
32 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Hyperopt-Sklearn: Automatic Hyperparameter
Configuration for Scikit-Learn

Brent Komer‡∗, James Bergstra‡, Chris Eliasmith‡

F

Abstract—Hyperopt-sklearn is a new software project that provides automatic
algorithm configuration of the Scikit-learn machine learning library. Following
Auto-Weka, we take the view that the choice of classifier and even the choice of
preprocessing module can be taken together to represent a single large hyper-
parameter optimization problem. We use Hyperopt to define a search space that
encompasses many standard components (e.g. SVM, RF, KNN, PCA, TFIDF)
and common patterns of composing them together. We demonstrate, using
search algorithms in Hyperopt and standard benchmarking data sets (MNIST,
20-Newsgroups, Convex Shapes), that searching this space is practical and
effective. In particular, we improve on best-known scores for the model space
for both MNIST and Convex Shapes.

Index Terms—bayesian optimization, model selection, hyperparameter opti-
mization, scikit-learn

Introduction

The size of data sets and the speed of computers have increased to
the point where it is often easier to fit complex functions to data
using statistical estimation techniques than it is to design them
by hand. The fitting of such functions (training machine learning
algorithms) remains a relatively arcane art, typically mastered
in the course of a graduate degree and years of experience. Re-
cently however, techniques for automatic algorithm configuration
based on Regression Trees [Hut11], Gaussian Processes [Moc78],
[Sno12], and density-estimation techniques [Ber11] have emerged
as viable alternatives to hand-tuning by domain specialists.

Hyperparameter optimization of machine learning systems was
first applied to neural networks, where the number of parameters
can be overwhelming. For example, [Ber11] tuned Deep Belief
Networks (DBNs) with up to 32 hyperparameters, and [Ber13a]
showed that similar methods could search a 238-dimensional
configuration space describing multi-layer convolutional networks
(convnets) for image classification.

Relative to DBNs and convnets, algorithms such as Support
Vector Machines (SVMs) and Random Forests (RFs) have a small-
enough number of hyperparameters that manual tuning and grid
or random search provides satisfactory results. Taking a step back
though, there is often no particular reason to use either an SVM
or an RF when they are both computationally viable. A model-
agnostic practitioner may simply prefer to go with the one that

* Corresponding author: bjkomer@uwaterloo.ca
‡ Centre for Theoretical Neuroscience, University of Waterloo

Copyright © 2014 Brent Komer et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

provides greater accuracy. In this light, the choice of classifier can
be seen as hyperparameter alongside the C-value in the SVM and
the max-tree-depth of the RF. Indeed the choice and configuration
of preprocessing components may likewise be seen as part of the
model selection / hyperparameter optimization problem.

The Auto-Weka project [Tho13] was the first to show that an
entire library of machine learning approaches (Weka [Hal09]) can
be searched within the scope of a single run of hyperparameter
tuning. However, Weka is a GPL-licensed Java library, and was
not written with scalability in mind, so we feel there is a need for
alternatives to Auto-Weka. Scikit-learn [Ped11] is another library
of machine learning algorithms. Is written in Python (with many
modules in C for greater speed), and is BSD-licensed. Scikit-learn
is widely used in the scientific Python community and supports
many machine learning application areas.

With this paper we introduce Hyperopt-Sklearn: a project
that brings the benefits of automatic algorithm configuration to
users of Python and scikit-learn. Hyperopt-Sklearn uses Hyperopt
[Ber13b] to describe a search space over possible configurations
of Scikit-Learn components, including preprocessing and classifi-
cation modules. Section 2 describes our configuration space of
6 classifiers and 5 preprocessing modules that encompasses a
strong set of classification systems for dense and sparse feature
classification (of images and text). Section 3 presents experimental
evidence that search over this space is viable, meaningful, and
effective. Section 4 presents a discussion of the results, and
directions for future work.

Background: Hyperopt for Optimization

The Hyperopt library [Ber13b] offers optimization algorithms for
search spaces that arise in algorithm configuration. These spaces
are characterized by a variety of types of variables (continuous,
ordinal, categorical), different sensitivity profiles (e.g. uniform vs.
log scaling), and conditional structure (when there is a choice be-
tween two classifiers, the parameters of one classifier are irrelevant
when the other classifier is chosen). To use Hyperopt, a user must
define/choose three things:

1) a search domain,
2) an objective function,
3) an optimization algorithm.

