58

PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

Hurricane Prediction with Python

Minwoo Lee¥*, Charles W. Anderson’, Mark DeMaria*

Abstract—The National Centers for Environmental Prediction (NCEP) Global
Forecast System (GFS) is a global spectral model used for aviation weather
forecast. It produces forecasts of wind speed and direction, temperature, hu-
midity and precipitation out to 192 hr every 6 hours over the entire globe.
The horizontal resolution in operational version of the GFS is about 25 km.
Much longer integration of similar global models are run for climate applications
but with much lower horizontal resolution. Although not specifically designed
for tropical cyclones, the model solutions contain smoothed representations of
these storms. One of the challenges in using global atmospheric model for hurri-
cane applications is objectively determining what is a tropical cyclone, given the
three dimensional solutions of atmospheric variables. This is especially difficult
in the lower resolution climate models. To address this issue, without manually
selecting features of interests, the initial conditions from a low resolution version
of the GFS (2 degree latitude-longitude grid) are examined at 6 hour periods
and compared with the known positions of tropical cyclones. Several Python
modules are used to build a prototype model quickly, and the prototype model
shows fast and accurate prediction with the low resolution GFS data.

Index Terms—hurricane, prediction, GFS, SVM

Introduction

The devastating effects from tropical storms, hurricanes! , and

typhoons on life and property places great importance on fore-
casting and warning systems [CAMO2]. To minimize the possible
damages from hurricanes, we need fast and accurate forecasts
as early as possible. Even with the significance of predicting a
hurricane, the procedure for identifying the initial position and
intensity of tropical cyclones is not fully automated. From direct
measures from aircraft, ships and surface stations and remote
sensing observations, including satellite imagery and Doppler
radar that is collected over time, meteorologists identify a storm,
and it is cumbersome process.

Numerical models are used to forecast the future position,
intensity and structure of hurricanes. For climate applications,
the resolution of these models is marginal for representation
of hurricanes. Different schemes are proposed to detect tropi-
cal cyclone-like vortices (TCLVs) in general circulation model
(GCM) simulations, which rely on threshold values of observed
characteristics of actual tropical cyclones. However, it is ad-hoc

x Corresponding author: lemin@cs.colostate.edu
§ Colorado State University
NOAA/NESDIS/STAR

Copyright © 2011 Minwoo Lee et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. In this paper, the term hurricane is used generically to represent tropical
cyclones of all intensities, even though, technically speaking, a tropical cyclone
must have winds greater than 63 kt to be classified as a hurricane.

Hurricane Tracks

&

Converted and
Combined Data

]
N
Train

prediction

| >

Converted data from
newly arrived rom GFS

GFS outputs

Fig. 1: Hurricane prediction procedure.

to use a different threshold for hurricane prediction [WALO4].
Although there is some research ongoing to improve the reanalysis
approach that determines the threshold, currently there is no
good representation of actual hurricane structure for reanalysis.
Furthermore, considering potential changes of hurricane intensity
[WALO4], faster and simple approaches are required for practical
use.

This paper examines a method to automate the objective
identification of hurricanes in global model forecast fields by using
a machine learning approach, support vector machines (SVM),
based on Global Forecast System (GFS) analyses. The outputs
from GFS [SAHO06, EMCO03] that produce forecasts of wind
speed and direction, humidity, and temperature are used as source
for hurricane prediction without any filtering based on previous
knowledge. From these features at each grid point, SVMs can be
trained to make an accurate prediction of hurricane occurrence.

Figure 1 shows the sequential procedure for hurricane predic-
tion from data conversion to final hurricane prediction. Python
provides useful packages to reduce the time for prototyping this
hurricane prediction procedure. Using Numpy, the basic data
matrices for meteorological features in each grid are stored and
manipulated. Matplotlib is used to analyze the patterns of the data
features, and the data is trained and classified by using PyML
SVM. PyGTK with Glade and Basemap generate the graphical
user interface to connect the sequential process of preparing
data, training a classifier, predicting hurricanes and presenting
prediction results to users.

