58

PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

Ginga: an open-source astronomical image viewer
and toolkit

Eric Jeschke®*

http://www.youtube.com/watch?v=nZKy_nYUxCs

Abstract—Ginga is a new astronomical image viewer written in Python. It
uses and inter-operates with several key scientific Python packages: NumPy,
Astropy, and SciPy. A key differentiator for this image viewer, compared to older-
generation FITS viewers, is that all the key components are written as Python
classes, allowing for the first time a powerful FITS image display widget to be
directly embedded in, and tightly coupled with, Python code.

We call Ginga a toolkit for programming FITS viewers because it includes a
choice of base classes for programming custom viewers for two different modern
widget sets: Gtk and Qt, available on the three common desktop platforms.
In addition, a reference viewer is included with the source code based on a
plugin architecture in which the viewer can be extended with plugins scripted in
Python. The code is released under a BSD license similar to other major Python
packages and is available on GitHub.

Ginga has been introduced only recently as a tool to the astronomical
community, but since SciPy has a developer focus this talk concentrates on
programming with the Ginga toolkit. We cover two cases: using the bare image
widget to build custom viewers and writing plugins for the existing full-featured
Ginga viewer. The talk may be of interest to anyone developing code in Python
needing to display scientific image (CCD or CMOS) data and astronomers
interested in Python-based quick look and analysis tools.

Index Terms—FITS, viewer, astronomical, images, Python, NumPy, SciPy, As-
tropy

Introduction

Ginga is a new astronomical image viewer and toolkit written
in Python. We call Ginga a toolkit for programming scientific
image viewers [Jes12] because it includes a choice of base classes
for programming custom viewers for two different modern widget
sets: Gtk and Qt, available on the three common desktop platforms
(Linux, Mac, and Windows).

Ginga uses and inter-operates with several key scientific
Python packages: NumPy, Astropy and SciPy. Ginga will visual-
ize FITS! files as well as other common digital image formats and
can operate on any imaging data in NumPy array format. Ginga
components are written as Python classes, which allows the image
display widget to be directly embedded in, and tightly coupled
with, Python code. The display widget supports arbitrary scaling

% Corresponding author: eric @naoj.org
£ Subaru Telescope, National Astronomical Observatory of Japan

Copyright © 2013 Eric Jeschke. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

+

and panning, rotation, color mapping and a choice of automatic
cut levels algorithms.

A reference viewer is included with the Ginga source code
based on a plugin architecture in which the viewer can be extended
with plugins scripted in Python. Example plugins are provided for
most of the features of a "modern" astronomical FITS viewer.
Users wishing to develop an imaging program employing Ginga
can follow one of two logical development paths: starting from the
widget and building up around it, or starting from the reference
viewer and customizing it via a plugin.

Getting and installing Ginga

Ginga is released under a BSD license similar to other major
scientific Python packages and is available on GitHub: http:
//github.com/ejeschke/ginga . It is a distutils-compatible Python
package, and is also available in PyPI. Installing it is as simple as:

pip install ginga
or:

python setup.py install

Use the latter if you have downloaded the latest source as a tarball
from http://ejeschke.github.com/ginga or cloned the git repository
from https://github.com/ejeschke/ginga.git . The package will be
installed as "ginga" and the reference viewer will also be installed
as ginga (but located wherever scripts are stored).

Prerequisites and dependences: Ginga will run under Python
versions from 2.7 to 3.3. Note that as a minimum you will need
to have at least installed numpy and one of the Python Gtk or
Qt bindings (e.g. pygtk, pyqgt4). For full functionality you will
also need scipy and astropy [Toll3]. Certain features in the
reference viewer also be activated if matplot1ib is installed.

Part 1: Developing with the Ginga Widget

When developing with the Ginga toolkit for visualizing FITS files
there are two main starting points one might take:

« using only the Ginga widget itself, or
starting with the full-featured reference viewer that comes

with Ginga and customize it for some special purpose.

