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Adapted G-mode Clustering Method applied to
Asteroid Taxonomy

Pedro Henrique Hasselmann**, Jorge Marcio Carvano*, Daniela Lazzaro*

Abstract—The original G-mode was a clustering method developed by A. I.
Gavrishin in the late 60’s for geochemical classification of rocks, but was also
applied to asteroid photometry, cosmic rays, lunar sample and planetary science
spectroscopy data. In this work, we used an adapted version to classify the
asteroid photometry from SDSS Moving Objects Catalog. The method works
by identifying normal distributions in a multidimensional space of variables.
The identification starts by locating a set of points with smallest mutual dis-
tance in the sample, which is a problem when data is not planar. Here we
present a modified version of the G-mode algorithm, which was previously
written in FORTRAN 77, in Python 2.7 and using NumPy, SciPy and Matplotlib
packages. The NumPy was used for array and matrix manipulation and Mat-
plotlib for plot control. The Scipy had a import role in speeding up G-mode,
Scipy.spatial.distance.mahalanobis was chosen as distance es-
timator and Numpy . histogramdd was applied to find the initial seeds from
which clusters are going to evolve. Scipy was also used to quickly produce
dendrograms showing the distances among clusters.

Finally, results for Asteroids Taxonomy and tests for different sample sizes
and implementations are presented.

Index Terms—clustering, taxonomy, asteroids, statistics, multivariate data,
scipy, numpy

Introduction

The clusters are identified using the G-mode multivariate clus-
tering method, designed by A. I. Gavrishin and published in
Russia in the late 60’s [Cor76]. The algorithm was originally
written in FORTRAN V by A. Coradini in the 70’s [Cor77]
to classify geochemical samples [Cor76, Bia80], but is also
applicable to a wide range of astrophysical fields, as Small
Solar System Bodies [Bar87, Bir96, Ful08, Per10], disk-resolved
remote sensing [Pos80, Tos05, Cor08, Ley10, Tos10], cosmic rays
[Gio81] and quasars [Cor83]. In 1987, Bar87 used original G-
mode implementation to classify measurements of asteroids made
by the Eight-Color Asteroid Survey [Zel85] and IRAS geometric
albedos [Mat86] to produce a taxonomic scheme. Using a sample
of 442 asteroids with 8 variables, they recognized 18 classes
using a confidence level of 97.7%. Those classes were grouped to
represent the asteroid taxonomic types. G-mode also identified that
just 3 variables were enough to characterize the asteroid taxonomy.

The G-mode classifies N elements into Nc unimodal clusters
containing Na elements each. Elements are described by M vari-
ables. This method is unsupervised, which allows an automatic
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identification of clusters without any a priori knowledge of sample
distribution. For that, user must control only one critical parameter
for the classification, the confidence levels g or its corresponding
critical value G,;. Smaller this parameter get, more clusters are
resolved and smaller their spreads are.

So, we chose this method to classify the asteroid observations
from Sloan Digital Sky Moving Object Catalog, the largest data set
on photometry containing around 400,000 moving object entries,
due to its previous success on asteroid taxonomy, unsupervision
and lower number of input parameters. However, we were aware
the computational limitation we were going to face, since the
method never was applied to samples larger than 10,000 elements
[Ley10] and its last implementation was outdated. Therefore, the
G-mode used here follows an adapted version of the original
method published by Gav92, briefly described by FulOO and re-
viewed by Tos05 . Median central tendency and absolute deviation
estimators, a faster initial seed finder and statistical whitening were
introduced to produce a more robust set of clusters and optimize
the processing time. The coding was performed using Python 2.7
with support of Matplotlib, NumPy and SciPy packages”. The
algorithm can be briefly summarized by two parts: the first one is
the cluster recognition and the second evaluates each variable in
the classification process. Each one is going to be described in the
following sections.