The search domain is specified via random variables, whose
distributions should be chosen so that the most promising com-
binations have high prior probability. The search domain can
include Python operators and functions that combine random

mailto:bjkomer@uwaterloo.ca

HYPEROPT-SKLEARN: AUTOMATIC HYPERPARAMETER CONFIGURATION FOR SCIKIT-LEARN 33

variables into more convenient data structures for the objective
function. The objective function maps a joint sampling of these
random variables to a scalar-valued score that the optimization
algorithm will try to minimize. Having chosen a search domain,
an objective function, and an optimization algorithm, Hyperopt’s
fmin function carries out the optimization, and stores results of
the search to a database (e.g. either a simple Python list or a
MongoDB instance). The fmin call carries out the simple analysis
of finding the best-performing configuration, and returns that to
the caller. The fmin call can use multiple workers when using the
MongoDB backend, to implement parallel model selection on a
compute cluster.

Scikit-Learn Model Selection as a Search Problem

Model selection is the process of estimating which machine
learning model performs best from among a possibly infinite set
of possibilities. As an optimization problem, the search domain
is the set of valid assignments to the configuration parameters
(hyperparameters) of the machine learning model, and the objec-
tive function is typically cross-validation, the negative degree of
success on held-out examples. Practitioners usually address this
optimization by hand, by grid search, or by random search. In
this paper we discuss solving it with the Hyperopt optimization
library. The basic approach is to set up a search space with
random variable hyperparameters, use scikit-learn to implement
the objective function that performs model training and model
validation, and use Hyperopt to optimize the hyperparamters.

Scikit-learn includes many algorithms for classification (clas-
sifiers), as well as many algorithms for preprocessing data into the
vectors expected by classification algorithms. Classifiers include
for example, K-Neighbors, SVM, and RF algorithms. Prepro-
cessing algorithms include things like component-wise Z-scaling
(Normalizer) and Principle Components Analysis (PCA). A full
classification algorithm typically includes a series of prepro-
cessing steps followed by a classifier. For this reason, scikit-
learn provides a pipeline data structure to represent and use a
sequence of preprocessing steps and a classifier as if they were just
one component (typically with an API similar to the classifier).
Although hyperopt-sklearn does not formally use scikit-learn’s
pipeline object, it provides related functionality. Hyperopt-sklearn
provides a parameterization of a search space over pipelines, that
is, of sequences of preprocessing steps and classifiers.

The configuration space we provide includes six preprocessing
algorithms and seven classification algorithms. The full search
space is illustrated in Figure 1. The preprocessing algorithms
were (by class name, followed by n. hyperparameters + n.
unused hyperparameters): PCA(2), StandardScaler(2),
MinMaxScaler(1), Normalizer(1), None, and
TF-IDF(0+9). The first four preprocessing algorithms were
for dense features. PCA performed whitening or non-whitening
principle components analysis. The StandardScaler,
MinMaxScaler, and Normalizer did various feature-
wise affine transforms to map numeric input features onto
values near 0 and with roughly unit variance. The TF-IDF
preprocessing module performed feature extraction from
text data. The classification algorithms were (by class name
(used + unused hyperparameters)): SVC(23), KNN(4+5),
RandomForest(8) , ExtraTrees(8) , SGD(8+4) ,
and MultinomialNB(2) . The SVC module is a fork of
LibSVM, and our wrapper has 23 hyperparameters because we

treated each possible kernel as a different classifier, with its own
set of hyperparameters: Linear(4), RBF(5), Polynomial(7), and
Sigmoid(6). In total, our parameterization has 65 hyperparameters:
6 for preprocessing and 53 for classification. The search space
includes 15 boolean variables, 14 categorical, 17 discrete, and 19
real-valued variables.

