
70 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

SunPy: Python for Solar Physicists

Stuart Mumford‡∗, David Pérez-Suárez¶, Steven Christe‖, Florian Mayer§, Russell J. Hewett∗∗

http://www.youtube.com/watch?v=bXPPTCkaVu8

F

Abstract—SunPy is a data analysis toolkit which provides the necessary soft-
ware for analyzing solar and heliospheric datasets in Python. SunPy aims to
provide a free and open-source alternative to the current standard, an IDL-
based solar data analysis environment known as SolarSoft (SSW). We present
the latest release of SunPy, version 0.3. Though still in active development,
SunPy already provides important functionality for solar data analysis. SunPy
provides data structures for representing the most common solar data types:
images, lightcurves, and spectra. To enable the acquisition of scientific data,
SunPy provides integration with the Virtual Solar Observatory (VSO), a single
source for accessing most solar data sets, and integration with the Heliophysics
Event Knowledgebase (HEK), a database of transient solar events such as solar
flares or coronal mass ejections. SunPy utilizes many packages from the greater
scientific Python community, including NumPy and SciPy for core data types
and analysis routines, PyFITS for opening image files, in FITS format, from
major solar missions (e.g., SDO/AIA, SOHO/EIT, SOHO/LASCO, and STEREO)
into WCS-aware map objects, and pandas for advanced time-series analysis
tools for data from missions such as GOES, SDO/EVE, and Proba2/LYRA, as
well as support for radio spectra (e.g., e-Callisto). Future releases will build upon
and integrate with current work in the Astropy project and the rest of the scientific
python community, to bring greater functionality to SunPy users.

Index Terms—Python, Solar Physics, Scientific Python

Introduction

Modern solar physics, similar to astrophysics, requires increas-
ingly complex software tools both for the retrieval as well as the
analysis of data. The Sun is the most well-observed star. As such,
solar physics is unique in its ability to access large amounts of
high resolution ground- and space-based observations of the Sun
at many different wavelengths and spatial scales with high time
cadence. Modern solar physics, similar to astrophysics, therefore
requires increasingly complex software tools, both for the retrieval
and the analysis of data. For example, NASA’s Solar Dynamics
Observatory (SDO) satellite records over 1 TB of data per day all
of which is telemetered to the ground and available for analysis. As
a result, scientists have to process large volumes of complex data
products. In order to make meaningful advances in solar physics, it
is important for the software tools to be standardized, easy to use,

* Corresponding author: stuart@mumford.me.uk
‡ The University of Sheffield
¶ Finnish Meteorological Institute
|| NASA Goddard Space Flight Center
§ Vienna University of Technology
** Massachusetts Institute of Technology

Copyright © 2013 Stuart Mumford et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

and transparent, so that the community can build upon a common
foundation.

Currently, most solar physics analysis is performed with a
library of routines called SolarSoft [SSW]. SolarSoft is a set
of integrated software libraries, databases, and system utilities
which provide a common programming and data analysis en-
vironment for solar physics. It is primarily an IDL (Interactive
Data Language)-based system, although some instrument teams
integrate executables written in other languages. While SSW is
open-source and freely available, the IDL core is not. In addition,
contributing to SolarSoft is not open to the public. One of SunPy’s
key aims is to provide a free and open source alternative to the
SolarSoft library.

The scope of a solar physics library can be divided up into two
main parts, data processing and data analysis. Data processing is
the process of calibrating and aligning data, while data analysis is
the scientific analysis of the processed data. SunPy’s current scope
is data analysis with minimal data processing.

SunPy currently depends upon the core scientific packages like
NumPy, SciPy and matplotlib. As well as Pandas, suds, PyFITS
/ astropy.io.fits and beautifulsoup4. The latest release of SunPy is
available in PyPI and can be installed in the usual manner.

SunPy Data Types

At SunPy’s core are interoperable data types that cover the wide
range of observational data available. These core data types,
Lightcurve, Map, and Spectra, cover multi-dimensional data and
provide basic manipulation and visualization routines with a
consistent API. In this section each of these key data types are
described.

While these different data types have clear applications to
different types of observations, there are also clear interlinks
between them, for example a one pixel slice of a MapCube should
result in a Lightcurve and a one pixel slice of a Composite Map
should be a Spectrum. While these types of interoperability are
not yet implemented in SunPy, it is a future goal.

