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PyModel: Model-based testing in Python

Jonathan Jacky‡∗
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Abstract—In unit testing, the programmer codes the test cases, and also codes
assertions that check whether each test case passed. In model-based testing,
the programmer codes a "model" that generates as many test cases as desired
and also acts as the oracle that checks the cases. Model-based testing is
recommended where so many test cases are needed that it is not feasible to
code them all by hand. This need arises when testing behaviors that exhibit
history-dependence and nondeterminism, so that many variations (data values,
interleavings, etc.) should be tested for each scenario (or use case). Examples
include communication protocols, web applications, control systems, and user
interfaces. PyModel is a model-based testing framework in Python. PyModel
supports on-the-fly testing, which can generate indefinitely long nonrepeating
tests as the test run executes. PyModel can focus test cases on scenarios of
interest by composition, a versatile technique that combines models by synchro-
nizing shared actions and interleaving unshared actions. PyModel can guide test
coverage according to programmable strategies coded by the programmer.

Index Terms—testing, model-based testing, automated testing, executable
specification, finite state machine, nondeterminism, exploration, offline testing,
on-the-fly testing, scenario, composition

Introduction

Model-based testing automatically generates, executes, and checks
any desired number of test cases, of any desired length or com-
plexity, given only a fixed amount of programming effort. This
contrasts with unit testing, where additional programming effort is
needed to code each test case.

Model-based testing is intended to check behavior: ongoing
activities that may exhibit history-dependence and nondetermin-
ism. The correctness of behavior may depend on its entire history,
not just its most recent action. This contrasts with typical unit
testing, which checks particular results, such as the return value of
a function, given some arguments.

It is advisable to check entire behaviors, not just particular
results, when testing applications such as communication proto-
cols, web services, embedded control systems, and user interfaces.
Many different variations (data values, interleavings etc.) should
be tested for each scenario (or use case). This is only feasible with
some kind of automated test generation and checking.

Model-based testing is an automated testing technology that
uses an executable specification called a model program as both
the test case generator and the oracle that checks the results of
each test case. The developer or test engineer must write a model
program for each implementation program or system they wish
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to test. They must also write a test harness to connect the model
program to the (generic) test runner.

With model program and test harness in hand, developers or
testers can use the tools of the model-based testing framework
in various activities: Before generating tests from a model, it is
helpful to use an analyzer to validate the model program, visualize
its behaviors, and (optionally) perform safety and liveness analy-
ses. An offline test generator generates test cases and expected
test results from the model program, which can later be executed
and checked by a test runner connected to the implementation
through the test harness. This is a similar workflow to unit
testing, except the test cases and expected results are generated
automatically. In contrast, on-the-fly testing is quite different: the
test runner generates the test case from the model as the test
run is executing. On-the-fly testing can execute indefinitely long
nonrepeating test runs, and can accommodate nondeterminism in
the implementation or its environment.

To focus automated test generation on scenarios of interest, it
is possible to code an optional scenario machine, a lightweight
model that describes a particular scenario. The tools can combine
this with the comprehensive contract model program using an
operation called composition. It is also possible to code an optional
strategy in order to improve test coverage according to some
chosen measure. Some useful strategies are already provided.

Model-based testing supports close integration of design and
analysis with testing. The analyzer is similar to a model checker;
it can can check safety, liveness, and temporal properties. And, the
same models are used for these analyses as for automated testing.
Moreover, the models are written in the same language as the
implementation.

PyModel is an open-source model-based testing framework
for Python [PyModel11]. It provides the PyModel Analyzer pma,
the PyModel Graphics program pmg for visualizing the analyzer
output, and the PyModel Tester pmt for generating, executing, and
checking tests, both offline and on-the-fly. It also includes several
demonstration samples, each including a contract model program,
scenario machines, and a test harness.

The PyModel framework is written in Python. The models and
scenarios must be written in Python. It is often convenient, but not
required, if the system under test is also written in Python, because
it can be easier to write the test harness in that case.

Traces and Actions

We need to describe behavior. To show how, we discuss the
Alternating Bit Protocol [ABP11], a simple example that exhibits
history-dependence and nondeterminism. The protocol is designed
to send messages over an unreliable network. The sender keeps
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sending the same message, labeled with the same bit (1 or 0),
until the receiver acknowledges successful receipt by sending
back the same bit. The sender then complements the bit and
sends a new message labeled with the new bit until it receives
an acknowledgement with that new bit, and so on. When the
connection starts up, both ends send bit 1. The sender labels the
first real message with 0.

