.73])

Structured (or record) arrays such as this can be effective in many
applications, but in our experience they do not provide the same
level of flexibility and ease of use as other statistical environments.
One major issue is that they do not integrate well with the rest
of NumPy, which is mainly intended for working with arrays of
homogeneous dtype.

R provides the data.frame class which can similarly store
mixed-type data. The core R language and its 3rd-party libraries
were built with the data.frame object in mind, so most opera-
tions on such a data set are very natural. A data.frame is also
flexible in size, an important feature when assembling a collection
of data. The following code fragment loads the data stored in the
CSV file data into the variable df and adds a new column of
boolean values:

> df <- read.csv('data')
item date price volume

1 GOOG 2009-12-28 622.87 1697900
2 GOOG 2009-12-29 619.40 1424800
3 GOOG 2009-12-30 622.73 1465600
4 GOOG 2009-12-31 619.98 1219800
5 AAPL 2009-12-28 211.61 23003100
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6 AAPL 2009-12-29 209.10 15868400
7 AAPL 2009-12-30 211.64 14696800
8 AAPL 2009-12-31 210.73 12571000

> df$ind <- df$item == "GOOG"
> df
item date value volume ind

1 GOOG 2009-12-28 622.87 1697900 TRUE
2 GOOG 2009-12-29 619.40 1424800 TRUE
3 GOOG 2009-12-30 622.73 1465600 TRUE
4 GOOG 2009-12-31 619.98 1219800 TRUE
5 AAPL 2009-12-28 211.61 23003100 FALSE
6 AAPL 2009-12-29 209.10 15868400 FALSE
7 AAPL 2009-12-30 211.64 14696800 FALSE
8 AAPL 2009-12-31 210.73 12571000 FALSE

pandas provides a similarly-named DataFrame class which
implements much of the functionality of its R counterpart, though
with some important enhancements (namely, built-in data align-
ment) which we will discuss. Here we load the same CSV file
as above into a DataFrame object using the fromcsv function
and similarly add the above column:

>>> data = DataFrame.fromcsv('data', index_col=None)
date item value volume

0 2009-12-28 GOOG 622.9 1.698e+06
1 2009-12-29 GOOG 619.4 1.425e+06
2 2009-12-30 GOOG 622.7 1.466e+06
3 2009-12-31 GOOG 620 1.22e+06
4 2009-12-28 AAPL 211.6 2.3e+07
5 2009-12-29 AAPL 209.1 1.587e+07
6 2009-12-30 AAPL 211.6 1.47e+07
7 2009-12-31 AAPL 210.7 1.257e+07
>>> data['ind'] = data['item'] == 'GOOG'

This data can be reshaped into a different form for future examples
by means of the DataFrame method pivot:

>>> df = data.pivot('date', 'item', 'value')
>>> df

AAPL GOOG
2009-12-28 211.6 622.9
2009-12-29 209.1 619.4
2009-12-30 211.6 622.7
2009-12-31 210.7 620

Beyond observational data, one will also frequently encounter
categorical data, which can be used to partition identifiers into
broader groupings. For example, stock tickers might be catego-
rized by their industry or country of incorporation. Here we have
created a DataFrame object cats storing country and industry
classifications for a group of stocks:

>>> cats
country industry

AAPL US TECH
IBM US TECH
SAP DE TECH
GOOG US TECH
C US FIN
SCGLY FR FIN
BAR UK FIN
DB DE FIN
VW DE AUTO
RNO FR AUTO
F US AUTO
TM JP AUTO

We will use these objects above to illustrate features of interest.

pandas data model

The pandas data structures internally link the axes of a ndarray
with arrays of unique labels. These labels are stored in instances of
the Index class, which is a 1D ndarray subclass implementing

an ordered set. In the stock data above, the row labels are simply
sequential observation numbers, while the columns are the field
names.

An Index stores the labels in two ways: as a ndarray and
as a dict mapping the values (which must therefore be unique
and hashable) to the integer indices:

>>> index = Index(['a', 'b', 'c', 'd', 'e'])
>>> index
Index([a, b, c, d, e], dtype=object)
>>> index.indexMap
{'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4}

Creating this dict allows the objects to perform lookups and
determine membership in constant time.

>>> 'a' in index
True

These labels are used to provide alignment when performing
data manipulations using differently-labeled objects. There are
specialized data structures, representing 1-, 2-, and 3-dimensional
data, which incorporate useful data handling semantics to facili-
tate both interactive research and system building. A general n-
dimensional data structure would be useful in some cases, but
data sets of dimension higher than 3 are very uncommon in most
statistical and econometric applications, with 2-dimensional being
the most prevalent. We took a pragmatic approach, driven by
application needs, to designing the data structures in order to
make them as easy-to-use as possible. Also, we wanted the objects
to be idiomatically similar to those present in other statistical
environments, such as R.

Data alignment

Operations between related, but differently-sized data sets can
pose a problem as the user must first ensure that the data points
are properly aligned. As an example, consider time series over
different date ranges or economic data series over varying sets of
entities:

>>> s1 >>> s2
AAPL 0.044 AAPL 0.025
IBM 0.050 BAR 0.158
SAP 0.101 C 0.028
GOOG 0.113 DB 0.087
C 0.138 F 0.004
SCGLY 0.037 GOOG 0.154
BAR 0.200 IBM 0.034
DB 0.281
VW 0.040

One might choose to explicitly align (or reindex) one of these
1D Series objects with the other before adding them, using the
reindex method:

>>> s1.reindex(s2.index)
AAPL 0.0440877763224
BAR 0.199741007422
C 0.137747485628
DB 0.281070058049
F NaN
GOOG 0.112861123629
IBM 0.0496445829129

However, we often find it preferable to simply ignore the state of
data alignment:

>>> s1 + s2
AAPL 0.0686791008184
BAR 0.358165479807
C 0.16586702944
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DB 0.367679872693
F NaN
GOOG 0.26666583847
IBM 0.0833057542385
SAP NaN
SCGLY NaN
VW NaN

Here, the data have been automatically aligned based on their
labels and added together. The result object contains the union
of the labels between the two objects so that no information is
lost. We will discuss the use of NaN (Not a Number) to represent
missing data in the next section.

Clearly, the user pays linear overhead whenever automatic data
alignment occurs and we seek to minimize that overhead to the
extent possible. Reindexing can be avoided when Index objects
are shared, which can be an effective strategy in performance-
sensitive applications. [Cython], a widely-used tool for easily
creating Python C extensions, has been utilized to speed up these
core algorithms.

Handling missing data

It is common for a data set to have missing observations. For
example, a group of related economic time series stored in a
DataFrame may start on different dates. Carrying out calcula-
tions in the presence of missing data can lead both to complicated
code and considerable performance loss. We chose to use NaN as
opposed to using NumPy MaskedArrays for performance reasons
(which are beyond the scope of this paper), as NaN propagates
in floating-point operations in a natural way and can be easily
detected in algorithms. While this leads to good performance, it
comes with drawbacks: namely that NaN cannot be used in integer-
type arrays, and it is not an intuitive "null" value in object or string
arrays.

We regard the use of NaN as an implementation detail and
attempt to provide the user with appropriate API functions for
performing common operations on missing data points. From the
above example, we can use the valid method to drop missing
data, or we could use fillna to replace missing data with a
specific value:

>>> (s1 + s2).valid()
AAPL 0.0686791008184
BAR 0.358165479807
C 0.16586702944
DB 0.367679872693
GOOG 0.26666583847
IBM 0.0833057542385

>>> (s1 + s2).fillna(0)
AAPL 0.0686791008184
BAR 0.358165479807
C 0.16586702944
DB 0.367679872693
F 0.0
GOOG 0.26666583847
IBM 0.0833057542385
SAP 0.0
SCGLY 0.0
VW 0.0

Common ndarray methods have been rewritten to automatically
exclude missing data from calculations:

>>> (s1 + s2).sum()
1.3103630754662747

>>> (s1 + s2).count()
6

Similar to R’s is.na function, which detects NA (Not Available)
values, pandas has special API functions isnull and notnull
for determining the validity of a data point. These contrast with
numpy.isnan in that they can be used with dtypes other
than float and also detect some other markers for "missing"
occurring in the wild, such as the Python None value.

>>> isnull(s1 + s2)
AAPL False
BAR False
C False
DB False
F True
GOOG False
IBM False
SAP True
SCGLY True
VW True

Note that R’s NA value is distinct from NaN. While the addition
of a special NA value to NumPy would be useful, it is most likely
too domain-specific to merit inclusion.

Combining or joining data sets

Combining, joining, or merging related data sets is a quite
common operation. In doing so we are interested in associating
observations from one data set with another via a merge key of
some kind. For similarly-indexed 2D data, the row labels serve as
a natural key for the join function:

>>> df1 >>> df2
AAPL GOOG MSFT YHOO

2009-12-24 209 618.5 2009-12-24 31 16.72
2009-12-28 211.6 622.9 2009-12-28 31.17 16.88
2009-12-29 209.1 619.4 2009-12-29 31.39 16.92
2009-12-30 211.6 622.7 2009-12-30 30.96 16.98
2009-12-31 210.7 620

>>> df1.join(df2)
AAPL GOOG MSFT YHOO

2009-12-24 209 618.5 31 16.72
2009-12-28 211.6 622.9 31.17 16.88
2009-12-29 209.1 619.4 31.39 16.92
2009-12-30 211.6 622.7 30.96 16.98
2009-12-31 210.7 620 NaN NaN

One might be interested in joining on something other than the
index as well, such as the categorical data we presented in an
earlier section:

>>> data.join(cats, on='item')
country date industry item value

0 US 2009-12-28 TECH GOOG 622.9
1 US 2009-12-29 TECH GOOG 619.4
2 US 2009-12-30 TECH GOOG 622.7
3 US 2009-12-31 TECH GOOG 620
4 US 2009-12-28 TECH AAPL 211.6
5 US 2009-12-29 TECH AAPL 209.1
6 US 2009-12-30 TECH AAPL 211.6
7 US 2009-12-31 TECH AAPL 210.7

This is akin to a SQL join operation between two tables.

Categorical variables and "Group by" operations

One might want to perform an operation (for example, an aggrega-
tion) on a subset of a data set determined by a categorical variable.
For example, suppose we wished to compute the mean value by
industry for a set of stock data:

>>> s >>> ind
AAPL 0.044 AAPL TECH
IBM 0.050 IBM TECH
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SAP 0.101 SAP TECH
GOOG 0.113 GOOG TECH
C 0.138 C FIN
SCGLY 0.037 SCGLY FIN
BAR 0.200 BAR FIN
DB 0.281 DB FIN
VW 0.040 VW AUTO

RNO AUTO
F AUTO
TM AUTO

This concept of "group by" is a built-in feature of many data-
oriented languages, such as R and SQL. In R, any vector of non-
numeric data can be used as an input to a grouping function such
as tapply:

> labels
[1] GOOG GOOG GOOG GOOG AAPL AAPL AAPL AAPL
Levels: AAPL GOOG
> data
[1] 622.87 619.40 622.73 619.98 211.61 209.10
211.64 210.73

> tapply(data, labels, mean)
AAPL GOOG

210.770 621.245

pandas allows you to do this in a similar fashion:

>>> data.groupby(labels).aggregate(np.mean)
AAPL 210.77
GOOG 621.245

One can use groupby to concisely express operations on rela-
tional data, such as counting group sizes:

>>> s.groupby(ind).aggregate(len)
AUTO 1
FIN 4
TECH 4

In the most general case, groupby uses a function or mapping
to produce groupings from one of the axes of a pandas object. By
returning a GroupBy object we can support more operations than
just aggregation. Here we can subtract industry means from a data
set:

demean = lambda x: x - x.mean()

def group_demean(obj, keyfunc):
grouped = obj.groupby(keyfunc)
return grouped.transform(demean)

>>> group_demean(s1, ind)
AAPL -0.0328370881632
BAR 0.0358663891836
C -0.0261271326111
DB 0.11719543981
GOOG 0.035936259143
IBM -0.0272802815728
SAP 0.024181110593
SCGLY -0.126934696382
VW 0.0

Manipulating panel (3D) data

A data set about a set of individuals or entities over a time range
is commonly referred to as panel data; i.e., for each entity over a
date range we observe a set of variables. Such data can be found
both in balanced form (same number of time observations for each
individual) or unbalanced (different numbers of observations).
Panel data manipulations are important for constructing inputs to
statistical estimation routines, such as linear regression. Consider
the Grunfeld data set [Grun] frequently used in econometrics
(sorted by year):

>>> grunfeld
capita firm inv value year

0 2.8 1 317.6 3078 1935
20 53.8 2 209.9 1362 1935
40 97.8 3 33.1 1171 1935
60 10.5 4 40.29 417.5 1935
80 183.2 5 39.68 157.7 1935
100 6.5 6 20.36 197 1935
120 100.2 7 24.43 138 1935
140 1.8 8 12.93 191.5 1935
160 162 9 26.63 290.6 1935
180 4.5 10 2.54 70.91 1935
1 52.6 1 391.8 4662 1936
21 50.5 2 355.3 1807 1936
41 104.4 3 45 2016 1936
61 10.2 4 72.76 837.8 1936
81 204 5 50.73 167.9 1936
101 15.8 6 25.98 210.3 1936
121 125 7 23.21 200.1 1936
141 0.8 8 25.9 516 1936
161 174 9 23.39 291.1 1936
181 4.71 10 2 87.94 1936
...

Really this data is 3-dimensional, with firm, year, and item (data
field name) being the three unique keys identifying a data point.
Panel data presented in tabular format is often referred to as the
stacked or long format. We refer to the truly 3-dimensional form
as the wide form. pandas provides classes for operating on both:

>>> lp = LongPanel.fromRecords(grunfeld, 'year',
'firm')

>>> wp = lp.toWide()
>>> wp
<class 'pandas.core.panel.WidePanel'>
Dimensions: 3 (items) x 20 (major) x 10 (minor)
Items: capital to value
Major axis: 1935 to 1954
Minor axis: 1 to 10

Now with the data in 3-dimensional form, we can examine the
data items separately or compute descriptive statistics more easily
(here the head function just displays the first 10 rows of the
DataFrame for the capital item):

>>> wp['capital'].head()
1935 1936 1937 1938 1939

1 2.8 265 53.8 213.8 97.8
2 52.6 402.2 50.5 132.6 104.4
3 156.9 761.5 118.1 264.8 118
4 209.2 922.4 260.2 306.9 156.2
5 203.4 1020 312.7 351.1 172.6
6 207.2 1099 254.2 357.8 186.6
7 255.2 1208 261.4 342.1 220.9
8 303.7 1430 298.7 444.2 287.8
9 264.1 1777 301.8 623.6 319.9
10 201.6 2226 279.1 669.7 321.3

In this form, computing summary statistics, such as the time series
mean for each (item, firm) pair, can be easily carried out:

>>> wp.mean(axis='major')
capital inv value

1 140.8 98.45 923.8
2 153.9 131.5 1142
3 205.4 134.8 1140
4 244.2 115.8 872.1
5 269.9 109.9 998.9
6 281.7 132.2 1056
7 301.7 169.7 1148
8 344.8 173.3 1068
9 389.2 196.7 1236
10 428.5 197.4 1233

As an example application of these panel data structures, consider
constructing dummy variables (columns of 1’s and 0’s identifying
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dates or entities) for linear regressions. Especially for unbalanced
panel data, this can be a difficult task. Since we have all of the
necessary labeling data here, we can easily implement such an
operation as an instance method.

Implementing statistical models

When applying a statistical model, data preparation and cleaning
can be one of the most tedious or time consuming tasks. Ideally
the majority of this work would be taken care of by the model
class itself. In R, while NA data can be automatically excluded
from a linear regression, one must either align the data and put
it into a data.frame or otherwise prepare a collection of 1D
arrays which are all the same length.

Using pandas, the user can avoid much of this data preparation
work. As a exemplary model leveraging the pandas data model,
we implemented ordinary least squares regression in both the
standard case (making no assumptions about the content of the
regressors) and the panel case, which has additional options to
allow for entity and time dummy variables. Facing the user is a
single function, ols, which infers the type of model to estimate
based on the inputs:

>>> model = ols(y=Y, x=X)
>>> model.beta
AAPL 0.187984100742
GOOG 0.264882582521
MSFT 0.207564901899
intercept -0.000896535166817

If the response variable Y is a DataFrame (2D) or dict of 1D
Series, a panel regression will be run on stacked (pooled) data.
The x would then need to be either a WidePanel, LongPanel,
or a dict of DataFrame objects. Since these objects contain all
of the necessary information to construct the design matrices for
the regression, there is nothing for the user to worry about (except
the formulation of the model).

The ols function is also capable of estimating a moving
window linear regression for time series data. This can be useful
for estimating statistical relationships that change through time:

>>> model = ols(y=Y, x=X, window_type='rolling',
window=250)

>>> model.beta
<class 'pandas.core.matrix.DataFrame'<>
Index: 1103 entries , 2005-08-16 to 2009-12-31
Data columns:
AAPL 1103 non-null values
GOOG 1103 non-null values
MSFT 1103 non-null values
intercept 1103 non-null values
dtype: float64(4)

Here we have estimated a moving window regression with a win-
dow size of 250 time periods. The resulting regression coefficients
stored in model.beta are now a DataFrame of time series.

Date/time handling

In applications involving time series data, manipulations on dates
and times can be quite tedious and inefficient. Tools for working
with dates in MATLAB, R, and many other languages are clumsy
or underdeveloped. Since Python has a built-in datetime type
easily accessible at both the Python and C / Cython level, we aim
to craft easy-to-use and efficient date and time functionality. When
the NumPy datetime64 dtype has matured, we will, of course,
reevaluate our date handling strategy where appropriate.