The major change in version 0.3 of SunPy is a refactoring
of the core data types. This process involved a change in the
inheritance structure for Map and Spectrum away from inheriting
the numpy.ndarray object to having a more flexible data attribute.
This refactoring has also led to some related changes and the
ground work being done to facilitate the integration of Astropy’s
NDData object.

Map

The "Map" data type is designed for interpreting and processing
the most common form of solar data, that of a two-dimensional

http://www.youtube.com/watch?v=bXPPTCkaVu8
http://sdo.gsfc.nasa.gov
http://sdo.gsfc.nasa.gov
mailto:stuart@mumford.me.uk

SUNPY: PYTHON FOR SOLAR PHYSICISTS 71

image most often taken by a CCD camera. A Map object consists
of a data array endowed with a coordinate system and combined
with meta data. Most often, these data are provided in the form
of FITS files but image data can come from other file types,
such as JPG2000, as well. The meta data in most solar FITS
files conform to a historic standard to describe the image such
as observation time, wavelength of the observation, exposure
time, etc. In addition, standard header tags specify a coordinate
system and provide the information necessary to transform the
pixel coordinates to physical coordinates such as sky coordinates.
Newer missions such as STEREO or AIA on SDO make use of
a more precise standard defined by Thompson [WCS]. Thompson
also defined standard coordinate transformations to convert from
observer-based coordinates to coordinates on the Sun. Since the
Sun is a gaseous body with no fixed points of reference and
different parts of the Sun rotate at different rates, this is a partic-
ularly tricky problem. Through SunPy’s WCS (World Coordinate
System) library, which has implemented most of these coordinates
systems, SunPy Map objects can transform data between them.
SunPy maps also provide other core functionality such as routines
to rescale, resample, rotate and visualize data and convenience
functions for plotting using matplotlib.

There are many forms of image data that can be stored in a
Map. SunPy maps can handle 2D image data as well as 3D image
data for both wavelength-composite images and other series, such
as time series data. All 2D map types have a common parent
which has been designed with the possibility of integrating with
the Astropy library’s NDData object.

The other main functionality for SunPy’s Map type, and other
data types, is to provide transparent handling of instrument specific
code. This code can take the form of translation of non-standard
or specific meta data or more complex calibration routines.
These functions are handled primarily by the implementation of
"sources" which are subclasses of the 2D map object, which then
hold this specific code. This leads to many different objects being
in the map "family", this is why an automated factory class Map
has been developed to provide the user with a transparent interface
for the creation of Maps.

It is very simple to create and visualize a map in SunPy 0.3:
import sunpy
mymap = sunpy.Map(sunpy.AIA_171_IMAGE)
mymap.peek()

the output of this command is shown in Fig. 1.
SunPy’s visualization routine are designed to interface as

much as possible with matplotlib’s pyplot package. It is therefore
possible to create more complex plots using custom matplotlib
commands.
import matplotlib.pyplot as plt
import sunpy

mymap = sunpy.Map(sunpy.AIA_171_IMAGE)

fig = plt.figure()
im = mymap.plot()
plt.title("The Sun!")
plt.colorbar()
plt.show()

This would produce the same image as Fig. 1 but with a custom
title.

LightCurve

Time series data are an important element in solar physics and
many data sources are available. In recognition of this fact, SunPy

Fig. 1: Default visualization of a AIAMap.

Fig. 2: Default visualization of a GOESLightCurve.

provides a Lightcurve object which recognizes a number of data
sources. The main engine behind the Lightcurve object is the
pandas data analysis library. Each Lightcurve holds its data inside
a pandas object. The Lightcurve object, as all other SunPy objects,
is wrapper around a data object. Since pandas already provides
many capabilities, the SunPy Lightcurve object does not need
to. The Lightcurve object recognizes the following data sources;
GOES X-ray Sensor (XRS) , SDO EUV Variability Experiment
(EVE), and PROBA2/LYRA. Since time series data is generally
relatively small and there is no established standard as to how it
should be stored and distributed, each SunPy Lightcurve object
provides the ability to download it’s own data in its constructor.
The example below retrieves the data, creates a Lightcurve object
and plots the data in the default manner (show in 2):
import sunpy
goes = sunpy.lightcurve.GOESLightCurve.create(

