
PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011) 63

IMUSim - Simulating inertial and magnetic sensor
systems in Python

Martin J. Ling‡∗, Alex D. Young‡

F

Abstract—IMUSim is a new simulation package developed in Python to model
Inertial Measurement Units, i.e. devices which include accelerometers, gyro-
scopes and magnetometers. It was developed in the course of our research
into algorithms for IMU-based motion capture, and has now been released
under the GPL for the benefit of other researchers and users. The software
generates realistic sensor readings based on trajectory, environment, sensor
and system models. It includes implementaions of various relevant processing
algorithms and mathematical utilities, some of which may be useful elsewhere.
The simulator makes extensive use of NumPy, SciPy, SimPy, Cython, Matplotlib
and Mayavi. The rapid development enabled by these tools allowed the project
to be completed as a side project by two researchers. Careful design of an
object-oriented API for the various models involved in the simulation allows
the software to remain flexible and extensible while requiring users to write a
minimum amount of code to use it.

Index Terms—simulation, IMU, accelerometer, gyroscope, magnetometer

Introduction

Inertial sensors—accelerometers and gyroscopes—are becoming
increasingly ubiquitous in a wide range of devices and appli-
cations. In particular, they are often used to automatically find
and track the orientation of a device. For this role they may be
combined with a magnetometer, which can sense the direction of
the Earth’s magnetic field. Such a combination can determine the
device’s full 3D orientation, including compass heading. Devices
designed specifically around these sensors are called Inertial
Measurement Units (IMUs), though readers may be more familiar
with them in modern smartphones, tablets and gaming controllers,
which use the orientation and movements of the device as a user
input mechanism.

Outside of consumer devices inertial and magnetic sensors find
a wide range of uses. They are used for attitude tracking in aircraft,
spacecraft, in many types of robotic systems, and in stabilised
platforms for cameras and weapons. In engineering and industry
they are used to detect and monitor vibrations, impacts, collisions
and other events. They have also been widely used in healthcare, to
monitor and classify the activities of a patient and to detect events
such as falls. In biology and agriculture, they have been used to
provide the same capabilities on animals. The list of applications
of these sensors continues to grow, with more uses being found

* Corresponding author: m.j.ling@ed.ac.uk
‡ University of Edinburgh

Copyright © 2011 Martin J. Ling et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

as their cost, size and power requirements decrease. However, as
newer and more ambitious applications push towards the limits of
sensor capabilities, development becomes harder.

Our own research over the past few years has focused on
motion capture of the human body using networks of wearable
IMUs. Most motion capture methods are based on cameras,
and consequently have limited tracking areas and problems with
occlusion. By instead tracking movements using IMUs on the
body, motion capture can be freed from these limitations. How-
ever, achieving accurate tracking with this approach is a difficult
problem and remains an active topic of research.

During our work in this area we invested a large amount of
effort in designing, building and debugging both hardware and
software to test our ideas. Some other research groups did similar
work, on their own platforms, whilst further researchers developed
algorithms which were tested only in their own simulations. We
were not readily able to compare our methods in controlled
experiments, and new researchers could not easily enter the field
without investing significant time and money in the necessary
infrastructure.

In our view, a significant obstacle for the development of
advanced inertial/magnetic sensing applications has been a lack
of useful simulation tools to allow a sensor system to be de-
signed, modelled and tested before expensive and time-consuming
hardware work is required. Ad-hoc simulations are sometimes
developed for individual applications or hardware but due to their
very specific nature these are rarely shared, and even if they are,
hard to reuse. As a result, most simulations are created from
scratch and tend towards being simplistic.

We therefore decided that a useful contribution we could make
to this field would be an openly available simulation framework,
that could continuously evolve to support state-of-the-art work
with the best available methods and models. We hence wanted
to keep the design as flexible, extensible and general purpose as
possible.

Although most other researchers in this area were using
MATLAB, we decided that Python would be the best platform for
developing our simulator. Ease and speed of development were
essential since we would be undertaking the project with just
two people, and alongside our main research. We also felt that
a popular general purpose language with a supporting open source
ecosystem, rather than a proprietary tool, was the appropriate
choice given the project’s goals.