Recognition Of The Unimodal Clusters

The first procedure can be summarized by the following topics
and code snippets:

e The data is arranged in N X M matrix. All variables are
Scipy.cluster.vqg.whiten , which means they are
divided by their absolute deviation to scale all them up.
This is a important measure when dealing with percentage
variables, such as geometric albedos.

o Initial seed of a forming cluster is identified. At the
original implementation, the G-mode relied on a brute-
force algorithm to find the three closest elements as initial
seed, which required long processing time. Therefore, in
this version, the initial seeds are searched recursively using
Numpy . histogramdd , which speeds up the output:

""" barycenter.py '''

def boolist (index, values, lim):
if all([boo(item[0],item([1]) \

for item in izip(values,lim)]):

*. The codebase is hosted through GitHub .
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return index

def pairwise(iterable):
''"'s => (s0,s1), (s1,s2),
a, b = tee(iterable)
next (b, None)
return izip(a, b)

(s2,

def volume (lst):
p=1

for i in 1lst:
return p

p += i[1] - i[0]

def barycenter_density (data, upper, \

lower, dens, nmin) :

grid,

from numpy import histogramdd,
unravel_index, amax

array, \

rng = range (data.shape[1l])
nbin = map(int,array([grid] ~data.shapel[l]))
hist, edges = histogramdd( \

data,bins=nbin, range=tuple (zip (lower,

\ )

limits = array( \

[list (pairwise (edges[i])) for i in rng]l)

ind = unravel_index (argmax (hist), hist.shape)
zone = array([limits[i, ] \
for i, j in izip(rng, ind)])
density = amax (hist) / volume (zone)
if density > dens and amax (hist) > nmin:
zone = zone.T
return barycenter_density (data, grid, \
zone[l], zone[0O], density, nmin)
else:
return filter (lambda x: x != None, \
imap (lambda i, y: \
boolist (i,y,zone), \
xrange (data.shape[0]), data))

The function above divides the variable hyperspace into large
sectors, and the initial seed is searched for only in the most
crowded sector. Recursively, the most crowded sector is once
divided as long as the density increases. When density decreases
or the minimal number of points set by the user is reached, the
procedure stops. The initial seed is chosen from the elements of
the most crowded sector. In the end, starting central tendency L;
and standard deviation o; are estimated from the initial seed. If
any standard deviation is zero, the value is replaced by the median
uncertainty of the variable.

e 72 criterion. In the next step, the Mahalanobis dis-
tance (Scipy.spatial.distance.mahalanobis)
between the tested cluster and all elements are computed:

2-@-Bs@-1)

where J; is the jth element and S is covariance matrix of
the tested cluster.

«  Hypothesis Testing. The 72 estimator follows a y? distribu-
tion, but for sake of simplification, Z? can be transformed
to Gaussian estimator G if the degree of freedom f is
large enough, which is satisfied for most of samples. Now,
the critical value G, in hypothesis testing are given as

upper) )
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multiples of o , simplifying its interpretation. Therefore,
the vectorized transformation [Abr72] can be written:

while the elements of the vector degree of freedom are
given by:
M
fk::[V"jg“if
s=1Tks

for fi > 100 , where r,%s is the correlation coefficient. For
30 < fr < 100, the G parameter becomes:

G — (Z%)l/s_(l_ )

2 f
9 N

oI
2~

Then the null hypothesis y;; = 4; is tested with a statistical
significance level of P(G; < Gy, ) (P, probability) for a
X, to belong to a tested class, i.e., a class contains the y;
element if its estimator G; satisfies G; < G, .

e U; and o; are redefined on each iteration. The iteration is
executed until the Na and correlation matrix R converge to
stable values. Once the first unimodal cluster is formed,
its members are removed from sample and the above
procedure is applied again until all the sample is depleted,
no more initial seeds are located or the condition N >
M-1 is not satisfied anymore. If a initial seed fails to
produce a cluster, its elements are also excluded from the
sample.

As soon as all unimodal clusters are found and its central
tendency and absolute deviation are computed, the method goes to
the next stage: to measure the hyper-dimension distance between
classes and evaluate the variable relevance to the classification.