A sample of behavior is called a trace. A trace is a sequence
of actions, where each action has a name and may have arguments
(so actions resemble function calls). The alternating bit protocol
has only two actions, named Send and Ack. Each action has one
argument that can take on only two values, 0 or 1. (We abstract
away the message contents, which do not affect the protocol
behavior.) Here are some traces that are allowed by the protocol,
and others that are forbidden:

Allowed Allowed Allowed Forbidden Forbidden
------- ------- ------- --------- ---------
Send(0) Send(1) Send(1) Send(0) Send(0)
Ack(0) Send(1) Send(1) Ack(0) Ack(1)
Send(1) Ack(1) Ack(1) Send(0) Send(1)
Ack(1) Send(0) Send(1) Ack(0) Ack(1)

Ack(1) Ack(1)
Ack(1) Send(1)
Send(0)
Ack(0)

Traces like these might be collected by a test harness connected
to the sender. The Send are controllable actions invoked by the
sender while the Ack are observable actions that are observed by
monitoring the network. (If the test harness were connected to the
receiver instead, the Send would be the observable action and the
Ack would be controllable.)

Finite Models

A model is an executable specification that can generate traces (to
use as test cases) or check traces (to act as an oracle). To act as a
specification, the model must be able to generate (or accept) any
allowed trace and must not be able to generate any forbidden trace
(it must reject any forbidden trace).

The alternating bit protocol is finite because there are only a fi-
nite number of actions (only a finite number of possible values for
each action argument). Therefore this protocol can be modeled by
a finite state machine (FSM), which can be represented by a graph
where the edges represent actions and the nodes represent states
(Figure 1). Every allowed trace can be obtained by traversing paths
around this graph. In the figure, some of the nodes have doubled
borders. These are the accepting states where traces are allowed to
stop. A trace that stops in a non-accepting state is forbidden. If no
accepting states are specified, all states are considered accepting
states.
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Fig. 1: Alternating bit protocol represented by a finite state machine
(FSM)

In PyModel, a finite state machine is represented by its graph:
a tuple of tuples, where each tuple represents a state transition,

the current state (a node), the action (an edge), and the next state
(another node):
graph = ((0, (Send, (1,),), 0),

(0, (Ack, (1,),), 0),
(0, (Send, (0,),), 1),
(1, (Ack, (0,),), 2),
... etc. ...
(4, (Send, (0,),), 1))

The PyModel Graphics program pmg generated Figure 1 from this
code.

Most interesting systems are infinite and cannot be described
by finite state machines. In PyModel, finite state machines are
most often used to describe scenario machines that are composed
with infinite contract model programs to focus test case generation
on scenarios of interest.

Infinite Models

Most interesting systems require infinite models. A system re-
quires an infinite model when it has an infinite number of actions.
This occurs whenever any of its action arguments are drawn from
types that have an infinite number of values: numbers, strings, or
compound types such as tuples.

Simple systems can be infinite. Consider a stack, a last-in first-
out queue which provides a Push action that puts a value on top
of the stack and a Pop action that removes the value from the top
of the stack and returns it. Here are some allowed traces:
Push(1,) Push(1,) Push(1,)
Push(2,) Pop(), 1 Push(2,)
Push(2,) Push(2,) Push(2,)
Push(1,) Pop(), 2 Push(1,)
Pop(), 1 Push(1,) Push(1,)
Pop(), 2 Pop(), 1 Push(1,)
Pop(), 2 Push(2,) Push(2,)
Push(2,) Pop(), 2 Push(2,)
Push(1.) Push(1,) Push(1,)
Push(1,) Pop(), 1 Push(1,)

In PyModel, an infinite model is expressed by a Python module
with an action function for each action and variables to represent
the state, the information stored in the system. In this example,
the state is a list that stores the stack contents in order. Constraints
on the ordering of actions are expressed by providing each action
with an optional guard or enabling condition: a Boolean function
that is true for all combinations of arguments and state variables
where the action is allowed to occur. In this example, Push is
always enabled so no enabling function is needed; Pop is only
enabled in states where the stack is not empty. Here is the model,
as coded in the module Stack:
stack = list() # State

def Push(x): # Push is always enabled
global stack
stack.insert(0,x)

def Pop(): # Pop requires an enabling condition
global stack
result = stack[0]
del stack[0]
return result

def PopEnabled(): # Pop enabled when stack not empty
return stack

Analysis

It can be helpful to visualize the behavior of a model program.
The PyModel Graphics program pmg can generate a graph from
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finite state machine, as in Figure 1. The PyModel Analyzer pma
generates a finite state machine from an infinite model program,
by a process called exploration which is a kind of concrete
state model-checking. In order to finitize the model program,
it is necessary to limit the action arguments to finite domains
and it may also be necessary to limit the state by state filters,
Boolean functions which the state must satisfy. Exploration in
effect performs exhaustive testing of the model program over these
finite domains, generating all possible traces and representing
them compactly as an FSM.

