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Abstract—In this work we discuss gpustats, a new Python library for assist-
ing in "big data" statistical computing applications, particularly Monte Carlo-
based inference algorithms. The library provides a general code generation /
metaprogramming framework for easily implementing discrete and continuous
probability density functions and random variable samplers. These functions can
be utilized to achieve more than 100x speedup over their CPU equivalents. We
demonstrate their use in an Bayesian MCMC application and discuss avenues
for future work.

Index Terms—GPU, CUDA, OpenCL, Python, statistical inference, statistics,
metaprogramming, sampling, Markov Chain Monte Carlo (MCMC), PyMC, big
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Introduction

Due to the high theoretical computational power and low cost
of graphical processing units (GPUs), researchers and scientists
in a wide variety of fields have become interested in applying
them within their problem domains. A major catalyst for making
GPUs widely accessible was the development of the general
purpose GPU computing frameworks, [CUDA] and [OpenCL],
which enable the user to implement general numerical algorithms
in a simple extension of the C language to run on the GPU. In
this paper, we will restrict our technical discussion to the CUDA
architecture for NVIDIA cards, while later commenting on CUDA
versus OpenCL.

As CUDA and OpenCL provide a C API for GPU program-
ming, significant portions of the development process can be quite
low level and require large amounts of boilerplate code. To address
this problem, [PyCUDA] and [PyOpenCL] provide a high-level
Python interface to the APIs, while also streamlining the process
of writing and testing new GPU functions, or kernels. PyCUDA
and PyOpenCL compile GPU kernels on the fly and upload them
to the card; this eliminates the need to recompile a C executable
with each code iteration. The result is a much more rapid and user-
friendly GPU development experience, as the libraries take care of
much of the boilerplate code for interacting with the GPU. They
also provide seamless integration with [NumPy], which allows
GPU functionality to integrate easily within a larger NumPy-based
computing application. And, since code is compiled on the fly,
it is relatively straightforward to implement metaprogramming
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approaches to dynamically generate customized GPU kernels
within a Python program.

In this paper, we discuss some of the challenges of GPU
computing and how GPUs can be applied to statistical inference
applications. We further show how PyCUDA and PyOpenCL
are ideal for implementing certain kinds of statistical computing
functions on the GPU.

Development Challenges in GPU Computing

While a CPU may have 4 or 8 cores, a latest generation GPU may
have 256, 512, or even more computational cores. However, the
GPU memory architecture is highly specialized to so-called single
instruction multiple data (SIMD) problems. This generally limits
the usefulness of GPUs to highly parallelizable data processing
applications. The developer writes a function, known as a kernel,
to process a unit of data. The kernel function is then executed once
for each unit or chunk of data.

The GPU has a large single global memory store (typically
512MB to 4GB) with which data sets can be transferred to and
from the CPU memory space. However, each group, or block, of
threads are assigned a small piece (typically 16K to 64K) of ultra
low-latency shared cache memory which is orders of magnitude
faster than the global memory. Therefore, the main challenge for
the developer, outside of writing the kernel function, is structuring
the computation to optimally utilize each thread block’s shared
memory and minimizing reads from and writes to the global
memory. Careful coordination of the threads is required to transfer
memory efficiently from global to shared. We omit the low-level
details of this process and instead refer the interested reader to
the CUDA API guide ([NvidiaGuide]). See Figure 1 for a rough
diagram of the computing architecture.