Although the total number of hyperparameters is large, the
number of active hyperparameters describing any one model is
much smaller: a model consisting of PCA and a RandomForest
for example, would have only 12 active hyperparameters (1 for
the choice of preprocessing, 2 internal to PCA, 1 for the choice of
classifier and 8 internal to the RF). Hyperopt description language
allows us to differentiate between conditional hyperparameters
(which must always be assigned) and non-conditional hyperpa-
rameters (which may remain unassigned when they would be
unused). We make use of this mechanism extensively so that
Hyperopt’s search algorithms do not waste time learning by trial
and error that e.g. RF hyperparameters have no effect on SVM
performance. Even internally within classifiers, there are instances
of conditional parameters: KNN has conditional parameters de-
pending on the distance metric, and LinearSVC has 3 binary
parameters (loss , penalty , and dual) that admit only 4
valid joint assignments. We also included a blacklist of (prepro-
cessing, classifier) pairs that did not work together, e.g. PCA and
MinMaxScaler were incompatible with MultinomialNB, TF-IDF
could only be used for text data, and the tree-based classifiers were
not compatible with the sparse features produced by the TF-IDF
preprocessor. Allowing for a 10-way discretization of real-valued
hyperparameters, and taking these conditional hyperparameters
into account, a grid search of our search space would still require
an infeasible number of evalutions (on the order of 1012).

Finally, the search space becomes an optimization problem
when we also define a scalar-valued search objective. Hyperopt-
sklearn uses scikit-learn’s score method on validation data to
define the search criterion. For classifiers, this is the so-called
"Zero-One Loss": the number of correct label predictions among
data that has been withheld from the data set used for training (and
also from the data used for testing after the model selection search
process).

Example Usage

Following Scikit-learn’s convention, hyperopt-sklearn provides an
Estimator class with a fit method and a predict method.
The fit method of this class performs hyperparameter optimiza-
tion, and after it has completed, the predict method applies
the best model to test data. Each evaluation during optimization
performs training on a large fraction of the training set, estimates
test set accuracy on a validation set, and returns that validation set
score to the optimizer. At the end of search, the best configuration
is retrained on the whole data set to produce the classifier that
handles subsequent predict calls.

One of the important goals of hyperopt-sklearn is that it is
easy to learn and to use. To facilitate this, the syntax for fitting a
classifier to data and making predictions is very similar to scikit-
learn. Here is the simplest example of using this software.

from hpsklearn import HyperoptEstimator
Load data ({train,test}_{data,label})
Create the estimator object
estim = HyperoptEstimator()
Search the space of classifiers and preprocessing
steps and their respective hyperparameters in

34 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Fig. 1: Hyeropt-sklearn’s full search space (“Any Classifier”) consists of a (preprocessing, classsifier) pair. There are 6 possible preprocessing
modules and 6 possible classifiers. Choosing a model within this configuration space means choosing paths in an ancestral sampling process.
The highlighted green edges and nodes represent a (PCA, K-Nearest Neighbor) model. The number of active hyperparameters in a model is
the sum of parenthetical numbers in the selected boxes. For the PCA+KNN combination, 7 hyperparameters are activated.

scikit-learn to fit a model to the data
estim.fit(train_data, train_label)
Make a prediction using the optimized model
prediction = estim.predict(unknown_data)
Report the accuracy of the classifier
on a given set of data
score = estim.score(test_data, test_label)
Return instances of the classifier and
preprocessing steps
model = estim.best_model()

The HyperoptEstimator object contains the information of
what space to search as well as how to search it. It can be con-
figured to use a variety of hyperparameter search algorithms and
also supports using a combination of algorithms. Any algorithm
that supports the same interface as the algorithms in hyperopt can
be used here. This is also where you, the user, can specify the
maximum number of function evaluations you would like to be
run as well as a timeout (in seconds) for each run.
from hpsklearn import HyperoptEstimator
from hyperopt import tpe
estim = HyperoptEstimator(algo=tpe.suggest,

max_evals=150,
trial_timeout=60)

Each search algorithm can bring its own bias to the search space,
and it may not be clear that one particular strategy is the best in
all cases. Sometimes it can be helpful to use a mixture of search
algorithms.
from hpsklearn import HyperoptEstimator
from hyperopt import anneal, rand, tpe, mix
define an algorithm that searches randomly 5% of
the time, uses TPE 75% of the time, and uses
annealing 20% of the time
mix_algo = partial(mix.suggest, p_suggest=[