Here we define a domain that limits the arguments of Push to
the domain 0, 1; we also define a state filter that limits the stack
to fewer than four elements:

domains = { Push: {’x’:[0,1]} }

def StateFilter():
return len(stack) < 4
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Fig. 2: FSM for finitized Stack model program, generated by explo-
ration.

Subject to these limitations, pma generates a finite state machine
that is rendered by pmg (Figure 2).

Every trace allowed by the (finitized) model can be obtained
by traversing paths around the graph. This is useful for validation:
you can check whether the graph allows the expected behaviors.

Safety and Liveness

In addition to providing visualization, the analyzer can check
other properties. Safety analysis checks whether anything bad
can happen. You specify safety requirements by defining a state
invariant, a Boolean function on state variables that is supposed
to be satisfied in every state. The analyzer checks the invariant
in every state reached during exploration and marks unsafe states
where the invariant is violated. Liveness analysis checks whether
something good will happen. You specify liveness requirements
by defining an accepting state condition, a Boolean function on
state variables that is supposed to be satisfied in the states where
a trace ends. The analyzer checks the accepting state condition in
every state and marks the terminal states (which have no outgoing
actions) where the condition is violated; these are dead states from
which an accepting state cannot be reached. Since exploration
is exhaustive, these analyses are conclusive; they are machine-
generated proofs that the safety and liveness properties hold (or
not) for the model program over the given finite domains.

Test Harness

In order to execute tests, it is necessary to write a test harness
that connects the model program to the test runner pmt. The test
harness usually encapsulates the implementation details that are
abstracted away from the model. It is often convenient, but not

required, if the implementation under test is also written in Python,
because it can be easier to write the test harness in that case.

Here is a fragment of the code from the harness for testing
a web application. As it happens, the server code of the web
application that we are testing here is in PHP, not Python, but this
is not an inconvenience because the test harness acts as a remote
web client, using the Python standard library module urllib,
among others. The model includes Initialize, Login, and
Logout actions, among others:

def TestAction(aname, args, modelResult):
...

if aname == 'Initialize':
session = dict() # clear out cookies/session IDs

elif aname == 'Login':
user = users[args[0]]
...
password = passwords[user] if args[1] == 'Correct'

else wrongPassword
postArgs = urllib.urlencode({'username':user,

'password':password})
# GET login page
page = session[user].opener.open(webAppUrl).read()
...
if result != modelResult:

return 'received Login %s, expected %s' % \
(result, modelResult)

elif aname == 'Logout':
...

Offline Testing

Offline testing uses a similar workflow to unit testing, except the
test cases and expected results are generated automatically from
the model program.

Traces can be used as test cases. The PyModel Tester pmt can
generate traces from a (finitized) model program; these include
the expected return values from function calls, so they contain all
the information needed for testing. Later, pmt can act as the test
runner: it executes the generated tests (via the test harness) and
checks that the return values from the implementation match the
ones in the trace calculated by the model program.

On-the-fly Testing

In On-the-fly testing the test runner pmt generates the test case
from the model as the test run is executing. On-the-fly testing
can execute indefinitely long nonrepeating test runs. On-the-
fly testing is necessary to accommodate nondeterminism in the
implementation or its environment.

Accommodating nondeterminism requires distinguishing be-
tween controllable actions (functions that the test runner can call
via the test harness), and observable actions (events that the test
harness can detect). For example, when testing the sender side of
the alternating bit protocol, Send is controllable and Ack is ob-
servable. Handling observable actions may require asynchronous
programming techniques in the test harness.

Strategies

During test generation, alternatives arise in every state where
multiple actions are enabled (that is, where there are multiple
outgoing edges in the graph of the FSM). Only one action can be
chosen. The algorithm for choosing the action is called a strategy.
In PyModel, the default strategy is random choice among the
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enabled actions. It is also possible to code an optional strategy in
order to improve test coverage according to some chosen measure.

Some useful strategies are already provided. The
ActionNameCoverage strategy chooses different actions,
while the StateCoverage strategy attempts to reach unvisited
states. Here are some test cases generated from the stack model
using different strategies:

Random Action name State
(default) coverage coverage
-------- -------- --------
Push(1,) Push(1,) Push(1,)
Push(2,) Pop(), 1 Push(2,)
Push(2,) Push(2,) Push(2,)
Push(1,) Pop(), 2 Push(1,)
Pop(), 1 Push(1,) Push(1,)
Pop(), 2 Pop(), 1 Push(1,)
Pop(), 2 Push(2,) Push(2,)
Push(2,) Pop(), 2 Push(2,)
Push(1.) Push(1,) Push(1,)
Push(1,) Pop(), 1 Push(1,)

Composition

Composition is a versatile technique that combines models. Py-
Model uses it for scenario control, validation, and program struc-
turing. All of the PyModel commands can accept a list of models
to be composed in any context where they expect a model.