For a number of years scikits.timeseries [SciTS] has been
available to scientific Python users. It is built on top of MaskedAr-
ray and is intended for fixed-frequency time series. While forcing
data to be fixed frequency can enable better performance in some
areas, in general we have found that criterion to be quite rigid in
practice. The user of scikits.timeseries must also explicitly align
data; operations involving unaligned data yield unintuitive results.

In designing pandas we hoped to make working with time
series data intuitive without adding too much overhead to the
underlying data model. The pandas data structures are datetime-
aware but make no assumptions about the dates. Instead, when
frequency or regularity matters, the user has the ability to generate
date ranges or conform a set of time series to a particular
frequency. To do this, we have the DateRange class (which is
also a subclass of Index, so no conversion is necessary) and the
DateOffset class, whose subclasses implement various general
purpose and domain-specific time increments. Here we generate a
date range between 1/1/2000 and 1/1/2010 at the "business month
end" frequency BMonthEnd:

>>> DateRange('1/1/2000', '1/1/2010',
offset=BMonthEnd())

<class 'pandas.core.daterange.DateRange'>
offset: <1 BusinessMonthEnd>
[2000-01-31 00:00:00, ..., 2009-12-31 00:00:00]
length: 120

A DateOffset instance can be used to convert an object
containing time series data, such as a DataFrame as in our earlier
example, to a different frequency using the asfreq function:

>>> monthly = df.asfreq(BMonthEnd())
AAPL GOOG MSFT YHOO

2009-08-31 168.2 461.7 24.54 14.61
2009-09-30 185.3 495.9 25.61 17.81
2009-10-30 188.5 536.1 27.61 15.9
2009-11-30 199.9 583 29.41 14.97
2009-12-31 210.7 620 30.48 16.78

Some things which are not easily accomplished in scik-
its.timeseries can be done using the DateOffset model, like
deriving custom offsets on the fly or shifting monthly data forward
by a number of business days using the shift function:

>>> offset = Minute(12)
>>> DateRange('6/18/2010 8:00:00',

'6/18/2010 12:00:00',
offset=offset)

<class 'pandas.core.daterange.DateRange'>
offset: <12 Minutes>
[2010-06-18 08:00:00, ..., 2010-06-18 12:00:00]
length: 21

>>> monthly.shift(5, offset=Bay())
AAPL GOOG MSFT YHOO

2009-09-07 168.2 461.7 24.54 14.61
2009-10-07 185.3 495.9 25.61 17.81
2009-11-06 188.5 536.1 27.61 15.9
2009-12-07 199.9 583 29.41 14.97
2010-01-07 210.7 620 30.48 16.78

Since pandas uses the built-in Python datetime object, one
could foresee performance issues with very large or high fre-
quency time series data sets. For most general applications finan-
cial or econometric applications we cannot justify complicating
datetime handling in order to solve these issues; specialized
tools will need to be created in such cases. This may be indeed be
a fruitful avenue for future development work.
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Related packages

A number of other Python packages have appeared recently which
provide some similar functionality to pandas. Among these, la
([Larry]) is the most similar, as it implements a labeled ndarray
object intending to closely mimic NumPy arrays. This stands
in contrast to our approach, which is driven by the practical
considerations of time series and cross-sectional data found in
finance, econometrics, and statistics. The references include a
couple other packages of interest ([Tab], [pydataframe]).

While pandas provides some useful linear regression models,
it is not intended to be comprehensive. We plan to work closely
with the developers of scikits.statsmodels ([StaM]) to generally
improve the cohesiveness of statistical modeling tools in Python.
It is likely that pandas will soon become a "lite" dependency of
scikits.statsmodels; the eventual creation of a superpackage for
statistical modeling including pandas, scikits.statsmodels, and
some other libraries is also not out of the question.

Conclusions

We believe that in the coming years there will be great oppor-
tunity to attract users in need of statistical data analysis tools
to Python who might have previously chosen R, MATLAB, or
another research environment. By designing robust, easy-to-use
data structures that cohere with the rest of the scientific Python
stack, we can make Python a compelling choice for data analysis
applications. In our opinion, pandas represents a solid step in the
right direction.
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Protein Folding with Python on Supercomputers
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Abstract—Today’s supercomputers have hundreds of thousands of compute
cores and this number is likely to grow. Many of today’s algorithms will have to
be rethought to take advantage of such large systems. New algorithms must
provide fine grained parallelism and excellent scalability. Python offers good
support for numerical libraries and offers bindings to MPI that can be used to
develop parallel algorithms for distributed memory machines.

PySMMP provides bindings to the protein simulation package SMMP.
Combined with mpi4py, PySMMP can be used to perform parallel tempering
simulations of small proteins on the supercomputers JUGENE and JuRoPA. In
this paper, the performance of the Fortran implementation of parallel tempering
in SMMP is compared with the Python implementation in PySMMP. Both codes
use the same Fortran code for the calculation of the energy.

The performance of the implementations is comparable on both machines,
but some challenges remain before the Python implementation can replace the
Fortran implementation for all production runs.

Index Terms—parallel, MPI, biology, protein structure

Introduction

Many of the problems well known to high-performance computing
(HPC) are becoming main stream. Processors add more and more
cores, but the performance of a single core does not improve as
drastically as it used to. Suddenly everybody has to deal with
tens or hundreds of processes or threads. To take advantage of
graphics hardware another factor of 100 in the number of threads
is needed. Issues such as task management, load balancing, and
race conditions are starting to become known to everybody who
wants to write efficient programs for PCs. But things work the
other way around, too. High-level programming languages such
as Python that were not developed to get peak performance but to
make good use of the developers time are becoming increasingly
popular in HPC.

The Simulation Laboratory Biology at the Juelich Supercom-
puting Centre (JSC) uses Python to script workflows, implement
new algorithms, perform data analysis and visualization, and to
run simulations on the supercomputers JUGENE and JuRoPA.
Often, we combine existing packages such as Biopython [BioPy],
Modeller [MOD], matplotlib [PyLab], or PyQt [PyQt] with our
own packages to tackle the scientific problems we are interested
in. In this paper I will focus on using Python for protein folding
studies on JuRoPA and JUGENE.

* Corresponding author: j.meinke@fz-juelich.de
‡ Jülich Supercomputing Centre

Copyright © 2010 Jan H. Meinke. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
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Proteins

Proteins bind oxygen and carbon dioxide, transport nutrients and
waste products. They catalyze reactions, transfer information, and
perform many other important functions. Proteins don’t act in
isolation. They are part of an interaction network that allows a cell
to perform all the necessary operations of life. A very important
feature of a protein is its shape. Only when it obtains its correct
three dimensional structure does it provide the right interface for
its reaction partners. In fact, changing the interface is a way to
turn proteins on and off and regulate their activity.

Proteins are long chains of amino acids. The sequence of
amino acids determines a protein’s native shape. The sequence
is encoded in the genome and assembled by the ribosome—itself
a complex of RNA and proteins—amino acid by amino acid.

Proteins need anywhere from a few micro seconds to several
minutes to obtain their native structure. This process is called
protein folding. It occurs reliably in our body many times each
second yet it is still poorly understood.

For some globular proteins it has been shown that they can
unfold and refold in a test tube. At least for these proteins folding
is driven purely by classical physical interactions. This is the basis
for folding simulations using classical force fields.

The program package SMMP first released in 2001 [SMMP]
implements several Monte Carlo algorithms that can be used to
study protein folding. It uses a simplified model of a protein
that keeps the bond angles and lengths fixed and only allows
changes of the dihedral angles. To calculate the energy of a given
conformation of a protein, SMMP also implements several energy
functions, the so called force fields. A force field is defined by a
functional form of the energy function and its parametrization.

In 2007, we released version 3 of SMMP [SMMP3]. With
this version we provided Python bindings PySMMP that made the
properties of the proteins, the algorithms, and the calculation of
energy available from Python. In addition to the wrapper library
created with f2py, we included three modules: universe, protein,
and algorithms that make setting up a simulation and accessing the
properties of a protein much more convenient. The wrapper mod-
ules were inspired by the Molecular Modeling Toolkit [MMTK],
but implement a flat hierarchy. We did not, however, include the
parallelized energy functions, which requires MPI to work.

For the work described in this paper, I decided to use mpi4py
as MPI bindings for the Python code for its completeness and
its integration with Scientific Python and Cython. An important
feature of mpi4py is that it provides easy access to communicators
in a way that can be passed to the Fortran subroutine called.
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Compiling the Modules

JUGENE is a 72-rack IBM Blue Gene/P (BG/P) system installed
at JSC. Each rack consists of 1024 compute nodes. Each compute
node has a 4-core PowerPC 450 processor running at 850 MHz
and 2 GB of memory for a total of 294912 cores and 147 TB of
memory. The nodes are connected via a three dimensional torus
network. Each node is linked to its six neighbors. In addition
to the torus network, BG/P features a tree network that is used
for global communication. The nodes are diskless. They forward
IO requests to special IO nodes, which in turn talk to the GPFS
file system. JUGENE’s peak performance is about one petaflop
and it reaches about 825 teraflops in the Linpack benchmark.
This makes it Europe’s fastest computer and the number 5 in the
world [Top500]. While the slow clock rate makes the system very
energy efficient (364 MFlops/W), it also makes code that scales
well a must, since each individual core provides only about one
third of the peak performance of an Intel Nehalem core and the
performance gap is even larger in many applications. Production
runs on JUGENE should use at least one rack.

Programs that run on JUGENE are usually cross-compiled for
the compute nodes. The compute nodes run a proprietary 32-bit
compute node kernel with reduced functionality whereas the login
nodes use Power6 processors with a full 64-bit version of SUSE
Linux Enterprise Server 10. Cross compiling can be tricky. It is
important to set all the environment variables and paths correctly.
First, we need to make sure to use the correct compiler

export BGPGNU=/bgsys/drivers/ppcfloor/gnu-linux
export F90=$BGPGNU/powerpc-bgp-linux/bin/gfortran

Then we need to use f2py with the correct Python interpreter, for
example

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$BGPGNU/lib
$BGPGNU/bin/python /bgsys/local/numpy/1.2.1/bin/f2py

Now, f2py produces libraries that can be loaded on the compute
nodes.

Launching Python on thousands of cores

A first step for any Python program is to load the interpreter and
the default modules. While this is usually not a problem if we start
a few instances, it can become troublesome on a large system such
as JUGENE.

Taking a look at the first two columns in Table 1 we see that
already for a single rack, it takes more than 5 minutes to run a
simple helloworld program using the default Python installation
location. A C++ program for comparison takes only 5 s. Plotting
the run time of the helloworld program, we quickly see that the
time increases linearly with the number of MPI tasks at a rate of
0.1 s per task (Blue squares in Figure 1). Extrapolating this to all
294912 cores of JUGENE, it would take more than 8 hours to start
the Python interpreter resulting in 25 lost rack days (70 CPU years
with 4 cores per CPU) and almost 10 metric tons of CO2.

The linear behavior hints at serialization when the Python
interpreter is loaded. As mentioned above, JUGENE’s, compute
nodes don’t have their own disks. All IO is done via special IO
nodes from a parallel file system and all nodes access the same
Python image on the disk.

A similar behavior was discussed for the GPAW code in the
mpi4py forum [PyOn10k]. GPAW [GPAW] uses its own Python
MPI interface. Their work around was to use the ram disks of the
IO nodes on Blue Gene/P.

# of Cores Time [s] Time [s] Comments
1 5
128 50 20 A single node card
512 55 Midplane in SMP mode
1024 100 Only rank 0 writes
2048 376 195 s if only rank 0 writes
4096 321 130 1 rack (smallest size for pro-

duction runs)
8192 803 246 2 racks
16384 1817 371 4 racks. For comparison, a

C++ program takes 25 s.
20480 389 5 racks
32768 667 8 racks
65536 927 16 racks
131071 1788 32 rack

TABLE 1: Time measured for a simple MPI hello world program
written using mpi4py on the Blue Gene/P JUGENE. The second
column gives the times using the default location for Python on Blue
Gene. The third column lists the times if Python is installed in the
Work file system.
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Fig. 1: Scaling of the startup time of the Python interpreter on
JUGENE before and after optimization. Using the default location
of the Python installation, the startup time increases linearly with the
number of MPI tasks. Moving the Python installation to the faster
Work file system reduces the scaling exponent from 1 to 0.77.

Based on this data, we filed a service request with IBM. After
some experimentation, IBM finally suggested to install Python on
the Work file system. The Work file system is usually used as
a skratch space for simulation data that is written during a run.
Its block size of 2 MB is optimized for large files and it reaches
a bandwidth of 30 GB/s. Files written to the Work file system
usually are deleted automatically after 90 days. In comparison the
system and home file systems use a block size of 1 MB and reach
a bandwidth of 8 GB/s.

With Python installed on the Work file system, the scaling of
the runtime of the helloworld program becomes sublinear with an
exponent of about 0.77 (see column three in Table 1 and green
disks in Figure 1). This make production runs of up to 32 racks
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Fig. 2: Cartoon rendering of the three-helix bundle GS-α3W. The
rendering was done with PyMOL [PyMOL].

(131071 cores) feasible. Extrapolating the data to 72 racks, it
would now take less than an hour to start a run on the entire
machine.

I also ran the same test on our second supercomputer, JuRoPA.
JuRoPA is an Intel Nehalem cluster. Each of its 3288 nodes has
two quad-core processors with 24 GB of memory for a total
of 26304 cores and 79 TB of main memory. It has a peak
performance of 308 teraflops and is currently number 14 in the Top
500 list with 90% efficiency in the Linpack benchmark [Top500].
It uses Infiniband in a fat tree topology for communication and a
Lustre file system for storage. In contrast to JUGENE, each node
has its own local disk, where Python is installed. While the time
to start Python and load mpi4py.MPI still increases linearly with
the number of nodes, the prefactor is only 0.005 s per process.

Parallel energy calculation

As mentioned above, the energy calculation for the ECEPP/3
force field and the associated implicit solvent term are par-
allelized. Before they can be used, however, the appropriate
communicator needs to be defined. For most simulations, ex-
cept parallel tempering (see Section Parallel tempering), the
communicator is a copy of the default communicator that in-
cludes all processes. To start, such a simulation, we need to
assign this communicator to smmp.paral.my_mpi_comm. This
must be the appropriate Fortran reference, which we can get
using mpi4py.MPI.COMM_WORLD.py2f(). With this setup, we
can now compare the speed and the scaling of the energy function
when called from Python and Fortran.

Scaling in parallel programs refers to the speedup when the
program runs on p processors compared to running it on one
processor. If the run time with p processors is given by t(p) then
the speedup s is defined as s(p) = t(1)/t(p) and the efficiency of
the scaling is given by e(p) = s(p)/p. An efficiency of 50% is
often considered acceptable.

As a benchmark system, I used the three-helix bundle GS-
α3W (PDB code: 1LQ7) with 67 amino acids and 1110 atoms
(see Figure 2).

On JuRoPA, I used f2py’s default optimization options for the
Intel compiler to create the bindings. The Fortran program was
compiled with the -fast option, which activates most optimizations
and includes interprocedural optimizations. For a single core, the
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Fig. 3: Parallel scaling of the duration of the energy calculation for
the three-helix bundle GS-α3W on JuRoPA (red) and JUGENE (blue).
The speedup is relative to the time needed by the Fortran program for
the calculation of the energy on a single core. The square symbols
represent SMMP, the disks PySMMP.

Fortran program is about 10% faster. The scaling on a single node
is comparable, but it breaks down for PySMMP if more than
one node is used (see Figure 3). This may be due to interactions
between mpi4py and JuRoPA’s MPI installation.

On JUGENE, the behavior is quite different. PySMMP was
compiled with gfortran, SMMP with IBM’s xlf compiler, which
produces code that is almost three times faster on a single core.
The shape of the scaling is comparable and saturates at about 128
cores.

Parallel tempering

Parallel tempering [PT], also known as replica exchange, is a
method to sample a rough energy landscape more efficiently.
Several copies of a system are simulated at different temperatures.
In addition to regular Monte Carlo [MC] moves that change a
configuration, we introduce a move that exchanges conformations
of two different temperatures. The probability for such a move is
PPT = exp(∆β∆E), where β = 1/kBT , T is the temperature and
kB is the Boltzmann constant. With this exchange probability the
statistics at each temperature remains correct, yet conformations
can move to higher temperatures where it is easier to overcome
large barriers. This allows for a more efficient sampling of the
conformational space of a protein.

Parallel tempering is by its very nature a parallel algorithm. At
each temperature, we perform a regular canonical MC simulation.
After a number of updates nup, we attempt an exchange between
temperatures. If we create our own MPI communicators, we can
use two levels of parallelism. For each temperature Ti, we use
a number of processors pi to calculate the energy in parallel.
Usually, pi is the same for all temperatures, but this is not a
requirement. Assuming that pi = p , and using nT temperatures,
we use a total of ptot = nT ∗ p processors. For an average protein
domain consisting of about 150 amino acids and 3000 atoms,
p = 128, and nT = 64 is a reasonable choice on a Blue Gene/P, for
a total of ptot = 8192—a good size for a production run.
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Fig. 4: Efficiency of the scaling of parallel tempering. Parallel
tempering is an example for weak scaling. The problem size, i.e.,
the number of temperatures, increases proportional to the number of
processors. Ideally, the time stays constant and the efficiency is one.
For JuRoPA (red), both lines are nearly constant. The Python imple-
mentation (disks) of parallel tempering takes only about 5% longer
than the Fortran version (squares). On JUGENE (blue) each replica
uses 128 cores for the energy calculation. The Python implementation
takes about 20% longer for 2 replica than the Fortran implementation
but for 16 replica the difference is down to about 10%.

