
40 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

Constructing scientific programs using SymPy

Mark Dewing‡∗

F

Abstract—We describe a method for constructing scientific programs where
SymPy is used to model the mathematical steps in the derivation. With this
workflow, each step in the process can be checked by machine, from the
derivation of the equations to the generation of the source code. We present
an example based on computing the partition function integrals in statistical
mechanics.

Index Terms—SymPy, code generation, metaprogramming

Introduction

Writing correct scientific programs is a difficult, largely manual
process. Steps in the process include deriving of the constituent
equations, translating those into source code, and testing the
result to ensure correctness. One challenging aspect of testing is
untangling the cause of errors. For example, if the result appears
incorrect, it is hard to determine whether the problem is with the
algorithm, or a mistake was made in the derivation, or a simple
transcription error in writing the source code. Confidence in the
correctness of the program can be increased if these steps can be
checked by computer.

The process of scientific programming also includes the pur-
suit of performance. Often the code needs to be heavily modified
or rewritten to take best advantage of various target systems. Each
modification introduces the possibility of further errors, and must
be checked.

A standard approach to create a high-level description of the
problem that is specialized to the particular domain, often through
a Domain Specific Language (DSL), and then transform this to a
representation in a general-purpose programming language. This
is used in systems such as FEniCS [FEniCS] (representing PDE’s)
and the Tensor Contraction Engine [TCE] (representing matrix
operations in quantum chemistry).

Since the specifications for scientific software are expressed
largely as mathematical equations, our high-level description will
be formed from a symbolic mathematics representation. A sym-
bolic mathematics package is well-suited for this representation.
In addition to this representation of the high-level description,
we will model the derivation steps that lead to a computationally
useful form.

The approach taken in this work is to operate on a symbolic
representation of the scientific program, and then programmati-
cally transform it into the target system. The specifications for

* Corresponding author: markdewing@gmail.com
‡ Intel

Copyright © 2011 Mark Dewing. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

scientific software are expressed largely as equations, and are
ideally suited for a symbolic mathematics package. We use SymPy
[SymPy], a symbolic mathematics package written in Python, for
this part of the process.

The target system is likely a source code representation (C,
Fortran, Python, etc), but could encompass more than that. For
instance, C might be used to target the CPU or GPU, but the source
code might look quite different in those cases. Or the user may call
different libraries for the same function to compare performance.

Modeling Derivations

The first goal is to model on the computer a set of steps similar
to those used when manually performing the derivation. Deriving
the equations using in scientific software is similar to a proof
where there is a series of logically justified steps connecting each
expression until the final result is reached.

The OpenMathDocuments (OMDoc) project [OMDoc] is a
representation for mathematics that describes a higher level than
expressions in MathML. For instance, it has representations for
proofs and lemmas. Similarly, for scientific computation we need
to represent structures a higher level. One major difference be-
tween proofs and derivations in scientific software is that some
steps are approximations.

The steps can be categorized as exact transformations, approxi-
mations, or specializations. An exact transform leaves the equality
satisfied. Some types of exact transforms are rearranging terms,
multiplying by factors, and identities (which operates only on one
side of the equation). A specialization is specifying a physical or
model parameter, such as the number of spatial dimensions, the
number of particles, interaction potential, etc.

Finally, the results can be displayed in rendered mathematics
(we use MathML or MathJax in web pages) to make the operation
of each step and the results clearly visible.

Implementations

Modeling Derivations

For the implementation, the basic class named derivation
has a constructor that takes an initial equation (lhs and rhs).
The primary method is add_step, which takes an operation
(or list of operations) to perform and a textual description of the
operation(s). There are series of classes for various operations,
such approx_lhs, which replaces the left-hand side of the
equation with a new value. Also there is add_term, which adds
the same term to both sides of the equation.

mailto:markdewing@gmail.com

CONSTRUCTING SCIENTIFIC PROGRAMS USING SYMPY 41

Code Generation

It is easy to start generating code by simply printing the statements
of the target language. However, for greater generality we will
use a model of the target language. Currently this work has
(incomplete) language models for Python and C.

At the lowest level of transforming expressions, we developed
a pattern-matching syntax that concisely captures some of the
SymPy idioms.

The Match object matches a SymPy expression. The
__call__ method matches the first argument as the type of the
expression. Subsequent arguments are variables to be bound to
arguments. If the argument is a tuple, it is matched recursively on
that argument. In this way the pattern for a tree structure can be
built up concisely.

Variables that can match (for later binding) are members of
an AutoVar class. This class creates member variables upon first
access, and they are bound when the match succeeds.