Variable Evaluation and Distance Matrix

This part of the method is also based on Z2 criterion, but now the
objects of evaluation are the clusters identified on the previous
stage. The variables are tested for their power to discriminate
clusters against each other. For this purpose, the Nc X Nc¢ (Nc, the
number of clusters) symmetric matrices of Gaussian estimators are
computed for each variable i as follows:

Geila,b) = \/2[Z2(a.b) +Z2(b.a)] — /2 (N + Np) — 1

where Na and Nb are respectively the number of members in the
a-th and b-th class, while Z?(a,b) and Z? (b, a) are a reformulation
of 72 estimator, now given by:

Ny Np . o \2
Xijb — Hi,
Zab)=Y 2, =Y (chizu'“)
=1 =1 ia

Z?(b,a) can be found just by permuting the equation indices.

The Gc; matrix gives the efficiency of variable i to resolve
the clusters, each element represent the capacity of a variable i to
discriminate a pair of cluster from each other. If all the elements
are lower then a given critical value, then this variable is not
significant for the classification procedure. Thus, smaller matrix
values indicate less distinction between clusters. To discriminate
the redundant variables, all the elements of Gc¢; matrix are tested
against the null hypothesis u; , = L;, and if none of them satisfy
Gci(a,b) < Gy, , the method is iterated again without the variable i.
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The method is repeated until stability is found on the most suitable
set of meaningful variables for the sample.

The Nc x Nc symmetric Distance Matrix between clus-
ters with respect to all meaningful variables is also calcu-
lated. The same interpretation given to Gc; matrices can be
used here: higher D?(a,b) elements, more distinction between
clusters are presented. D2?(a,b) matrix is used to produce a
Scipy.cluster.hierarchy.dendrogram, which graph-
ically shows the relation among all clusters.

Robust Median Statistics

Robust Statistics seeks alternative estimators which are not exces-
sively affected by outliers or departures from an assumed sample
distribution. For central tendency estimator p;, the median was
chosen over mean due to its breakdown point of 50% against
0% for mean. Higher the breakdown point, the estimator is
more resistant to variations due to errors or outliers. Following a
median-based statistics, the Median of Absolute Deviation (MAD)
was selected to represent the standard deviation estimator ¢. The
MAD is said to be conceived by Gauss in 1816 [Ham74] and can
be expressed as:

MAD(x;) = med {|xji —med (x:)|}

To be used as a estimator of standard deviation, the MAD must
be multiplied by a scaling factor K, which adjusts the value for
a assumed distribution. For Gaussian distribution, which is the
distribution assumed for clusters in the G-mode, K = 1.426 .
Therefore:

o; =K -MAD

Computing the Mahalanobis distance is necessary to estimate the
covariance matrix. MAD is expanded to calculate its terms:

Si = K*-med {| (xji —med (1)) - (xjx —med () |}

The correlation coefficient ry; used in this G-mode version was
proposed by She97 to be a median counterpart to the Pearson
correlation coefficient, with breakpoint of 50%, similar to MAD
versus standard deviation. The coefficient is based on linear data
transformation and depends on MAD and the deviation of each
element from the median:

 med?|u| — med?|v|

T ed?|u| + med?|v|
where
= X —med (%) o Xj—med ()
O; Ok
o Xij—med (m) i —med ()
O; O

The application of median statistics on G-mode is a departure
from the original concept of the method. The goal is producing
more stable classes and save processing time from unnecessary
successive iterations.