Global Forecast System and Hurricane Tracks

To predict hurricanes, the first step is to access the weather data. In
this paper, we choose the output from the U.S. National Centers for
Environmental Prediction (NCEP) Global Forecast System (GFS).
For this initial prototype, low resolution GFS analysis fields are

mailto:lemin@cs.colostate.edu

HURRICANE PREDICTION WITH PYTHON

101211 /0B0CVOS1 gie BSOMB HGT(M) PR
P

12/09/10 OBUTC 0B1HR FCST VALD Sat 12/11/10 0BUTE NCEP,/NWS,/NOAA

Fig. 2: The wind component and humidity 2-D plot at a fixed
vertical pressure level. (http://mag.ncep.noaa.gov/NCOMAGWEB/
appcontroller)

used, rather than the GFS model forecasts. Similar GFS analysis
data are available in real time from NCEP (http://www.nco.ncep.
noaa.gov/pmb/products/gfs/) along with the forecast fields.

The GFS data set contains wind speed and direction, tem-
perature, geopotential height deviation and relative humidity in
a meteorological 3-D grid along with the year, month-day, time,
longitude, and latitude. The vertical coordinate of the 3-D grid
represents pressure level, where 100 hPa is near the top of the
atmosphere and 1000 hPa is near the surface. Figure 2 shows
example wind vectors at fixed vertical level (850 hPa of pressure).

This paper uses a low resolution GFS data with the longitude
and latitude intervals of 2 degrees and recording interval of 6
hours (0, 6, 12 or 18 UTC). This is similar to what might be
obtained from a long-term climate simulation. Along with GFS
outputs, hurricane tracks are used as labels for hurricane locations.
Hurricane tracks contain storm number, year, month, day, time,
and storm information such as latitude, longitude, maximum
winds, minimum pressure at the storm center, storm type, and
basin. For this research, each storm location and time information
is extracted to use them as labels for hurricane prediction training.

Data Preprocessing for Hurricane Detection

Raw GFS data and hurricane tracks cannot be used directly;
data preprocessing is necessary for efficient hurricane prediction.
Since the goal of the research is predicting the longitudinal and
latitudinal location of hurricanes, all the vertical coordinates can
be combined at each grid point. Each location on the earth,
specified by its latitude and longitude, is covered by a 3-D grid
cell of GFS data. We chose to combine the GFS data from the
four grid cell corners at all 11 heights by concatenating them into
one vector, as illustrated in Figure 3. The presence or absence of
a hurricane at each location is indicated by a 1 or -1, respectively,
as the first element of the vector. Thus, each sample contains
1411 x4 x 8 =353 values.

59

Fig. 3: Converting GFS data and hurricane tracks for hurricane
prediction.

Fig. 4: Image map for the converted data. First 33 rows are the grids
that have hurricanes, and the rest rows are randomly sampled grids.

From July 1st, 2008 through July 4th, 2008, there are 194,400
sample grid cells, and only 33 of them contains hurricanes. To
examine the difference between hurricane cells and the others, the
preprocessed data representation can be visualized by combining
samples as the rows of a Numpy array and displayed as an
image using Matplotlib. In Figure 4, the first 33 rows represent
locations with hurricanes during the time period, and the other
rows are randomly selected locations that do not have hurricanes.
The image shows that the data patterns are significantly different
between hurricane locations and the other samples. There is less
variation in some columns in the first 33 rows, the locations
contain hurricanes, than in the last 66 rows, locations without
hurricanes.

Numpy and Matplotlib for Data Preprocessing and Analysis

Numpy is the fundamental package that is used as a multi-
dimensional container. In this research, Numpy provides the basic
data structure for converted data representations and operations. It
includes various tools for data handling such as reading and storing
files, linear algebra, and matrix manipulation. Data conversion in
Figure 3 is easily implemented by using Numpy functions and
array object. The matshow() function in Matplotlib is used to
generate the image in Figure 4 and gives a first look at the data
pattern. Although eye observation of data is not always successful
for the general machine learning approaches, it is useful for the
GFS data.

