
Proceedings of the 13th

Python in Science Conference

July 6 - 12 • Austin, Texas

Stéfan van der Walt
James Bergstra

PROCEEDINGS OF THE 13TH PYTHON IN SCIENCE CONFERENCE

Edited by Stéfan van der Walt and James Bergstra.

SciPy 2014
Austin, Texas
July 6 - 12, 2014

Copyright c© 2014. The articles in the Proceedings of the Python in Science Conference are copyrighted and owned by their
original authors

This is an open-access publication and is distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

For more information, please see: http://creativecommons.org/licenses/by/3.0/

ISSN:2575-9752
https://doi.org/10.25080/Majora-14bd3278-011

ORGANIZATION

Conference Chairs
KELSEY JORDAHL, Enthought, Inc.
ANDY R. TERREL, Continuum Analytics

Program
KATY HUFF, University of California, Berkeley
SERGE RAY, Arizona State University

Communications
ANTHONY SCOPATZ, University of Wisconsin-Madison
MATTHEW TURK, Columbia University

Birds of Feathers
KYLE MANDLI, University of Texas at Austin
MATT MCCORMICK, Kitware, Inc.

Proceedings
STÉFAN VAN DER WALT, Stellenbosch University
JAMES BERGSTRA, University of Waterloo

Financial Aid
JOHN WIGGINS, Enthought, Inc.
JEFF DAILY, Pacific Northwest National Laboratory

Tutorials
JAKE VANDERPLAS, University of Washington
KRISTEN THYNG, Texas A&M University

Sprints
CORRAN WEBSTER, Enthought, Inc.
JONATHAN ROCHER, Enthought, Inc.

Technical
MATTHEW TERRY, Nextdoor.com
SHEILA MIGUEZ
JIM IVANOFF, Polar Bear Design

Sponsors
BRETT MURPHY, Enthought, Inc.
JILL COWAN, Enthought, Inc.

Financial
BILL COWAN, Enthought, Inc.
JODI HAVRANEK, Enthought, Inc.

Logistics
LEAH JONES, Enthought, Inc.

Program Committee
ARON AHMADIA
DANIEL ARRIBAS
CHRIS BARKER
DANA BAUER
AZALEE BOSTROEM
MATTHEW BRETT
HOWARD BUTLER
NEAL CAREN
AASHISH CHAUDHARY
ADINA CHUANG HOWE
CHRISTINE CHOIRAT
DAV CLARK
JEAN CONNELLY
MATT DAVIS
MICHAEL DROETTBOOM
JUAN CARLOS DUQUE
DANIEL DYE
CARSON FARMER
DAVID FOLCH
PATRICIA FRANCIS-LYON
SEAN GILLIES
BRIAN GRANGER
PAUL IVANOV
MARK JANIKAS
JACKIE KAZIL
HANS PETTER LANGTANGEN
JASON LAURA
DANIEL J. LEWIS
WENWEN LI
CINDEE MADISON
MATTHEW MCCORMICK
MIKE MCKERNS
AUGUST MUENCH
ANA NELSON
FLORIAN RATHGEBER
MATTHEW ROCKLIN
TOM ROBITAILLE
CHARLES R. SCHMIDT
SKIPPER SEABOLD
ASHTON SHORTRIDGE
RICH SIGNELL
WILLIAM SPOTZ
JOHN STACHURSKI
PHILIP STEPHENS
TRACY TEAL
KRISTEN M. THYNG
ERIK TOLLERUD
JAKE VANDERPLAS
SHAI VAINGAST
GAËL VAROQUAUX
NELLE VAROQUAUX
SHAUN WALBRIDGE
XINYUE YE
ALEX ZVOLEFF

Proceedings Reviewers
ARON AHMADIA
DANI ARRIBAS-BEL
CHRIS BARKER

AZALEE BOSTROEM
MATTHEW BRETT
CHRISTINE CHOIRAT
DAVID FOLCH
SATRAJIT GHOSH
BRIAN GRANGER
PIETER HOLTZHAUSEN
HANS PETTER LANGTANGEN
TERRY LETSCHE
DANIEL LEWIS
AUGUST MUENCH
JOSEF PERKTOLD
BENJAMIN RAGAN-KELLEY
MATTHEW ROCKLIN
DANIEL SOTO
ERIK TOLLERUD
JAKE VANDERPLAS