Parallel tempering is implemented in Fortran as part of SMMP.
The speed of the Fortran implementation is the reference, for the
following investigation of my implementation of parallel temper-
ing in Python. Parallel tempering and canonical Monte Carlo are
implemented as classes in the algorithms module. The canonical
Monte Carlo class optionally uses the Fortran implementation
of the Metropolis step. For the following comparison, only the
calculation of the energy of a conformation is done in Fortran.

For parallel tempering, the number of processes increases
proportionally with the number of replicas. This kind of scaling
is called weak scaling. Ideally, the time stays constant. Figure 4
shows the scaling of parallel tempering on JuRoPA and JUGENE
with respect to the pure Fortran program. On JuRoPA, one node
was used per replica. On JUGENE 128 cores were used per
replica. The overhead of implementing the algorithm in Python is
about 5% on JuRoPA and the scaling is comparable to the Fortran
code. On JUGENE, the overhead of the Python implementation is
about 20% for 2 replicas. But the scaling of PySMMP is better and
for 16 replicas, the Python version takes only about 10% longer.

Clustering

In addition to scalar properties such as energy, volume, secondary
structure content, and distance to the native structure, we can save
the conformation, i.e., the coordinates of the structures, we have
seen. We can create histograms that show us for each temperature,
how often, we found structures that had a distance to the native
conformation that fell into a certain range. A commonly used
measure is the root-mean-square deviation (rmsd) of the current
conformation to the native one. Rmsd measures the average
change in position of all atoms compared to a reference structure.
Unfortunately, rmsd is not a very good measure. For small rmsd
values, two structures that have a similar rmsd to the native
structure, will also be similar to each other, but for larger rmsd

values this is not the case. To determine, the recurrence and
therefore the statistical weight of structures that are very different
from a given reference structure, we can use clustering algorithms.
A cluster can be defined in many different ways. Three intuitive
definitions are

• Elements belong to the same cluster if their distance to
each other is less than a given distance dcluster.

• Elements belong to the same cluster if they have more
connections to each other than to other elements.

• Two clusters are distinct if the density of elements within
the cluster is much higher than between clusters.

The first definition works well with rmsd as distance measure
if we choose dcluster small enough and is an intuitive definition
for clusters of structures, but it is computationally expensive. We
usually have several tens of thousands of structures requiring
billions of rmsd calculations to complete the distance matrix.
We therefore started to look at alternatives. One alternative is
to look for dense regions in high-dimensional spaces (the third
definition). MAFIA [MAFIA] is a adaptive grid algorithm to
determine such clusters. It looks for dense regions in increasingly
higher dimension. A one-dimensional region is considered dense
if the number of elements is larger than a threshold nt = α n̄w,
where α is a parameter, n̄ is the average density of elements in
that dimension, and w is the width of the region. An n-dimensional
region is considered dense if the number of elements it contains is
larger than the threshold of each of its one-dimensional sub spaces
For each dimension, MAFIA divides space into nbins uniform bins
(see Figure 5). For each bin, it counts the number of elements in
that bin creating a histogram. The next step is to reduce the number
of bins by enveloping the histogram using nwindows windows. The
value of each window is the maximum of the bins it contains.
To build an adaptive grid, neighboring windows are combined
into larger cells if their values differ by less than a factor β . For
each adaptive-grid cell, the threshold nt is calculated. The one-
dimensional dense cells are used to find two dimensional candidate
dense units. The algorithm combines the dense units found to find
increasingly higher-dimensional dense units. It takes advantage of
the fact that all n−1-dimensional projections of an n-dimensional
dense unit are also dense to quickly reduce the number of higher-
dimensional cells that need to be tested.

Since, we couldn’t find an implementation of MAFIA, I
implemented a Python version using NumPy and mpi4py. MAFIA
combines task and data parallelism making it a good candidate
for parallel compute clusters. The implementation consists of less
than 380 lines of code, scales well, and can deal easily with tens
of thousands of data points.

We are currently testing the usefulness of various ways to
describe protein conformations as multi-dimensional vectors for
clustering using PyMAFIA.

Conclusions

Today’s supercomputers consist of tens to hundreds of thousands
of cores and the number of cores is likely to grow. Using these
large systems efficiently requires algorithms that provide a lot of
parallelism. Python with mpi4py provides an avenue to implement
and test these algorithms quickly and cleanly. The implementation
of MAFIA shows that prototyping of a parallel program can be
done efficiently in pure Python

On JuRoPA, the overhead of using Python instead of Fortran
for the parallel tempering algorithm, is only about 3% if the energy
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Fig. 5: An illustration of MAFIA using a simple two-dimensional
example with α = 1.5. The light green columns and the light blue row
are one-dimensional dense units. The areas where they cross are two-
dimensional candidates for dense units, but only the darker cyan area
is dense. It contains more particles than required by the thresholds of
its one-dimensional components.

calculation is done on a single node. But the scaling of the energy
calculation when called from Fortran is better than the scaling
of the same function called from Python. This may be due to
the interplay between mpi4py and JuRoPA’s MPI installation and
needs further investigation.

Vendors are interested in making Python work on their ma-
chines. IBM helped us to improve the scaling of the startup time
of Python on our Blue Gene/P. This now makes production runs
with more than 100000 cores feasible and reduces the extrapolated
time to start Python on the entire machine from more than eight
hours to less than one hour.

Still, the goal remains to bring the startup time of the Python
interpreter on JUGENE down near that of a regular binary pro-
gram. We will continue to investigate.
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Abstract—Space science deals with the bodies within the solar system and
the interplanetary medium; the primary focus is on atmospheres and above—at
Earth the short timescale variation in the the geomagnetic field, the Van Allen
radiation belts and the deposition of energy into the upper atmosphere are key
areas of investigation.

SpacePy is a package for Python, targeted at the space sciences, that
aims to make basic data analysis, modeling and visualization easier. It builds on
the capabilities of the well-known NumPy and matplotlib packages. Publication
quality output direct from analyses is emphasized. The SpacePy project seeks
to promote accurate and open research standards by providing an open envi-
ronment for code development. In the space physics community there has long
been a significant reliance on proprietary languages that restrict free transfer
of data and reproducibility of results. By providing a comprehensive library
of widely-used analysis and visualization tools in a free, modern and intuitive
language, we hope that this reliance will be diminished for non-commercial
users.

SpacePy includes implementations of widely used empirical models, statis-
tical techniques used frequently in space science (e.g. superposed epoch analy-
sis), and interfaces to advanced tools such as electron drift shell calculations for
radiation belt studies. SpacePy also provides analysis and visualization tools for
components of the Space Weather Modeling Framework including streamline
tracing in vector fields. Further development is currently underway. External
libraries, which include well-known magnetic field models, high-precision time
conversions and coordinate transformations are accessed from Python using
ctypes and f2py. The rest of the tools have been implemented directly in Python.

The provision of open-source tools to perform common tasks will provide
openness in the analysis methods employed in scientific studies and will give
access to advanced tools to all space scientists, currently distribution is limited
to non-commercial use.

Index Terms—astronomy, atmospheric science, space weather, visualization

Introduction

For the purposes of this article we define space science as the
study of the plasma environment of the solar system. That is, the
Earth and other planets are all immersed in the Sun’s tenuous outer
atmosphere (the heliosphere), and all are affected in some way by
natural variations in the Sun. This is of particular importance at
Earth where the magnetized plasma flowing out from the Sun
interacts with Earth’s magnetic field and can affect technological
systems and climate. The primary focus here is on planetary
atmospheres and above - at Earth the short timescale variation in
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Copyright © 2010 Steven K. Morley et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
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the the geomagnetic field, the Van Allen radiation belts [Mor10]
and the deposition of energy into the upper atmosphere [Mly10]
are key areas of investigation.

SpacePy was conceived to provide a convenient library for
common tasks in the space sciences. A number of routine analyses
used in space science are much less common in other fields
(e.g. superposed epoch analysis) and modules to perform these
analyses are provided. This article describes the initial release of
SpacePy (0.1.0), available from Los Alamos National Laboratory.
at http://spacepy.lanl.gov. Currently SpacePy is available on a non-
commercial research license, but open-sourcing of the software is
in process.

SpacePy organization

As packages such as NumPy, SciPy and matplotlib have become
de facto standards in Python, we have adopted these as the
prerequisites for SpacePy.

The SpacePy package provides a number of modules, for a
variety of tasks, which will be briefly described in this article.
HTML help for SpacePy is generated using epydoc and is bundled
with the package. This can be most easily accessed on import of
SpacePy (or any of its modules) by running the help() function
in the appropriate namespace. A schematic of the organization of
SpacePy is shown in figure 1. In this article we will describe the
core modules of SpacePy and provide some short examples of
usage and output.

The most general of the bundled modules is Toolbox. At
the time of writing this contains (among others): a convenience
function for graphically displaying the contents of dictionaries
recursively; windowing mean calculations; optimal bin width
estimation for histograms via the Freedman-Diaconis method; an
update function to fetch the latest OMNI (solar wind/geophysical
index) database and leap-second list; comparison of two time
series for overlap or common elements.

The other modules have more specific aims and are primarily
based on new classes. Time provides a container class for times
in a range of time systems, conversion between those systems and
extends the functionality of datetime for space science use. Coor-
dinates provides a class, and associated functions, for the handling
of coordinates and transformations between common coordinate
systems. IrbemPy is a module that wraps the IRBEM magnetic
field library. Radbelt implements a 1-D radial diffusion code
along with diffusion coefficient calculations and plotting routines.
SeaPy provides generic one- and two-dimensional superposed
epoch analysis classes and some plotting and statistical testing
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Fig. 1: A schematic of the organization and contents of the SpacePy
package at the time of writing.

for superposed epoch analysis. PoPPy is a module for analysis of
point processes, in particular it provides association analysis tools.
Empiricals provides implementations of some common empirical
models such as plasmapause and magnetopause locations. PyBATS
is an extensive sub-package providing tools for the convenient
reading, writing and display of output from the Space Weather
Modeling Framework (a collection of coupled models of the Sun-
Earth system). PyCDF is a fully object-oriented interface to the
NASA Common Data Format library.

Time conversions

SpacePy provides a time module that enables convenient manip-
ulation of times and conversion between time systems commonly
used in space sciences:

1) NASA Common Data Format (CDF) epoch
2) International Atomic Time (TAI)
3) Coordinated Universal Time (UTC)
4) Gregorian ordinal time (RDT)
5) Global Positioning System (GPS) time
6) Julian day (JD)
7) modified Julian day (MJD)
8) day of year (DOY)
9) elapsed days of year (eDOY)

10) UNIX time (UNX)
This is implemented as a container class built on the function-

ality of the core Python datetime module. To illustrate its use, we
present code which instantiates a Ticktock object, and fetches
the time in different systems:

>>> import spacepy.time as spt
SpacePy: Space Science Tools for Python
SpacePy is released under license.
See __licence__ for details,
and help() for HTML help.
>>> ts = spt.Ticktock([`2009-01-12T14:30:00',
... `2009-01-13T14:30:00'],
... `ISO')
>>> ts
Ticktock([`2009-01-12T14:30:00',

`2009-01-13T14:30:00']),
dtype=ISO

>>> ts.UTC
[datetime.datetime(2009, 1, 12, 14, 30),
datetime.datetime(2009, 1, 13, 14, 30)]
>>> ts.TAI

array([ 1.61046183e+09, 1.61054823e+09])
>>> ts.isoformat(`microseconds')
>>> ts.ISO
[`2009-01-12T14:30:00.000000',
`2009-01-13T14:30:00.000000']

Coordinate handling

Coordinate handling and conversion is performed by the co-
ordinates module. This module provides the Coords class for
coordinate data management. Transformations between cartesian
and spherical coordinates are implemented directly in Python, but
the coordinate conversions are currently handled as calls to the
IRBEM library.

In the following example two locations are specified in a
geographic cartesian coordinate system and converted to spher-
ical coordinates in the geocentric solar magnetospheric (GSM)
coordinate system. The coordinates are stored as object attributes.
For coordinate conversions times must be supplied as many of the
coordinate systems are defined with respect to, e.g., the position
of the Sun, or the plane of the Earth’s dipole axis, which are time-
dependent.

>>> import spacepy.coordinates as spc
>>> import spacepy.time as spt
>>> cvals = spc.Coords([[1,2,4],[1,2,2]],
... `GEO', `car')
>>> cvals.ticktock = spt.Ticktock(
... [`2002-02-02T12:00:00',
... `2002-02-02T12:00:00'],
... `ISO')
>>> newcoord = cvals.convert(`GSM', `sph')

A new, higher-precision C library to perform time conversions,
coordinate conversions, satellite ephemeris calculations, magnetic
field modeling and drift shell calculations—the LANLGeoMag
(LGM) library—is currently being wrapped for Python and will
eventually replace the IRBEM library as the default in SpacePy.

The IRBEM library

ONERA (Office National d’Etudes et Recherches Aerospatiales)
provide a FORTRAN library, the IRBEM library [Bos07], that pro-
vides routines to compute magnetic coordinates for any location
in the Earth’s magnetic field, to perform coordinate conversions,
to compute magnetic field vectors in geospace for a number of
external field models, and to propagate satellite orbits in time.

A number of key routines in the IRBEM library have been
wrapped uing f2py, and a ‘thin layer’ module IrbemPy has been
written for easy access to these routines. Current functionality
includes calls to calculate the local magnetic field vectors at any
point in geospace, calculation of the magnetic mirror point for
a particle of a given pitch angle (the angle between a particle’s
velocity vector and the magnetic field line that it immediately
orbits such that a pitch angle of 90 degrees signifies gyration
perpendicular to the local field) anywhere in geospace, and cal-
culation of electron drift shells in the inner magnetosphere.

As mentioned in the description of the Coordinates module,
access is also provided to the coordinate transformation capa-
bilities of the IRBEM library. These can be called directly, but
IrbemPy is easier to work with using Coords objects. This is
by design as we aim to incorporate the LGM library and replace
the calls to IRBEM with calls to LGM without any change to the
Coordinates syntax.
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OMNI

The OMNI database [Kin05] is an hourly resolution, multi-source
data set with coverage from November 1963; higher temporal
resolution versions of the OMNI database exist, but with cov-
erage from 1995. The primary data are near-Earth solar wind,
magnetic field and plasma parameters. However, a number of
modern magnetic field models require derived input parameters,
and [Qin07] have used the publicly-available OMNI database
to provide a modified version of this database containing all
parameters necessary for these magnetic field models. These data
are currently updated and maintained by Dr. Bob Weigel and are
available through ViRBO (Virtual Radiation Belt Observatory)1.

In SpacePy this data is made available on request on install; if
not downloaded when SpacePy is installed and attempt to import
the omni module will ask the user whether they wish to download
the data. Should the user require the latest data, the update
function within spacepy.toolbox can be used to fetch the
latest files from ViRBO.

As an example, we fetch the OMNI data for the powerful
“Hallowe’en” storms of October and November, 2003. These geo-
magnetic storms were driven by two solar coronal mass ejections
that reached the Earth on October 29th and November 20th.

>>> import spacepy.time as spt
>>> import spacepy.omni as om
>>> import datetime as dt
>>> st = dt.datetime(2003,10,20)
>>> en = dt.datetime(2003,12,5)
>>> delta = dt.timedelta(days=1)
>>> ticks = spt.tickrange(st, en, delta, `UTC')
>>> data = om.get_omni(ticks)

data is a dictionary containing all the OMNI data, by variable, for
the timestamps contained within the Ticktock object ticks

Superposed Epoch Analysis

Superposed epoch analysis is a technique used to reveal consistent
responses, relative to some repeatable phenomenon, in noisy data
[Chr08]. Time series of the variables under investigation are
extracted from a window around the epoch and all data at a given
time relative to epoch forms the sample of events at that lag.
The data at each time lag are then averaged so that fluctuations
not consistent about the epoch cancel. In many superposed epoch
analyses the mean of the data at each time u relative to epoch,
is used to represent the central tendency. In SeaPy we calculate
both the mean and the median, since the median is a more robust
measure of central tendency and is less affected by departures
from normality. SeaPy also calculates a measure of spread at each
time relative to epoch when performing the superposed epoch
analysis; the interquartile range is the default, but the median
absolute deviation and bootstrapped confidence intervals of the
median (or mean) are also available. The output of the example
below is shown in figure 2.

>>> import spacepy.seapy as se
>>> import spacepy.omni as om
>>> import spacepy.toolbox as tb
>>> epochs = se.readepochs(`SI_GPS_epochs_OMNI.txt')
>>> st, en = datetime.datetime(2005,1,1),
... datetime.datetime(2009,1,1)
>>> einds, oinds = tb.tOverlap([st, en],
... om.omnidata[`UTC'])
>>> omni1hr = array(om.omnidata[`UTC'])[oinds]
>>> delta = datetime.timedelta(hours=1)

1. http://virbo.org/QinDenton

Fig. 2: A typical output from the SpacePy Sea class using OMNI
solar wind velocity data. The black line marks the superposed epoch
median, the red dashed line marks the superposed epoch mean, and
the blue fill marks the interquartile range. This figure was generated
using the code in the text and a list of 67 events published by [Mor10].

>>> window= datetime.timedelta(days=3)
>>> sevx = se.Sea(om.omnidata[`velo'][oinds],
... omni1hr, epochs, window, delta)
>>> sevx.sea()
>>> sevx.plot(epochline=True, yquan=`V$_{sw}$',

xunits=`days', yunits=`km s$^{-1}$')

More advanced features of this module have been used in analyses
of the Van Allen radiation belts and can be found in the peer-
reviewed literature [Mor10].