Support Vector Machine

Support Vector Machine (SVM) [ASAO08,BIS06] is a popular tool
for classification, regression, and novelty detection. An important
property of support vector machines is that the determination
of the model parameters corresponds to a convex optimization

http://mag.ncep.noaa.gov/NCOMAGWEB/appcontroller
http://mag.ncep.noaa.gov/NCOMAGWEB/appcontroller
http://www.nco.ncep.noaa.gov/pmb/products/gfs/
http://www.nco.ncep.noaa.gov/pmb/products/gfs/

60

margin

w! @ (x,)+b=0

Fig. 5: Support Vector Machine.

problem, thus a local solution is a global optimum [BIS06]. Figure
5 shows the binary SVM margin maximizer for classification and
is explained below.

Support vector machine is characterized by its margin: it
looks for the hyperplane that separates data into two classes with
maximum margin. Let the training data be (x;,y;) with m input
vectors x; and target values y; € —1,1. The hyperplane can be
defined

fx)=wl®(x)+b (1)

where ®(x) denotes a nonlinear function. The w is the weight
vector, and scalar b is the bias. Thus, the margin separation into
two half spaces can be defined

{ yi=—1 if wl®(x)+b< —1
yi=1

if wi®(x;)+b>1
If the data is linearly separable, we can find a hyperplane such that

yif (xi) 2 1
If we scale the hyperplane in Equation 1, we get the margin that
is ﬁ Since maximizing HTZVH is equivalent to minimizing %H, the

hard margin SVM that seeks a maximum margin can be written as
a linear program:

minimize Il
2
subject o y;(w' ®(x)+b) > 1

In practice, the data is not always linearly separable. In such
data, by allowing some misclassified points, we can get larger
margins. Some previous theoretical and experimental study shows
that larger margin will generally perform better than hard margin
SVM [ASAO08]. We can define the slack variables & > 0 to allow
errors.

yiw ' ®(x)+b) >1-&

Now, adding control parameter C, we can rewrite the previous
linear program:

minimize @ +CY" &

3w @) +5) > 1§

&>0

where m is the number of points. C controls the conflicting
objectives, maximizing the margin and minimizing the sum of

subject to

PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

Fle Edit View Projects Help

BN o B NE S
[~ Actions &) Croanwigens
Data patn =
= Actions T
@ @ en |2 S
= e @nac :] |v widgets 3
[~ Topteveis =~ =
Track Fath A s
oEEEa E9Griac < 00 hoox
EEEE8 Start Datefmime & map
| v containers (v B wo
i vouttonboxs
oDE®OoO End Date/Time Iaber3 S
FEemlg [Window Properties - Gtcindow [mainWing.
w0 § EI[E & L General | Packing | common | signais | &
S O eneate key i -
- NER b e Name:[mainaow
[~ Control ana Dispia s optons Accel Groups
) o0 @- OB o- v Window Type: | Top Level
Window [uricane Detector ||
= E o Title: [Hurica
Window Role
@ B e n o
@ Resizable: Yes
o b o [o
Modal No
= B E Window
j j Position: flene
D=EHE — Default Width: []
< Gna 5|0 Humicane () Detected Grid | Detect Defaut
| » R o

Destroy with o
Parent. N
con. =

(s)
o} Bl

> Glade-3 for creating the GUI for hurricane prediction.

errors. When C is large, a large penalty is given to errors, it reduces
the margin that minimizes the error term. When C is small, it
allows more errors resulting in margin increase.

PyML

PyML is a machine learning library that focuses on SVM and
kernel methods. As other python packages such as scikit-learn,
shogun, orange, and mlpy, PyML efficiently wraps the state of the
art SVM library, libsvm. PyML provides several dataset containers
that hold class labels and a collection of data patterns. The
Numpy array object concatenating our hurricane data can be easily
converted to VectorDataSet in PyML. Since we have observed the
significant difference between hurricane and non-hurricane data
patterns, we apply a simple linear kernel for classification. Based
on the dataset and linear kernel, the SVM is trained for hurricane
prediction.