Mini Symposium Committee
TREVOR BLANARIK AND NICHOLAS LEDERER, Engineering
DAV CLARK, Computational Social Science and Digital Humanities
MATT HALL, Geophysics
MATTHEW MCCORMICK, Vision, Visualization, and Imaging
THOMAS ROBITAILLE, Astronomy and Astrophysics
TRACY TEAL, Bioinformatics

Diversity Committee
PATRICIA FRANCIS-LYON, University of San Francisco
KATY HUFF, University of California, Berkeley
LEAH SILEN, Numfocus
KRISTEN THYNG, Texas A&M University

CONTENTS

Preface 1
Andy Terrel, Jonathan Rocher, Stéfan van der Walt, James Bergstra

Scientific Computing with SciPy for Undergraduate Physics Majors 2
G William Baxter

BCE: Berkeley’s Common Scientific Compute Environment for Research and Education 5
Dav Clark, Aaron Culich, Brian Hamlin, Ryan Lovett

Measuring rainshafts: Bringing Python to bear on remote sensing data 13
Scott Collis, Scott Giangrande, Jonathan Helmus, Di Wu, Ann Fridlind, Marcus van Lier-Walqui, Adam Theisen

Teaching numerical methods with IPython notebooks and inquiry-based learning 19
David I. Ketcheson

Project-based introduction to scientific computing for physics majors 25
Jennifer Klay

Hyperopt-Sklearn: Automatic Hyperparameter Configuration for Scikit-Learn 32
Brent Komer, James Bergstra, Chris Eliasmith

Python Coding of Geospatial Processing in Web-based Mapping Applications 38
James A. Kuiper, Andrew J. Ayers, Michael E. Holm, Michael J. Nowak

Scaling Polygon Adjacency Algorithms to Big Data Geospatial Analysis 45
Jason Laura, Sergio J. Rey

Campaign for IT literacy through FOSS and Spoken Tutorials 51
Kannan M. Moudgalya

Python for research and teaching economics 59
David R. Pugh

Validated numerics with Python: the ValidiPy package 65
David P. Sanders, Luis Benet

Creating a browser-based virtual computer lab for classroom instruction 72
Ramalingam Saravanan

TracPy: Wrapping the Fortran Lagrangian trajectory model TRACMASS 79
Kristen M. Thyng, Robert D. Hetland

Frequentism and Bayesianism: A Python-driven Primer 85
Jake VanderPlas

Blaze: Building A Foundation for Array-Oriented Computing in Python 94
Mark Wiebe, Matthew Rocklin, TJ Alumbaugh, Andy Terrel

Simulating X-ray Observations with Python 98
John A. ZuHone, Veronica Biffi, Eric J. Hallman, Scott W. Randall, Adam R. Foster, Christian Schmid

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014) 1

Preface
Andy Terrel‡∗, Jonathan Rocher§, Stéfan van der Walt‖, James Bergstra¶

F

SciPy 2014, the thirteenth annual Scientific Computing with
Python conference, was held July 6–12th in Austin, Texas. SciPy
is a community dedicated to the advancement of scientific com-
puting through open source Python software for mathematics,
science, and engineering.

The SciPy conferences have become a prominent forum for
Python users from the academic, commercial and government
sectors to present and develop their latest tools and innovations.
Topics cover a wide array of domains, from cross-language inter-
actions to education and cutting-edge research. These events, by
virtue of embracing both in-depth scientific exploration and pro-
gramming/code, form a unique connection between the academic
and developer communities. At SciPy, code, science, and math live
on the same screen.

It is an exciting time to be part of this community that has
spent the last decade developing sophisticated tools—tools that
are now ideally suited to address technical problems arising at the
blooming intersection of specialized domains and computation.
Many contributors to the community have been hired at university
data institutions, Python has become the number one language for
undergraduate teaching, and many productive partnerships have
been formed with industry.

The conference continues to grow with almost 500 participants
from across the globe. More than half of attendees are now from
industry, the rest split between government laboratories and the
academy. The organizing committee is committed to increasing
representation from underrepresented groups. This year, 15% of
attendees were women, a significant increase from 3% in 2013.
A Diversity Committee was formed to ensure that this trend
continues.