As a larger computation is divided up into a grid of thread
blocks, a typical CUDA kernel takes the following structure:

• Coordinate threads within a block to transfer relevant data
for block from global to shared memory

• Perform computation using (fast) shared memory
• Coordinate threads to transfer results back into global

memory

Computational Challenges in Likelihood-based Statistical In-
ference

In most standard and Bayesian statistical models, a probability
distribution (or family of distributions) is assumed for each real-
ization of the data. For example, the errors (residuals) in a linear
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Fig. 1: Mock-up of GPU computing architecture

regression problem are assumed to be normally distributed with
mean 0 and some variance σ2. In a standard statistical inference
problem given a set of distributional assumptions, the task is to
estimate the parameters of those distributions. Under this setup,
we can write down the joint likelihood for the data in mathematical
terms

p(x1, . . . ,xn|Θ) = Π
n
i=1 p(xi|Θ), (1)

where Θ represents the unknown parameters of the model, and
p(xi|Θ) is the probability density for observation xi. This repre-
sentation assumes that the data are independent and identically
distributed. For example, we may wish to estimate the mean µ

and variance σ2 of a normally distributed population, in which
case Θ = (µ,σ2) and

p(xi|µ,σ2) =
1√

2πσ2
e−(xi−µ)2/2σ2

(2)

In many statistical inference algorithms, the "goodness of fit" of
the parameters Θ is evaluated based on the full data likelihood
1. It is common to use the logged likelihood function as 1
decomposes into a sum of log densities and this also reduces
numerical precision problems.

Many numerical algorithms for fitting these likelihood-based
models, especially Monte Carlo-based, involve evaluating the log-
likelihood function over thousands of iterations. Thus as the size
of the observed data grows, computational expense grows as least
linearly in the number of data points. As above, if the data are
assumed to be independently generated, the quantity log p(xi|Θ)
for each observation xi can be evaluated in parallel then summed
to compute the full log-likelihood. This becomes a very natural
setting for GPUs, and it is quite easy for GPUs to perform even
better than large CPU clusters because of the large number of
computing cores and very low memory latency. Suchard et al.
studied these advantages in the Bayesian mixture model setting
and found very promising results (100x speedup) on graphics
cards that are now 2 years old ([JCGS]).

Another source of significant computation in statistical appli-
cations that we address is that of generating draws from random
variables. In many algorithms (e.g. Bayesian Markov Chain Monte
Carlo methods), large data sets may require generating thousands
or millions of random variables from various probability distribu-
tions at each iteration of the algorithm.

Challenges of GPU Computing in Statistical Inference

As mentioned above, a CUDA or OpenCL programmer must be
very mindful of the memory architecture of the GPU. There are
multiple memory management issues to address, i.e. in CUDA
parlance

• Coalescing transactions between global and shared mem-
ory; this is, coordinating groups of typically 16 to 32
threads to copy a contiguous chunk of 64 or 128 bytes
in a single transaction

• Avoiding shared memory bank conflicts, i.e. threads com-
peting for read/write access to a shared memory address

To make this more concrete, let’s consider the task of imple-
menting the log of the normal probability density function (pdf) 2.
Given a data set with N observations, we wish to evaluate the pdf
on each point for a set of parameters, i.e. the mean µ and variance
σ2. Thus, all that needs to be passed to the GPU is the data set
and the parameters. A C function which can compute the log pdf
for a single data point is
float log_normal_pdf(float* x, float* params) {

float std = params[1];
float xstd = (*x - params[0]) / std;
return - (xstd * xstd) / 2 - 0.5 * LOG_2_PI

- log(std);
}

In practice, one would hope that implementing a new probability
density such as this would be as simple as writing this 4-
line function. Unfortunately, to achieve optimal performance, the
majority of one’s attention must be focused on properly addressing
the above data coordination / cache optimization problems. Thus,
the full form of a GPU kernel implementing a pdf is typically as
follows:

• Coordinate threads to copy (coalesce, if possible) data
needed for thread block to shared memory

• Similarly copy parameters needed by thread back to shared
memory

• Each thread computes a density result for a single data
point, writing results to shared memory

• Copy/coalesce resulting density values back to global
memory

Fortunately, the function signature for the vast majority of
probability density functions of interest is the same, requiring only
data and parameters. While the actual pdf function is very simple,
the rest of the code is much more involved. Since the kernels are
structurally the same, we would be interested in a way to reuse
the code for steps 1, 2, and 4, which will likely be nearly identical
for most of the functions. Were we programming in C, doing so
would be quite difficult. But, since we have PyCUDA/PyOpenCL
at our disposal, metaprogramming techniques can be utilized to do
just that, as we discuss later.