Association analysis

This module provides a point process class PPro and methods for
association analysis (see, e.g., [Mor07]). This module is intended
for application to discrete time series of events to assess statistical
association between the series and to calculate confidence limits.
Since association analysis is rather computationally expensive, this
example shows timing. To illustrate its use, we here reproduce the
analysis of [Wil09] using SpacePy. After importing the necessary
modules, and assuming the data has already been loaded, PPro
objects are instantiated. The association analysis is performed by
calling the assoc method and bootstrapped confidence intervals
are calculated using the aa_ci method. It should be noted that
this type of analysis is computationally expensive and, though
currently implemented in pure Python may be rewritten using
Cython or C to gain speed.

>>> import datetime as dt
>>> import spacepy.time as spt
>>> onsets = spt.Ticktock(onset_epochs, `CDF')
>>> ticksR1 = spt.Ticktock(tr_list, `CDF')
>>> lags = [dt.timedelta(minutes=n)
... for n in xrange(-400,401,2)]
>>> halfwindow = dt.timedelta(minutes=10)
>>> pp1 = poppy.PPro(onsets.UTC, ticksR1.UTC,
... lags, halfwindow)
>>> pp1.assoc()
>>> pp1.aa_ci(95, n_boots=4000)
>>> pp1.plot()

The output is shown in figure 3 and can be compared to figure 6a
of [Wil09].
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Fig. 3: Reproduction of the association analysis done by [Wil09],
using the PoPPy module of SpacePy. The figure shows a significant
association around zero time lag between the two point processes
under study (northward turnings of the interplanetary magnetic field
and auroral substorm onsets).

NASA Common Data Format

At the time of writing, limited support for NASA CDF2 has
been written in to SpacePy. NASA themselves have worked with
the developers of both IDL™ and MatLab™. In addition to the
standard C library for CDF, they provide a FORTRAN interface
and an interface for Perl—the latest addition is support for C#.
As Python is not supported by the NASA team, but is growing
in popularity in the space science community we have written a
module to handle CDF files.

The C library is made available in Python using ctypes and an
object-oriented "thin layer" has been written to provide a Pythonic
interface. For example, to open and query a CDF file, the following
code is used:

>>> import spacepy.pycdf as cdf
>>> myfile = cdf.CDF()
>>> myfile.keys()

The CDF object inherits from the
collections.MutableMapping object and provides
the user a familiar ’dictionary-like’ interface to the file contents.
Write and edit capabilities are also fully supported, further
development is being targeted towards the generation of ISTP-
compliant CDF files3 for the upcoming Radiation Belt Storm
Probes (RBSP) mission.

As an example of this use, creating a new CDF from a master
(skeleton) CDF has similar syntax to opening one:

>>> cdffile = cdf.CDF('cdf_file.cdf',
... 'master_cdf_file.cdf')

This creates and opens cdf_filename.cdf as a copy of
master_cdf_filename.cdf. The variables can then be pop-
ulated by direct assignment, as one would populate any new
object. Full documentation can be found both in the docstrings
and on the SpacePy website.

2. http://cdf.gsfc.nasa.gov/
3. http://spdf.gsfc.nasa.gov/sp_use_of_cdf.html

Radiation belt modeling

Geosynchronous communications satellites are especially vulner-
able to outer radiation belt electrons that can penetrate deep into
the system and cause electrostatic charge buildup on delicate
electronics. The complicated physics combined with outstanding
operational challenges make the radiation belts an area of intense
research. A simple yet powerful numerical model of the belts is
included in SpacePy in the RadBelt module. This module allows
users to easily set up a scenario to simulate, obtain required
input data, perform the computation, then visualize the results.
The interface is simple enough to allow users to easily include
an analysis of radiation belt conditions in larger magnetospheric
studies, but flexible enough to allow focused, in-depth radiation
belt research.

The model is a radial diffusion model of trapped electrons
of a single energy and a single pitch angle. The heart of the
problem of radiation belt modeling through the diffusion equation
is the specification of diffusion coefficients, source and loss terms.
Determining these values is a complicated problem that is tackled
in a variety of different ways, from first principles approaches to
simpler empirical relationships. The RadBelt module approaches
this with a paradigm of flexibility: while default functions that
specify these values are given, many are available and additional
functions are easy to specify. Often, the formulae require input
data, such as the Kp or Dst indices. This is true for the RadBelt
defaults. These data are obtained automatically from the OMNI
database, freeing the user from the tedious task of fetching data
and building input files. This allows simple comparative studies
between many different combinations of source, loss, and diffu-
sion models.

Use of the RadBelt module begins with instantiation of an
RBmodel object. This object represents a version of the radial
diffusion code whose settings are controlled by its various object
attributes. Once the code has been properly configured, the time
grid is created by specifying a start and stop date and time along
with a step size. This is done through the setup_ticks instance
method that accepts datetime or Ticktock arguments. Finally, the
evolve method is called to perform the simulation, filling the
PSD attribute with phase space densities for all L and times
specified during configuration. The instance method plot yields
a quick way to visualize the results using matplotlib functionality.
The example given models the phase space density during the
“Hallowe’en” storms of 2003. The results are displayed in figure
4. In the top frame, the phase space density is shown. The white
line plotted over the spectrogram is the location of the last closed
drift shell, beyond which the electrons escape the magnetosphere.
Directly below this frame is a plot of the two geomagnetic indices,
Dst and Kp, used to drive the model. With just a handful of
lines of code, the model was setup, executed, and the results were
visualized.

>>> from spacepy import radbelt as rb
>>> import datetime as dt
>>> r = rb.RBmodel()
>>> starttime = dt.datetime(2003,10,20)
>>> endtime = dt.datetime(2003,12,5)
>>> delta = dt.timedelta(minutes=60)
>>> r.setup_ticks(starttime, endtime,
... delta, dtype=`UTC')
>>> r.evolve()
>>> r.plot(clims=[4,11])
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Fig. 4: RadBelt simulation results for the 2003 Hallowe’en storms.
The top frame shows phase space density as a function of drift shell
and time. The bottom frame shows the geomagnetic Kp and Dst
indices during the storm.

Visualizing space weather models

The Block Adaptive Tree Solar wind Roe-type Upwind Scheme
code, or BATS-R-US, is a widely used numerical model in the
space science community. It is a magnetohydrodynamic (MHD)
code [Pow99], which means it combines Maxwell’s equations for
electromagnetism with standard fluid dynamics to produce a set
of equations suited to solving spatially large systems while using
only modest computational resources. It is unique among other
MHD codes in the space physics community because of its au-
tomatic grid refinement, compile-time selection of many different
implementations (including multi fluid, Hall resistive, and non-
isotropic MHD), and its library of run-time options (such as solver
and scheme configuration, output specification, and much more).
It has been used in a plethora of space applications, from planetary
simulations (including Earth [Wel10b] and Mars [Ma07]) to solar
and interplanetary investigations [Coh09]. As a key component of
the Space Weather Modeling Framework (SWMF) [Tot07], it has
been coupled to many other space science numerical models in
order to yield a true ‘sun to mud’ simulation suite that handles
each region with the appropriate set of governing equations.

Visualizing output from the BATS-R-US code comes with its
own challenges. Good analysis requires a combination of two and
three dimensional plots, the ability to trace field lines and stream
lines through the domain, and the slicing of larger datasets in
order to focus on regions of interest. Given that BATS-R-US is
rarely used by itself, it is also important to be able to visualize
output from the coupled codes used in conjunction. Professional
computational fluid dynamic visualization software solutions excel
at the first points, but are prohibitively expensive and often leave
the user searching for other solutions when trying to combine
the output from all SWMF modules into a single plot. Scientific
computer languages, such as IDL™ and MatLab™, are flexible
enough to tackle the latter issue, but do not contain the proper
tools required by fluid dynamic applications. Because all of these
solutions rely on proprietary software, there are always license
fees involved before plots can be made.

The PyBats package of SpacePy attempts to overcome these
difficulties by providing a free, platform independent way to read

Fig. 5: Typical output desired by users of BATS-R-US and the SWMF.
The upper left frame is a cut through the noon-midnight meridian
of the magnetosphere as simulated by BATS-R-US at 7:15 UT on
September 1, 2005. The dial plots to the left are the ionospheric
electric potential and Hall conductivity at the same time as calculated
by RIM. Below are the solar wind conditions driving both models.

and visualize BATS-R-US output as well as output from models
that are coupled to it. It builds on the functionality of NumPy
and matplotlib to provide specialized visualization tools that allow
the user to begin evaluating and exploring output as quickly as
possible.

The core functionality of PyBats is a set of classes that
read and write SWMF file formats. This includes simple ASCII
log files, ASCII input files, and a complex but versatile self-
descriptive binary format. Because many of the codes that are
integrated into the SWMF use these formats, including BATS-R-
US, it is possible to begin work right away with these classes.
Expanded functionality is found in code-specific modules. These
contain classes to read and write output files, inheriting from the
PyBats base classes when possible. Read/write functionality is
expanded in these classes through object methods for plotting,
data manipulation, and common calculations.

Figure 5 explores the capabilities of PyBats. The figure is a
typical medley of desired output from a basic simulation that used
only two models: BATS-R-US and the Ridley Ionosphere Model.
Key input data that drove the simulation is shown as well. Creating
the upper left frame of figure 5, a two dimensional slice of
the simulated magnetosphere saved in the SWMF binary format,
would require far more work if the base classes were chosen.
The bats submodule expands the base capability and makes short
work of it. Relevant syntax is shown below. The file is read by
instantiating a Bats2d object. Inherited from the base class is
the ability to automatically detect bit ordering and the ability to
carefully walk through the variable-sized records stored in the file.
The data is again stored in a dictionary as is grid information; there
is no time information for the static output file. Extra information,
such as simulation parameters and units, are also placed into object
attributes. The unstructured grid is not suited for matplotlib, so
the object method regrid is called. The object remembers that it
now has a regular grid; all data and grid vectors are now two
dimensional arrays. Because this is a computationally expensive
step, the regridding is performed to a resolution of 0.25 Earth
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radii and only for a subset of the total domain. The object method
contourf, a wrapper to the matplotlib method of the same
name, is used to add the pressure contour to an existing axis,
ax. The wrapped function accepts keys to the grid and data
dictionaries of the Bats2d object to prevent the command from
becoming overly verbose. Extra keyword arguments are passed to
matplotlib’s contourf method. If the original file contains the
size of the inner boundary of the code, this is reflected in the object
and the method add_body is used to place it in the plot.

>>> import pybats.bats as bats
>>> obj = bats.Bats2d(`filename')
>>> obj.regrid(0.25, [-40, 15], [-30,30])
>>> obj.contourf(ax, `x', `y', `p')
>>> obj.add_body(ax)
>>> obj.add_planet_field(ax)

The placement of the magnetic field lines is a strength of the
bats module. Magnetic field lines are simply streamlines of the
magnetic field vectors and are traced through the domain numer-
ically using the Runge-Kutta 4 method. This step is implemented
in C to expedite the calculation and wrapped using f2py. The
Bats2d method add_planet_field is used to add multiple
field lines; this method finds closed (beginning and ending at the
inner boundary), open (beginning or ending at the inner boundary,
but not both), or pure solar wind field lines (neither beginning or
ending at the inner boundary) and attempts to plot them evenly
throughout the domain. Closed field lines are colored white to
emphasize the open-closed boundary. The user is naive to all of
this, however, as one call to the method works through all of the
steps.

The last two plots, in the upper right hand corner of figure
5, are created through the code-specific rim module, designed to
handle output from the Ridley Ionosphere Model (RIM) [Rid02].

PyBats capabilities are not limited to what is shown here.
The Stream class can extract values along the streamline as it
integrates, enabling powerful flow-aligned analysis. Modules for
other codes coupled to BATS-R-US, including the Ring current
Atmosphere interactions Model with Self-Consistent Magnetic
field (RAM-SCB, ram module) and the Polar Wind Outflow Model
(PWOM, pwom module) are already in place. Tools for handling
virtual satellites (output types that simulate measurements that
would be made if a suite of instruments could be flown through
the model domain) have already been used in several studies.
Combining the various modules yields a way to richly visualize
the output from all of the coupled models in a single language.
PyBats is also in the early stages of development, meaning that
most of the capabilities are yet to be developed. Streamline
capabilities are currently being upgraded by adding adaptive step
integration methods and advanced placement algorithms. Bats3d
objects are being developed to complement the more frequently
used two dimensional counterpart. A GUI interface is also under
development to provide users with a point-and-click way to add
field lines, browse a time series of data, and quickly customize
plots. Though these future features are important, PyBats has
already become a viable free alternative to current, proprietary
solutions.

SpacePy in action

A number of key science tasks undertaken by the SpacePy team
already heavily use SpacePy. Some articles in peer-reviewed
literature have been primarily produced using the package (e.g.

[Mor10], [Wel10a]). The Science Operations Center for the RBSP
mission is also incorporating SpacePy into its processing stream.

The tools described here cover a wide range of routine analysis
and visualization tasks utilized in space science. This software is
currently available on a non-commercial research license, but the
process to release it as free and open-source software is underway.
Providing this package in Python makes these tools accessible
to all, provides openness in the analysis methods employed in
scientific studies and will give access to advanced tools to all space
scientists regardless of affiliation or circumstance. The SpacePy
team can be contacted at spacepy-info@lanl.gov.
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Numerical Pyromaniacs: The Use of Python in Fire
Research
Kristopher Overholt‡∗

F

Abstract—Python along with various numerical and scientific libraries was used
to create tools that enable fire protection engineers to perform various calcula-
tions and tasks including educational instruction, experimental work, and data
visualization. Examples of web calculators and tools for creating 3D geometry for
fire models using Python are presented. The use of Python in the fire research
field will foster many new ideas, tools, and innovation in the field of fire protection
research and engineering.

Index Terms—fire protection engineering, fluid dynamics, visualization

Introduction

The use of Python in fire protection engineering and fire research
has many useful applications and allows for an abundance of
possibilities for the fire science community. Recently, Python
has been used to create data analysis tools for fire experiments
and simulation data, to assist users with fire modeling and fire
dynamics calculations, to perform flame height tracking for ware-
house fires and bench-scale tests using GUI programs, and to
present flame spread results using a visual method of superim-
posed video plotting. These tools have emerged in the form of
web applications, GUIs, and data reduction scripts which interact
with existing computational fluid dynamics (CFD) tools such as
the freely available and open-source fire modeling program, Fire
Dynamics Simulator [FDS], which is maintained by the National
Institute of Standards and Technology (NIST).

Python (and its associated scientific and numerical libraries) is
the perfect tool for the development of these tools, which advance
the capabilities of the fire research community, due to its free and
open source nature and widespread, active community. Thus, it
is important to identify efforts and projects that allow engineers
and scientists to easily dive into learning Python programming
and to utilize it in an environment that is familiar and efficient for
practical engineering use.

Along this line, tools and packages such as the Enthought
Python Distribution [EPD] and Python(x,y) [pythonxy] help with
the installation of Python and its associated scientific and numeri-
cal packages. Other tools such as Spyder [SPY] and Sage [SAGE]
allow engineers and students to work in a familiar environment
that is similar to commercial engineering programs with the
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advantage of a full-featured programming language that is based
on an open-source foundation.

Another application of Python in fire research is for the
verification and validation of fire models. As with other CFD tools,
the developers of fire models have recently become interested in
the use of verification and validation to assess the performance
and accuracy of the models regarding their correct physical rep-
resentation. The process of validation compares the results from
the computer model to analytical results or experimental data and
involves a large amount of data and plots. For this purpose, we
can use Python to automate our workflow and generate plots from
updated data, and we are considering using Python to generate
regression statistics between newer versions of the fire modeling
software so that we can better quantify the numerical variations
that are related to changes in the CFD code.

From data fitting to creating publication-quality plots using
matplotlib [MPL], Python is quickly emerging as a useful tool for
engineers and scientists to interact with data in a meaningful and
programmatic manner that is familiar to them. In a time when a
budget cut can result in numerous dropped licenses for proprietary
data analysis software (which can cause the proprietary scripts and
data sets to be unusable), Python is in the position to become more
ubiquitous in fire protection engineering and the engineering field
in general.

Superimposed Video Plotting Method

A few years ago, while I was attending a fire conference, a presen-
ter showed a video with real-time seismic data plots superimposed
over a video of the burning building where the measurements
were being taken from. This was certainly a useful way to convey
multiple streams of information visually and allow the data tell
a story. Because videos can convey much more information than
static plots, this method allows for both qualitative and quantitative
information to be communicated simultaneously.

Shortly thereafter, I created a Python script and used matplotlib
to import videos, adjust frame rates, plot on the imported figures,
and export the video frames with plots. I used the script to generate
video plots of warehouse commodity fire tests with actual and
predicted flame heights vs. time, as shown in Figure 1.

I also used the script to show video plots of the predicted flame
heights for small-scale tests, as shown in Figure 2.

Real-time video plots are a great visual method for teaching,
communication, and telling a story with your data. At the time of
this writing, no existing programs or tools are available for this
process. Python was a great tool for this purpose, and it would not
require much more effort to create a GUI for this tool.
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Fig. 1: Plot of flame height vs. time on a warehouse fire video created
with Python and matplotlib.

Fig. 2: Plot of flame height vs. time on a bench-scale experiment
video created with Python and matplotlib.