L]
The first way is probably best for when the developer has a
custom application in mind, needs a bare-bones viewer or wants

1. Flexible Image Transport System--the current standard for archiving and
exchanging astronomical data as files.


http://www.youtube.com/watch?v=nZKy_nYUxCs
mailto:eric@naoj.org
http://github.com/ejeschke/ginga
http://github.com/ejeschke/ginga
http://ejeschke.github.com/ginga
https://github.com/ejeschke/ginga.git

GINGA: AN OPEN-SOURCE ASTRONOMICAL IMAGE VIEWER AND TOOLKIT

to develop an entirely new full-featured viewer. The second way
is probably best for end users or developers that are mostly
satisfied with the reference viewer as a general purpose tool and
want to add some specific enhancements or functionality. Because
the reference viewer is based on a flexible plugin architecture
this is fairly easy to do. In this paper we address both of these
approaches.

First, let’s take a look at how to use the "bare" Ginga FITS
viewing widget by itself. The FitsImageZoom widget handles
image display, scaling (zooming), panning, manual cut levels, auto
cut levels with a choice of algorithms, color mapping, transforma-
tions, and rotation. Besides the image window itself there are no
additional GUI (Graphical User Interface) components and these
controls are handled programatically or directly by keyboard and
mouse bindings on the window. Developers can enable as many of
the features as they want, or reimplement them. The user interface
bindings are configurable via a pluggable Bindings class, and
there are a plethora of callbacks that can be registered, allowing
the user to create their own custom user interface for manipulating
the view.

Quit |

OpenFﬂé][

Fig. 1: A simple, "bare bones" FITS viewer written in Qt.

Listing 1 shows a code listing for a simple graphical FITS
viewer using this widget (screenshot in Figure 1) written in around
100 or so lines of Python. It creates a window containing an image
view and two buttons. This example, included with the Ginga
package, will open FITS files dragged and dropped on the image
window or via a dialog popped up when clicking the "Open File"
button.

Looking at the constructor for this particular viewer, you can
see where we create a FitsImageZoom object. On this object
we enable automatic cut levels (using the ’zscale’ algorithm),
auto zoom to fit the window and set a callback function for files
dropped on the window. We extract the user-interface bindings
with get_bindings (), and on this object enable standard
user interactive controls for panning, zooming, cut levels and

59

simple transformations (flip x/y and swap axes). We then ex-
tract the platform-specific widget (Qt-based, in this case) using
get_widget () and pack it into a Qt container along with a
couple of buttons to complete the viewer.

#! /usr/bin/env python

#

# examplel_qt.py —-- Simple,
#

import sys, os

import logging

configurable FITS viewer.

from ginga.AstroImage import pyfits
from ginga.qgtw.QtHelp import QtGui, QtCore
from ginga.gtw.FitsImageQt import FitsImageZoom

class FitsViewer (QtGui.QMainWindow) :

def _ init__ (self, logger):
super (FitsViewer, self).__init__ ()
self.logger = logger

fi = FitsImageZoom(self.logger)
fi.enable_autocuts('on')
fi.set_autocut_params('zscale')
fi.enable_autozoom('on')
fi.set_callback ('drag-drop',
fi.set_bg(0.2, 0.2, 0.2)
fi.ui_setActive (True)
self.fitsimage = fi

self.drop_file)

bd = fi.get_bindings/()
bd.enable_pan (True)
bd.enable_zoom (True)
bd.enable_cuts (True)
bd.enable_flip (True)
w = fi.get_widget ()
w.resize (512, 512)

vbox = QtGui.QVBoxLayout ()
vbox.setContentsMargins (
QtCore.QMargins (2, 2, 2, 2))
vbox.setSpacing (1)
vbox.addWidget (w, stretch=1)
hbox = QtGui.QHBoxLayout ()
hbox.setContentsMargins (
QtCore.QMargins (4, 2, 4, 2))

wopen = QtGui.QPushButton ("Open File™)
wopen.clicked.connect (self.open_file)
wquit = QtGui.QPushButton ("Quit™)
self.connect (wquit,
QtCore.SIGNAL ("clicked()"),
self, QtCore.SLOT ("close()"))

hbox.addStretch (1)
for w in (wopen, wquit):
hbox.addWidget (w, stretch=0)

hw = QtGui.QWidget ()
hw.setLayout (hbox)
vbox.addWidget (hw, stretch=0)
vw = QtGui.QWidget ()
self.setCentralWidget (vw)
vw.setLayout (vbox)
def load_file(self, filepath):
fitsobj = pyfits.open(filepath,
data = fitsobj[0].data
# compressed FITS file?
if (data == None) and (len(fitsobj)
and isinstance (fitsobj[1],
pyfits.core.CompImageHDU) :