PyGTK and Glade for User Interface

For converting the raw data, training SVM, and finally predicting
hurricanes, a simple interface prototype can be easily constructed
by using PyGTK and Glade-3. Glade is a rapid application
development tool to enable fast user interface design. Glade-3
tool in Figure 6 makes it easy to create the base Ul for hurricane
prediction. Instead of writing the codes for the placement, color, or
type of each widget, the UI created in Glade-3 is stored in XML,
and the XML file is loaded in the python program with PyGTK.
This saves a fair amount of time for creating the GUI. The user
interface is composed of right side inputs and buttons for GFS data
and tracks file selection and converting with some options and for
training a classifier and saving or loading the trained classifier.
When a trained classifier is ready, the bottom interface is used
to predict hurricanes after selecting the GFS data to apply to the
classifier. The major part of the UI plots prediction results on a
map by using Basemap. Check buttons on the bottom menu are
for plotting options. The following code snippet shows the simple
usage to load the glade UI (the prototype codes will be available
on http://www.cs.colostate.edu/~lemin/hurricane/):

import gtk, gobject, cairo

import gtk.glade

gladefile = "HurricaneUI.glade"
builder = gtk.Builder ()

http://www.cs.colostate.edu/~lemin/hurricane/

HURRICANE PREDICTION WITH PYTHON

1.0

0.6 1

True positive rate

0.2} 1

%86 02 0.4 06 0.8 1.0
False positive rate

Fig. 7: ROC curve for the support vector machine.

builder.add_from_file (gladefile)
self.window = builder.get_object ("mainWindow")
builder.connect_signals (self)

Basemap to locate hurricane and prediction

Basemap is an add-on toolkit for Matplotlib that enables plotting
data over map projections. Coastlines, political boundaries, lon-
gitude and latitude grid lines are available in several different
resolutions. Provided map projection coordinates and plotting
functions make it easy to visualize predicted locations and actual
hurricanes on the globe. Figure 8 shows the GUI for hurricane
prediction. Orthogonal Basemap for the globe is projected in the
middle of the interface and when the trained SVM is applied to
the test data, it can show the hurricane locations as well as the
predicted hurricane locations depending on the display options.
Basemap on the interface can be loaded as below:

from mpl_toolkits.basemap import Basemap

self.map = Basemap (projection='ortho',

lat_0 = lat, lon_0 = lon,
resolution = '1°',
area_thresh = 1000., ax=ax)

self.map.drawcoastlines (ax=self.ax)

self.map.drawcountries (ax=self.ax)

self.map.drawlsmask (land_color='yellowgreen',
ocean_color="#CCFFFF"',
lakes=True, ax=self.ax)

Hurricane Prediction

Using 2008 GFS data and hurricane tracks, we ran a simple
experiment for hurricane prediction. Running the codes below for
5-fold cross-validation achieves 0.9998 of success rate (0.8458
balanced success rate). The almost square ROC curve (Figure 7)
shows the accuracy of the proposed framework. The computed
ROC/ROC_50 scores are 0.999808 and 0.916524 respectively.

import PyML as pyml

data = pyml.VectorDataSet (filen, labelsColumn=0)
s = pyml.SVM()

result = s.cv(data)

) -

Data Path

|EaGFsaat

o

Track Path
|@tracks

Start Date/Time

2008070100

End Date/Time

2008070418

] undersampling

o

[] Generate key file
| Create Mat.
Classifier Options

@ sVM

‘ Train ‘

zoom rect

”0O0+:

B8

 Grid |10 z|

| Load Classifier |
4 Hurricanes 21 Detected

Fig. 8: Hurricane prediction and actual hurricanes. Blue circles
indicate predicted hurricane locations, and red circles indicate the
actual hurricane locations.