Here is an example fragment of part of the SymPy to Python
expression transformation, that matches addition, subtraction, and
the reciprocal. SymPy normalizes subtraction as adding two ex-
pressions where the subtractand is multiplied by negative one.
(That is, a−b is represented as −1∗b+a). Matching subtraction
requires a nested pattern, which is shown here as well.
from sympy import Add, Mul, Pow, S
from derivation_modeling.codegen.lang_py import \

py_expr, py_num
from derivation_modeling.codegen.pattern_match \

import AutoVar, Match

class expr_to_py(object):
def __call__(self, e):
v = AutoVar()
m = Match(e)

subtraction
if m(Add, (Mul, S.NegativeOne, v.e1), v.e2):
return py_expr(py_expr.PY_OP_MINUS,

expr_to_py(v.e2), expr_to_py(v.e1))

addition
if m(Add, v.e1, v.e2):

return py_expr(py_expr.PY_OP_PLUS,
expr_to_py(v.e1), expr_to_py(v.e2))

reciprocal
if m(Pow, v.e2, S.NegativeOne):

return py_expr(py_expr.PY_OP_DIVIDE,
py_num(1.0), expr_to_py(v.e2))

Examples

Simple derivation

The Euler method is the simplest method for solving a differential
equation. The steps involve a finite difference approximation to
the derivative, rearranging terms, and the result is

f1 = f0 +h∗2∗ x

The derivation is the following code:
from sympy import Function, Symbol, diff, sympify
from derivation_modeling import derivation, \

approx_lhs, mul_factor, add_term

f = Function('f')
x = Symbol('x')
df = diff(f(x),x)
fd = sympify('(f_1 - f_0)/h')

d = derivation(df,2*x)

d.add_step(approx_lhs(fd),
'Approximate derivative with finite difference')

d.add_step(mul_factor(h),'Multiply by h')
d.add_step(add_term(f0),'Move f_0 term to left side')

This can be output to MathML (or MathJax) for display in a web
browser, which looks approximately like the following:

∂

∂x
f(x) = 2∗ x

Approximate derivative with finite difference

f1− f0

h
= 2∗ x

Multiply by h
f1− f0 = 2∗ xh

Move f_0 term to left side to get the final result

f1 = f0 +2∗ xh

Quadrature

For one of the simplest quadrature formulas, we use the trape-
zoidal rule [Trapezoid]. The derivation part consists of starting
from the rule for single interval, and extending it to a series of
intervals. (The rules for a single interval can be derived from
interpolating polynomials, but we didn’t start there)

The starting point for the derivation in Python is to define
all the symbols, and the initial expression, then manipulate the
expression so the function evaluation of each point is used only
once.

from sympy import Symbol, Function, IndexedBase, Sum
from derivation_modeling import derivation, identity

i = Symbol('i',integer=True)
n = Symbol('n',integer=True)

I = Symbol('I')
f = Function('f')
h = Symbol('h')
x = IndexedBase('x')

definitions of split_sum, adjust_limits,
peel_terms not shown
split_sum - expand the sum of terms into a term of sums
adjust_limits - adjust the expressions in the
summation variable. This allows matching
the index used in the summand among different sums.
peel_terms - move terms from the either end of the sum
to be an explicit term this allows the sum limits
to match and be combined.

trap = derivation(I, Sum(h/2*(f(x[i])+f(x[i+1])), (i,1,n)))
trap.add_step(identity(split_sum),'Split sum')
trap.add_step(identity(adjust_limits),'Adjust limits')
trap.add_step(identity(peel_terms),'Peel terms')

The LaTeX representation for the steps was copied from the
generated output.

Start with a sum of single interval formulas

I =
n

∑
i=1

1
2

h(f(x[i])+ f(x[i+1]))

Split into two sums (’Split sum’)

I =
n

∑
i=1

1
2

h f(x[i])+
n

∑
i=1

1
2

h f(x[i+1])

42 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

Adjust the limits so the functions in the sum have compatible
indices (’Adjust limits’)

I =
n−1

∑
i=0

1
2

h f(x[i])+
n

∑
i=1

1
2

h f(x[i])

Peel off some terms so the sum limits match, and combine the
sums. (’Peel terms’)

I =
1
2

h f(x[0])+
1
2

h f(x[n])+2
n−1

∑
i=1

1
2

h f(x[i])

Now we have the final expression and can move to the transfor-
mation step. The approach to multiple dimensional integrals will
be iterated one-dimensional integrals.

Partition Function

We start with the partition function from statistical mechanics
[Partition]. It incorporates the interactions between particles (think
of particles in a box), and contains all the thermodynamic informa-
tion about a system. The dimension of the integral rises with the
number of particles. The complexity for the convergence of grid-
based methods is exponential in the number of dimensions, and
they quickly become overwhelmed. The convergence of Monte
Carlo methods is independent of dimension, and are commonly
used to compute these integrals. However, it would be still be
useful to use a grid method for a small number of particles as a
way to check the Monte Carlo algorithms.