'readonly')

> 1)\



60

data = fitsobj[l].data
fitsobj.close ()

self.fitsimage.set_data (data)
self.setWindowTitle (filepath)

def open_file(self):
res = QtGui.QFileDialog.getOpenFileName (self,
"Open FITS file",
- 4
"FITS files (*x.fits)")
tuple) :
res[0] .encode('ascii')

if isinstance (res,
fileName =
else:
fileName = str (res)
self.load_file(fileName)

def drop_file(self, fitsimage,
fileName = paths[0]
self.load_file(fileName)

paths) :

def main (options, args):

app = QtGui.QApplication(sys.argv)

app.connect (app,
QtCore.SIGNAL('lastWindowClosed () "),
app, QtCore.SLOT('quit () "))

logger = logging.getLogger ("examplel™)
logger.setLevel (logging. INFO)
stderrHdlr = logging.StreamHandler ()
logger.addHandler (stderrHdlr)

w = FitsViewer (logger)
w.resize (524, 540)
w.show ()
app.setActiveWindow (w)

if len(args) > 0:
w.load_file(args[0]

app.exec_ ()

1 1

__main__ ':
sys.argv[l:])

if name ==
main (None,

Scanning down the code a bit, we can see that whether by dragging
and dropping or via the click to open, we ultimately call the
load_file() method to get the data into the viewer. As shown,
load_file uses Astropy to open the file and extract the first usable
HDU as a NumPy data array. It then passes this array to the viewer
via the set_data() method. The Ginga widget can take in data either
as 2D NumPy arrays, Astropy/pyfits HDUs or Ginga’s own
AstroImage wrapped images.

A second class FitsImageCanvas (not used in this exam-
ple, but shown in Figure 2), adds scalable object plotting on top
of the image view plane. A variety of simple graphical shapes
are available, including lines, circles, rectangles, points, polygons,
text, rulers, compasses, etc. Plotted objects scale, transform and
rotate seamlessly with the image. See the example2 scripts in the
Ginga package download for details.

Part 2: Developing Plugins for Ginga

We now turn our attention to the other approach to developing
with Ginga: modifying the reference viewer. The philosophy
behind the design of the reference viewer distributed with the
Ginga is that it is simply a flexible layout shell for instantiating
instances of the viewing widget described in the earlier section.
All of the other important pieces of a modern FITS viewer--a

PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

RA: 19:58:31.477 DEC: +22:47:40.29 X: 1572.60 Y: 1871.50 Value: 519.0
Quit |

| OpenFile | |:ruler s | | green |2 | | Clear Canvas | |

Fig. 2: An example of a FitsImageCanvas widget with graphical
overlay.

panning widget, information panels, zoom widget, analysis panes-
-are implemented as plugins: encapsulated modules that interface
with the viewing shell using a standardized API. This makes it
easy to customize and to add, change or remove functionality in a
very modular, flexible way.

The Ginga viewer divides the application window GUI into
containers that hold either viewing widgets or plugins. The view
widgets are called "channels" in the viewer nomenclature, and are
a means of organizing images in the viewer, functioning much like
"frames" in other viewers. A channel has a name and maintains
its own history of images that have cycled through it. The user
can create new channels as needed. For example, they might
use different channels for different kinds of images: camera vs.
spectrograph, or channels organized by CCD, or by target, or
raw data vs. quick look, etc. In the default layout, shown in 2
the channel tabs are in the large middle pane, while the plugins
occupy the left and right panes. Other layouts are possible, by
simply changing a table used in the startup script.

Ginga distinguishes between two types of plugin: global and
local. Global plugins are used where the functionality is generally
enabled during the entire session with the viewer and where
the plugin is active no matter which channel is currenly under
interaction with the user. Examples of global plugins include a
panning view (a small, bird’s-eye view of the image that shows
a panning rectangle and allows graphical positioning of the pan
region), a zoomed view (that shows an enlarged cutout of the area
currently under the cursor), informational displays about world
coordinates, FITS headers, thumbnails, etc. Figure 4 shows an
example of two global plugins occupying a notebook tab.