Web Tools and Engineering Calculators

As I was learning Python a few years ago and using it in
my research, I created a spreadsheet tool that would generate
text input lines for a 3D mesh for a fire modeling tool (FDS)
that involved tedious calculations and Poisson-friendly integer
requirements. After repeatedly running these calculations by hand
one, I created a Python script to generate the appropriate numbers
and parameters to use in a text input file, and I wanted to share this
tool with others. Based on some simple Python CGI examples, I
created a mesh size calculator web tool. Previously, I had never
created a web application, but with Python it was quite easy and
fun. The interface for the web calculator is shown in Figure 3.

Today, on my website [FDSmesh], the mesh calculator web
tool gets used about 1,000 times a month by engineers and
scientists around the world. The source code of the web tool is
freely available on Google Code under the MIT License and is
linked from the webpage that contains the web calculator. Because
the source code is available, this will hopefully be helpful to others
who want to create a simple web calculator tool using Python. The
output of the web calculator is shown in Figure 4.

Fig. 3: Interface for FDS mesh size calculator web tool.

Fig. 4: Results from FDS mesh calculator web tool.
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Since then, I have also developed a few other web calculators.
Some future tools that I wish to develop include a suite of fire engi-
neering and fire dynamics tools that can be used online. A legacy
computer tool for fire protection engineers is a program called
FPETool (fire protection engineering tool) [FPETool], which con-
tains a set of fire dynamics calculations, and this program was
heavily used in the 1980s and 1990s. FPETool is still available
as a free download from NIST, but only as a DOS executable.
Because of this, the suite of tools and fire dynamics calculators in
FPEtool are no longer used in the field. The equations and methods
in FPEtool could be recreated as a web-based, open-source, and
community-supported project using Python. Python offers our
field the ability to easily and quickly create web tools, from
simple calculators to complex web applications, and this results
in a more efficient workflow for engineers, a method for third-
party developers to contribute to the fire modeling community,
and promotion of the effective use of fire dynamics and tools for
life safety design work.

Creating 3D Geometry for Fire Models

Regarding the increasing amount of interaction between Python
and fire models, third-party developers in the fire modeling com-
munity (including myself) have recently released a tool to model
3D geometry and generate a text-based input file for the FDS
fire modeling software. The tool is called BlenderFDS and is an
extension for [Blender] that was written in Python. Before the
release of BlenderFDS, users of FDS had to create geometry for a
case either manually using a text editor or by using a commercial
user interface. Now, using BlenderFDS, FDS users can create
complex buildings and irregular geometry (e.g., cylinders, angled
roofs) and automatically have the geometry broken up into the
rectilinear format that FDS requires.

Blender handles the interactive creation and manipulation of
3D objects, and BlenderFDS then voxelizes the 3D geometry
into rectilinear shapes and outputs a text-based FDS input file.
BlenderFDS works by scanning the geometry in Blender on the
x, y, and z axis and then generating optimized obstruction lines
with 3D coordinates in ASCII format. Using this method, complex
objects can be represented as multiple lines of simplified geometry
in the FDS input file. This approach could be used in other fields
that utilize 3D modeling to help with the creation of input files.
The interface for the BlenderFDS extension in Blender is shown
in Figure 5.

BlenderFDS allows for the quick creation of complex geome-
try in a visual manner, and it can even be used to model an entire
building, as shown in Figure 6.

We hope to continue adding functionality to BlenderFDS and
create a comprehensive GUI for creating input files for fire models,
and we (the developers) have appreciated the ease of use and the
implementation process of using Python with Blender for this
project. The source code for the BlenderFDS project is freely
available on the [BlenderFDS] website on Google Code and is
licensed under the GNU GPL. We are also exploring additional
3D fire modeling solutions in Blender and other popular CFD
postprocessing tools, which will be discussed in the next section.

Visualizing Smoke and Fire for CFD simulations

With the availability of numerous CFD-related tools such as
[Paraview], [Mayavi], and Blender, we have been exploring the use

Fig. 5: Interface for creating and exporting 3D fire model geometry
in Blender.

Fig. 6: 3D geometry output shown in FDS that was generated using
the BlenderFDS plugin.

of these tools for the visualization of realistic and scientifically-
based fire and smoke for 3D fire simulations. An example of the
improved rendering of fire and smoke in the upcoming release of
Blender 2.5 is shown in Figure 7.

Such a visualization tool would allow for graphical improve-
ments in the output and a standardized data format for visual-
ization and analysis for CFD tools. Finally, such a tool would
also allow for more community involvement and support for the
visualization software.

Future Plans for Python in Fire Research

The use of Python in fire protection engineering is still in its
early stages; future applications in the fire research field include
additional fire dynamics and engineering web calculation tools,
tools to analyze and visualize output from CFD programs such as
FDS, and the design and implementation of a standardized, open
format for experimental fire test data.

Interactive data analysis tools that are based on Python, such
as Spyder and Sage, will allow Python to be used more in the
engineering field as a flexible, free, and powerful tool with a
supportive and active community. For Python to be used more in
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Fig. 7: Realistic flames and smoke rendered in Blender [Price].

the engineering field as a replacement for commercial tools, more
emphasis should be placed on the development of interactive data
analysis and GUI tools.

Python can also be utilized more in tools such as Blender
(for geometry creation), Spyder (for interactive data analysis and
scripting), or Mayavi (for visualization), which allows for the
possibility of many new innovations in fire research. Additionally,
Python can be incorporated into the field of CFD and high
performance computing.

In conclusion, the use of Python in fire protection engineering
and fire research is of utmost importance because these fields
involve public safety and strive to produce safer buildings and
materials to protect people and property around the world from
the dangers of fire. Python and the scientific Python community
are a good fit for this endeavor, and I hope to interact and learn
more from the Python community to create additional solutions
that can advance our field.
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Abstract—Particle-in-Cell (PIC) simulations are a popular approach to plasma
physics problems in a variety of applications. These simulations range from
interactive to very large, and are well suited to parallel architectures, such as
GPUs. PIC simulations frequently serve as input to other simulations, as a part
of a larger system. Our project has two goals: facilitate exploitation of increasing
availability of parallel compute resources in PIC simulation, and provide an
intuitive and efficient programmatic interface to these simulations. We plan to
build a modular backend with multiple levels of parallelism using tools such as
PyCUDA/PyOpenCL and IPython. The modular design, following the goals of
our Object-Oriented Particle-in-Cell (OOPIC) code this is to replace, enables
comparison of multiple algorithms and approaches. On the frontend, we will
use a runtime compilation model to generate an optimized simulation based on
available resources and input specification. Maintaining NumPy arrays as the
fundamental data structure of diagnostics will allow users great flexibility for data
analysis, allowing the use of many existing powerful tools for Python, as well as
the definition of arbitrary derivative diagnostics in flight. The general design and
preliminary performance results with the PyCUDA backend will be presented.
This project is early in development, and input is welcome.

Index Terms—simulation, CUDA, OpenCL, plasma, parallel

Introduction

Plasma physics simulation is a field with widely varied problem
scales. Some very large 3D problems are long term runs on the
largest supercomputers, and there are also many simple prototyp-
ing and demonstration simulations that can be run interactively on
a single laptop. Particle-in-Cell (PIC) simulation is one common
approach to these problems. Unlike full particle simulations where
all particle-particle Coulomb interactions are computed, or fully
continuous simulations where no particle interactions are consid-
ered, the PIC model has arrays of particles in continuous space
and their interactions are mediated by fields defined on a grid.
Thus, a basic PIC simulation consists of two base data structures
and three major computation kernels. The data structures are one
(or more) list(s) of particles and the grid problem, with the source
term and fields defined at discrete locations in space. The first
kernel (Weight) is weighing the particle contributions to the source
term on the grid. The second kernel (Solve) updates the fields on
the grid from the source term by solving Poisson’s Equation or
Maxwell’s equations. The third kernel (Push) updates the position
and velocity of the particles based on the field values on the grid,
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which involves interpolating field values from the grid locations
to the particle positions.

Our background in PIC is developing the Object Oriented
Particle in Cell (OOPIC) project [OOPIC]. The motivation for
OOPIC is developing an extensible interactive plasma simulation
with live plotting of diagnostics. As with OO programming in
general, the goal of OOPIC was to be able to develop new
components (new Field Solvers, Boundary Conditions, etc.) with
minimal change to existing code. OOPIC has been quite successful
for small to moderate simulations, but has many shortcomings due
to the date of the design (1995). The only way to interact with
OOPIC is a mouse-based Tk interface. This makes interfacing
OOPIC simulations with other simulation codes (a popular desire)
very difficult. By having a Python frontend replace the existing
Tk, we get a full interactive programming environment as our
interface. With such an environment, and NumPy arrays as our
native data structure, our users are instantly flexible to use the
many data analysis and scripting tools available in Python and
from the SciPy community [NumPy], [SciPy].

The performance component of the design is to use code
generation to build the actual simulation program as late as
possible. The later the program is built, the fewer assumptions
made, which allows our code as well as compilers to maximize
optimization. With respect to OOPIC, it also has the advantage of
putting flexible control code in Python, and simpler performance
code in C/CUDA, rather than building a single large C++ program
with simultaneous goals of performance and flexibility.

Modular Design

1. Input files are Python Scripts.

With OOPIC, simulations are specified by an input file, using
special syntax and our own interpreter. An input file remains, but
it is now a Python script. OOPIC simulations are written in pure
Python and interpreted in a private namespace, which allows the
user to build arbitrary programming logic into the input file itself,
which is very powerful.

2. Interfaces determine the simulation construction.

The mechanism for building a Device object from an input
file follows an interface-based design, via zope.interface
[Zope]. The constructor scans the namespace in which the input
file was executed for object that provide our interfaces and
performs the appropriate construction. This allows users to extend
our functionality without altering our package, thus supporting
new or proprietary components.
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3. Python Objects generate C/CUDA kernels or code snippets.

Once the Device has been fully specified, the user invokes a
compile method, which prompts the device to walk through its
various components to build the actual simulation code. In the
crudest cases, this amounts to simply inserting variables and code
blocks in code templates and compiling them.

4. The simulation is run interactively

The primary interface is to be an IPython session [IPython].
Simple methods, such as run() will advance the simulation in
time, save() dumps the simulation state to a file. But a method
exposing the full power of a Python interface is runUntil().
runUntil() takes a function and argument list, and executes
the function at a given interval. The simulation continues to run
until the function returns true. Many PIC simulations are run until
a steady state is achieved before any actual analysis is done. If the
user can quantify the destination state in terms of the diagnostics,
then runUntil can be used to evolve the system to a precisely
defined point that may occur at an unknown time.

5. Diagnostics can be fetched, plotted, and declared on the fly

All diagnostics are, at their most basic level, exposed to the user
as NumPy arrays. This allows the use of all the powerful data
analysis and plotting tools available to Python users. Since the
simulation is dynamic, diagnostics that are not being viewed are
not computed. This saves on the communication and possible
computation cost of moving/analyzing data off of the GPU. The
Device has an attribute Device.diagnostics, which is a dict of all
available diagnostics, and a second list, Device.activeDiagnostics,
which is only the diagnostics currently being computed. Users
can define new diagnostics, either through the use of provided
methods, such as cross(A,B), which will efficiently add a diag-
nostic that computes the cross product two diagnostics, or even the
fully arbitrary method of passing a function to the constructor of
DerivativeDiagnostic, which will be evaluated each time
the diagnostic is to be updated. This can take a method, and any
other diagnostics to be passed to the function as arguments. This
way, perfectly arbitrary diagnostics can be registered, even if it
does allow users to write very slow functions to be evaluated in
the simulation loop.

Interfaces

Interface based design, as learned developing the parallel comput-
ing kernel of IPython, provides a good model for developing plug-
gable components. Each major component presents an interface.
For instance, a whole simulation presents the interface IDevice.
New field solvers present ISolver, all diagnostics present a simple
set of methods in IDiagnostic, and more specific diagnostic groups
provide extended sets, such as ITimeHistory and IFieldDiagnostic.
Some common interface elements are provided below.

IDiagnostic

IDiagnostic provides the basic interface common to all Diagnos-
tics:

• save(): save the data to a file, either ascii
or numpy.tofile()

• data: a NumPy array, containing the data
• interval: an integer, the interval at which the

Diagnostic’s data is to be updated

IDevice

IDevice is the full simulation interface:

• save(fname): dumps the full simulation
state to a file

• restore(fname): reciprocal of save()
• run(steps=None): run either continuously,

or a specified number of steps
• step(): equivalent to run(1)
• runUntil(interval, f, args): run in

batches of interval steps until f(*args) returns
True.

• diagnostics: a list of diagnostics available
• activeDiagnostics: a list of diagnostics

currently being evaluated
• addDiagnostic(d): registers a new diag-

nostic to be computed, such as derivative diag-
nostics

Diagnostics

Diagnostics will have two classes. First class diagnostics are fast,
native diagnostics, computed as a part of the compute kernel in
C/CUDA. The second class of diagnostics, Derivative Diagnostics,
are more flexible, but potential performance sinks because users
can define arbitrary new diagnostics interactively, which can be
based on any Python function.

PyCUDA tests

We built a simple test problem with PyCUDA [PyCUDA]. It is
a short-range n-body particle simulation where particles interact
with each other within a cutoff radius. The density is controlled,
such that each particle has several (~10) interactions. The sim-
ulation was run on two NVIDIA GPUs (C1060 and GTX 260-
216) with various numbers of threads per block (tpb) [C1060],
[GTX260]. This was mainly a test of simple data structures,
and we found promising performance approaching 40% of the
theoretical peak performance on the GPUs in single precision
[Figure 1].

The sawtooth pattern in Figure 1 is clarified by plotting a
normalized runtime of the same data [Figure 2]. The runtime plot
reveals that adding particles does not increase the runtime until
a threshold is passed, because many particles are computed in
parallel. The threshold is that number of particles. Since there is
one particle per thread, the steps are located at intervals of the
number of threads-per-block (tpb) times the number of blocks that
can be run at a time (30 for C1060, and 27 for GTX-260).

Challenges

There are a few points where we anticipate challenges in this
project.

First, and most basic, is simply mapping PIC to the GPU.
Ultimately we intend to have backends for multi-machine simula-
tions leveraging both multicore CPUs and highly parallel GPUs,
likely with a combination of OpenCL and MPI. However, the first
backend is for 1 to few NVidia GPUs with CUDA/PyCUDA.
This is a useful starting point because the level of parallelism
for modestly sized problems is maximized on this architecture.
We should encounter many of the data structure and API issues
involved. PIC is primarily composed of two problems: grid-based
field solve, and many particle operations. Both of these models
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Fig. 1: FP performance vs number of particles in the simulation (N).
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Fig. 2: Normalized runtime increases at discrete steps of tbp* # of
blocks: 256*30=7680 for C1060, and 256*27=6912 for GTX-260.

are popular to investigate on GPUs, but there is still much to be
learned about the coupling of the two.

Diagnostics also pose a challenge because it is important that
computing and displaying diagnostics not contribute significantly
to execution time. Some target simulations run at interactive
speeds, and an important issue to track when writing Python code
in general, and particularly multi-device code, is data copying.

Code generation is another challenge we face. Our intention is
to build a system where the user specifies as little of the backend
as possible. They enter the physics, and likely the spatial and time
resolution, and our Python code generates C+CUDA code that will
run efficiently. This is not easily done, but once complete will be
quite valuable.

Future Plans

Ultimately we intend to have a GUI, likely built with Chaco/ETS,
to replicate and extend functionality in OOPIC, as well as extend-
ing backends to fully general hardware [ETS]. But for now, there
is plenty of work to do exploring simpler GPU simulations and
code generation strategies behind the interactive Python interface.

The code will be licensed under the GNU Public License
(GPL) once it is deemed ready for public use [GPL].
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PySPH: A Python Framework for Smoothed Particle
Hydrodynamics

Prabhu Ramachandran‡∗, Chandrashekhar Kaushik‡
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Abstract—[PySPH] is a Python-based open source parallel framework for
Smoothed Particle Hydrodynamics (SPH) simulations. It is distributed under a
BSD license. The performance critical parts are implemented in [Cython]. The
framework provides a load balanced, parallel execution of solvers. It is designed
to be easy to extend. In this paper we describe the architecture of PySPH and
how it can be used.

At it’s core PySPH provides a particle kernel, an SPH kernel and a solver
framework. Serial and parallel versions of solvers for some standard problems
are also provided. The parallel solver uses [mpi4py]. We employ a simple but el-
egant automatic load balancing strategy for the parallelization. Currently, we are
able to perform free surface simulations and some gas dynamics simulations.
PySPH is still a work in progress and we will discuss our future plans for the
project.

Index Terms—parallel, Cython, fluid dynamics, simulation

Introduction

SPH Primer

Smoothed Particle Hydrodynamics (SPH) is a computational sim-
ulation technique. It was developed to simulate astral phenomena
by [Gingold77] and [Lucy77] in 1977. Since then, it has been used
in numerous other fields including fluid-dynamics, gas-dynamics
and solid mechanics.

The central idea behind SPH is the use of integral interpolants.
Consider a function f (r). It can be represented by the equation

f (r) =
∫

f (r′)δ (r− r′)dr′ (1)

Replacing the delta distribution with an approximate delta func-
tion, W , gives us:

f (r) =
∫

f (r′)W (r− r′,h)dr′. (2)

The above equation estimates the value of function f at a point r in
space using the weighted values of f at points near it. The weight
decreases as the distance between r and r′ increase. h in the above
equation represents the particle interaction radius. The support of
the kernel W is some small multiple of h. Outside the support,
the value of W is set to zero. Compact support is computationally
advantageous since it allows us to avoid an N2 interaction among
particles.
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The above equation can be written in summation form as

f (ri) = ∑
j

f (r j)
m j

ρ j
W (ri− r j,h) (3)

The above equation forms the core of all SPH calculations. The
index j loops over all neighboring particles. m j is the mass of a
particle and ρ j is the density of the particle. The term

m j

ρ j
,

can be thought of as representing a volume element [Morris96].
Gradients and divergence encountered in the equations repre-
senting fluid motion are represented using similar summations.
SPH finds widespread use in many domains. [Monaghan05] and
[Morris97] give extensive details about the SPH method.