After several months we released our first version under the
GPL in April 2011, and presented a paper [Young2011] that
discussed the work from a primarily scientific perspective. In

mailto:m.j.ling@ed.ac.uk

64 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

contrast, this paper focuses on the Python implementation and
our experiences during its development.

Overview

The goal of IMUSim is to allow inertial/magnetic sensor systems
to be tested in simulations that are quick to develop yet as realistic
as possible, reducing development time, cost, and risk in both
academic research and commercial development.

The key function of the software is hence to generate realistic
readings for sensors in simulated scenarios. The readings obtained
from an inertial or magnetic sensor at a given instant depend on
several factors:

• The trajectory followed by the sensor through space: its
position and rotation at a given moment, and derivatives
of these—in particular angular velocity and linear acceler-
ation.

• The surrounding environment: in particular the gravita-
tional and magnetic fields present.

• The nature of the sensor itself: its sensitivity, measurement
range, bias, etc.

• The analogue-to-digital converter (ADC) used to sample
the sensor output: its range, resolution, linearity, etc.

• Random noise associated with either the sensor or ADC.

We simulate all of these factors, taking an object-oriented ap-
proach. For each factor involved—e.g. trajectory, sensor, magnetic
field—we provide an abstract class defining a model interface, and
classes implementing specific models. All the models involved in
the simulation can thus be easily interchanged, and extended or
replaced as required.

In addition to just the model classes required to obtain simu-
lated sensor readings, the IMUSim package also includes:

• A basic framework of model classes for simulating multi-
device wireless systems with distributed processing.

• Implementations of existing processing algorithms for
inertial and magnetic sensor data, including methods for
sensor calibration, orientation estimation, body posture
reconstruction and position estimation.

• General purpose mathematical utilities useful for imple-
menting models and processing algorithms.

• 2D and animated 3D visualisation tools.

Rather than developing a specific UI for the simulator which
would inevitably be restrictive, we designed the package to be
easily used interactively via the [IPython] shell, or by scripting.
A tutorial [Ling2011] has been written which aims to quickly
introduce the use of the simulator through interactive examples
with IPython, assuming some knowledge of the field but no pre-
vious Python experience. This tutorial accompanies the full API
reference, which is generated using Epydoc from comprehensive
docstrings included in the code.

The implementation makes extensive use of [NumPy], [SciPy],
[SimPy], [Matplotlib], [MayaVi] and [Cython], and in general
aims to use existing libraries wherever possible. In a few cases
we have implemented limited amounts of functionality that could
have been reused from elsewhere. Reasons for doing this have
included performance (e.g. our fast Cython quaternion math
implementation), maintaining ease of use and consistency of the
API, or limiting the installation prerequisites to the common and
well-supported libraries included in the main scientific Python
distributions.

A quick example

In this section we look briefly at the IMUSim software starting
from the user’s perspective, and then at some aspects of the
implementation. We begin by looking at a simple example script,
which simulates an idealised IMU following a randomly generated
trajectory, sampling its sensors at 100Hz:
Import all public symbols from IMUSim
from imusim.all import *

Create a new simulation
sim = Simulation()

Create a randomly defined trajectory
trajectory = RandomTrajectory()

Create an instance of an ideal IMU
imu = IdealIMU(simulation=sim, trajectory=trajectory)

Define a sampling period
dt = 0.01

Set up a behaviour that runs on the simulated IMU
behaviour = BasicIMUBehaviour(platform=imu,

samplingPeriod=dt)

Set the time inside the simulation
sim.time = trajectory.startTime

Run the simulation till the desired end time
sim.run(trajectory.endTime)

The package has been designed to make simple tasks like this
quick to write, and to only require lengthy setup code for a
simulation when unusual and complex things are required. The
imusim.all package automatically imports all public symbols
from the various subpackages of imusim. The Simulation ob-
ject wraps up the three things required for an individual simulation
run: simulation engine, environment model, and random number
generator (RNG). Unless told otherwise, it includes a randomly
seeded RNG and a default environment model with nominal values
for Earth’s gravity and magnetic field. The IdealIMU class
models a complete IMU device with accelerometer, magnetometer,
gyroscope and supporting hardware components, all using ideal
models. BasicIMUBehaviour implements the most common
software functionality required on an IMU—sampling all its
sensors at regular intervals, storing the resulting values and,
if specified in options to its constructor, passing them on to
processing algorithms.