Local plugins are used for modal operations with images in
specific channels. For example, the Pick plugin is used to perform
stellar evaluation of objects, finding the center of the object and
giving informational readings of the exact celestial coordinates,
image quality, etc. The Pick plugin is only visible while the user



GINGA: AN OPEN-SOURCE ASTRONOMICAL IMAGE VIEWER AND TOOLKIT 61
| Ginga:Image =F
File Channel window Help
Info | Header | Zoom Image | Ginga Dialogs | Thumbs | Contents =Help Errors Leg Debug
7 REwEE B (IMAGE: Pick | IMAGE: Cuts
+ 0000 FWHM X: 3.00 Y:2.78 ‘g
"
o
40000 3
g
30000 =
E:H
I
20000 =
10000

Name: SUPA0111876(
Object: M27
X: 444.413
Y. 1647.590
Value: 479.0
a: 19:58:47.959
6: +22:46:55.43
Equinox: 2000.0
Dimensions: 2272x4273
Min: 170.0
Max: 65535.0
Zoom: 1/2.21x

Cut Low: 244.95 :]
Cut High: 1046.85 :]
| Auto Levels | | cut Levels |
Cut New: of f
Zoom New: on
\ Preferences \
> 2][2][8]s

Instructions

Left-click to place region. Left-drag to
position region. Redraw region with the right
mouse button.
Pick
Contour Zoom: 7.00x
Object_Y: 1941.726
DEC: +22:47:54.5T
Background: 530.000
Brightness: 44417.911
FWHMY: 2.816
Star Size: 0.592

Zoom: 4.00x
Object_X: 1329.847
RA: 19:58:35.021
Equinox: 2000.0
sky Level: 596.500
FWHM X: 3.045
FWHM: 2.933
Sample Area: 124x146 [ Default Region |
)} | Done

Report | Settings | Controls
[ close |

Fig. 3: The Ginga reference viewer (Qt version), with some plugins active.

has it open, and does not capture the mouse actions unless the
channel it is operating on is selected. Thus one can have two
different Pick operations going on concurrently on two different
channels, for example, or a Pick operation in a camera channel,
and a Cuts (line cuts) operation on a spectrograph channel. Figure
5 shows an example of the Pick local plugin occupying a notebook
tab.

Anatomy of a Local Ginga Plugin

Let’s take a look at a local plugin to understand the API for
interfacing to the Ginga shell. In Listing 2, we show a stub for
a local plugin.

from ginga import GingaPlugin
class MyPlugin (GingaPlugin.LocalPlugin) :

def _ init_ (self, fv,
super (MyPlugin,

fitsimage) :

self).__init__ (fv, fitsimage)

def build_gui (self,
pass

container) :

def start (self):

pass
def stop(self):
pass

def pause (self):
pass

def resume (self):

pass

def redo(self):

pass

def _ str_ (self):
return 'myplugin'

The purpose of each method is as follows.

__init__ (self, fv, fitsimage): This method is
called when the plugin is loaded for the first time. fv is a
reference to the Ginga shell and fitsimage is a reference to
the FitsImageCanvas object associated with the channel on
which the plugin is being invoked. You need to call the superclass
initializer and then do any local initialization.

build_gui (self, container): This method is called
when the plugin is invoked. It builds the GUI used by the plugin
into the widget layout passed as container. This method may
be called many times as the plugin is opened and closed for modal
operations. The method may be omitted if there is no GUI for the
plugin.

start (self): This method is called just after
build_gui () when the plugin is invoked. This method
may be called many times as the plugin is opened and closed for
modal operations. This method may be omitted.

stop (self): This method is called when the plugin is
stopped. It should perform any special clean up necessary to
terminate the operation. The GUI will be destroyed by the plugin
manager so there is no need for the stop method to do that. This
method may be called many times as the plugin is opened and
closed for modal operations. This method may be omitted if there
is no special cleanup required when stopping.

pause (self): This method is called when the plugin loses
focus. It should take any actions necessary to stop handling user
interaction events that were initiated in start () or resume ().
This method may be called many times as the plugin is focused or
defocused. The method may be omitted if there is no user event
handling to disable.