Related Work

Despite the age of SPH and its applicability to many domains,
there does not seem to be much effort in developing a unified
framework for SPH. [SPHysics] is a FORTRAN-based open
source package for performing SPH. It’s primary objective is to
model free-surface flows. From the provided documentation we
feel that it is not easy to set up simulations in this package.
[SPH2000] is another parallel framework for SPH written in C++.
This code however does not seem to be in active development
currently. Moreover, they show exactly one example simulation
with their code. Neither package has a publicly accessible source
code repository. Therefore, an open source package that is easy
to experiment with and extend will be a useful contribution to
the community, especially when combined with the flexibility of
Python [Oliphant07].

PySPH [PySPH] was created to address this need. It is an open
source, parallel, framework for Smoothed Particle Hydrodynamics
(SPH) implemented in Python.

Choice of implementation language

We use a combination of Python and [Cython] to implement the
framework. Python is a high-level, object-oriented, interpreted
programming language which is easy to learn. Python code is also
very readable. There are numerous packages (both scientific and
otherwise) that can be used to enhance the productivity of applica-
tions. A Python-based SPH implementation can take advantage of
these packages, which could enhance it in various aspects, from
providing plotting facilities (2D and 3D), to generating GUI’s,
to running SPH simulations from the web, to parallelization.
All these features can also be accessed through an interactive
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interpreter. [Oliphant07] discusses how Python can be used for
scientific computing.

Python, however, is an interpreted language. Thus, compute-
intensive tasks implemented in pure Python will be prohibitively
slow. To overcome this, we delegate all performance-critical tasks
to a language called Cython [Cython]. Cython makes writing C
extensions for Python nearly as simple as writing Python code
itself. A Cython module is compiled by a compiler into a C exten-
sion module. When the C code is compiled, it becomes a module
that may be imported from Python. Most of Python’s features are
available in Cython. Thus, by delegating all performance-critical
components to Cython, we are able to overcome the performance
hit due to the interpreted nature of Python and still use all of
Python’s features.

An overview of features

PySPH currently allows a user to set up simulations involving
incompressible fluids and free surfaces in two and three dimen-
sions. The framework supports complex geometries. However,
only a few simple shapes have been currently implemented. The
framework has been designed from the ground up to be parallel.
We use mpi4py [mpi4py] for the parallel solver. The parallel solver
is automatically load balanced.

In the following, we outline the framework, discuss the current
status and future improvements that are planned.

The Framework

The whole framework was designed to enable simple simulations
to be set up very easily, and yet be flexible enough to add
complex features. We present a high level view of a particle-based
simulation in the following.

Guiding Principle - High level view of a simulation

A simulation always involves a few key objects:
• Solver: The solver is an object that manages
the entire simulation. It typically delegates its
activities to other objects like integrators, com-
ponent managers and arrays of particles.

• Entities: The simulation involves distinct collec-
tions of particles each representing a particular
physical entity. Each entity is a derived class from
the base class EntityBase. For example, Fluid and
Solid are two different classes and a user may
create a collection of fluids and solids using this.
This allows a user to set up a simulation with a
collection of physical entities.

The high level view outlined in Figure 1 served as the guiding
principle while designing various components of the framework.

The various tasks shown in Figure 1 are explained below:

• Create and set up the solver: Initially, we
create an appropriate solver object for the sim-
ulation. Different solvers are used for different
kinds of simulations. We also set up various
parameters of the solver.

• Create physical entities: In this step, we add
the physical entities (made of up particles), that
will take part in the simulation. Multiple sets of
particles could be added, one for each physical
entity involved.

Fig. 1: Outline of tasks to set up a simulation.

• Additional operations to the solver: We may
require the solver to perform additional oper-
ations (apart from the main simulation), like
writing data to file, plotting the data etc. This
is configured during this step.

• Start the solver: The solver iterations are
started.

The outline given above is very generic. This set of steps is
useful in setting up almost any particle-based simulation. Parallel
simulations too should adhere to the basic outline given above.
Given below is pseudo-Python code to run a simple serial simula-
tion:

# Imports...
solver = FSFSolver(time_step=0.0001,

total_simulation_time=10.,
kernel=CubicSpline2D())

# create the two entities.
dam_wall = Solid(name='dam_wall')
dam_fluid = Fluid(name='dam_fluid')

# The particles for the wall.
rg = RectangleGenerator(...)
dam_wall.add_particles(

rg.get_particles())
solver.add_entity(dam_wall)
# Particles for the left column of fluid.
rg = RectangleGenerator(...)
dam_fluid.add_particles(

rg.get_particles())
solver.add_entity(dam_fluid)

# start the solver.
solver.solve()
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Fig. 2: Architecture of the framework

Architecture Overview

The architecture may be broadly split into the following:

• the particle kernel,
• the SPH kernel,
• the solver framework,
• serial and parallel solvers.

The overall architecture of the framework is shown in Figure
2. We discuss this in detail in the following sections.

Particle kernel

A fast implementation of arrays in Cython forms the foundation
of the framework. Arrays are ubiquitous in the implementation,
hence the implementation is made as fast as possible (close to
C performance) using Cython. The base class for these arrays
is called BaseArray and subclasses of these in the form of
IntArray, FloatArray etc. are made available. These expose
a get_npy_array method which returns a numpy array which
internally uses the same C data buffer. Our arrays may be resized
and are up to 4 times faster than numpy arrays when used from
Cython.

The ParticleArray module uses these arrays extensively and
allows us to represent collections of particles in the framework. It
is also implemented in Cython to achieve maximum performance.
Each ParticleArray maintains a collection of particle properties
and uses the arrays to store this data. Since the arrays allow the
developer to manipulate them as numpy arrays, it becomes easy to
perform calculations on the particle properties, if required.

One of the central requirements of the SPH is to find the
nearest neighbors of a given particle. This is necessary in order
to calculate the influence of each particle on the others. We do
this using a nearest neighbor algorithm (Nearest Neighbor Particle
Search - NNPS) which bins the domain into a collection of fixed
size cells. Particles are organized into a dictionary keyed on a tuple
indicative of the location of the particle. The nearest neighbor
search is collectively performed by the CellManager class and
the nnps modules. Both are implemented in Cython.

SPH kernel

The SPH kernel consits of the sph module which contains classes
to perform the SPH summation (as given in the equations in the
introductory section) and also to represent particle interactions.
This includes a variety of kernels. These are implemented so as
to use the nnps and other modules discussed earlier. These are all
implemented in Cython for performance.

Solver framework

Finally, bringing all the underlying modules together is the Solver
framework. The framework is component based, and allows users
to write components, which are subclasses of SolverComponent,
with a standard interface set. The SolverComponent is the base
class for all classes that perform any operation on any of the
entities. Many abstractions required for a solver have been imple-
mented, and a user can inherit from various classes to implement
new formulations. The ComponentManager manages all the
SolverComponents used by the solver. It is also responsible for
the property requirements of each of the components involved
in a calculation. Thus, if an entity is operated by a component
that requires a particular property to be available, the manager
ensures that the entity is suitably set up. An Integrator class
handles the actual time integration. The Integrator is also a
SolverComponent. These are implemented in a combination of
Python and Cython.

Solvers

New solvers are written using the various abstractions devel-
oped in the solver framework and all of them derive from the
SolverBase class. Serial and parallel solvers are written using the
functionality made available in the solver framework.

Parallelization

In SPH simulations, particles simply influence other particles in
a small neighborhood around them. Thus, in order to perform a
parallel simulation one needs to:

• partition the particles among different pro-
cessors, and

• share neighboring particle information between
some of the processors.

For an SPH simulation, this does require a reasonable amount
of communication overhead since the particles are moving and
the neighbor information keeps changing. In addition to this, we
would like the load on the processors to be reasonably balanced.
This is quite challenging.

Our objective was to maintain an outline similar to the serial
code for setting up simulations that run in parallel. For paralleliza-
tion of the framework, ideally only the CellManager needs to be
aware of the parallelism. The components in the solver framework
simply operate on particle data that they are presented with. This
is achievable to a good extent, except when a component requires
global data, in which case the serial component may need to
subclassed and a parallel version written, which collects the global
data before executing the serial version code. A good example for
this is when a component needs to know the maximum speed of
sound in the entire domain in order to limit the time-step say.

The pseudo-code of a typical parallel simulation is the same as
the serial example given earlier with just one change to the solver
as below:

solver = ParallelFSFSolver(
time_step=0.0001,
total_simulation_time=10.,
kernel=CubicSpline2D())

# Code to load particles in proc with
# rank 0.

In the above pseudo-code, the only thing that changes is the
fact that we instantiate a parallel solver rather than a serial one.
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Fig. 3: The parallel solvers simply use a ParallelCellManager instead
of a CellManager.

We also ensure that the particles are all loaded only on the
first processor. The ParallelCellManager manages the parallel
neighbor information. It also performs automatic load-balancing
by distributing the particles to different processors on demand
based on the number of particles in each processor.

The full details of the parallelization are beyond the scope of
this article but we provide a brief outline of the general approach.
More details can be obtained from [Kaushik09].

The basic idea of the parallelization involves the following key
steps:

• Particles are organized into small cubical
Cells. Each cell manages a set of particles. Cells
are created and destroyed on demand depending
on where the particles are present.

• A region consists of a set of usually (but not
always) connected cells. Each region is managed
by one processor.

• The domain of particles is decomposed into cells
and regions and allocated to different processors.

• Cells are moved between processors in order to
balance the load.

In addition, the ParallelCellManager ensures that each pro-
cessor has all the necessary information such that an SPH compu-
tation may be performed on the the particles it manages.

Figure 3 outlines how the parallel and serial solvers are set
up internally. In both cases, solver components operate on cell
managers to obtain the nearest neighbors and get the particles, the
only difference being the ParallelCellManager, which manages
the load distribution and communication in the parallel case.

It is important to note that the basic ideas for the parallel
algorithm were implemented and tested in pure Python using
mpi4py. This was done in highly fragmented time and was possi-
ble only because of the convenience of both Python and mpi4py.
Mpi4py allows us to send Python objects to processors and this
allowed us to focus on the algorithm without worrying about
the details of MPI. The use of Python enabled rapid prototyping
and its libraries made it easy to visualize the results. In roughly

Fig. 4: Initial condition of a square block of water falling towards a
vessel with water.

Fig. 5: Square block of water after it strikes a vessel containing water
simulated with the SPH.

1500 lines we had implemented the core ideas, added support
for visualization, logging and command line options. The initial
design was subsequently refined and parts of it implemented in
Cython. Thus, the use of Python clearly allowed us to prototype
rapidly and yet obtain good performance with Cython.

Current status

Figures 4, 5 show the fluid at a particular instant when a square
block of water strikes a vessel filled with water. This is a two-
dimensional simulation.

Figure 6 shows a typical 3D dam-break problem being sim-
ulated with 8 processors. The fluid involved is water. The colors
indicate the processor on which the particles are located.

The current capabilities of PySPH include the following:

• Fully automatic, load balanced, parallel
framework.

• Fairly easy to script.
• Good performance.
• Relatively easy to extend.
• Solver for incompressible free surface flows.
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Fig. 6: 3D dam-break problem simulated on 8 processors with
particles colored as per processor ID indicating a load balanced
simulation.

Most importantly, we have a working framework and a rea-
sonable design which provides good performance. However, there
are several things we need to improve.

Future work

Our code is available in the form of a Mercurial repository on
Google’s project hosting site [PySPH]. However, the code is not
ready for a proper release yet because we would like to perform a
redesign of some parts of the solver framework. At the moment,
they are a little too complex. Once this is done we would like to
do the following:

• Improve the documentation.
• Reduce any compulsory dependence on VTK or

TVTK.
• Improve testing on various platforms.
• A full-fledged release.
• Support for gas-dynamics problems.
• Support for solid mechanics problems.

This would take a few more months and at which point we
will make a formal release.

Conclusions

We have provided a high-level description of the current capabili-
ties and architecture of PySPH. We have also mentioned what we
believe are the future directions we would like to take. We think
we have made an important beginning and believe that PySPH
will help enable open research and computing using particle-based
computing in the future. It is important to note that Python has
been centrally important in the development of PySPH by way
of its rapid prototyping capability and access to a plethora of
libraries.
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Abstract—In audio-visual automatic speech recognition (AVASR) both acoustic
and visual modalities of speech are used to identify what a person is saying.
In this paper we propose a basic AVASR system implemented using SciPy, an
open source Python library for scientific computing. AVASR research draws from
the fields of signal processing, computer vision and machine learning, all of
which are active fields of development in the SciPy community. As such, AVASR
researchers using SciPy are able to benefit from a wide range of tools available
in SciPy.

The performance of the system is tested using the Clemson University
audio-visual experiments (CUAVE) database. We find that visual speech infor-
mation is in itself not sufficient for automatic speech recognition. However, by
integrating visual and acoustic speech information we are able to obtain better
performance than what is possible with audio-only ASR.

Index Terms—speech recognition, machine learning, computer vision, signal
processing

Introduction

Motivated by the multi-modal manner humans perceive their envi-
ronment, research in Audio-Visual Automatic Speech Recognition
(AVASR) focuses on the integration of acoustic and visual speech
information with the purpose of improving accuracy and robust-
ness of speech recognition systems. AVASR is in general expected
to perform better than audio-only automatic speech recognition
(ASR), especially so in noisy environments as the visual channel
is not affected by acoustic noise.

Functional requirements for an AVASR system include acous-
tic and visual feature extraction, probabilistic model learning and
classification.

In this paper we propose a basic AVASR system implemented
using SciPy. In the proposed system mel-frequency cepstrum coef-
ficients (MFCCs) and active appearance model (AAM) parameters
are used as acoustic and visual features, respectively. Gaussian
mixture models are used to learn the distributions of the feature
vectors given a particular class such as a word or a phoneme.
We present two alternatives for learning the GMMs, expectation
maximization (EM) and variational Bayesian (VB) inference.

The performance of the system is tested using the CUAVE
database. The performance is evaluated by calculating the mis-
classification rate of the system on a separate test data data. We
find that visual speech information is in itself not sufficient for
automatic speech recognition. However, by integrating visual and
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acoustic speech we are able to obtain better performance than what
is possible with audio-only ASR.

Feature extraction

Acoustic speech

MFCCs are the standard acoustic features used in most modern
speech recognition systems. In [Dav80] MFCCs are shown ex-
perimentally to give better recognition accuracy than alternative
parametric representations.

MFCCs are calculated as the cosine transform of the logarithm
of the short-term energy spectrum of the signal expressed on
the mel-frequency scale. The result is a set of coefficients that
approximates the way the human auditory system perceives sound.

MFCCs may be used directly as acoustic features in an AVASR
system. In this case the dimensionality of the feature vectors
equals the number of MFCCs computed. Alternatively, velocity
and acceleration information may be included by appending first
and second order temporal differences to the feature vectors.

The total number of feature vectors obtained from an audio
sample depends on the duration and sample rate of the original
sample and the size of the window that is used in calculating the
cepstrum (a windowed Fourier transform).

MFCCs are available in the
scikits.talkbox.features.mfcc. The default number
of MFCCs computed is thirteen.

Example usage:
from scikits.audiolab import wavread
from scikits.talkbox.features import mfcc

# data: raw audio data
# fs: sample rate
data, fs = wavread('sample.wav')[:2]

# ceps: cepstral cofficients
ceps = mfcc(input, fs=fs)[0]

Figure 1 shows the original audio sample and mel-frequency
cepstrum for the word “zero”.

Visual speech

While acoustic speech features can be extracted through a se-
quence of transformations applied to the input audio signal,
extracting visual speech features is in general more complicated.
The visual information relevant to speech is mostly contained in
the motion of visible articulators such as lips, tongue and jaw. In
order to extract this information from a sequence of video frames
it is advantageous to track the complete motion of the face and
facial features.

AAM [Coo98] fitting is an efficient and robust method for
tracking the motion of deformable objects in a video sequence.
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Fig. 1: Acoustic feature extraction from an audio sample of the
word “zero”. Mel-frequency cepstrum (top) and original audio sample
(bottom).

AAMs model variations in shape and texture of the object of
interest. To build an AAM it is necessary to provide sample
images with the shape of the object annotated. Hence, in contrast
to MFCCs, AAMs require prior training before being used for
tracking and feature extraction.

The shape of an appearance model is given by a set of (x,y)
coordinates represented in the form of a column vector

s = (x1,y1,x2,y2, . . . ,xn,yn)
T. (1)

The coordinates are relative to the coordinate frame of the image.
Shape variations are restricted to a base shape s0 plus a linear

combination of a set of N shape vectors

s = s0 +
N

∑
i=1

pisi (2)

where pi are called the shape parameters of the AAM.
The base shape and shape vectors are normally generated by

applying principal component analysis (PCA) to a set of manually
annotated training images. The base shape s0 is the mean of the
object annotations in the training set, and the shape vectors are
N singular vectors corresponding to the N largest singular values
of the data matrix (constructed from the training shapes). Figure
2 shows an example of a base mesh and the first three shape
vectors corresponding to the three largest singular values of the
data matrix.