The derivation starts as follows:
partition_function =

derivation(Z,Integral(exp(-V/(k*T)),R))

Where V is the inter-particle potential, T is the temperature, k
is Boltzmann’s constant, and Z is the symbol for the partition
function. All of these are defined as SymPy Symbol.

Once again, the LaTeX has been copied from the output
(although some steps have been combined for space)

Z =
∫

e−
V
T k dR

It is conventional to work with the dimensionless inverse temper-
ature, β = kT . Create the definition and insert into the integral.

beta_def = definition(Beta, 1/(k*T), T)
partition.function.add_step(

replace_definition(beta_def),
'Insert definition of beta')

The rendered output is

Z =
∫

e−V β dR

To support multiple child derivations branching from a single
parent, there is a method to support starting a new derivation from
the final step of the previous one. Specialize to two particles -
the specialize_integral transform replaces the integration
variables, and the the replace transform replaces the specified
variables (using a SymPy subs).
n2 = partitition_function.new_derivation()
n2.add_step(specialize_integral(R,(r1,r2)),

'specialize to N=2')
n2.add_step(replace(V,V2(r1,r2)),

'replace potential with N=2')

The rendered output is

Z =
∫ ∫

e−β V(r1,r2) dr1dr2

Change variables and switch to a potential that depends only on
the magnitude of the interparticle distance
r_cm = Vector('r_cm',dim=2)
r_12 = Vector('r_12',dim=2)

r_12_def = definition(r_12, r2-r1)
r_cm_def = definition(r_cm, (r1+r2)/2)

V12 = Function('V')

n2.add_step(specialize_integral(r1,(r_12,r_cm)),
'Switch variables')

n2.add_step(replace(V2(r1,r2),V12(r_12)),
'Specialize to a potential that depends only
on interparticle distance')

n2.add_step(replace(V12(r_12),V12(Abs(r_12))),
'Depend only on the magnitude of the distance')

The rendered output is

Z =
∫ ∫

e−β V(|r12|) dr12drcm

Integrate out the center of mass (or fixed coordinate) (This step
could be performed by SymPy, but isn’t right now)
Vol = Symbol('Omega')
n2.add_step(do_integral(Vol, [r_12]),

'Integrate out r_cm (this step is still a hack)')

The rendered output is

Z = Ω

∫
e−β V(|r12|) dr12

Decompose into vector components and specify limits. The
identity transform modifies the right-hand side of the equation
without changing its validity. The decompose operation takes an
expression involving vectors and replaces it with the expression in
terms of vector components. The add_limits transform adds
upper and lower limits to the previously indefinite integral.
L = Symbol('L')
n2.add_step(identity(decompose),

'Decompose into vector components')
n2.add_step(identity(add_limits(-L/2,L/2)),

'Add integration limits')

The rendered output is

Z = Ω

∫ L/2

−L/2

∫ L/2

−L/2
e
−β V

(√
r2
12x+r2

12y

)
dr12xdr12y

Specialize to the Lennard-Jones potential
lj_expr = 4*(1/r**12 - 1/r**6)
lj_pot = derivation(V(r),lj_expr)
n2.add_step(replace_func(V12,lj_pot.final()),

'Specialize to the LJ potential')

V(r) =
4

r12 −
4
r6

And get

Z = Ω

∫ 1
2 L

− 1
2 L

∫ 1
2 L

− 1
2 L

e
−β

 4(
r2
12x+r2

12y

)6 −
4(

r2
12x+r2

12y

)3


dr12xdr12y

Insert numerical values for the box size and temperature.
L = 2.0
n2.add_step(replace('L',L),

'Insert value for box size')
n2.add_step(replace('Omega',L*L),

'Insert value for box volume')
n2.add_step(replace('beta',1.0),

'Insert value for temperature')

CONSTRUCTING SCIENTIFIC PROGRAMS USING SYMPY 43

Z = 4.0
∫ 1

−1.0

∫ 1

−1.0
e
−4.0 1(

r2
12x+r2

12y

)6 +4.0 1(
r2
12x+r2

12y

)3

dr12xdr12y

Now we have an integral that is completely specified numerically1.
It can be evaluated by an existing quadrature routine in SymPy, by
another another package (scipy.quadrature.dblquad), or
by the trapezoidal rule code we derived earlier.