(0.05, rand.suggest),
(0.75, tpe.suggest),
(0.20, anneal.suggest)])

estim = HyperoptEstimator(algo=mix_algo,
max_evals=150,
trial_timeout=60)

Searching effectively over the entire space of classifiers available
in scikit-learn can use a lot of time and computational resources.
Sometimes you might have a particular subspace of models that
they are more interested in. With hyperopt-sklearn it is possible to

specify a more narrow search space to allow it to be be explored
in greater depth.
from hpsklearn import HyperoptEstimator, svc
limit the search to only models a SVC
estim = HyperoptEstimator(classifier=svc('my_svc'))

Combinations of different spaces can also be used.
from hpsklearn import HyperoptEstimator, svc, knn, \
from hyperopt import hp
restrict the space to contain only random forest,
k-nearest neighbors, and SVC models.
clf = hp.choice('my_name',

[random_forest('my_name.random_forest'),
svc('my_name.svc'),
knn('my_name.knn')])

estim = HyperoptEstimator(classifier=clf)

The support vector machine provided by scikit-learn has a number
of different kernels that can be used (linear, rbf, poly, sigmoid).
Changing the kernel can have a large effect on the performance of
the model, and each kernel has its own unique hyperparameters.
To account for this, hyperopt-sklearn treats each kernel choice as
a unique model in the search space. If you already know which
kernel works best for your data, or you are just interested in
exploring models with a particular kernel, you may specify it
directly rather than going through the svc.
from hpsklearn import HyperoptEstimator, svc_rbf
estim = HyperoptEstimator(

classifier=svc_rbf('my_svc'))

It is also possible to specify which kernels you are interested in
by passing a list to the svc.
from hpsklearn import HyperoptEstimator, svc
estim = HyperoptEstimator(

classifier=svc('my_svc',
kernels=['linear',

'sigmoid']))

In a similar manner to classifiers, the space of preprocessing mod-
ules can be fine tuned. Multiple successive stages of preprocessing
can be specified by putting them in a list. An empty list means that
no preprocessing will be done on the data.
from hpsklearn import HyperoptEstimator, pca
estim = HyperoptEstimator(

preprocessing=[pca('my_pca')])

HYPEROPT-SKLEARN: AUTOMATIC HYPERPARAMETER CONFIGURATION FOR SCIKIT-LEARN 35

Combinations of different spaces can be used here as well.
from hpsklearn import HyperoptEstimator, tfidf, pca
from hyperopt import hp
preproc = hp.choice('my_name',

[[pca('my_name.pca')],
[pca('my_name.pca'), normalizer('my_name.norm')]
[standard_scaler('my_name.std_scaler')],
[]])

estim = HyperoptEstimator(preprocessing=preproc)

Some types of preprocessing will only work on specific types of
data. For example, the TfidfVectorizer that scikit-learn provides is
designed to work with text data and would not be appropriate for
other types of data. To address this, hyperopt-sklearn comes with
a few pre-defined spaces of classifiers and preprocessing tailored
to specific data types.
from hpsklearn import HyperoptEstimator, \

any_sparse_classifier, \
any_text_preprocessing

from hyperopt import tpe
estim = HyperoptEstimator(

algo=tpe.suggest,
classifier=any_sparse_classifier('my_clf')
preprocessing=any_text_preprocessing('my_pp')
max_evals=200,
trial_timeout=60)

So far in all of these examples, every hyperparameter available
to the model is being searched over. It is also possible for
you to specify the values of specific hyperparameters, and those
parameters will remain constant during the search. This could be
useful, for example, if you knew you wanted to use whitened PCA
data and a degree-3 polynomial kernel SVM.
from hpsklearn import HyperoptEstimator, pca, svc_poly
estim = HyperoptEstimator(

preprocessing=[pca('my_pca', whiten=True)],
classifier=svc_poly('my_poly', degree=3))