The behavioural code accesses the simulated hardware it has
been given through a defined API, allowing it to be written in
straightforward Python code as if running on real hardware. The
simulated hardware components then post events to the SimPy
simulation engine as necessary to model their functionality. In
this case, the main events will be the samples requested from the
sensors via the ADC. At the moments these samples are taken,
the sensor models will request information from the trajectory
and environment models to which they are attached, as needed to
compute their outputs. The ADC model will in turn process each
value, and generate a final reading. After each event is simulated
the simulation time advances directly to the next requested event.
Depending on the user’s computer and the complexity of the
simulation, time may pass from a little faster to very much slower,
compared to real time.

We display some progress output to keep the user informed. In
the simple case above the simulation is quick:

Simulating...

IMUSIM - SIMULATING INERTIAL AND MAGNETIC SENSOR SYSTEMS IN PYTHON 65

Fig. 1: Accelerometer readings for an ideal accelerometer following
a randomly curving trajectory.

Simulated 0.1s of 1.8s (5%).
Estimated time remaining 0.4s
...
Simulation complete.
Simulated 1.8 seconds in 0.4 seconds.

The user can now interactively explore the results via the same
objects that were used in the simulation. For example, plotting the
accelerometer samples from the IMU:

>>> plot(imu.accelerometer.rawMeasurements)

plus appropriate labels, gives the graph shown in Figure 1. Plotting
uses the normal facilities of Matplotlib, but IMUSim provides its
own plot function. This adds special support for its own data
types whilst retaining backward compatibility.

Data types

The parameter passed to plot above was a TimeSeries object,
one of the basic data types we developed for IMUSim. It represents
timestamped scalar, vector or quaternion values with optional
uncertainty information. We developed the TimeSeries class
initially as a simple container, because we found that when plot-
ting or otherwise passing around such data, it was often difficult
or awkward to keep track of the correct combinations. We later
included support for adding data sequentially, which is useful for
storing data as it is generated by the simulation. New data points
are appended to a list internally, with contiguous NumPy array
versions generated only when required.

A TimeSeries thus provides two essential attributes,
timestamps and values. The timestamps attribute is an
array of time values in ascending order:

>>> imu.accelerometer.rawMeasurements.timestamps
array([0.01, 0.02, ..., 1.79, 1.8])

These are times at which the samples were taken. In this case
they are uniformly distributed but any sequence of times may
be represented. The sample values themselves are found in the
values attribute:

>>> imu.accelerometer.rawMeasurements.values
array([[66.705814 , ..., -204.6486176],

[-93.40026896, ..., -155.16993659],
[116.56420017, ..., 117.56964057]])

Note the shape of this array, which is 3xN where N is the number
of timestamps. IMUSim uses column vectors, in order to work
correctly with matrix multiplication and other operations. Arrays
of vector data are therefore indexed first by component and then
by sample number. A single vector would be represented as a 3x1
array. IMUSim provides a vector function to concisely construct
these:

>>> vector(1,2,3)
array([[1.],

[2.],
[3.]])

The other important data type is the quaternion, which is a
mathematical construct with four components that can be used to
represent a rotation in 3D space; see [Kuipers2002] for an in-depth
treatment. Quaternions offer a more compact and usually more
computationally efficient representation than rotation matrices,
while avoiding the discontinuities and singularities associated with
Euler angle sequences. IMUSim provides its own Quaternion
class. Although a number of quaternion math implementations
in Python already exist, we developed our own in Cython for
performance reasons, due to the large number of quaternion
operations used in the simulator. We hope this component will
prove to be usefully reusable.

Quaternions can be constructed directly, converted to and from
from other rotation representations such as Euler angle sequences
and rotation matrices, used in mathematical expressions, and
applied to perform specific operations on vectors:

>>> q1 = Quaternion(0, 1, 0, 0)
>>> q1.toMatrix()
matrix([[1., 0., 0.],

[0., -1., 0.],
[0., 0., -1.]])