Code Generation

As an example of the language model, the classic ’Hello World’
program in python is
from derivation_modeling.codegen.lang_py import

py_expr, py_expr_stmt, py_function_call, \
py_function_def, py_if, py_print_stmt, \
py_stmt_block, py_string, \
py_var

body = py_stmt_block()

hello_func = py_function_def('hello')
hello_func.add_statement(

py_print_stmt(py_string("Hello, World")))
body.add_statements(hello_func)
main = py_if(

py_expr(py_expr.PY_OP_EQUAL,
py_var('__name__'), py_string('__main__')))

main.add_true_statement(
py_expr_stmt(py_function_call('hello')))

body.add_statements(main)

f = open('hello_py.py','w')
f.write(body.to_string())
f.close()

The generated output is
def hello():

print "Hello, World"
if __name__ == "__main__":

hello()

For C, the program is
from derivation_modeling.codegen.lang_c import

c_block, c_function_call, c_function_def, \
c_func_type, c_int, c_num, c_return, c_stmt, \
c_string, pp_include

body = c_block()
body.add_statement(pp_include('stdio.h'))
main_body = c_block()

main = c_function_def(
c_func_type(c_int('main')), main_body)

main_body.add_statement(
c_stmt(c_function_call("printf",

c_string("Hello, World\\n"))))

main_body.add_statement(c_return(c_num(0)))
body.add_statement(main)

f = open('hello_c.c','w')
f.write(body.to_string())
f.close()

The generated program is
#include <stdio.h>
int main(){
printf("Hello, World\n");
return 0;

}

The code and examples described here can be found in the author’s
derivation_modeling repository on GitHub:

https://github.com/markdewing/derivation_modeling

Discussion

The example derivations presented here are fairly simple and
linear. In reality, the connections are more complex. For instance,
one is often interested in multiple properties (energy, pressure,
distribution functions) that may branch off the original derivation
or have a separate thread of steps, but eventually, for efficiency
they should all be evaluated in the same integral.

The pattern-matching style makes the lower levels of expres-
sion translation fairly clear, but the the translations at the next level
up (combining the source code statements) is not very transparent
yet. An important future step is enhancing debugging by making
the connections between the code generator and the generated
code clearer.

Other Work

For solving partial differential equations, there is FEniCS
[FEniCS] project and the SAGA (Scientific computing with Al-
gebraic and Generative Abstractions) project [SAGA] .

Ignition [Ignition],[Terrel11]_ is a library that provides support
for writing and combining DSL’s for describing problems (or
aspects of problems)

Part of this work is modeling the target language for code
generation. Several other projects for modeling programming
languages include Pivot [Pivot], a project for modeling C++.
CodeBoost [CodeBoost] is the code transformation portion of the
SAGA system. PyCUDA [PyCUDA] is a potential target system,
and it also has an associated model of C and CUDA for generation
of code [CodePy]

Conclusions

We presented a snapshot of some work on some software blocks
necessary for a system of scientific computing, including modeling
a derivation, transforming to a source code representation, and
code generation.

REFERENCES

[CodeBoost] http://codeboost.org/
[CodePy] http://mathema.tician.de/software/codepy
[FEniCS] http://www.fenicsproject.org
[Ignition] http://andy.terrel.us/ignition/
[OMDoc] http://www.omdoc.org
[Partition] http://en.wikipedia.org/wiki/Partition_function_%28statistical_

mechanics%29
[Pivot] http://parasol.tamu.edu/pivot/
[PyCUDA] http://mathema.tician.de/software/pycuda
[TCE] Tensor Contraction Engine http://www.csc.lsu.edu/~gb/TCE/
[Terrel11] A. Terrel. From Equations to Code: Automated Scientific Com-

puting Computing in Science and Engineering 13(2):78-982,
March 2011

[Trapezoid] See http://en.wikipedia.org/wiki/Trapezoidal_rule or any numer-
ical analysis textbook

[SAGA] http://www.ii.uib.no/saga/
[SymPy] http://sympy.org/

1. There is a division-by-zero error at r = 0 that must be avoided, either by
offsetting one limit slightly, or by capping the potential for small r. This latter
step has not been added to the definition of the potential yet.

https://github.com/markdewing/derivation_modeling
http://codeboost.org/
http://mathema.tician.de/software/codepy
http://www.fenicsproject.org
http://andy.terrel.us/ignition/
http://www.omdoc.org
http://en.wikipedia.org/wiki/Partition_function_%28statistical_mechanics%29
http://en.wikipedia.org/wiki/Partition_function_%28statistical_mechanics%29
http://parasol.tamu.edu/pivot/
http://mathema.tician.de/software/pycuda
http://www.csc.lsu.edu/~gb/TCE/
http://en.wikipedia.org/wiki/Trapezoidal_rule
http://www.ii.uib.no/saga/
http://sympy.org/

	Introduction
	Modeling Derivations
	Implementations
	Modeling Derivations
	Code Generation

	Examples
	Simple derivation
	Quadrature
	Partition Function
	Code Generation

	Discussion
	Other Work
	Conclusions
	References