It is also possible to specify ranges of individual parameters. This
is done using the standard hyperopt syntax. These will override
the defaults defined within hyperopt-sklearn.
from hpsklearn import HyperoptEstimator, pca, sgd
from hyperopt import hp
import numpy as np
sgd_loss = hp.pchoice('loss',

[(0.50, 'hinge'),
(0.25, 'log'),
(0.25, 'huber')])

sgd_penalty = hp.choice('penalty',
['l2', 'elasticnet'])

sgd_alpha = hp.loguniform('alpha',
low=np.log(1e-5),
high=np.log(1))

estim = HyperoptEstimator(
classifier=sgd('my_sgd',

loss=sgd_loss,
penalty=sgd_penalty,
alpha=sgd_alpha))

All of the components available to the user can be found in the
components.py file. A complete working example of using
hyperopt-sklearn to find a model for the 20 newsgroups data set is
shown below.
from hpsklearn import HyperoptEstimator, tfidf, \

any_sparse_classifier
from sklearn.datasets import fetch_20newsgroups
from hyperopt import tpe
import numpy as np
Download data and split training and test sets
train = fetch_20newsgroups(subset='train')
test = fetch_20newsgroups(subset='test')
X_train = train.data

Fig. 2: For each data set, searching the full configuration space
(“Any Classifier”) delivered performance approximately on par with
a search that was restricted to the best classifier type. (Best viewed in
color.)

y_train = train.target
X_test = test.data
y_test = test.target
estim = HyperoptEstimator(

classifier=any_sparse_classifier('clf'),
preprocessing=[tfidf('tfidf')],
algo=tpe.suggest,
trial_timeout=180)

estim.fit(X_train, y_train)
print(estim.score(X_test, y_test))
print(estim.best_model())

Experiments

We conducted experiments on three data sets to establish that
hyperopt-sklearn can find accurate models on a range of data sets
in a reasonable amount of time. Results were collected on three
data sets: MNIST, 20-Newsgroups, and Convex Shapes. MNIST
is a well-known data set of 70K 28x28 greyscale images of hand-
drawn digits [Lec98]. 20-Newsgroups is a 20-way classification
data set of 20K newsgroup messages ([Mit96] , we did not
remove the headers for our experiments). Convex Shapes is a
binary classification task of distinguishing pictures of convex
white-colored regions in small (32x32) black-and-white images
[Lar07].

Figure 2 shows that there was no penalty for searching broadly.
We performed optimization runs of up to 300 function evaluations
searching the entire space, and compared the quality of solution
with specialized searches of specific classifier types (including
best known classifiers).

Figure 3 shows that search could find different, good models.
This figure was constructed by running hyperopt-sklearn with
different initial conditions (number of evaluations, choice of opti-
mization algorithm, and random number seed) and keeping track
of what final model was chosen after each run. Although support
vector machines were always among the best, the parameters of
best SVMs looked very different across data sets. For example, on
the image data sets (MNIST and Convex) the SVMs chosen never
had a sigmoid or linear kernel, while on 20 newsgroups the linear
and sigmoid kernel were often best.

Discussion and Future Work

Table 1 lists the test set scores of the best models found by cross-
validation, as well as some points of reference from previous work.

36 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

MNIST 20 Newsgroups Convex Shapes
Approach Accuracy Approach F-Score Approach Accuracy
Committee of
convnets

99.8% CFC 0.928 hyperopt-
sklearn

88.7%

hyperopt-
sklearn

98.7% hyperopt-
sklearn

0.856 hp-dbnet 84.6%

libSVM grid
search

98.6% SVMTorch 0.848 dbn-3 81.4%

Boosted trees 98.5% LibSVM 0.843

TABLE 1: Hyperopt-sklearn scores relative to selections from literature on the three data sets used in our experiments. On MNIST, hyperopt-
sklearn is one of the best-scoring methods that does not use image-specific domain knowledge (these scores and others may be found at
http://yann.lecun.com/exdb/mnist/). On 20 Newsgroups, hyperopt-sklearn is competitive with similar approaches from the literature (scores
taken from [Gua09]). In the 20 Newsgroups data set, the score reported for hyperopt-sklearn is the weighted-average F1 score provided
by sklearn. The other approaches shown here use the macro-average F1 score. On Convex Shapes, hyperopt-sklearn outperforms previous
automatic algorithm configuration approaches [Egg13] and manual tuning [Lar07] .