Code Structure, Input And Output

The GmodeClass package, hosted in GitHub , is organized in a
object-oriented structure. The code snippets below show how the
main class and its objects are implemented, explaining what each
one does, and also highlighting its dependences:

P P

Gmode.py
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""" modules: kernel.py, eval_variables.py,
plot_module.py, file_module.py, gmode_module.py
support.py '''

class Gmode:

def _ init_ (self):
Make directory where tests are hosted.
Run support.py and read shell commands.

rrr

def Load(self):
Make directory in /TESTS/ where test's plots,
lists and logs are kept. This object is run

when ___init__ () or Run() 1is called.

def LoadData(self, file):
dependencies: operator
Load data to be classified.

rrr

def Run(self, gl, sector, ulim, minlim):

P

dependencies: kernel.py

Actually run the recognition procedure.

Returns self.cluster_members, self.cluster_stats.

rrr

def Evaluate(self, gl):

vy

dependencies: eval_variables.py

Evaluate the significance of each variable and
produce the distance matrices.

Returns self.Gc and self.D2. '''

def Extension(self, gl):

P

dependencies: itertools
Classify data elements excluded
from the main classification.
Optional feature.

Modify self.cluster_members

rrr

def Classification(self):
""" Write Classification into a list.

P

def ClassificationPerID(self):
P

dependencies: gmode_module.py

If the data elements are
measurements of group of objects,
organize the classification into
a list per Unique Identification.

rrr

def WriteLog(self):

vy

dependencies: file _module.py

Write the procedure log with informations about
each cluster recognition,

variable evaluation and distance matrices.
P

def Plot(self, lim, norm, axis):

rrr

dependencies: plot_module.py
Save spectral plots for each cluster.

rrr

def Dendrogram(self):

rrr

dependencies: plot_module.py
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Save scipy.cluster.hierarchy.dendrogram figure.
vy

def Timelt (self):

rrr

dependencies: time.time
Time, the whole procedure

and save into the log.
P

in minutes,

if 1ame == '_ _main__'
gmode = Gmode ()
load = gmode.LoadData ()
run = gmode.Run ()
ev = gmode.Evaluate ()
ex = gmode.Extension () # Optional.
col = gmode.ClassificationPerID ()
end = gmode.Timelt ()
classf = gmode.Classification()
log = gmode.WriteLog ()
plot = gmode.Plot ()
dendro = gmode.Dendrogram/()

Originally, G-mode relied on a single parameter, the confidence
level gl, to resolve cluster from a sample. However, tests on
simulated sample and asteroid catalogs (More in next sections),
plus changes on initial seed finder, revealed that three more
parameters were necessary for high quality classification. Thus,
the last code version ended up with the following input parameters:

o qrorGy (——qgl, self.ql): Confidence level or critical
value. Must be inserted in multiple of o . Usually it
assumes values between 1.5 and 3.0 .

e Grid (-—-grid, —g, self.grid) : Number of times
which barycenter.barycenter_density () will
divide each variable up on each iteration, according to
sample’s upper and lower ranges. Values between 2 and
4 are preferable.

¢ Minimum Deviation Limit (——mlim, -m,
self.mlim) Sometimes the initial seeds starts
with zeroth deviation, thus this singularity is corrected
replacing all deviation by the minimum limit when lower
than it. This number is given in fraction of median error
of each variable.

e Upper Deviation Limit (-—ulim, -u,
self.ulim) : This optional parameter is important
when the clusters have high degree of superposition and
its necessary the identification of smaller mingled clusters.
The upper limit is a restriction which determines how
much a cluster might grow up. This value is given in
fraction of total standard deviation of each variable.

The output is contained in a directory created in /TESTS/
and organized in a series of lists and plots. On the directory
/TESTS/.../maps/ , there are on-the-fly density distribu-
tion plots showing the locus of each cluster in sample. On
/TESTS/.../plots/ , a series of variable plots permits the
user to verify each cluster profile. On the lists clump_xxx.dat
,gmodel_xxx.dat,gmode2_xxx.dat and log_xxx.dat
the informations about cluster statistics, classification per each
data element, classification per unique ID and report of the
formation of clusters and distance matrices are gathered. Working
on a Python Interpreter, once Gmode.Run () was executed,
users might call self.cluster_members to get a 1ist of
sample indexes organized into each cluster they are members of.
The self.cluster_ stats returns a 1ist with each cluster
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Fig. 1: Simulated Sample of 2000 points. Blue dots represent the bidi-
mensional elements and the clusters are three Gaussian distributions
composed of random points.

statistics. Gmode .Evaluate () gives the self.Gc matrix and
self.D2 distance matrix among clusters.