>>> q2 = Quaternion.fromEuler((45, 10, 30), order='zyx')
>>> q1 * q2
Quaternion(-0.2059911, 0.8976356, -0.3473967, 0.176446)
>>> q2.rotateVector(vector(1,2,3))
array([[0.97407942],

[1.30224882],
[3.36976517]])

As mentioned, the TimeSeries class can also be used with
quaternion values. The rotations of the random trajectory used in
the previous example simulation were generated from a time series
of quaternion key frames:

>>> trajectory.rotationKeyFrames.values
QuaternionArray(

array([[-0.04667, -0.82763, 0.29852, -0.47300],
[-0.10730, -0.81727, 0.33822, -0.45402],
...,
[0.40666, -0.04250, 0.80062, 0.43796],
[0.42667, -0.01498, 0.82309, 0.37449]]))

Arrays of quaternions are represented using the special
QuaternionArray class, also implemented in Cython, which
wraps an Nx4 NumPy array of the component values. Quaternion
arrays provide support for applying quaternion math operations
efficiently over the whole array.

Trajectory models

The data types we have just introduced form the basis for our
trajectory model interface. A trajectory defines the path of an
object through space, and also its changing rotation, over time.
To allow simulating inertial and magnetic sensors, a trajectory

66 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

needs to provide position and rotation, and their first and second
derivatives, at any given time. A trajectory must also give the start
and end of the period for which it is defined. In this case we will
look at a trajectory’s parameters at its starting time, which is a
scalar in seconds:

>>> t = trajectory.startTime
>>> t
3.8146809461460811

The position, velocity and acceleration methods of a trajectory
provide vector values, in SI units, at given times:

>>> trajectory.position(t) # m
array([[-10.36337587],

[4.63926506],
[-0.17801693]])

>>> trajectory.velocity(t) # m/s
array([[30.79525389],

[-20.9180481],
[2.68236355]])

>>> trajectory.acceleration(t) # m/s^2
array([[178.30674569],

[-15.11472827],
[15.54901256]])

The rotation at time t is a quaternion, but its derivatives—angular
velocity and acceleration—are vectors:

>>> trajectory.rotation(t)
Quaternion(-0.046679, -0.82763, 0.29852, -0.47300)
>>> trajectory.rotationalVelocity(t) # rad/s
array([[-2.97192064],

[2.97060751],
[-7.32688967]])

>>> trajectory.rotationalAcceleration(t) # rad/s^2
array([[-8.46813312],

[19.43475152],
[-31.28760834]])

Note that angular accelerations may be required, even when only
angular velocity sensors (gyroscopes) and linear accelerometers
are simulated. This is because sensors may be placed at offsets
from a trajectory, e.g. on the surface of a rigid body is whose centre
is following the trajectory. In the equation for linear acceleration
at an offset from a centre of rotation, an angular acceleration term
is present.

Any object which implements the methods above at can be
used as a trajectory model by IMUSim. The trajectory can be
defined in advance, or may be defined as a simulation progresses,
e.g. by simulating the effect of some control system. The simulator
will only call the trajectory methods for a time when all events
prior to that time have been simulated.

Since defining realistic trajectory models is one of the most
difficult aspects of IMU simulation, much of the code in IMUSim
is devoted to assisting with this. In particular, we provide tools for
defining trajectories from existing motion capture data in various
formats. Using such data requires the creation of continuous time
trajectories, with realistic derivatives, from discrete time position
and/or rotation information.

From sampled position data, interpolated values and deriva-
tives can be obtained by fitting three independent cubic spline
functions to the x, y, and z components of the data, using the
splrep and splev functions from scipy.interpolate.
Obtaining usable rotational derivatives from sampled rotations is
more complicated. The most common forms of quaternion interpo-
lation, the SLERP [Shoemake1985] and SQUAD [Shoemake1991]
algorithms, are continuous only in rotation and angular velocity

Fig. 2: Interpolated trajectories from motion capture data, for the
lower body of a walking human. The source data was in BVH format
at 120 Hz. The model posture is displayed at 5 Hz, and the velocity
vector obtained for the right foot is displayed at 50 Hz.

respectively, and hence cannot provide a continuous angular accel-
eration. We developed a Cython implementation of the quaternion
B-spline algorithm of [Kim1995], which provides the necessary
continuity.