Geospatial Computing and Education were central themes this
year, with additional minisymposia on the following topics:

• Astronomy and Astrophysics
• Bioinformatics
• Geophysics
• Vision, Visualization, and Imaging
• Computational Social Science and Digital Humanities
• Engineering

Birds of a Feather sessions were organized around select solicited
topics, providing an effective platform for discussing issues rele-

* Corresponding author: aterrell@tacc.utexas.edu
‡ Continuum Analytics
§ Enthought, Inc.
|| University of California, Berkeley
¶ University of Waterloo

Copyright © 2014 Andy Terrel et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

vant to the community. New open space activities, sponsor funded
social events and tutorials effectively exposed newcomers to the
welcoming and inclusive scientific Python community.

We were privileged to have three prominent community mem-
bers present keynotes. Greg Wilson gave a heart-felt call for
action, encouraging the enhancement of tools for education in
scientific computing. Lorena Barba focused on the interactions
between computation, the system under study and learning, high-
lighting the importance of tools that facilitate those connections.
The final keynote speaker, Python core developer Nick Coghlan,
presented his perspective on the distribution of open source tools,
emphasizing the need to bridge gaps that exist between various
channels of distribution.

These proceedings contain 16 peer-reviewed contributions,
based on talks presented at the conference. They provide a peek
into the current state of the ever-evolving landscape of Python in
Science. We hope you find pleasure in the effort the authors have
made to carefully present their work in a clear and accessible
fashion.

On behalf of the SciPy2014 organizers,

Andy Terrel & Kelsey Jordahl, conference chairs
Stéfan van der Walt & James Bergstra, proceedings chairs

2 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Scientific Computing with SciPy for Undergraduate
Physics Majors

G William Baxter‡∗

F

Abstract—The physics community is working to improve the undergraduate
curriculum to include computer skills that graduates will need in the workforce.
At Penn State Erie, The Behrend College, we have added computational tools
to our Junior/Senior physics laboratory, PHYS421w Research Methods. The
course emphasizes Python software tools (SciPy) for data analysis rather than
traditional programming. The course uses real experiments to motivate the
mastery of these tools.

Index Terms—laboratory, computing, software tools, experiment

Introduction

There is a growing debate within the physics community as
to what skills a physics graduate with a Bachelor degree must
have to be successful in industry or academia [Chonacky2008],
[Landau2006]. The computer has become such a basic tool for
data acquisition, process control, and analysis that an undergrad-
uate physics degree should include computer skills. However,
while some undergraduate physics degrees require one or more
courses in programming, often C++ programming, many physics
degrees require no computer courses at all [Fuller2006]. To
remedy this, computing could be taught by way of a new course
[Kaplan2004], [Spencer2005], by adding the material to an exist-
ing course [Caballero2014], [Timberlake2008], [Serbanescu2011],
[Nakroshis2013] or both [Taylor2006]. Many degree programs are
limited by their total number of credits so that adding a computing
course would require removing an existing course. Easier is to add
the material to an existing course. At Penn State Erie, we added
the material to our advanced laboratory, PHYS 421w Research
Methods [Hanif2009].

In those majors that include computation, the emphasis is
often on either simulation or programming numerical techniques.
A strong case can be made that a student would benefit from
less traditional programming and more computing with software
tools, by which we mean analyzing data or solving problems
with software which might be created by someone else. At Penn
State Erie, we require a traditional introductory course in C++
programming, but we have added an emphasis on computing with
software tools to our advanced laboratory, PHYS 421w Research
Methods.

* Corresponding author: gwb6@psu.edu
‡ Physics, School of Science, Penn State Erie - The Behrend College

Copyright © 2014 G William Baxter. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Experiment Type

Charge to Mass Ratio of the Electron Exp
Cavendish Measurement of G Exp
Millikan Oil Drop Measurement of e Exp
Harmonic Motion and Torsion Oscillators Exp
Domains and Bubbles in a Magnetic Film Exp
Two-slit Interference, One Photon at a Time Exp
Earth’s Field Nuclear Magnetic Resonance Exp
Vibrations of a Vertical Chain Fixed at One End Exp
Video Microscop of Brownian Motion Exp
Diffusivity in Liquids Exp
Percolation Sim
Scaling Properties of Random Walks Sim
Critical Temperature of a Two Dimensional Ising
Model

Sim

TABLE 1: Partial list of available experiments for PHYS421w.