62

Zoom

Info | Header

Mame: SUPA0111876(
Object: M27
X 444,413
Y. 1647.590
Value: 479.0
a: 19:58:47.959
&: +22:46:55.43
Equinox: 2000.0
Dimensions: 2272x4273
Min: 170.0
Max: 65535.0
Zoom: 1/2.21x
Cut Low: 244.95

[ ]
[ ]

| Cut Levels |

Cut High: 1046.85

| Auto Levels |

Cukt New: off
Zoom New: on

| Preferences |

<228 s

Fig. 4: Two global plugins: Pan (top) and Info (bottom), shown
sharing a tab.

resume (self): This method is called when the plugin gets
focus. It should take any actions necessary to start handling user
interaction events for the operations that it does. This method may
be called many times as the plugin is focused or defocused. The
method may be omitted if there is no user event handling to enable.

redo (self): This method is called when the plugin is active
and a new image is loaded into the associated channel. It can
optionally redo the current operation on the new image. This
method may be called many times as new images are loaded while

PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

IMAGE: Pick | IMAGE: Cuts

: : 3
i EWHM K 3.'00 Y: 2.7"8 &
+—+ data x o
- Qgauss x
+—+ datay o
40000 | Chast i S
o
c
30000 m
3
z
20000
10000}
DD 20

Instructions

Left-click to place region. Left-drag to
position region. Redraw region with the right
mouse button.
Pick
Contour Zoom: 7.00x
Object_Y: 1941.726
DEC: +22:47:54.57
Background: 530.000
Brightness: 44417.911
FWHMY: 2.816
Skar Size: 0.592

Zoom: 4.00x
Object_X: 1329.847
RA: 19:58:35.021
Equinox: 2000.0
Sky Level: 596.500
FWHM X: 3.045
FWHM: 2.933

Sample Area: 124x146 | Default Region |

Done

Report | Settings | Controls

| Close |

Fig. 5: The Pick local plugin, shown occupying a tab.

the plugin is active. This method may be omitted.

Putting it All Together: The Ruler Plugin

Finally, in Listing 3 we show a completed plugin for Ruler. The
purpose of this plugin to draw triangulation (distance measure-
ment) rulers on the image. For reference, you may want to refer
to the ruler shown on the canvas in Figure 2 and the plugin GUI
shown in Figure 6.

from ginga.gtw.QtHelp import QtGui,
from ginga.gtw import QtHelp

QtCore

from ginga import GingaPlugin
class Ruler (GingaPlugin.LocalPlugin) :

def __init__ (self, fv, fitsimage):
# superclass saves and defines some variables
for us, like logger
super (Ruler, self).__init__ (fv, fitsimage)

self.rulecolor = 'lightgreen'



GINGA: AN OPEN-SOURCE ASTRONOMICAL IMAGE VIEWER AND TOOLKIT

IMAGE: Ruler |

Unit

Instructions

Draw (or redraw) a line with the right mouse
button. Display the Zoom tab to precisely
see detail.

S: | aremin | &
Close

Ruler

Fig. 6: The Ruler local plugin GUI, shown occupying a tab.

def

self.layertag = 'ruler-canvas'
self.ruletag = None

self.dc = fv.getDrawClasses|()
canvas = self.dc.DrawingCanvas ()
canvas.enable_draw (True)

canvas.set_drawtype ('ruler', color='cyan')

canvas.set_callback ('draw-event',
self.wcsruler)

canvas.set_callback ('draw-down', self.clear)

canvas.setSurface (self.fitsimage)
self.canvas = canvas

self.w = None
self.unittypes = ('arcmin',
self.units = 'arcmin'