For both position and rotation data, it is usually necessary to
use smoothing splines to avoid overfitting to noisy capture data, if
realistic derivative values are to be obtained. Appropriate smooth-
ing can be achieved by providing expected standard deviations of
the input data. Our code then provides the appropriate parameters
to splrep.

In many applications sensors are used to measure the move-
ments of jointed but otherwise rigid structures, such as the human
skeleton or a jointed robotic arm. We therefore provide specific
trajectory classes for modelling articulated rigid-body systems,
that obey their kinematic constraints. In particular, these classes
are useful to work with human motion capture data, which is often
pre-processed to fit this type of model and stored accordingly, in
formats such as BVH and ASF/AMC. We provide loaders for these
file formats, and splining wrapper classes that make it a simple to
obtain physically consistent trajectories from such data. Figure
2 illustrates model trajectories and a derivative obtained in this
manner, rendered using IMUSim’s 3D visualisation tools, which
are based on MayaVi.

Environment models

The second factor affecting sensor readings is the environment.
Accelerometers sense gravity, and magnetometers sense magnetic
field, both of which can vary with position and time. We may
also want to simulate radio transmissions from a wireless IMU,
the propagation of which will depend on its surroundings. All of
these considerations are described by an Environment object,
to which we assign models for each aspect of the environment
relevant to the simulation.

If not otherwise specified, each Simulation is created with
a default environment, including simple models of the gravita-
tional and magnetic fields at the Earth’s surface. Both are subclass
instances of the abstract VectorField class, which defines
an interface for time-varying vector fields. Field values can be
obtained by calling the models with a position vector and time:

>>> p = trajectory.position(t)
>>> sim.environment.gravitationalField(p, t) # m/s^2
array([[0.],

[0.],
[9.81]])

>>> sim.environment.magneticField(p, t) # in Tesla
array([[1.71010072e-05],

[0.00000000e+00],
[4.69846310e-05]])

IMUSIM - SIMULATING INERTIAL AND MAGNETIC SENSOR SYSTEMS IN PYTHON 67

Fig. 3: Unstructured measurements of magnetic field distortion used
to initialise an interpolated field model.

On Earth, and within a small area, it is generally sufficient to
model gravity as a constant field. For Earth’s magnetic field,
approximate values for a given location can be obtained from
the International Geomagnetic Reference Field model [IGRF] and
passed to the EarthMagneticField constructor. However,
local distortions can be very significant, so we provide means
for modelling varying fields. The SolenoidMagneticField
class simulates the magnetic field around a single ideal solenoid,
using the equations of [Derby2010]. More complex fields can be
modelled by superposition of multiple solenoids. Alternatively,
known field values at certain positions can be used to create an in-
terpolating field model. This requires an R3→R3 interpolation on
an unstructured grid, for which we use the Natural Neighbour al-
gorithm described in [Hemsley2009]. Our code provides a wrapper
for the C implementation of this algorithm [interpolate3d]. Figure
3 illustrates a real set of field measurements around the floor of
a steel-framed building. The code allows detailed measurements
such as these to be employed in simulations.

Sensor and device models

Real sensors suffer from noise, bias, misalignment, cross-axis
sensitivity and many other undesirable effects. To acheive a
realistic simulation we need to model these. IMUSim includes
generic parametric models for imperfect sensors, and also specific
models of some real sensor components, with parameters derived
from measurements and datasheet information. All sensor models
implement the interface of the abstract Sensor class. This defines
three methods to be implemented, each of which is a function of
time:

• trueValues returns a vector of values,
one for each axis, that would be measured by
an ideal sensor of this type. The units of these
values are those of the sensed quantity (e.g.
acceleration or angular rate).

• sensedVoltages returns the vector of ana-
logue output voltages of the sensor at a
given time. This method will internally call
trueValues, and transform the result via
some model of the sensor’s transfer function.
The result should include deterministic effects,
but exclude random noise; i.e. it should be an
ensemble mean of the voltages the sensor might
actually output at that moment.