Research Methods Laboratory

PHYS 421w Research Methods is a 3 credit lab in which each
student chooses three experiments from classical and modern
physics. See Table 1 for a partial list of experiments. Most are
physical experiments, but students are allowed to do a computer
simulation for their third experiment. Note that the data acquisition
and analysis can be very different for different experiments.
Some involve adjusting a parameter and making a measurement,
others involve extracting measurements from a time series of
measurements, and others involve extracting a measurement from
a series of images.

The course’s guiding principles are:

• Experiments should be as close as possible to the way
physics is really done including submitting LaTeX papers
for peer-reviewed grading.

• Emphasis is on software tools for analysis and publication
rather than on numerical techniques.

• Software tools presented will be needed in the experi-
ments. However useful they may be, we do not introduce
tools which do not apply to any of these experiments.

• All software will be free and open-source.

Students are strongly motivated to learn when they believe the
material will be useful in their future careers. Here, the emphasis
is on a realistic experimental experience. Students have 4 weeks
to setup, perform, analyze, and write up the results of each exper-
iment. Papers must adhere to the standards for publication in an

SCIENTIFIC COMPUTING WITH SCIPY FOR UNDERGRADUATE PHYSICS MAJORS 3

Software Tools Topic Included Tools Covered?

Visualization matplotlib Always
Modeling and Fitting scipy.optimize.leastsq Always
Array Operations python, numpy Always
Statistics and Uncertainty numpy.statistics & special Always
Special Functions numpy.special As Needed
Image Processing numpy, PIL, scipy.ndimage As Needed
Frequency Space numpy.fft As Needed
Differential Equations scipy.integrate.odeint Always
[Monte Carlo Techniques] python As Needed

TABLE 2: Software tool categories.

American Physical Society (APS) Physical Review journal. Papers
are reviewed by a set of anonymous reviewers who comment on
each paper. Authors have the opportunity to rewrite their paper
and submit it for a final review. Papers must be written in LaTeX
with the APS RevTeX extensions.

The course is taken by Junior and Senior level physics majors
and some engineering students seeking a minor in physics. Stu-
dents entering the course typically have had one or more computer
programming classes using C++ taught by the Computer Science
Department. On average, their programming skills are poor. They
have some familiarity with Microsoft Word and Excel. Excel is
a good package for business; but, it has serious limitations for
scientific work, despite being used for nearly all introductory
science labs at Penn State Erie. These limitations include: poor
handling of uncertainties and error bars, limited fit functions,
no Fourier transforms, and no image processing capability. They
are very poorly prepared for the manipulation and analysis of
experimental data.

The course begins with two lectures introducing the
Unix/Linux operating system. It continues with 4 lectures on
LaTeX and BibTeX. Each lecture is followed by a homework
assignment which allows the student to practice the day’s topic.
Then a series of lectures on Scientific Python tools follow as
shown in Table 2. Students receive custom documentation1 on
each topic with many examples showing the commands and the
results as well as homework on each topic for practice.

We begin with plotting and visualization. Viewing data is the
first step to determining what to do with it. Students often have
little experience with error bars and histograms and no experience
with when or how to use logarithmic scales. This topic also
includes reading and writing of data files. We follow this with
a discussion of and exercises on modeling and fitting. Students are
given five noisy data sets. With no additional information on each,
they first determine the correct functional form and necessary
parameters and initial conditions. Then they must determine the
best-fit parameters with uncertainties on all parameters and plot
the fitted curve through the data. "Guessing" the functional form
is difficult for many students, but they are strongly motivated by
the fact that they know they will have to use this skill in their
upcoming experiments. Examples of the data sets and fitted curves
are shown in figure 1. Notice that there is little discussion of the
numerical technique. We are choosing to treat this as a tool and
save discussions of the details of the numerical technique for a

1. Materials are available for download from https://sites.psu.edu/
teachingexperimentalphysics/.

Fig. 1: Examples of two data sets used for fitting practice. Students
are given only a simple data file with no additional information.
They must decide on the appropriate function and the necessary
fit parameters. In (a), y(t) = 8.0e−0.5t cos(5.0t) + 0.25 and in (b)
y(k) = 3.3e−2.5(k−2.0)2

+0.30k .

numerical analysis course, an optional course in our major but not
a requirement.