With respect to probability densities, we make a brief distinc-
tion between univariate (observations are a single floating point
value) and multivariate (vector-valued observations) distributions.
In the latter case, the dimension of each observation (the length of
each vector) typically must be passed as well. Otherwise, multi-
variate densities (e.g. multivariate normal) are handled similarly.

In a more general framework, we might wish to evaluate the
pdf for multiple parameters at once, e.g. (µ1,σ

2
1 ), . . . , ..(µK ,σ

2
K).

In other words, N ∗K densities need to be computed. A naive but
wasteful approach would be to make K round trips to the GPU for
each of the K sets of parameters. A better approach is to divide the
data / parameter combinations among the GPU grid to maximize
data reuse via the shared memory and perform all N ∗K density
computations in a single GPU kernel invocation. This introduces
the additional question of how to divide the problem among thread
blocks viz. optimally utilizing shared memory. As the available



26 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

GPU resources are device specific, we would wish to dynamically
determine the optimal division of labor among thread blocks based
on the GPU being used.

Avoiding bank conflicts as mentioned above is a somewhat
thorny issue as it depends on the thread block layout and memory
access pattern. It turns out in the gpustats framework that bank
conflicts can be avoided with multivariate data by ensuring that
the data dimension is not a multiple of 16. Thus, some data sets
must be padded with arbitrary data to avoid this problem, while
passing the true data dimension to the GPU kernel. If this is not
done, bank conflicts will lead to noticeably degraded performance.
We are hopeful that such workarounds can be avoided with future
versions of GPU memory architecture.

For sampling random variables on the GPU, the process is
reasonably similar. Just as with computing the density function,
sampling requires the same parameters for each distribution to
be passed. Many distributions can be derived by transforming
draws from a uniform random variable on the interval [0, 1].
Thus, for such distributions it makes most sense to precompute
uniform draws (either using the CPU or the GPU) and pass these
precomputed draws to the GPU kernel. However, there are widely-
used distributions, such as the gamma distribution, which are
commonly sampled via adaptive rejection sampling. With this
algorithm, the number of uniform draws needed to produce a
single sample is not known a priori. Thus, such distributions
would be very difficult to sample on the GPU.

Metaprogramming: probability density kernels and beyond

The gpustats Python library leverages the compilation-on-the-
fly capabilities of PyCUDA and metaprogramming techniques to
simplify the process of writing new GPU kernels for computing
probability density functions, samplers, and other related statis-
tical computing functionality. As described above in the normal
distribution case, one would hope that writing a new density
function would amount to writing the simple log_normal_pdf
function and having the untidy global-shared cache management
problem taken care of by the library. Additionally, we would
like to have a mechanism for computing transformed versions
of existing kernels. For example, log_normal_pdf could be
transformed to the unlogged density by applying the exponent
function.

To solve these problems, we have developed a prototype
object-oriented code generation framework to make it easy to
develop new kernels with minimal effort by the statistical user. We
do so by taking advantage of the string templating functionality
of Python and the CUDA API’s support for inline functions on
the GPU. These inline functions are known as device functions,
marked by __device__. Since the data transfer / coalescing
problem needs to be only solved once for each variety of kernel,
we can use templating to generate a custom kernel for each new
device function implementing a new probability density. It is then
simple to enable element wise transformations of existing device
functions, e.g. taking the exp of a logged probability density. In
the gpustats framework, the code for implementing the logged
and unlogged normal pdf is as follows:

_log_pdf_normal = """
__device__ float %(name)s(float* x, float* params) {

// mean stored in params[0]
float std = params[1];