• noiseVoltages returns randomly generated
noise that is additionally measured by the sen-
sor, following an appropriate distribution. Noise
values are taken from an individual RNG for
the sensor, that is by default seeded from the
main simulation RNG, but can be instead seeded
explicitly. Running a new simulation with the
same initial seed value for the sensor RNG will
generate the same noise for that sensor, allowing
repeatability with fine-grained control.

One reason for keeping these functions separate is to simplify
the composition of different classes to create a sensor model.
Usually trueValues is inherited from an abstract superclass
such as Magnetometer, while sensedVoltages may be
inherited from another class implementing the transfer function,
and noiseVoltages may come from yet another class. Addi-
tionally, having true and noiseless values independently accessible
is helpful for comparison and testing.

The final simulated voltage output is the sum of
sensedVoltages and noiseVoltages. In reality, the output
voltage is then converted to a digital value by an ADC, which
has limited range and resolution and thus clips and quantises the
values, as well as adding its own noise. Although somtimes sensor
devices have an ADC combined on the same chip, others are
interchangeable, and we therefore model ADCs with their own
classes separately from sensors.

Another issue in real hardware is that samples are never taken
at the exact times requested, because of the inevitable inaccuracy
of the IMU’s hardware timers. For this reason we also support
modelling of imperfect hardware timers.

All of these components can be brought together to create a
model of a specific device. The IdealIMU we used earlier is an
example, with ideal models for all the components of a standard
IMU. IMUSim also includes a model, produced from measured
parameters, of the real Orient-3 IMU we developed during our
research at Edinburgh [Orient]. This allows users to test algorithms
with a realistic model of a complete IMU device ’out of the box’.

The component-based API, including various parametric mod-
els and abstract classes implementing common functionality, is
designed to make it easy to model a new type of device with a
minimum of code. This is the same philosophy we have taken
with all parts of the simulator design. For the simulator to be
relevant to a wide range of users, and thereby gain an active user
base who will contribute to its development, its design must be
adaptable enough to support any usage and users must be able to
develop new models with minimal difficulty.

A more realistic simulation

Our first example script showed a very unrealistic simulation, with
an idealised device following a simple random trajectory. We will
now show a brief example of how using IMUSim, much more
realistic simulations can be produced with still very little code.
This script simulates an Orient-3 IMU attached to the right foot
of a walking human:

Import symbols from IMUSim
from imusim.all import *

Define a sampling period
dt = 0.01

Create an instance of a realistic IMU model

68 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

imu = Orient3IMU()

Create a new environment
env = Environment()

Define a procedure for calibrating an IMU in our
selected environment
calibrator = ScaleAndOffsetCalibrator(

environment=env, samples=1000,
samplingPeriod=dt, rotationalVelocity=20)

Calibrate the IMU
cal = calibrator.calibrate(imu)

Import motion capture data of a human
sampledBody = loadBVHFile('walk.bvh',

CM_TO_M_CONVERSION)

Convert to continuous time trajectories
splinedBody = SplinedBodyModel(sampledBody)

Create a new simulation
sim = Simulation(environment=env)

Assign the IMU to the simulation
imu.simulation = sim

Attach the IMU to the subject's right foot
imu.trajectory = splinedBody.getJoint('rfoot')

Set the starting time of the simulation
sim.time = splinedModel.startTime

Set up the behaviour to run on the IMU
BasicIMUBehaviour(platform=imu, samplingPeriod=dt,

calibration=cal, initialTime=sim.time)

Run the simulation
sim.run(splinedModel.endTime)

At 16 lines of code, this is only twice the length of the previous
example, but is based on:

• a real human motion, imported from motion
capture data and transformed to usable trajecto-
ries.

• an empirically obtained model of a real IMU
design, including noise and other imperfections.

• a simulation of a real calibration procedure.

Further information on the new steps appearing in this exam-
ple—including IMU calibration, and more on the use of motion
capture data, of which much is freely available—can be found in
the IMUSim tutorial [Ling2011].

Plotting the measurements of the accelerometer in this simula-
tion, using the calibration obtained for the IMU, results in Figure
4. Compare the appearance of this data to that from the previous,
more simplistic simulation in Figure 1.