Composition combines two or more models to form a new
model, the product. (In the following discussion and examples,
just two models are composed.)

M1 ×M2 = P

When the product is explored, or is used to generate or check
traces, PyModel in effect executes the composed models in par-
allel, synchronizing on shared actions and interleaving unshared
actions. A shared action occurs in both models, an unshared
action occurs in only one. A shared action must be simultaneously
enabled in both models in order to execute in the product. This
results in synchronizing the execution of the shared actions. This
usually has the effect of limiting or restricting behavior, in effect
filtering it (Figure 3). This is useful for both scenario control and
validation, as we shall see.
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Fig. 3: Composition synchronizes on shared actions.

An unshared action can execute in the product whenever it is
enabled in its own model. This results in interleaving the execution
of the unshared actions in the product. This usually has the effect
of enlarging the behavior, in effect multiplying it (Figure 4). This
can be useful as a structuring technique for building up complex
models from simpler ones.
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Fig. 4: Composition interleaves unshared actions.

Notice that a state is an accepting state in the product if and
only if it is an accepting state in both of the composed models.

Scenario Control

A difficulty with any automated testing method is generating too
many tests. We need scenario control to limit test runs to scenarios
of interest. We can achieve this by composing the comprehensive
contract model program, usually a Python module with state
variables etc., with a particular scenario machine, usually an FSM.

Contract ×Scenario = Product

In this example (Figure 5), the contract model program (on the far
left) allows many redundant, uninteresting startup and shutdown
paths. We would like to intensively test just the few interesting
actions in this model. We create a scenario machine (on the near
left) that specifies a single path through startup and shutdown,
and omits the interesting actions. When we compose the two
models, the startup and shutdown actions are shared so the two
models must synchronize, which forces the product to follow the
sequences in the scenario. The interesting actions are unshared,
so they are free to interleave, and the product can execute these
as long as they are enabled. The product (on the right) will only
generate traces that are interesting for this test purpose.
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Fig. 5: Composition with a scenario can eliminate uninteresting paths
from tests.
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Validation

A model program is just a program so it is necessary to validate
it: to confirm that it expresses the intended behaviors. As already
noted, simply inspecting the graphs generated by the analyzer can
be helpful for this.

Composition also supports a more rigorous validation pro-
cedure analogous to unit testing. Composing a contract model
program with a scenario machine results in a product that reaches
an accepting state if and only if the model allows the behaviors
described by the scenario, that is, if the model can execute the
scenario. If the model cannot execute the scenario, the product will
not reach an accepting state. Therefore, a collection of scenarios
that are each known a priori to be allowed or forbidden can act as
a unit test suite for a model program. Composing the model with
each scenario in turn is, in effect, executing the unit test suite.

Figures 3 and 5 both show examples where the model program
can execute the scenario. In Figure 6 we compose the stack model
with a scenario that executes Push(1) followed by Pop(),0.
This is forbidden, because pop should only return the value that
was most recently pushed. As expected, we see that the product
only contains the push action because it is unable to synchronize
on the pop action, which is not enabled in the model. The product
does not reach an accepting state, which shows that the model
does not allow this scenario.
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Fig. 6: Composition with a forbidden scenario cannot reach an
accepting state.

This technique can be use to check a model program for any
property that can be expressed by a finite state machine, including
any temporal logic formula. Exploration with composition is
similar to model checking, and is a powerful complement to the
state-based safety and liveness analyses described earlier.

Conclusions

Model-based testing can encourage different approaches to testing.
It encourages on-the-fly testing --- but in general, on-the-fly test
runs are not reproducible, due to nondeterminism. It suggests ex-
tending testing to noninvasive monitoring or run time verification
--- if the test harness supports observable actions, the test runner
can check log files or monitor network traffic for conformance
violations.

The most intruiging prospect might be better integration of
design and analysis with testing. Exploration with composition
is like model checking; it can can check for safety, liveness,
and temporal properties. And, the same models are used for
these analyses as for automated testing. Moreover, the models are

written in the same language as the implementation, which could
make them accessible to developers and test engineers, not just
formal methods experts.

Model-based testing has been used on large projects in in-
dustry, but only post-hoc. Test engineers were given informal
documentation and an implementation to test, and then reverse-
engineered the models [Grieskamp08]. A more rational workflow
might be to write the model before writing the implementation,
analyze and tweak the design, then implement and test.

Related work

The techniques described in this paper can be expressed in any
programming language. More detailed explanations and exam-
ples, using the NModel framework for C# [NModel11], appear
in [Jacky08]. Another view of model-based testing appears in
[Utting07]. Model checking is discussed in [Peled01].
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