'2012/06/01', '2012/06/05')
goes.peek()

Spectra

SunPy offers a Spectrogram object, currently with a special-
ization for e-Callisto (an international network of solar radio

http://www.swpc.noaa.gov/rt_plots/xray_1m.html
http://lasp.colorado.edu/home/missions-projects/quick-facts-sdo-eve/
http://lasp.colorado.edu/home/missions-projects/quick-facts-sdo-eve/
http://proba2.sidc.be

72 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

spectrometers) spectrograms. It allows the user to seamlessly join
different observations; download data through an interface that
only requires location and time-range to be specified; linearize the
frequency axis and automatically downsample large observations
to allow them to be rendered on a normal computer screen and
much more to help analyze spectrograms. The data can currently
be read from Callisto FITS files, but the system is designed
in a way that makes it easy to include new data-sources with
potentially different data formats (such as LOFAR).

Spectra is designed to have a consistent interface along with
the other data types. This means the plotting and manipulation
methods, where there is shared functionality share the same names
and the general structure of the objects are standardized.

Solar Data Retrieval and Access

Most solar observations provided by NASA or ESA follow an
open data policy1 which means that all data is available publicly,
as soon the data is telemetered to the ground. However, these
data are normally archived by the institution in charge of the
instrument that made the observations. This fact makes browsing
data and data retrieval a difficult and tedious task for the scientist.
In recognition of this fact, the Virtual Solar Observatory (VSO)
[VSO] was developed. The VSO strives to provides a one-stop
shop for solar data, by building a centralized database with
access to multiple archives. The VSO allows the user to search
using parameters such as instrument name or type, time, physical
observable and/or spectral range. VSO’s main interface is web-
based, but an API based on a WSDL webservice is also available.
SunPy provides a Python front-end to this API.

A new problem arose with the launch of the SDO mission. The
large size of the images (4 times larger than the previous missions),
together with the fast cadence of their cameras (~10 images per
minute) makes it challenging to use of the data in the same manner
as from previous observations. Previously the standard workflow
was to download long time series of data and to view animations
to identify features of interest to the scientist. For SDO this would
involve downloading prohibitively large amounts of data. The
Heliophysics Event Knowledgebase [HEK] was created to solve
this overload of data. The principle behind the HEK is to run
a number of automated detection algorithms on the data that is
obtained by SDO to populate a database with information about
the features and events observed in each image. Thus allowing
searches for event types or properties, enabling scientists to selec-
tively download only the portion or slices of the images needed
for further analysis. SunPy provides a programmatic way to search
and retrieve the information related to the events, but currently
does not have facilities for downloading the observational data.
This allows, for example, over plotting of the feature contours on
an image, to study their properties and evolution, etc. The HEK
interface in SunPy was developed in concert with SunPy’s VSO
tool, so they have a consistent interface.

Events on the Sun also affect the rest of the solar system.
Very high energy radiation produced during solar flares has effects
on our ionosphere almost instantaneously. High-energy particles
arriving few minutes later can permanently damage spacecraft.
Similarly large volumes of plasma traveling at high velocities
(~1000 km/s), produced as an effect of a coronal mass ejection,
can have multiple negative effects on our technological dependent
society. These effects can be measured everywhere in the solar
system, and the HELiophysics Integrated Observatory [HELIO]

has built a set of tools that helps to find where these events have
been measured, taking into account the speed of the different
events and the movement of planets and spacecraft within that time
range. HELIO includes ’Features’ and ’Event’ catalogs similar to
what is offered by HEK. It also offers access to solar observations,
similar to the VSO, but enhanced with access to observations at
other planets through a propagation model to link any event with
its origin or its effects. Each of these tools has an independent
webservice, therefore they could be easily implemented as a set
of independent tools. However, SunPy offers the opportunity to
create a better implementation where the data retrieved could
interact with the rest of SunPy’s features. HELIO implementation
on SunPy is in its early development stages.