Data processing algorithms

Obtaining realistic sensor data in simulations is one of IMUSim’s
key goals, but the package is also intended to support the compar-
ison, development and selection of algorithms for processing this
data. Implementations are included for a number of existing pub-
lished algorithms. These may be useful as-is in some applications.
They may also be used to compare new methods. We encourage
users publishing new methods to contribute implementations of
their algorithms themselves, and publish the scripts used for
their experiments. This allows their results to be reproduced, and

Fig. 4: Simulated accelerometer readings for an Orient-3 IMU
attached to the right foot of a walking human.

reduces the risk that their work will be misrepresented by an
incorrect reimplementation by another researcher.

In addition to the library of existing published methods, we
have tried to provide some generally useful tools for working with
sensor data. In particular, we include generic implementations
of the standard linear Kalman filter, the Unscented Transform,
and the Unscented Kalman Filter. These are widely useful state
estimation and nonlinear system tools, and could be usefully
transferred to SciPy or another library.

Validation and testing

In order to test the accuracy of our simulations, we have conducted
some experiments to directly compare our simulated sensor values
with those measured by real IMUs. To achieve this, we used
an optical motion capture system to capture the movements of
a subject who was also wearing wireless IMUs. In addition to
the normal markers on the subject, the positions and rotations of
the IMUs themselves were tracked using three markers attached
to each IMU. From the optical capture data we produced a rigid
body model of the subject, which was used via the methods we
have described to obtain simulated sensor data. We also sampled
the magnetic field in the capture area, using the magnetometer of
an IMU swept around the capture volume whilst being tracked by
the optical system. These measurements, seen in Figure 3, were
used to generate an interpolated field model of the capture area
which was also used in the simulation.

In our experiments we obtained correlations of r2 > 0.95
between simulated and measured values for all three types of sen-
sors—accelerometers, gyroscopes and magnetometers. More de-
tail on these experiments and results can be found in [Young2011].

The software is accompanied by test scripts designed to be
used with the nosetests tool. In total the current version runs
over 30,000 test cases, which aim to verify the correct behaviour
of the code. The tests include checking simulated sensor values
against real ones obtained in the experiments described above,
to ensure that after any code change the simulator still meets its
published claims of accuracy.

We also generate code coverage reports from the tests and use
these to identify untested code paths. Unfortunately at present it
is not straightforward to obtain test coverage for the Cython parts

IMUSIM - SIMULATING INERTIAL AND MAGNETIC SENSOR SYSTEMS IN PYTHON 69

of the code; some unofficial code to do this is in circulation, but
official future support for this in the coverage module would be
helpful.

Conclusion

We have presented IMUSim, a simulation framework for inertial
and magnetic sensor systems, and looked at some of the details
of its Python implementation. The package has been designed to
meet the simultaneous goals of:

• enabling accurate simulations,
• remaining as flexible and extensible as possible,
• minimising the amount of code that users must

write.

This is achieved by careful design of an object-oriented API
for the various models required in the simulation.

The project was completed in a matter of months by two
researchers alongside other work. We believe this demonstrates
well the rapid development enabled by Python and its increasing
range of scientific libraries. In the process of development we
created some contributions which may be of wider use, and could
be moved to more general purpose libraries. These include:

• fast Cython classes for quaternion mathemat-
ics, including efficient quaternion arrays and B-
spline fitting of quaternion values.

• generic implementations of the Kalman Filter,
Unscented Transform, and Unscented Kalman
Filter.

• a TimeSeries class for representing extend-
able time series of scalars, vectors or quaternions
with covariance information, and an enhanced
plot command that accepts these.

• 3D vector field interpolation from unstructured
field samples, based on a wrapping of an existing
C library for natural neighbour interpolation.

The IMUSim source code is available from the project website
at http://www.imusim.org/, under the GPLv3 license. The software
is supported by a tutorial, API reference, users mailing list, and
test suite.

Acknowldgements

Development of the simulator was in part supported by the UK
Engineering and Physical Sciences Research Council under the
Basic Technology Research Programme, Grant C523881.

REFERENCES

[Young2011] A D Young, M J Ling and D K Arvind, IMUSim: A Simulation
Environment for Inertial Sensing Algorithm Design and Eval-
uation, in Proceedings of the 10th ACM/IEEE International
Conference on Information Processing in Sensor Networks,
pp. 199-210, ACM, April 2011.