// standardize

float xstd = (*x - params[0]) / std;
return - (xstd * xstd) / 2 - 0.5f * LOG_2_PI

- log(std);
}
"""
log_pdf_normal = DensityKernel('log_pdf_normal',

_log_pdf_normal)
pdf_normal = Exp('pdf_normal', log_pdf_normal)

The gpustats code generator will, at import time, generate a
CUDA source file to be compiled on the fly by PyCUDA.
Note that the %(name)s template is there to enable the device
function to be given an appropriate (and non-conflicting) name
in the generated source code, given that multiple versions of a
single device function may exist. For example, the Exp transform
generates a one-line device function taking the exp of the logged
density function.

Python interface and device-specific optimization

Further work is needed to interface with the generated PyCUDA
SourceModule instance. For example, the data and parameters
need to be prepared in ndarray objects in the form that the
kernel expects them. Since all of the univariate density functions,
for example, have the same function signature, it’s relatively
straightforward to create a generic function taking care of this
often tedious process. Thus, implementing a new density function
requires only passing the appropriate function reference to the
generic invoker function. Here we show what the function imple-
menting the normal (logged and unlogged) pdf on multiple sets of
parameters looks like:

def normpdf_multi(x, means, std, logged=True):
if logged:

cu_func = mod.get_function('log_pdf_normal')
else:

cu_func = mod.get_function('pdf_normal')
packed_params = np.c_[means, std]
return _univariate_pdf_call(cu_func, x,

packed_params)

Inside the above _univariate_pdf_call function, the at-
tributes of the GPU device in use are examined to dynamically
determine the thread block size and grid layout that will maximize
the shared memory utilization. This is definitely an area where
much time could be invested to determine a more "optimal"
scheme.

Reusing data stored on the GPU

Since the above algorithms may be run repeatedly on the same data
set, leaving a data set stored on the GPU global device memory
is a further important optimization. Indeed, the time required to
copy a large block of data to the GPU may be quite significant
compared with the time required to execute the kernel.

Fortunately, PyCUDA and PyOpenCL have a GPUArray
class which mimics its CPU-based NumPy counterpart ndarray,
with the data being stored on the GPU. Thus, in functions like the
above, the user can pass in a GPUArray to the function which will
circumvent any copying of data to the GPU. Similarly, functions
like normpdf_multi above can be augmented with an option
to return a GPUArray instead of an ndarray. This is useful
as in some algorithms the results of a density calculation may
be immediately used for sampling random variables on the GPU.
Avoiding round trips to the GPU device memory can result in a
significant boost in performance, especially with smaller data sets.
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Some basic benchmarks

We show some benchmarks for the univariate and multivariate
normal probability density functions, both with and without using
GPUArray to use data already stored on the GPU. These were
carried out with a very modest NVIDIA GTS 250 desktop card,
which has 128 CUDA cores (latest generation cards have up to
512). The CPU benchmarks were done on a standard Intel Core
i7 930 processor. As you will see, the speedups with larger data
sets can be quite dramatic. The reported numbers below are the
speedup, i.e. the ratio of CPU average runtime divided by GPU
average runtime.

Univariate Normal PDF: "Single" indicates that the density
values were only computed for a single mean and variance.
"Multi" indicates that they were computed for 8 (an arbitrary
number) sets of means and variances in one shot. The column
header indicates the number of data points.

1e3 1e4 1e5 1e6
Single 0.2234 1.268 7.951 23.05
Single (GPUArray) 0.2407 1.291 9.359 38.72
Multi 1.46 7.035 26.19 43.73
Multi (GPUArray) 1.79 8.354 30.79 49.26

Multivariate Normal PDF: For this distribution, we used a
streamlined C implementation of the density function (nearly
identical code to the CUDA kernel) for benchmarking purposes so
that it’s an apples-to-apples comparison. For the data dimension
we chose 15, again arbitrarily. Here we can really see an even
greater impact of reusing data on the GPU:

1e3 1e4 1e5 1e6
Single 0.6998 4.167 12.55 14.09
Single (GPUArray) 0.8465 6.03 32.59 64.12
Multi 3.126 18.41 60.18 63.89
Multi (GPUArray) 3.135 19.8 74.39 82

Application: PyMC integration

Low-hanging fruit for GPU integration in big data applica-
tions would be in [PyMC]. This is a library for implementing
Bayesian Markov Chain Monte Carlo (MCMC) algorithms. The
user describes the generative process for a data set and places
prior distributions on the parameters of the generative process.
PyMC then uses the well-known Metropolis-Hastings algorithm
to approximate samples from the posterior distribution of the
parameters given the observed data. A key step in Metropolis-
Hastings is the proposal step in which new parameter values are
selected via some proposal distribution, which is typically based
on a symmetric random walk but may be more sophisticated. A
new proposed value θ ∗ for θ is accepted or rejected based on the
acceptance ratio

a∗ =
p(θ ∗)p(x|θ ∗)p(θ ∗|θ)
p(θ)p(x|θ)p(θ |θ ∗)

,

where p(θ) is the prior density for θ , p(x|θ) is the likelihood, and
p(θ |θ ∗) is the proposal density. Understanding the details of how
and why this algorithm works is not important for the scope of
this paper. What is important is the fact that the quantity p(x|θ)
is recomputed typically thousands of times to compute samples
from the model. If the data x is very large, then the majority of
the runtime of the MCMC may be spent recomputing the data
likelihood for different parameters.

Enabling all of the PyMC distributions to run in GPU mode (so
that likelihoods are computed on the GPU) would be very simple
as soon as the probability density functions are implemented

inside gpustats. Based on the above benchmarks, it is clear that
integrating gpustats with PyMC could significantly reduce the
overall runtime of many MCMC models on large data sets.

Conclusions and future work

As gpustats currently uses PyCUDA it can only be used with
NVIDIA graphics cards. OpenCL, however, provides a parallel
computing framework which can be executed on NVIDIA and
ATI cards as well as on CPUs. Thus, it will make sense to enable
the gpustats code generator to emit OpenCL code in the near
future. As PyOpenCL is developed in lockstep with PyCUDA,
altering the Python interface code to use PyOpenCL should not
be too onerous. Using OpenCL currently has drawbacks for statis-
tical applications: most significantly the lack of a pseudorandom
number generator equivalent in speed and quality to [CURAND].
For simulation-based applications this can make a big impact. We
are hopeful that this issue will be resolved in the next year or two.

Another important addition which would be important to some
users is to enable multiple GPUs to be run in parallel to extract
even better performance. While this would introduce more latency
for small datasets and likely be unnecessary, for processing large
data sets, the overhead of calling out to 3 GPUs, for example,
would likely be much less than the computation time. Ideally
code could be seamlessly run on multiple GPUs. Furthermore,
the device memory on the GPU can be small. However, most
GPUs allow asynchronous memory copying and thread execution,
so a streaming approach can be taken on large datasets that can be
partitioned. In some cases, the streaming overhead can be virtually
eliminated by the asynchronous calls.

Note that gpustats is still in prototype stages, so its API will
be highly subject to change. We hope to generate interest in this
development direction as it could have an impact in boosting
Python’s status as a desirable statistical computing environment
for big data. An end goal would be to reimplement most of the
probability distributions (densities, samplers, etc.) in scipy.stats
on the GPU and to fully integrate these where possible through-
out PyMC and other related libraries. The meta-programming
approach offers a development friendly environment that could
also be considered a prototype for a useful GPU programming
model in general.

Another interesting avenue, but perhaps of less importance
for Python programmers, would be the generation of wrapper
interfaces to the generated CUDA or OpenCL source module for
other programming languages, such as R. However, without the
easy-to-use PyCUDA and PyOpenCL bindings this would likely
be a fairly significant undertaking.
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