Users must be aware that input data should be formatted in
columns in this order: measurement designation, unique identi-
fication, variables, errors. If errors are not available, its values
should be replaced by 0.0 and mlim parameter might not be
used. There is no limit on data size, however the processing time
is very sensitive to the number of identified cluster, which may
slow down the method for a bigger number. For example, with
20,000 elements and 41 clusters, the G-mode takes around to 2
minutes for whole procedure (plots creation not included) when
executed in a Intel Core 2 Quad 2.4 GHz with 4 Gb RAM.

Our implementation also allows to import Gmode and use
it on a Python Interpreter or through shells as in the example
below:

python Gmode.py —--in path/to/file \
--gl 2.0 -g 3 -u 0.5 -m 0.5 -n Nickname

Finally, since the plot limits, normalization and axis are optimized
to asteroid photometry, users on shell are invited to directly change
this parameters in config.cfg. If data is not normalized thus
norm = None. More aesthetic options are going to be imple-
mented in future versions using Matplotlib.rcParams.

Code Testing

For testing the efficiency of the Adapted G-mode version,
a bidimensional sample of 2000 points was simulated us-
ing Numpy.random. The points filled a range of 0 to 10.
Three random Gaussian distributions containing 500 points
each (Numpy.random.normal), plus 500 random points
(Numpy . random. rand) composed the final sample (Figure
1). These Gaussians were the aim for the recognition ability of
clustering method, while the random points worked as background
noise. Then, simulated sample was classified using the Original
[Gav92] and Adapted G-mode version. The results are presented
in Table 1 and figures below.

Comparing results from both versions, it is noticeable how
each version identifies clusters differently. Since the initial seed in

7. Central Tendency.
%. Standard Deviation.
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Gaussians C.T." S.D.F

1 (3,3) (0.5,0.25)
2 (3,8) (0.7,0.7)
3 (7,5) (0.7,0.7)
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N N-Original N-Adapted
500 471 (5.8%) 512 (2.4%)
500 538 (7.6%) 461 (7.8%)

500 585 (17%) 346
(30.8%)

TABLE 1: Gaussian Distributions in Simulated Sample.

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
log10(N)

Fig. 2: Red filled circles are the elements of clusters identified by
Original G-mode. The green filled circles represent the initial seed.
Classification made with q; =2.20.

the Original G-mode starts from just the closest points, there is no
guarantee that initial seeds will start close or inside clusters. The
Original version is also limited for misaligned-axis clusters, due
to the use of a normalized euclidean distance estimator, that does
not have correction for covariance. This limitation turn impossible
the identification of misaligned clusters without including random
elements in, as seen in Figure 2 .

The Adapted version, otherwise, seeks the initial seed through
densest regions, thus ensuring its start inside or close to clusters.
Moreover, by using the Mhalonobis distance as estimator, the
covariance matrix is taken into account, which makes a more
precise identification of cluster boundaries (Figure 3). Neverthe-
less, Adapted G-mode has a tendency to undersize the number
of elements on the misaligned clusters. For cluster number 3 in
Table 1 , a anti-correlated gaussian distribution, the undersizing
reaches 30.8%. If the undersizing becomes too large, its possible
that “lost elements” are identified as new cluster. Therefore, it may
be necessary to group clusters according to its d?(a,b) distances.