'pixels"')

build_gui(self, container):
sw = QtGui.QScrollArea()

twidget = QtHelp.VBox ()

sp = QtGui.QSizePolicy (
QtGui.QSizePolicy.MinimumExpanding,
QOtGui.QSizePolicy.Fixed)

twidget.setSizePolicy (sp)

vboxl = twidget.layout ()

vboxl.setContentsMargins (4, 4, 4, 4)

vboxl.setSpacing(2)

sw.setWidgetResizable (True)

sw.setWidget (twidget)

msgFont = QtGui.QFont ("Sans", 14)
tw = QtGui.QLabel ()

tw.setFont (msgFont)
tw.setWordWrap (True)

self.tw = tw

fr = QtHelp.Frame ("Instructions")

fr.layout () .addWidget (tw, stretch=1,
alignment=QtCore.Qt.AlignTop)
vbox1l.addWidget (fr, stretch=0,

alignment=QtCore.Qt.AlignTop)
fr = QtHelp.Frame ("Ruler")

captions = (('Units', 'combobox'),)
w, b = QtHelp.build_info (captions)
self.w = b

combobox = b.units

for name in self.unittypes:
combobox.addItem (name)

index = self.unittypes.index(self.units)

combobox.setCurrentIndex (index)

combobox.activated.connect (self.set_units)

fr.layout () .addWidget (w, stretch=1,
alignment=QtCore.Qt.AlignLeft)
vbox1l.addWidget (fr, stretch=0,

def

def

def

def

def

def

def

def

63
alignment=QtCore.Qt.AlignTop)

btns = QtHelp.HBox ()

layout = btns.layout ()
layout.setSpacing (3)
#btns.set_child_size (15, -1)

btn = QtGui.QPushButton ("Close™)
btn.clicked.connect (self.close)

layout .addwidget (btn, stretch=0,
alignment=QtCore.Qt.AlignLeft)
vboxl.addWidget (btns, stretch=0,

alignment=QtCore.Qt.AlignLeft)

container.addWidget (sw, stretch=1)

set_units (self):

index = self.w.units.currentIndex/()

units = self.unittypes|[index]

self.canvas.set_drawtype('ruler',
color='cyan',
units=units)

self.redo()

return True

close(self):

chname = self.fv.get_channelName (
self.fitsimage)

self.fv.stop_operation_channel (chname,
str(self)

return True

instructions (self):

self.tw.setText ("Draw (or redraw)
"with the right mouse
"button. Display the
"Zoom tab to precisely "
"see detail.")

a line "
"

self.tw.show()

start (self) :
self.instructions ()
# start ruler drawing operation
try:
obj = self.fitsimage.getObjectByTag (
self.layertagqg)

except KeyError:
# Add ruler layer
self.fitsimage.add(self.canvas,
tag=self.layertagqg)

self.canvas.deleteAllObjects ()
self.resume ()

pause (self) :
self.canvas.ui_setActive (False)

resume (self) :
self.canvas.ui_setActive (True)
self.fv.showStatus ("Draw a ruler with "

"the right mouse button")

stop(self) :
# remove the canvas from the image,
# this prevents us from getting draw events
# when we are inactive
try:
self.fitsimage.deleteObjectByTag (
self.layertagqg)
except:
pass
self.fv.showStatus("")

redo (self) :
# get the ruler object on the canvas
obj = self.canvas.getObjectByTag (



64

self.ruletagqg)

if obj.kind != 'ruler':
return True
# calculate and assign distances
text_x, text_y, text_h = \
self.canvas.get_ruler_distances (obj.x1,
obj.yl,
obj.x2,
obj.y2)
obj.text_x = text_x
obj.text_y = text_y
obj.text_h = text_h
self.canvas.redraw (whence=3)
def clear(self, canvas, button, data_x, data_y):
self.canvas.deleteAllObjects ()
return False
def wcsruler (self, surface, tag):
# drawing callback. The newly drawn object

# on the canvas 1is
obj = self.canvas.getObjectByTag(tag)
if obj.kind !=

return True

tagged

'ruler':

# remove the old ruler

try:
self.canvas.deleteObjectByTag (
self.ruletag,
redraw=False)
except:

pass

me characteristics of the

117 o1
ru ¥

ruler

e and save as the new
= tag

self.rulecolor
obj.cap = 'ball'
self.canvas.redraw (whence=3)

obj.color =

def _ str_ (self):

return 'ruler'