Community

One of SunPy’s major advantages over its predecessors is that
it is being developed as an open source community inside the
wide and diverse general scientific python community. While the
SolarSoft library is "open source" in terms of the code being freely
available, most of the development takes place internally and there
is no clear process for contribution from outsiders. In addition to
transitioning the solar physics community to Python, SunPy also
aims to instill the principals of open source development in the
community.

The scientific python community is much more established
in other disciplines than it is in solar physics. SunPy is making
use of existing scientific python projects, with deeper integration
with projects like Astropy and scikit-image possible in the future.
This collaboration is another strength that sets the scientific python
community apart from other similar solutions.

SunPy has benefited greatly from summer of code schemes.
During its first two years (2011, 2012), SunPy participated on
the ESA Summer of Code In Space (SOCIS). This program is
inspired by Google Summer Of Code (GSOC) and aims to raise
the awareness of open source projects related to space, promote
the European Space Agency and to improve the existing space-
related open-source software. The VSO implementation, and the
first graphical user interface (GUI) were developed during these
two summer programs. In 2013 SunPy is also taking part in GSOC
under the umbrella of the Python Software Foundation (PSF).
We are looking forward to the advances this will bring to the
capabilities and reach of the project through the work of our two
students.

SunPy has also benefited from fledgling input from the solar
physics community, for example the implementation of the e-
Callisto spectrograph support was enabled by the Astrophysics
Research Group at Trinity College Dublin. It is hoped that this
kind of contribution from the solar physics community will be-
come the driving force for the project once a core library is in
place.

Future

SunPy 0.3 provides an excellent, flexible base for future expansion
of the project. This work has provided the footing for future inte-
gration with Astropy. The capabilities of Astropy combined with
the overlapping requirements of SunPy and Astropy mean that
there is much scope for these two projects to work closely together.
SunPy plans to investigate making use of the NDData type of
Astropy which is built upon ndarray and combines metadata with

http://virtualsolar.org
http://sdo.gsfc.nasa.gov
http://sdo.gsfc.nasa.gov
http://www.lmsal.com/hek/
http://sdo.gsfc.nasa.gov
http://helio-vo.eu/
http://sophia.estec.esa.int/socis2012/
https://developers.google.com/open-source/soc/
http://www.esa.int/
http://www.python.org/psf/
http://physics.tcd.ie/Astrophysics/
http://physics.tcd.ie/Astrophysics/
http://www.tcd.ie

SUNPY: PYTHON FOR SOLAR PHYSICISTS 73

arrays of data, as well as integration of Astropy’s WCS and unit
implementations.

The goal for SunPy is to develop the project into a flexible
package for data analysis and scientific application. While in the
long term SunPy aims to become the defacto package for all solar
physics data processing and analysis, to achieve this goal it is
required that SunPy gains more traction within the solar physics
community. This is both to increase the user base and to attract
new missions and instruments to adopt Python/SunPy for their
data processing pipeline.

The SunPy team would like to thank the organizers of SciPy
for the opportunity to present on the SunPy project.

REFERENCES

[VSO] F. Hill, et al. The Virtual Solar Observatory A Resource for Inter-
national Heliophysics Research, Earth Moon and Planets, 104:315-
330, April 2009. DOI: 10.1007/s11038-008-9274-7

[HEK] N. Hurlburt, et al. Heliophysics Event Knowledgebase for
the Solar Dynamics Observatory (SDO) and Beyond, Solar
Physics, 275:67-78, January 2012. DOI: 10.1007/s11207-010-9624-
2 arXiv:1008.1291

[HELIO] D. Pérez-Suárez et al. Studying Sun–Planet Connections Using
the Heliophysics Integrated Observatory (HELIO) Solar Physics,
280:603-621, October 2012. DOI: 10.1007/s11207-012-0110-x

[WCS] W. T. Thompson, Coordinate systems for solar image data,
A&A 449, 791–803 (2006)

[SSW] S. L. Freeland, B. N. Handy, Data Analysis with the Solar-
Soft System, Solar Physics, v. 182, Issue 2, p. 497-500
(1998)

1. All use of data coming from NASA mission from the Heliophysics
Division follows a explicit copyright and Rules of the Road.

http://sdo.gsfc.nasa.gov/data/rules.php

	Introduction
	SunPy Data Types
	Map
	LightCurve
	Spectra

	Solar Data Retrieval and Access
	Community
	Future
	References