Sloan Digital Sky Survey Moving Objects Catalog 4

SDSS Moving Objects Catalog 4th (SDSSMOC4) release is
now the largest photometric data set of asteroids [Ive0l, Ivel0],

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
log10(N)

Fig. 3: Clusters identified by Adapted G-mode. Labels are the same
as previous graphics. Classification made with g, = 2.20.

containing 471,569 detections of moving objects, where 202,101
are linked to 104,449 unique objects. It has a system of five
magnitudes in the visible [Fuk96] , providing measurements
and corresponding uncertainties. As the photometric observations
are obtained almost simultaneously, rotational variations can be
discarded for most of the asteroids. The SDSS-MOC4 magni-
tudes employed here are first converted to normalized reflected
intensities! [Lup99]. Thereby solar colors were obtained from
IveOl and extracted from asteroid measurements. A middle band
called g’ was chosen as reference [Carl0], thus being discarded
from the classification procedure.

In what follows, all observations of non-numbered asteroids,
with uncertainties in each filter greater than the 3rd quartile,
have been excluded. Moreover, all detections 15 degrees from the
Galactic Plane and with |DEC| < 1.26 were eliminated due to
inclusion of sources in crowded stellar regions, which have a high
possibility of misidentification> . Finally, the sample contained
21,419 detections linked to 17,027 asteroids.
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Fig. 4: Density distributions of reflected intensities measured from as-
teroid observations by SDSSMOCH4. The colors correspond to degrees
of point agglomeration.

Preliminary Results on Asteroid Photometric Classification

When looking at the density distributions (Figure 4) it is possible
to notice two large agglomerations with accentuated superposition
between them. Previous photometry-based taxonomic systems
[Tho84, Bar87] were developed over smaller samples, with less
than 1,000 asteroids, thus overlay was not a huge problem.
Those two groups are the most common asteroid types S (from
Stone) and C (from Carbonaceous). A important indicative that a
classification method is working for asteroid taxonomy is at least
the detachment of both groups. Nonetheless, even though both
groups are being identified in the first and second clusters when
SDSSMOC4 sample is classified, the third cluster was engulfing
part of members left from both groups and other smaller groups
mingled among them (Figure 5). The loss of obvious unimodal
distribution patterns on data may be the cause for such generaliza-
tion in the third cluster. This behavior was interrupting the capacity
of the method to identify smaller clusters. Therefore, to deal with
that, a upper deviation limit was introduced to halt the cluster
evolution, thus not permiting clusters to become comparable in
sample size. Figure 6 is a example of a cluster recognized with
upper deviation limit on, showing that third cluster is not getting

1. http://ned.ipac.caltech.edu/help/sdss/dr6/photometry.html
2. http://www.astro.washington.edu/users/ivezic/sdssmoc/sdssmoc.html

PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)
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log10(N)

Fig. 5: Density distributions with the third cluster identified by G-
mode without upper limit. The cluster is marked by red filled circles.
Classification made with g1 =1.56 and minlim = 0. 5.

into a large size anymore, allowing other cluster to be identified.
This specific test resulted in 58 cluster recognitions, most of them
with lower than 100 members. Thus, the upper limit parameter
turned up useful for sample with varied degrees of superposition.

Conclusions

In this paper, a refined version of a clustering method developed in
the 70’s was presented. The Adapted G-mode used Mahalonobis
distance as estimator to better recognize misaligned clusters, and
used Numpy . histogramdd to faster locate initial seeds. Robust
median statistics was also implemented to more precisely estimate
central tendency and standard deviation, and take less iteration to
stabilize clusters.

Tests with simulated samples showed a quality increase in
classification and successful recognition of clusters among random
points. However, tests with asteroid samples indicated that for
presence of superposition is necessary introduction of one more
parameter. Therefore, users must previously inspect their samples
before enabling an upper limit parameter.

Finally, the Adapted G-mode is available for anyone through
GitHub . The codebase has no restriction on sample or variable
size. Users must only fulfill the requirements related to installed
packages and data format.
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Fig. 6: Density distributions with the third cluster identified by G-
mode with upper limit. The cluster is marked by red filled circles. Clas-
stfication made with gy =1.50, minlim = 0.5and upperlim =
0.5.
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