Now, we train SVM with four days of GFS data and hurricane
tracks from July 1st to July 4th in 2008. The trained SVM predicts
hurricane locations of one and half months later. It is tested
on the data for August 29th when Hurricane Gustav neared the
west side of Cuba, and it predict the actual hurricane or near
hurricane locations successfully. Even with a short period time for
training samples, it found all hurricane locations without an error
in testing data: the prediction picks 21 grid cells including all four
hurricane locations. Figure 8 shows that even with over estimation
of hurricane locations, it predicts all the hurricanes. Furthermore,
the false positives are neighboring locations that can be the area
that hurricanes affect the atmospheric conditions close to the data
pattern of true hurricane locations. Training and prediction is done
simply by reading data files and calling train() and test() functions:

import PyML as pyml

data = pyml.VectorDataSet (filen,
s = pyml.SVM()

s.train(data) #
test_data = pyml.VectorDataSet (testfn,
result = s.test (test_data)

labelsColumn=0)

training
labelsColumn=0)
prediction

Conclusion

In summary, we presented the hurricane prediction problem, how
it can be tackled objectively with a machine learning approach,
and how python packages are applied to prototype the hurricane
prediction. For the proposed approached, meteorologists do not
need to select features of interests anymore. To show this, various
python packages are used for fast and efficient prototyping that
solves the hurricane prediction problem: Numpy for converting
GFS data and hurricane tracks, Matplotlib for analyzing the
data patterns, PyML for binary classification of hurricanes, and
PyGTK, Glade, and Basemap for the graphical user interface.
This machine learning approach will be able to contribute
developing fast and objective adaptation model for hurricane

62

prediction without manual feature selection. Although the con-
nection between global warming and hurricanes is not clear, some
research such as [WALO4] points out that changes in the number
of storms and the maximum intensities are likely to happen as
climate changes. Considering the hurricane changes over time,
online adaptation models for hurricane prediction needs to be
investigated. The various python packages will be an excellent
choice for use in future research as well.

REFERENCES

[SAHO6] Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, Van
den Dool HM, Pan H-L, Moorthi S, Behringer D, Stokes D,
Pena M, Lord S, White G, Ebisuzaki W, Peng P, Xie P. The
NCEP climate forecast system, J Clim 19(15):3483-3517. doi:
10.1175/JCLI3812.1, 2006.

[EMCO03] Environmental Modeling Center. The GFS Atmospheric Model,
NOAA/NCEP/Environmental Modeling Center Office Note 442,
14 pp. 2003 [Available online at http://www.emc.ncep.noaa.gov/
officenotes/FullTOC.html.].

[CAMO2] Camargo SJ, Zebiak SE. Improving the detection and tracking
of tropical cyclones in atmospheric general circulation models,
Technical Report No. 02-02. International Research Institute for
Climate Prediction, Palisades, NY, 2002.

[WALO4] K. Walsh. Tropical cyclones and climate change: Unresolved issues,
Climate Res., 27, 78-83, 2004.

[HOUO1] J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, PJ. van der
Linden, X. Dai, K. Maskell, C.A. Johnson, Climate Change 2001:
The Scientific Basis, Contribution of Working Group I to the Third
Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC). Cambridge University Press, Cambridge and New
York, 2001.

[ASA08] A. Ben-Hur, C.S. Ong, S. Sonnenburg, B. Sch"{o}lkopf, and G.
R"{a}tsch. Support vector machines and kernels for computational
biology, PLoS Comput Biol, 4(10):e1000173, 2008.

[BIS06] C.M. Bishop. Pattern recognition and machine learning, volume 4.
Springer New York, 2006.

PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

http://www.emc.ncep.noaa.gov/officenotes/FullTOC.html
http://www.emc.ncep.noaa.gov/officenotes/FullTOC.html

	Introduction
	Global Forecast System and Hurricane Tracks
	Data Preprocessing for Hurricane Detection
	Numpy and Matplotlib for Data Preprocessing and Analysis
	Support Vector Machine
	PyML
	PyGTK and Glade for User Interface
	Basemap to locate hurricane and prediction
	Hurricane Prediction
	Conclusion
	References