This plugin shows a standard design pattern typical to local
plugins. Often one is wanting to draw or plot something on top
of the image below. The FitsImageCanvas widget used by
Ginga allows this to be done very cleanly and conveniently by
adding a DrawingCanvas object to the image and drawing
on that. Canvases can be layered on top of each other in a
manner analogous to "layers" in an image editing program. Since
each local plugin maintains it’s own canvas, it is very easy
to encapsulate the logic for drawing on and dealing with the
objects associated with that plugin. We use this technique in the
Ruler plugin. When the plugin is loaded (refer to __init__ ()
method), it creates a canvas, enables drawing on it, sets the draw
type and registers a callback for drawing events. When start ()
is called it adds that canvas to the widget. When stop () is called
it removes the canvas from the widget (but does not destroy the
canvas). pause () disables user interaction on the canvas and
resume () reenables that interaction. redo () simply redraws
the ruler with new measurements taken from any new image that
may have been loaded. In the __init__ () method you will
notice a setSurface () call that associates this canvas with a
FitsImage-based widget--this is the key for the canvas to utilize
WCS information for correct plotting. All the other methods
shown are support methods for doing the ruler drawing operation
and interacting with the plugin GUL

The Ginga package includes a rich set of classes and there
are also many methods that can be called in the shell or in

PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

the FitsImageCanvas object for plotting or manipulating the
view. Length constraints do not permit us to cover even a portion
of what is possible in this paper. The best way to get a feel for
these APIs is to look at the source of one of the many plugins
distributed with Ginga. Most of them are not very long or complex.
In general, a plugin can include any Python packages or modules
that it wants and programming one is essentially similar to writing
any other Python program.

Writing a Global Plugin

This last example was focused on writing a local plugin. Global
plugins employ a nearly identical API to that shown in Listing
2, except that the constructor does not take a fitsimage
parameter, because the plugin is expected to be active across
the entire session, and is not associated with any particular
channel. build_gui () and start () are called when the
Ginga shell starts up, and stop () is never called until the
program terminates’. pause () and resume () can safely be
omitted because they should never be called. Like local plugins,
build_gui () can be omitted if there is no GUI associated with
the plugin. Take a look at some of the global plugins distributed
with the viewer for more information and further examples. The
IRAF plugin, which handles IRAF/ginga interaction similarly to
IRAF/ds9, is an example of a plugin without a GUI.

Conclusion

The Ginga FITS viewer and toolkit provides a set of building
blocks for developers wishing to add FITS image visualization
to their Python-based application, or end users interested in a
Python-scriptable, extensible viewer. Two avenues of develop-
ment are possible: a "blue sky" approach by using a flexible
FitsImageCanvas display widget and building up around
that, or by starting with the plugin-based reference viewer and
customizing by modifying or writing new plugins. In either case,
the software can be targeted to two different widget sets (Gtk and
Qt) across the common desktop platforms that Python is available
on today. The code is open-sourced under a BSD license and is
available via the GitHub code repository or via PyPL

Future plans for Ginga mostly center around the development
of some additional plugins to enhance capabilities. Ideas suggested
by users include:

« mosaicking of images

« simple, user-customizable pipelines for handling flat field-
ing, bias frames, dark frame subtraction, bad pixel mask-
ing, etc.

« improving the set of graphical plotting elements

« semi-transparent colored overlays, for showing masks, etc.

« improving PDF and postscript output options

REFERENCES

[Jes12] E. Jeschke, T. Inagaki and R. Kackley. A next-generation open-source
toolkit for FITS file image viewing, Software and Cyberinfrastructure
for Astronomy II, Proceedings SPIE, 8451(1), 2012.

[Tol13] E. Tollerud and P. Greenfield and T. Robitaille. The Astropy Project:
A Community Python Library for Astrophysics, ADASS XXII, ASP
Conf Ser., TBD:(in press), 2013.

2. Unless the user reloads the plugin. Most plugins in Ginga can be
dynamically reloaded using the Debug plugin, which facilitates debugging
tremendously, since Ginga itself does not have to be restarted, data does not
have to be reloaded, etc.



	Introduction
	Getting and installing Ginga
	Part 1: Developing with the Ginga Widget
	Part 2: Developing Plugins for Ginga
	Anatomy of a Local Ginga Plugin
	Putting it All Together: The Ruler Plugin
	Writing a Global Plugin
	Conclusion
	References