[IPython] F Perez and B E Granger, IPython: A System for Interactive
Scientific Computing, in Computing in Science and Engineer-
ing, vol. 9, no. 3, pp. 21-29, May/June 2007.

[NumPy] T Oliphant, Guide to Numpy, 2006. Available at http://www.
tramy.us/.

[SciPy] E Jones, T Oliphant, P Peterson and others, SciPy: Open
Source Scientific Tools for Python. Available at http://www.
scipy.org.

[SimPy] K Müller and T Vignaux, SimPy: Simulating Systems in
Python, 2003. Available at http://onlamp.com/pub/a/python/
2003/02/27/simpy.html.

[Matplotlib] J D Hunter, Matplotlib: A 2D Graphics Environment, in
Computing in Science & Engineering, vol. 9, no. 3. pp. 90-
95, 2007.

[MayaVi] P Ramachandran and G Varoquaux, Mayavi: 3D Visualization
of Scientific Data, in IEEE Computing in Science & Engineer-
ing, vol. 13, no. 2, pp. 40-51, 2011.

[Cython] R Bradshaw, S Behnel, D S Seljebotn, G Ewing and others,
The Cython compiler. Available at http://cython.org.

[Ling2011] M J Ling, IMUSim Tutorial, Version 0.2, May 2011. Available
at http://www.imusim.org/docs/tutorial.html.

[Kuipers2002] J B Kuipers, Quaternions and Rotation Sequences, 5th Edi-
tion, Princeton University Press, 2002.

[Shoemake1985] K Shoemake, Animating Rotation with Quaternion Curves,
in Proceedings of the 12th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH’85), pp.
245-254, ACM, 1985.

[Shoemake1991] K Shoemake, Quaternion Calculus for Animation, in Math
for SIGGRAPH (ACM SIGGRAPH’91 Course Notes #2),
1991.

[Kim1995] M-J Kim, M-S Kim and S Y Shin, A General Construc-
tion Scheme for Unit Quaternion Curves with Simple High
Order Derivatives, in Proceedings of the 22nd Annual Con-
ference on Computer Graphics and Interactive Techniques
(SIGGRAPH’95), pp. 369-376, ACM, 1995.

[IGRF] National Oceanic and Atmospheric Administration, Geomag-
netic Online Calculator. Available at http://www.ngdc.noaa.
gov/geomagmodels/IGRFWMM.jsp.

[Derby2010] N Derby and S Olbert, Cylindrical Magnets and Ideal
Solenoids, in American Journal of Physics, vol. 78, no. 3, pp.
229-235, March 2010.

[Hemsley2009] R Hemsley, Interpolation on a Magnetic Field, Technical
Report, Bristol University, September 2009. Available at
http://interpolate3d.googlecode.com/files/Report.pdf.

[interpolate3d] R Hemsley, A Natural Neighbour Interpolation program for
3D data. Available at http://code.google.com/p/interpolate3d/.

[Orient] A D Young, Orient Motion Capture, Available at http://
homepages.inf.ed.ac.uk/ayoung9/orient.html

http://www.imusim.org/
http://www.tramy.us/
http://www.tramy.us/
http://www.scipy.org
http://www.scipy.org
http://onlamp.com/pub/a/python/2003/02/27/simpy.html
http://onlamp.com/pub/a/python/2003/02/27/simpy.html
http://cython.org
http://www.imusim.org/docs/tutorial.html
http://www.ngdc.noaa.gov/geomagmodels/IGRFWMM.jsp
http://www.ngdc.noaa.gov/geomagmodels/IGRFWMM.jsp
http://interpolate3d.googlecode.com/files/Report.pdf
http://code.google.com/p/interpolate3d/
http://homepages.inf.ed.ac.uk/ayoung9/orient.html
http://homepages.inf.ed.ac.uk/ayoung9/orient.html

	Introduction
	Overview
	A quick example
	Data types
	Trajectory models
	Environment models
	Sensor and device models
	A more realistic simulation
	Data processing algorithms
	Validation and testing
	Conclusion
	Acknowldgements
	References