Some may be concerned that focusing on software tools rather
than numerical methods may lead students to believe that they
never need a deeper understanding of the numerical methods upon
which these tools depend. I believe this risk is small. Using fitting
as an example, we do discuss in a very general way the method
of least squares. As they use the tool, students quickly learn that
a poor initial guess often leads to nonsensical results and wonder
"why?" I believe it likely that, having used a tool, students will
be more motivated to learn the numerical methods on which it
depends.

The array operations material is introduced so that students
will be able to rescale and manipulate data once it is read from a
file. For example, to collect spectra, we use a grating spectrometer,
a light sensor and LABview to get a series of data points (12 per
degree) from the m=1 spectral lines on one side of the center
line to approximately the same point on the other side. Using this
data, the student must determine the zero angle point, average
angles and signals on both sides, and convert to wavelengths.
The statistics material is used to introduce students to a serious
discussion of uncertainty, error, and distributions. We discuss and
calculate standard deviations both theoretically and for real data.
And we explore non-Gaussian distributions such as the Poisson
and binomial distributions which occur in real experiments.

Other topics are introduced as needed depending on which
experiments students have chosen. Image processing is introduced
when any students are doing experiments which take data in the
form of images (such as the magnetic film, vibrations of a vertical
chain, and video microscopy). The specific goal is the extraction of
useful data from images. Specific material includes image formats
and conversion to matrix form, region of interest, background
subtraction, thresholding, and filtering to find lines or points.
Special functions is introduced when experiments will produce
data that has a functional form of Bessel, Legendre, or other
special functions. These occur often in optics, electrostatic, and
wave problems. Without knowing how to access these functions
in numpy, fitting or modeling the data would not be possible. Fre-

4 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

quency space introduces the Fourier transform, FFT, windowing
and the power spectrum. It is particularly useful for analyzing
experiments which have either a temporal or spatial periodicity.
The differential equations material is introduced so that it can
be used in a Junior/Senior classical mechanics class offered the
following semester.

Discussion

We have no formal assessment in place; however, anecdotal
evidence is positive. Returning graduates have specifically cited
the ability to fit experimental data as valuable in graduate school.
Faculty have said they value research students who have learned
to plot and fit data in this course, and some students have set
up our software tool environments on their own computers. From
my perspective as professor, the quality of student figures and
analysis in PHYS 421w has dramatically improved. It remains
a challenge to convince some students that they need to know
more than Microsoft Excel; but, students are more interested in
learning software tools when they see their utility and know they
will need to use them. Ideally, any course following PHYS 421w
should reinforce these skills by also requiring students to use these
computer tools; however, at Penn State Erie, it has been difficult
to get faculty to include computer skills in upper-level courses;
at present only classical mechanics uses any computer tools. This
course and its software tools materials remain a work in progress.

Acknowledgements

I gratefully acknowledge the assistance and feedback of the
students of PHYS 421w at Penn State Erie, The Behrend College.

REFERENCES

[Caballero2014] M. Caballero and S. Pollock, A model for incorpo-
rating computation without changing the course:
An example from middle-division classical me-
chanics, American Journal of Physics 82 (2014)
pp231-237.

[Chonacky2008] N. Chonacky and D. Winch, Integrating computa-
tion into the undergraduate curriculum: A vision
and guidelines for future developments, American
Journal of Physics, 76(4&5) (2008) pp327-333.

[Fuller2006] R. Fuller, Numerical Computations in US Under-
graduate Physics Courses, Computing in Science
and Engineering, September/October 2006, pp16-
21.

[Hanif2009] M. Hanif, P. H. Sneddon, F. M. Al-Ahmadi, and
R. Reid, The perceptions, views and opinions of
university students about physics learning during
undergraduate laboratory work, Eur J. Phys, 30,
2009, pp85-96.

[Kaplan2004] D. Kaplan, Teaching computation to undergraduate
scientists, SIGSCE, Norfolk, VA, March 3-7,
2004.

[Landau2006] R. Landau, Computational Physics: A better model
for physics education?, Computing in Science and
Engineering, September/October 2006, pp22-30.

[Nakroshis2013] P. Nakroshis, Introductory Computational Physics
Using Python, unpublished course notes, 2013.

[Serbanescu2011] R. Serbanescu, P. Kushner, and S. Stanley, Putting
computation on a par with experiments and theory
in the undergraduate physics curriculum, Ameri-
can Journal of Physics, 79 (2011), pp919-924.