The appearance of an AAM is defined with respect to the base
shape s0. As with shape, appearance variation is restricted to a base
appearance plus a linear combination of M appearance vectors

A(x) = A0 +
M

∑
i=1

λiAi(x) ∀x ∈ s0. (3)

To generate an appearance model, the training images are first
shape-normalized by warping each image onto the base mesh
using a piecewise affine transformation. Recall that two sets of
three corresponding points are sufficient for determining an affine
transformation. The shape mesh vertices are first triangulated. The
collection of corresponding triangles in two shapes meshes then
defines a piecewise affine transformation between the two shapes.

Fig. 2: Triangulated base shape s0 (top left), and first three shape vec-
tors p1 (top right), p2 (bottom left) and p3 (bottom right) represented
by arrows superimposed onto the triangulated base shape.

Fig. 3: Mean appearance A0 (top left) and first three appearance
images A1 (top right), A2 (bottom left) and A3 (bottom right).

The pixel values within each triangle in the training shape s are
warped onto the corresponding triangle in the base shape s0 using
the affine transformation defined by the two triangles.

The appearance model is generated from the shape-normalized
images using PCA. Figure 3 shows the base appearance and the
first three appearance images.

Tracking of an appearance in a sequence of images is per-
formed by minimizing the difference between the base model
appearance, and the input image warped onto the coordinate frame
of the AAM. For a given image I we minimize

argmin
λλλ ,p

∑
x∈s0

[
A0(x)+

M

∑
i=1

λiAi(X)− I(W(x;p))

]2

(4)

where p = {p1, . . . , pN} and λλλ = {λ1, . . . ,λN}. For the rest of the
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discussion of AAMs we assume that the variable x takes on the
image coordinates contained within the base mesh s0 as in (4).

In (4) we are looking for the optimal alignment of the input
image, warped backwards onto the frame of the base appearance
A0(x).

For simplicity we will limit the discussion to shape variation
and ignore any variation in texture. The derivation for the case
including texture variation is available in [Mat03]. Consequently
(4) now reduces to

argmin
p

∑
x
[A0(x)− I(W(x;p))]2. (5)

Solving (5) for p is a non-linear optimization problem. This is the
case even if W(x;p) is linear in p since the pixel values I(x) are
in general nonlinear in x.

The quantity that is minimized in (5) is the same as in the
classic Lucas-Kanade image alignment algorithm [Luc81]. In the
Lukas-Kanade algorithm the problem is first reformulated as

argmin
∆p

∑
x
[A0(X)− I(W(x;p+∆p))]2. (6)

This equation differs from (5) in that we are now optimizing with
respect to ∆p while assuming p is known. Given an initial estimate
of p we update with the value of ∆p that minimizes (6) to give

pnew = p+∆p.

This will necessarily decrease the value of (5) for the new value
of p. Replacing p with the updated value for pnew, this procedure
is iterated until convergence at which point p yields the (local)
optimal shape parameters for the input image I.

To solve (6) Taylor expansion is used [Bak01] which gives

argmin
∆p

∑
x

[
A0(W(x;p))− I(W(x;p))−∇I

∂W
∂p

∆p
]2

(7)

where ∇I is the gradient of the input image and ∂W/∂p is the
Jacobian of the warp evaluated at p.

The optimal solution to (7) is found by setting the partial
derivative with respect to ∆p equal to zero which gives

2∑
x

[
∇I

∂W
∂p

]T [
A0(x)− I(W(x))−∇I

∂W
∂p

∆p
]
= 0. (8)

Solving for ∆p we get

∆p = H−1 ∑
x

[
∇I

∂W
∂p

]T

[A0(x)− I(W(x;p))] (9)

where H is the Gauss-Newton approximation to the Hessian
matrix given by

H = ∑
x

[
∇I

∂W
∂p

]T [
∇I

∂W
∂p

]
. (10)

For a motivation for the backwards warp and further details on
how to compute the piecewise linear affine warp and the Jacobian
see [Mat03].

A proper initialization of the shape parameters p is essential
for the first frame. For subsequent frames p may be initialized as
the optimal parameters from the previous frame.

The Lucas-Kanade algorithm is a Gauss-Newton gradient
descent algorithm. Gauss-Newton gradient descent is available in
scipy.optimize.fmin_ncg.

Example usage:

Fig. 4: AAM fitted to an image.

from scipy import empty
from scipy.optimize import fmin_ncg
from scikits.image.io import imread

# NOTE: The AAM module is currently under development
import aam

# Initialize AAM from visual speech training data
vs_aam = aam.AAM('./training_data/')

I = imread('face.jpg')

def error_image(p):
""" Compute error image given p """

# Piecewise linear warp the image onto
# the base AAM mesh
IW = vs_aam.pw_affine(I,p)

# Return error image
return aam.A0-IW

def gradient_descent_images(p):
""" Compute gradient descent images given p """
...
return gradIW_dWdP

def hessian(p):
""" Compute hessian matrix """"
...
return H

# Update p
p = fmin_ncg(f=error_image,

x0=p0,
fprime=gradient_descent_images,
fhess=hessian)

Figure 4 shows an AAM fitted to an input image. When tracking
motion in a video sequence an AAM is fitted to each frame using
the previous optimal fit as a starting point.

In [Bak01] the AAM fitting method described above is referred
to as “forwards-additive”.

As can be seen in Figure 2 the first two shape vectors
mainly correspond to the movement in the up-down and left-right
directions, respectively. As these components do not contain any
speech related information we can ignore the corresponding shape
parameters p1 and p2 when extracting visual speech features. The
remaining shape parameters, p3, . . . , pN , are used as visual features
in the AVASR system.
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Models for audio-visual speech recognition

Once acoustic and visual speech features have been extracted from
respective modalities, we learn probabilistic models for each of the
classes we need to discriminate between (e.g. words or phonemes).
The models are learned from manually labeled training data. We
require these models to generalize well; i.e. the models must be
able to correctly classify novel samples that was not present in the
training data.

Gaussian Mixture Models

Gaussian Mixture Models (GMMs) provide a powerful method for
modeling data distributions under the assumption that the data is
independent and identically distributed (i.i.d.). GMMs are defined
as a weighted sum of Gaussian probability distributions

p(x) =
K

∑
k=1

πkN (x|µµµk,ΣΣΣk) (11)

where πk is the weight, µµµk the mean, and ΣΣΣk the covariance matrix
of the kth mixture component.

Maximum likelihood

The log likelihood function of the GMM parameters πππ , µµµ and
ΣΣΣ given a set of D-dimensional observations X = {x1, . . . ,xN} is
given by

ln p(X|πππ,µµµ,ΣΣΣ) =
N

∑
n=1

ln

{
K

∑
k=1

πkN (xxxn|µµµk,ΣΣΣk)

}
. (12)

Note that the log likelihood is a function of the GMM parameters
πππ,µµµ and ΣΣΣ. In order to fit a GMM to the observed data we
maximize this likelihood with respect to the model parameters.

Expectation maximization

The Expectation Maximization (EM) algorithm [Bis07] is an effi-
cient iterative technique for optimizing the log likelihood function.
As its name suggests, EM is a two stage algorithm. The first (E or
expectation) step calculates the expectations for each data point
to belong to each of the mixture components. It is also often
expressed as the responsibility that the kth mixture component
takes for “explaining” the nth data point, and is given by

rnk =
πkN (xn|µµµk,ΣΣΣk)

∑K
k=1 πkN (xn|µµµk,ΣΣΣk)

. (13)

Note that this is a “soft” assignment where each data point is
assigned to a given mixture component with a certain probability.
Once the responsibilities are available the model parameters are
updated (“M” or “maximization‘” step). The quantities

Nk =
N

∑
n=1

rnk (14)

x̄k =
N

∑
n=1

rnkxn (15)

Sk =
N

∑
n=1

rnk(xn− x̄k)(xn− x̄k)
T (16)

are first calculated. Finally the model parameters are updated as

πnew
k =

Nk

N
(17)

µµµnew
k =

x̄k

Nk
(18)

ΣΣΣnew
k =

Sk

Nk
. (19)

−20 −15 −10 −5 0 5 10 15 20
p3

−15

−10

−5

0

5

10

15

20

25

p 4

Fig. 5: Visual speech GMM of the word “zero” learned using EM
algorithm on two-dimensional feature vectors.

The EM algorithm in general only converges to a local
optimum of the log likelihood function. Thus, the choice of
initial parameters is crucial. See [Bis07] for the derivation of the
equations.

GMM-EM is available in scikits.learn.em.
Example usage:

from numpy import loadtxt
from scikits.learn.em import GM, GMM, EM

# Data dimensionality
D = 8

# Number of Gaussian Mixture Components
K = 16

# Initialize Gaussian Mixture Model
gmm = GMM(GM(D,K))

# X is the feature data matrix

# Learn GMM
EM().train(X,gmm)

Figure 5 shows a visual speech GMM learned using EM. For illus-
trative purposes only the first two speech-related shape parameters
p3 and p4 are used. The shape parameters are obtained by fitting
an AAM to each frame of a video of a speaker saying the word
“zero”. The crosses represent the training data, the circles are the
means of the Gaussians and the ellipses are the standard deviation
contours (scaled by the inverse of the weight of the corresponding
mixture component for visualization purposes). The video frame
rate is 30 frames per second (FPS) and the number of mixture
components used is 16.

Note that in practice more than two shape parameters are used,
which usually also requires an increase in the number of mixture
components necessary to sufficiently capture the distribution of
the data.

Variational Bayes

An important question that we have not yet answered is how to
choose the number of mixture components. Too many components
lead to redundancy in the number of computations, while too
few may not be sufficient to represent the structure of the data.
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Additionally, too many components easily lead to overfitting.
Overfitting occurs when the complexity of the model is not in
proportion to the amount of available training data. In this case
the data is not sufficient for accurately estimating the GMM
parameters.

The maximum likelihood criteria is unsuitable to estimate the
number of mixture components since it increases monotonically
with the number of mixture components. Variational Bayesian
(VB) inference is an alternative learning method that is less
sensitive than ML-EM to over-fitting and singular solutions while
at the same time leads to automatic model complexity selection
[Bis07].

As it simplifies calculation we work with the precision matrix
ΛΛΛ = ΣΣΣ−1 instead of the covariance matrix.

VB differs from EM in that the parameters are modeled as
random variables. Suitable conjugate distributions are the Dirichlet
distribution

p(πππ) =C(ααα0)
K

∏
k=1

πα0−1
k (20)

for the mixture component weights, and the Gaussian-Wishart
distribution

p(µµµ,ΛΛΛ) =
K

∏
k=1

N (µµµk|mmm0,β0Λk)W (Λk|W0,ννν0) (21)

for the means and precisions of the mixture components.
In the VB framework, learning the GMM is performed by

finding the posterior distribution over the model parameters given
the observed data. This posterior distribution can be found using
VB inference as described in [Bis07].

VB is an iterative algorithm with steps analogous to the EM
algorithm. Responsibilities are calculated as

rnk =
ρnk

∑K
j=1 ρn j

. (22)

The quantities ρnk are given in the log domain by

lnρnk = E[lnπk]+
1
2
E[ln |ΛΛΛ|]− D

2
ln2π

−1
2
Eµµµk ,ΛΛΛk [(xn−µµµk)

TΛΛΛk(xn−µµµk)] (23)

where

Eµµµ,ΛΛΛ[(xn−µµµk)
TΛΛΛk(xn−µµµk)] = Dβ−1

k

+νk(xn−mk)
TWk(xn−mk) (24)

and

ln π̃k = E[lnπk] = ψ(αk)−ψ(α̂k) (25)

ln Λ̃k = E[ln |ΛΛΛk|] =
D

∑
i=1

ψ
(

νk +1− i
2

)

+D ln2+ ln |Wk|. (26)

Here α̂ = ∑k αk and ψ is the derivative of the logarithm of the
gamma function, also called the digamma function. The digamma
function is available in SciPy as scipy.special.psi.

The analogous M-step is performed using a set of equations
similar to those found in EM. First the quantities

Nk = ∑
n

rnk (27)

x̄k =
1

Nk
∑
n

rnkxn (28)

Sk =
1

Nk
∑
n

rnk(xn− x̄k)(xn− x̄k)
T (29)
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Fig. 6: Visual speech GMM of the word “zero” learned using the VB
algorithm on two-dimensional feature vectors.

are calculated. The posterior model parameters are then updated
as

αnew
k = α0 +Nk (30)

β new
k = β0 +Nk (31)

mnew
k =

1
βk

(β0m0 +Nkx̄k) (32)

Wnew
k = W0 +NkSk +

β0Nk

β0 +Nk
(x̄−m0)(x̄−m0)

T (33)

νnew
k = ν0 +Nk. (34)

Figure 6 shows a GMM learned using VB on the same data
as in Figure 5. The initial number of components is again 16.
Compared to Figure 5 we observe that VB results in a much
sparser model while still capturing the structure of the data. In
fact, the redundant components have all converged to their prior
distributions and have been assigned the weight of 0 indicating
that these components do not contribute towards “explaining” the
data and can be pruned from the model. We also observe that
outliers in the data (which is likely to be noise) is to a large extent
ignored.

We have recently developed a Python VB class for
scikits.learn. The class conforms to a similar interface as
the EM class and will soon be available in the development version
of scikits.learn.

Experimental results

A basic AVASR system was implemented using SciPy as outlined
in the previous sections.

In order to test the system we use the CUAVE database
[Pat02]. The CUAVE database consists of 36 speakers, 19 male
and 17 female, uttering isolated and continuous digits. Video of the
speakers is recorded in frontal, profile and while moving. We only
use the portion of the database where the speakers are stationary
and facing the camera while uttering isolated digits. We use data
from 24 speakers for training and the remaining 12 for testing.
Hence, data from the speakers in the test data are not used for
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Fig. 7: Frames from the CUAVE audio-visual data corpus.

training. This allows us to evaluate how well the models generalize
to speakers other than than those used for training. A sample frame
from each speaker in the dataset is shown in Figure 7.

In the experiment we build an individual AAM for each
speaker by manually annotating every 50th frame. The visual
features are then extracted by fitting the AAM to each frame in
the video of the speaker.

Training the speech recognition system consists of learning
acoustic and visual GMMs for each digit using samples from the
training data. Learning is performed using VB inference. Testing is
performed by classifying the test data. To evaluate the performance
of the system we use the misclassification rate, i.e. the number of
wrongly classified samples divided by the total number of samples.

We train acoustic and visual GMMs separately for each digit.
The probability distributions (see (11)) are denoted by p(xA) and
p(xV ) for the acoustic and visual components, respectively. The
probability of a sample (xA,xV ) belonging to digit class c is then
given by pA(xA|c) and pV (xV |c).

As we wish to test the effect of noise in the audio channel,
acoustic noise ranging from -5dB to 25dB signal-to-noise ratio
(SNR) in steps of 5 dB is added to the test data. We use additive
white Gaussian noise with zero mean and variance

σ2
η = 10

−SNR
10 . (35)

The acoustic and visual GMMs are combined into a single clas-
sifier by exponentially weighting each GMM in proportion to an
estimate of the information content in each stream. As the result
no longer represent probabilities we use the term score. For a given
digit we get the combined audio-visual model

Score(xAV |c) = p(xA|c)λA p(xV |c)λV (36)

where

0≤ λA ≤ 1 (37)

0≤ λV ≤ 1 (38)

and

λA +λV = 1. (39)

Note that (36) is equivalent to a linear combination of log
likelihoods.
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Fig. 8: Misclassification rate.

The stream exponents cannot be determined through a maxi-
mum likelihood estimation, as this will always result in a solution
with the modality having the largest probability being assigned a
weight of 1 and the other 0. Instead, we discriminatively estimate
the stream exponents. As the number of classes in our experiment
is relatively small we perform this optimization using a brute-force
grid search, directly minimizing the misclassification rate. Due to
the constraint (39) it is only necessary to vary λA from 0 to 1.
The corresponding λV will then be given by 1−λA. We vary λA
from 0 to 1 in steps of 0.1. The set of parameters λA and λV that
results in the lowest misclassification rate are chosen as optimum
parameters.

In the experiment we perform classification for each of the
SNR levels using (36) and calculate the average misclassifica-
tion rate. We compare audio-only, visual-only, and audio-visual
classifiers. For the audio-only classifier the stream weights are
λA = 1 and λV = 0 and for visual-only λA = 0 and λV = 1. For the
audio-visual classifier the discriminatively trained stream weights
are used. Figure 8 shows average misclassification rate for the
different models and noise levels.

From the results we observe that the visual channel does
contain information relevant to speech, but that visual speech is not
in itself sufficient for speech recognition. However, by combining
acoustic and visual speech we are able to increase recognition per-
formance above that of audio-only speech recognition, especially
the presence of acoustic noise.

Conclusion

In this paper we propose a basic AVASR system that uses
MFCCs as acoustic features, AAM parameters as visual features,
and GMMs for modeling the distribution of audio-visual speech
feature data. We present the EM and VB algorithms as two alterna-
tives for learning the audio-visual speech GMMs and demonstrate
how VB is less affected than EM by overfitting while leading to
automatic model complexity selection.

The AVASR system is implemented in Python using SciPy
and tested using the CUAVE database. Based on the results we
conclude that the visual channel does contain relevant speech
information, but is not in itself sufficient for speech recognition.
However, by combining features of visual speech with audio
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features, we find that AVASR gives better performance than audio-
only speech recognition, especially in noisy environments.
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Abstract—Statsmodels is a library for statistical and econometric analysis in
Python. This paper discusses the current relationship between statistics and
Python and open source more generally, outlining how the statsmodels package
fills a gap in this relationship. An overview of statsmodels is provided, including
a discussion of the overarching design and philosophy, what can be found in the
package, and some usage examples. The paper concludes with a look at what
the future holds.