Fig. 3: Looking at the best models from all optimization runs
performed on the full search space (using different initial conditions,
and different optimization algorithms) we see that different data sets
are handled best by different classifiers. SVC was the only classifier
ever chosen as the best model for Convex Shapes, and was often
found to be best on MNIST and 20 Newsgroups, however the best
SVC parameters were very different across data sets.

Fig. 4: Using Hyperopt’s Anneal search algorithm, increasing the
number of function evaluations from 150 to 2400 lead to a modest
improvement in accuracy on 20 Newsgroups and MNIST, and a more
dramatic improvement on Convex Shapes. We capped evaluations to
5 minutes each so 300 evaluations took between 12 and 24 hours of
wall time.

Hyperopt-sklearn’s scores are relatively good on each data set, in-
dicating that with hyperopt-sklearn’s parameterization, Hyperopt’s
optimization algorithms are competitive with human experts.

The model with the best performance on the MNIST Digits
data set uses deep artificial neural networks. Small receptive
fields of convolutional winner-take-all neurons build up the large
network. Each neural column becomes an expert on inputs pre-
processed in different ways, and the average prediction of 35 deep
neural columns to come up with a single final prediction [Cir12].
This model is much more advanced than those available in scikit-

Fig. 5: Right: TPE makes gradual progress on 20 Newsgroups over
300 iterations and gives no indication of convergence.

learn. The previously best known model in the scikit-learn search
space is a radial-basis SVM on centered data that scores 98.6%,
and hyperopt-sklearn matches that performance [MNIST].

The CFC model that performed quite well on the 20 news-
groups document classification data set is a Class-Feature-
Centroid classifier. Centroid approaches are typically inferior to
an SVM, due to the centroids found during training being far
from the optimal location. The CFC method reported here uses a
centroid built from the inter-class term index and the inner-class
term index. It uses a novel combination of these indices along
with a denormalized cosine measure to calculate the similarity
score between the centroid and a text vector [Gua09]. This style of
model is not currently implemented in hyperopt-sklearn, and our
experiments suggest that existing hyperopt-sklearn components
cannot be assembled to match its level of performance. Perhaps
when it is implemented, Hyperopt may find a set of parameters
that provides even greater classification accuracy.

On the Convex Shapes data set, our Hyperopt-sklearn ex-
periments revealed a more accurate model than was previously
believed to exist in any search space, let alone a search space of
such standard components. This result underscores the difficulty
and importance of hyperparameter search.

http://yann.lecun.com/exdb/mnist/

HYPEROPT-SKLEARN: AUTOMATIC HYPERPARAMETER CONFIGURATION FOR SCIKIT-LEARN 37

Hyperopt-sklearn provides many opportunities for future
work: more classifiers and preprocessing modules could be in-
cluded in the search space, and there are more ways to combine
even the existing components. Other types of data require dif-
ferent preprocessing, and other prediction problems exist beyond
classification. In expanding the search space, care must be taken
to ensure that the benefits of new models outweigh the greater
difficulty of searching a larger space. There are some parameters
that scikit-learn exposes that are more implementation details than
actual hyperparameters that affect the fit (such as algorithm
and leaf_size in the KNN model). Care should be taken to
identify these parameters in each model and they may need to be
treated differently during exploration.

It is possible for a user to add their own classifier to the search
space as long as it fits the scikit-learn interface. This currently
requires some understanding of how hyperopt-sklearn’s code is
structured and it would be nice to improve the support for this so
minimal effort is required by the user. We also plan to allow the
user to specify alternate scoring methods besides just accuracy and
F-measure, as there can be cases where these are not best suited
to the particular problem.

We have shown here that Hyperopt’s random search, anneal-
ing search, and TPE algorithms make Hyperopt-sklearn viable,
but the slow convergence in e.g. Figure 4 and 5 suggests that
other optimization algorithms might be more call-efficient. The
development of Bayesian optimization algorithms is an active
research area, and we look forward to looking at how other
search algorithms interact with hyperopt-sklearn’s search spaces.
Hyperparameter optimization opens up a new art of matching
the parameterization of search spaces to the strengths of search
algorithms.

Computational wall time spent on search is of great practical
importance, and hyperopt-sklearn currently spends a significant
amount of time evaluating points that are un-promising. Tech-
niques for recognizing bad performers early could speed up search
enormously [Swe14], [Dom14]. Relatedly, hyperopt-sklearn cur-
rently lacks support for K-fold cross-validation. In that setting, it
will be crucial to follow SMAC in the use of racing algorithms to
skip un-necessary folds.

Conclusions

We have introduced Hyperopt-sklearn, a Python package for
automatic algorithm configuration of standard machine learning
algorithms provided by Scikit-Learn. Hyperopt-sklearn provides a
unified view of 6 possible preprocessing modules and 6 possible
classifiers, yet with the help of Hyperopt’s optimization functions
it is able to both rival and surpass human experts in algorithm con-
figuration. We hope that it provides practitioners with a useful tool
for the development of machine learning systems, and automatic
machine learning researchers with benchmarks for future work in
algorithm configuration.

Acknowledgements

This research was supported by the NSERC Banting Fellowship
program, the NSERC Engage Program and by D-Wave Systems.
Thanks also to Hristijan Bogoevski for early drafts of a hyperopt-
to-scikit-learn bridge.

REFERENCES

[Ber11] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl. Algorithms for
hyper-parameter optimization, NIPS, 24:2546–2554, 2011.

[Ber13a] J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures, In Proc. ICML, 2013a.

[Ber13b] J. Bergstra, D. Yamins, and D. D. Cox. Hyperopt: A Python library
for optimizing the hyperparameters of machine learning algorithms,
SciPy’13, 2013b.

[Cir12] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column Deep
Neural Networks for Image Classification, IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 3642-3649.
2012.

[Dom14] T. Domhan, T. Springenberg, F. Hutter. Extrapolating Learning
Curves of Deep Neural Networks, ICML AutoML Workshop, 2014.

[Egg13] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H.
Hoos, and K. Leyton-Brown. Towards an empirical foundation for
assessing bayesian optimization of hyperparameters, NIPS work-
shop on Bayesian Optimization in Theory and Practice, 2013.

[Gua09] H. Guan, J. Zhou, and M. Guo. A class-feature-centroid classifier for
text categorization, Proceedings of the 18th international conference
on World wide web, 201-210. ACM, 2009.

[Hal09] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: an update, ACM SIGKDD
explorations newsletter, 11(1):10-18, 2009.

[Hut11] F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based
optimization for general algorithm configuration, LION-5, 2011.
Extended version as UBC Tech report TR-2010-10.

[Lar07] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An
empirical evaluation of deep architectures on problems with many
factors of variation, ICML, 473-480, 2007.

[Lec98] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition, Proceedings of the IEEE,
86(11):2278-2324, November 1998.

[Mit96] T. Mitchell. 20 newsgroups data set, http://qwone.com/jason/
20Newsgroups/, 1996.

[Moc78] J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian
methods for seeking the extremum, L.C.W. Dixon and G.P. Szego,
editors, Towards Global Optimization, volume 2, pages 117–129.
North Holland, New York, 1978.

[MNIST] The MNIST Database of handwritten digits: http://yann.lecun.com/
exdb/mnist/

[Ped11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine Learning in Python, Journal of
Machine Learning Research, 12:2825–2830, 2011.

[Sno12] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian
optimization of machine learning algorithms, Neural Information
Processing Systems, 2012.

[Swe14] K. Swersky, J. Snoek, R.P. Adams. Freeze-Thaw Bayesian Optimiza-
tion, arXiv:1406.3896, 2014.

[Tho13] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-
WEKA: Automated selection and hyper-parameter optimization of
classification algorithms, KDD 847-855, 2013.

http://qwone.com/jason/20Newsgroups/
http://qwone.com/jason/20Newsgroups/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

	Introduction
	Background: Hyperopt for Optimization
	Scikit-Learn Model Selection as a Search Problem
	Example Usage
	Experiments
	Discussion and Future Work
	Conclusions
	Acknowledgements
	References