Index Terms—statistics, econometrics, R

Introduction

Statsmodels (http://statsmodels.sourceforge.net/) is a library for
statistical and econometric analysis in Python1. Its intended au-
dience is both theoretical and applied statisticians and econo-
metricians as well as Python users and developers across dis-
ciplines who use statistical models. Users of R, Stata, SAS,
SPSS, NLOGIT, GAUSS or MATLAB for statistics, financial
econometrics, or econometrics who would rather work in Python
for all its benefits may find statsmodels a useful addition to
their toolbox. This paper introduces statsmodels and is aimed
at the researcher who has some prior experience with Python,
NumPy/SciPy [SciPy]2.

On a historical note, statsmodels was started by Jonathan
Taylor, a statistician now at Stanford, as part of SciPy under the
name models. Eventually, models was removed from SciPy and
became part of the NIPY neuroimaging project [NIPY] in order to
mature. Improving the models code was later accepted as a SciPy-
focused project for the Google Summer of Code 2009 and again
in 2010. It is currently distributed as a SciKit, or add-on package
for SciPy.

The current main developers of statsmodels are trained as
economists with a background in econometrics. As such, much
of the development over the last year has focused on econometric
applications. However, the design of statsmodels follows a con-
sistent pattern to make it user-friendly and easily extensible by
developers from any discipline. New contributions and ongoing
work are making the code more useful for common statistical
modeling needs. We hope that continued efforts will result in a
package useful for all types of statistical modeling.
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The State of the Union: Open Source and Statistics

Currently R is the open source language of choice for applied
statistics. In applied econometrics, proprietary software pacakges
such as Gauss, MATLAB, Stata, SAS, and NLOGIT remain the
most popular and are taught in most graduate programs. However,
there is a growing call for the use of open source software in eco-
nomic research due in large part to its reliability, transparency, and
the paradigm it offers for workflow and innovation [YaltaYalta],
[YaltaLucchetti]. In particular R is increasing in popularity as
evidenced by the recent textbooks by Cryer and Chan (2008),
Kleiber and Zeileis (2008), and Vinod (2008). Gretl is another
notable open source alternative for econometrics [Gretl].

However, there are those who would like to see Python
become the language of choice for economic research and applied
econometrics. Choirat and Seri’s "Econometrics with Python" is
the first publication of which we are aware that openly advocates
the use of Python as the language of choice for econometri-
cians [ChoiratSeri]. Bilina and Lawford express similar views
[BilinaLawford]. Further, John Stachurski has written a Python-
based textbook, Economic Dynamics: Theory and Computation
[Stachurski], and Alan Isaac’s "Simulating Evolutionary Games:
a Python-Based Introduction" showcases Python’s abilities for
implementing agent-based economic models [Isaac].

In depth arguments for the choice of Python are beyond
the scope of this paper; however, Python is well known for its
simple syntax, gentle learning curve, and large standard library.
Beyond this, it is a language for much more than statistics and
can be the one toolbox for researchers across discplines. A few
examples of statistics-related packages that are outside of the
main numpy/scipy code are packages for Markov Chain Monte
Carlo and Bayesian statistics [PyMC], machine learning and mul-
tivariate pattern analysis [scikits-learn], [PyMVPA], neuroimaging
[NIPY] and neuroscience time series [NITIME], visualization
[Matplotlib], [Enthought], and efficient handling of large datasets
[PyTables].

We hope that statsmodels too can become an integral a part
of the Scientific Python community and serve as a step in the
direction of Python becoming a serious open source language
for statistics. Towards this end, others are working on an R-like
formula framework to help users specify and manipulate models
[charlton], and packages like pandas [pandas] (discussed in these
proceedings) and larry [larry] are providing flexible data structures
and routines for data analysis currently lacking in NumPy.



STATSMODELS: ECONOMETRIC AND STATISTICAL MODELING WITH PYTHON 93

Statsmodels: Development and Design

It should not be the case that different conclusions can be had
from the same data depending on the choice of statistical software
or its version; however, this is precisely what Altman and Mac-
Donald (2003) find [AltmanMcDonald]. Given the importance of
numerical accuracy and replicablity of research and the multitude
of software choices for statistical analysis, the development of
statsmodels follows a process to help ensure accurate and trans-
parent results. This process is known as Test-Driven Development
(TDD). In its strictest form, TDD means that tests are written
before the functionality which it is supposed to test. While we do
not often take the strict approach, there are several layers in our
development process that ensure that our results are correct versus
existing software (often R, SAS, or Stata). Any deviations from
results in other software are noted in the test suite.

First, we employ a distributed version control system in which
each developer has his own copy of the code, a branch, to make
changes outside of the main codebase. Once a model is specified,
early changes, such as working out the best API or bug hunting,
take place in the main branch’s, or trunk’s, sandbox directory so
that they can be tried out by users and developers who follow
the trunk code. Tests are then written with results taken from
another statistical package or Monte Carlo simulation when it is
not possible to obtain results from elsewhere. After the tests are
written, the developer asks for a code review on our mailing list
(http://groups.google.ca/group/pystatsmodels). When all is settled,
the code becomes part of the main codebase. Periodically, we re-
lease the software in the trunk for those who just want to download
a tarball or install from PyPI, using setuptools’ easy_install. This
workflow, while not foolproof, helps make sure our results are
and remain correct. If they are not, we are able to know why and
document discrepancies resulting in the utmost transparency for
end users. And if all else fails, looking at the source code is trivial
to do (and encouraged!).

The design of the package itself is straightforward. The main
idea behind the design is that a model is itself an object to be used
for data reduction. Data can be both endogenous and exogenous
to a model, and these constituent parts are related to each other
through statistical theory. This statistical relationship is usually
justified by an appeal to discipline-specific theory. Note that in
place of endogenous and exogenous, one could substitute the
terms dependent and independent variables, regressand and re-
gressors, response and explanatory variables, etc., respectively, as
you prefer. We maintain the endogenous-exogenous terminology
throughout the package, however.

With this in mind, we have a base class, Model, that is intended
to be a template for parametric models. It has two main attributes
endog and exog3 and placeholders for fit and predict methods.
LikelihoodModel is a subclass of Model that is the workhorse for
the regression models. All fit methods are expected to return some
results class. Towards this end, we also have a base class Results
and LikelihoodModelResults which inherits from Results. The
result objects have attributes and methods that contain common
post-estimation results and statistical tests. Further, these are
computed lazily, meaning that they are not computed until the
user asks for them so that those who are only interested in, say,
the fitted parameters are not slowed by computation of extraneous
results. Every effort is made to ensure that the constructors of
each sublcass of Model, the call signatures of its methods, and the
post-estimation results are consistent throughout the package.

Package Overview

Currently, we have five modules in the main codebase that contain
statistical models. These are regression (least squares regression
models), glm (generalized linear models), rlm (robust linear mod-
els), discretemod (discrete choice models), and contrast (contrast
analysis). Regression contains generalized least squares (GLS),
weighted least squares (WLS), and ordinary least squares (OLS).
Glm contains generalized linear models with support for six
common exponential family distributions and at least ten standard
link functions. Rlm supports M-estimator type robust linear models
with support for eight norms. Discretemod includes several dis-
crete choice models such as the Logit, Probit, Multinomial Logit
(MNLogit), and Poisson within a maximum likelihood framework.
Contrast contains helper functions for working with linear con-
trasts. There are also tests for heteroskedasticity, autocorrelation,
and a framework for testing hypotheses about linear combinations
of the coefficients.

In addition to the models and the related post-estimation
results and tests, statsmodels includes a number of convenience
classes and functions to help with tasks related to statistical anal-
ysis. These include functions for conveniently viewing descriptive
statistics, a class for creating publication quality tables, and
functions for translating foreign datasets, currently only Stata’s
binary .dta format, to numpy arrays.

The last main part of the package is the datasets. There are
currently fourteen datasets that are either part of the public domain
or used with express consent of the original authors. These datasets
follow a common pattern for ease of use, and it is trivial to add
additional ones. The datasets are used in our test suite and in
examples as illustrated below.

Examples

All of the following examples use the datasets included in
statsmodels. The first example is a basic use case of the OLS
model class to get a feel for the rest of the package, using Long-
ley’s 1967 dataset [Longley] on the US macro economy. Note that
the Longley data is known to be highly collinear (it has a condition
number of 456,037), and as such it is used to test accuracy of
least squares routines than to examine any economic theory. First
we need to import the package. The suggested convention for
importing statsmodels is

>>> import scikits.statsmodels as sm

Numpy is assumed to be imported as:

>>> import numpy as np

Then we load the example dataset.

>>> longley = sm.datasets.longley

The datasets have several attributes, such as descriptives and
copyright notices, that may be of interest; however, we will just
load the data.

>>> data = longley.load()

Many of the Dataset objects have two attributes that are helpful
for tests and examples -endog and exog- though the whole dataset
is available. We will use them to construct an OLS model instance.
The constructor for OLS is

def __init__(self, endog, exog)
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It is currently assumed that the user has cleaned the dataset and
that a constant is included, so we first add a constant and then
instantiate the model.

>>> data.exog = sm.add_constant(data.exog)
>>> longley_model = sm.OLS(data.endog, data.exog)

We are now ready to fit the model, which returns a RegressionRe-
sults class.

>>> longley_res = longley_model.fit()
>>> type(longley_res)
<class 'sm.regression.RegressionResults'>

By default, the least squares models use the pseudoinverse to
compute the parameters that solve the objective function.

>>> params = np.dot(np.linalg.pinv(data.exog),
data.endog)

The instance longley_res has several attributes and methods of
interest. The first is the fitted values, commonly β in the general
linear model, Y = Xβ , which is called params in statsmodels.

>>> longley_res.params
array([ 1.50618723e+01, -3.58191793e-02,

-2.02022980e+00, -1.03322687e+00,
-5.11041057e-02, 1.82915146e+03,
-3.48225863e+06])

Also available are

>>> [_ for _ in dir(longley_res) if not
_.startswith('_')]

['HC0_se', 'HC1_se', 'HC2_se', 'HC3_se', 'aic',
'bic', 'bse', 'centered_tss', 'conf_int',
'cov_params', 'df_model', 'df_resid', 'ess',
'f_pvalue', 'f_test', 'fittedvalues', 'fvalue',
'initialize', 'llf', 'model', 'mse_model',
'mse_resid', 'mse_total', 'nobs', 'norm_resid',
'normalized_cov_params', 'params', 'pvalues',
'resid', 'rsquared', 'rsquared_adj', 'scale', 'ssr',
'summary', 't', 't_test', 'uncentered_tss', 'wresid']

All of the attributes and methods are well-documented in the
docstring and in our online documentation. See, for instance,
help(longley_res). Note as well that all results objects carry an
attribute model that is a reference to the original model instance
that was fit whether or not it is instantiated before fitting.

Our second example borrows from Jeff Gill’s Generalized
Linear Models: A Unified Approach [Gill]. We fit a Generalized
Linear Model where the endogenous variable has a binomial
distribution, since the syntax differs somewhat from the other
models. Gill’s data comes from the 1998 STAR program in Cali-
fornia, assessing education policy and outcomes. The endogenous
variable here has two columns. The first specifies the number of
students above the national median score for the math section
of the test per school district. The second column specifies the
number of students below the median. That is, endog is (number
of sucesses, number of failures). The explanatory variables for
each district are measures such as the percentage of low income
families, the percentage of minority students and teachers, the
median teacher salary, the mean years of teacher experience, per-
pupil expenditures, the pupil -teacher ratio, the percentage of
student taking college credit courses, the percentage of charter
schools, the percent of schools open year round, and various
interaction terms. The model can be fit as follows

>>> data = sm.datasets.star98.load()
>>> data.exog = sm.add_constant(data.exog)
>>> glm_bin = sm.GLM(data.endog, data.exog,

family=sm.families.Binomial())

Note that you must specify the distribution family of
the endogenous variable. The available families in scik-
its.statsmodels.families are Binomial, Gamma, Gaussian, In-
verseGaussian, NegativeBinomial, and Poisson.

The above examples also uses the default canonical logit link
for the Binomial family, though to be explicit we could do the
following

>>> links = sm.families.links
>>> glm_bin = sm.GLM(data.endog, data.exog,

family=sm.families.Binomial(link=
links.logit))

We fit the model using iteratively reweighted least squares, but we
must first specify the number of trials for the endogenous variable
for the Binomial model with the endogenous variable given as
(success, failure).

>>> trials = data.endog.sum(axis=1)
>>> bin_results = glm_bin.fit(data_weights=trials)
>>> bin_results.params
array([ -1.68150366e-02, 9.92547661e-03,

-1.87242148e-02, -1.42385609e-02,
2.54487173e-01, 2.40693664e-01,
8.04086739e-02, -1.95216050e+00,
-3.34086475e-01, -1.69022168e-01,
4.91670212e-03, -3.57996435e-03,
-1.40765648e-02, -4.00499176e-03,
-3.90639579e-03, 9.17143006e-02,
4.89898381e-02, 8.04073890e-03,
2.22009503e-04, -2.24924861e-03,
2.95887793e+00])

Since we have fit a GLM with interactions, we might be interested
in comparing interquartile differences of the response between
groups. For instance, the interquartile difference between the
percentage of low income households per school district while
holding the other variables constant at their mean is

>>> means = data.exog.mean(axis=0) # overall means
>>> means25 = means.copy() # copy means
>>> means75 = means.copy()

We can now replace the first column, the percentage of low income
households, with the value at the first quartile using scipy.stats and
likewise for the 75th percentile.

>>> from scipy.stats import scoreatpercentile as sap
>>> means25[0] = sap(data.exog[:,0], 25)
>>> means75[0] = sap(data.exog[:,0], 75)

And compute the fitted values, which are the inverse of the link
function at the linear predicted values.

>>> lin_resp25 = glm_bin.predict(means25)
>>> lin_resp75 = glm_bin.predict(means75)

Therefore the percentage difference in scores on the standardized
math tests for school districts in the 75th percentile of low income
households versus the 25th percentile is

>>> print "%4.2f percent" % ((lin_resp75-
lin_resp25)*100)

-11.88 percent

The next example concerns the testing of joint hypotheses on
coefficients and is inspired by a similar example in Bill Greene’s
Econometric Analysis [Greene]. Consider a simple static invest-
ment function for a macro economy

ln It = β1 +β2 lnYt +β3it +β4∆pt +β5t + εt (1)

In this example, (log) investment, It is a function of the interest
rate, it , inflation, ∆pt , (log) real GDP, Yt , and possibly follows a
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linear time trend, t. Economic theory suggests that the following
model may instead be correct

ln It = β1 + lnYt +β3 (it −∆pt)+ εt (2)

In terms of the (1) this implies that β3 +β4 = 0, β2 = 1, and β5 =
0. This can be implemented in statsmodels using the macrodata
dataset. Assume that endog and exog are given as in (1)

>>> inv_model = sm.OLS(endog, exog).fit()

Now we need to make linear restrictions in the form of Rβ = q

>>> R = [[0,1,0,0,0],[0,0,1,1,0],[0,0,0,0,1]]
>>> q = [1,0,0]

Rβ = q implies the hypotheses outlined above. We can test the
joint hypothesis using an F test, which returns a ContrastResults
class

>>> Ftest = inv_model.f_test(R,q)
>>> print Ftest
<F test: F=array([[ 194.4428894]]),
p=[[ 1.27044954e-58]], df_denom=197, df_num=3>

Assuming that we have a correctly specified model, given the high
value of the F statistic, the probability that our joint null hypothesis
is true is essentially zero.

As a final example we will demonstrate how the SimpleTable
class can be used to generate tables. SimpleTable is also currently
used to generate our regression results summary. Continuing the
example above, one could do

>>> print inv_model.summary(yname="lninv",
xname=["const","lnY","i","dP","t"])

To build a table, we could do:

>>> gdpmean = data.data['realgdp'].mean()
>>> invmean = data.data['realinv'].mean()
>>> gdpstd = data.data['realgdp'].std()
>>> invstd = data.data['realinv'].std()
>>> mydata = [[gdpmean, gdpstd],[invmean,

invstd]]
>>> myheaders = ["Mean", "Std Dev."]
>>> mystubs = ["Real GDP", "Real Investment"]
>>> tbl = sm.iolib.SimpleTable(mydata,

myheaders, mystubs, title =
"US Macro Data", data_fmts=['%4.2f'])

>>> print tbl
US Macro Data

================================
Mean Std Dev.

--------------------------------
Real GDP 7221.17 3207.03
Real Investment 1012.86 583.66
--------------------------------

LaTeX output can be generated with something like

>>> fh = open('./tmp.tex', 'w')
>>> fh.write(tbl.as_latex_tabular())
>>> fh.close()

While not all of the functionality of statsmodels is covered in
the above, we hope it offers a good overview of the basic usage
from model to model. Anything not touched on is available in our
documentation and in the examples directory of the package.

Conclusion and Outlook

Statsmodels is very much still a work in progress, and perhaps
the most exciting part of the project is what is to come. We
currently have a good deal of code in our sandbox that is being
cleaned up, tested, and pushed into the main codebase as part

of the Google Summer of Code 2010. This includes models for
time-series analysis, kernel density estimators and nonparametric
regression, panel or longitudinal data models, systems of equation
models, and information theory and maximum entropy models.

We hope that the above discussion gives some idea of the
appoach taken by the project and provides a good overview
of what is currently offered. We invite feedback, discussion, or
contributions at any level. If you would like to get involved,
please join us on our mailing list available at http://groups.google.
com/group/pystatsmodels or on the scipy-user list. If you would
like to follow along with the latest development, the project blog
is http://scipystats.blogspots.com and look for release announce-
ments on the scipy-user list.

All in all, we believe that the future for Python and statistics
looks bright.
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