[Spencer2005] R. Spencer, Teaching computational physics as a
laboratory sequence, 73, (2005), pp151-153.

[Taylor2006] J. Taylor and B. King, Using Computational Meth-
ods to Reinvigorate an Undergraduate Physics
Curriculum, Computing in Science and Engineer-
ing, September/October 2006, pp38-43.

[Timberlake2008] T. Timberlake and J. Hasbun, Computation in clas-
sical mechanics, American Journal of Physics, 76
(2008), pp334-339.

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014) 5

BCE: Berkeley’s Common Scientific Compute
Environment for Research and Education

Dav Clark‡∗, Aaron Culich‡, Brian Hamlin§, Ryan Lovett‡

http://www.youtube.com/watch?v=e7jaZ5SFvFk

F

Abstract—There are numerous barriers to the use of scientific computing
toolsets. These barriers are becoming more apparent as we increasingly see
mixing of different academic backgrounds, and compute ranging from laptops to
cloud platforms. Members of the UC Berkeley D-Lab, Statistical Computing Fa-
cility (SCF), and Berkeley Research Computing (BRC) support such use-cases,
and have developed strategies that reduce the pain points that arise. We begin
by describing the variety of concrete training and research use-cases in which
our strategy might increase accessibility, productivity, reuse, and reproducibility.
We then introduce available tools for the “recipe-based” creation of compute
environments, attempting to demystify and provide a framework for thinking
about DevOps (along with explaining what “DevOps” means!). As a counterpoint
to novel DevOps tools, we’ll also examine the success of OSGeo-Live [OSGL]
– a project that has managed to obtain and manage developer contributions
for a large number of geospatial projects. This is enabled through the use of
commonly known skills like shell scripting, and is a model of complexity that
can be managed without these more recent DevOps tools. Given our evaluation
of a variety of technologies and use-cases, we present our current strategy
for constructing the Berkeley Common Environment [BCE], along with general
recommendations for building environments for your own use-cases.

Index Terms—education, reproducibility, virtualization

Introduction

Most readers of this paper will have dealt with the challenges of
sharing or using complex compute stacks – be that in the course of
instruction, collaboration, or shipping professional software. Here,
we suggest an approach for introducing novices to new software
that reduces complexity by providing a standard reference end-
user environment. We’ll discuss approaches to building and using
a common environment from any major OS, including an overview
of the tools available to make this easier. This approach can make
it easier to provide complete and robust instructions, and make it
easier for students to follow demos.

At a university, students often need to reproduce an environ-
ment required to run the software for a course. Researchers need
to reproduce their collaborator’s workflows, or anyone’s workflow
in the name of reproducible research. Recently, a new crop of
tools-for-managing-tools has emerged under the DevOps banner
– a contraction of software development and systems operation

* Corresponding author: davclark@berkeley.edu
‡ UC Berkeley
§ OSGeo California Chapter

Copyright © 2014 Dav Clark et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

– with a general philosophy that instead of merely documenting
systems operation tasks (configuration, deployment, maintenance,
etc.), that developers can and should be scripting these tasks as
much as possible.

In scientific computing the environment was commonly man-
aged via Makefiles & Unix-y hacks, or alternatively with mono-
lithic software like Matlab. More recently, centralized package
management has provided curated tools that work well together.
But as more and more essential functionality is built out across
a variety of systems and languages, the value – and also the
difficulty – of coordinating multiple tools continues to increase.
Whether we are producing research results or web services, it is
becoming increasingly essential to set up new languages, libraries,
databases, and more.

Documentation for complex software environments is stuck
between two opposing demands. To make things easier on novice
users, documentation must explain details relevant to factors like
different operating systems. Alternatively, to save time writing
and updating documentation, developers like to abstract over such
details. A DevOps approach to “documenting” an application
might consist of providing brief descriptions of various install
paths, along with scripts or “recipes” that automate setup. This can
be more enjoyable and certainly easily and robustly reproducible
for end-users – even if your setup instructions are wrong, they will
be reproducibly wrong! As we’ll describe below, many readers
will already have tools and skills to do this, in the form of package
management and basic shell scripting. In other words, the primary
shift that’s required is not one of new tooling, as most developers
already have the basic tooling they need. Rather, the needed shift
is one of philosophy.

We recognize that excellent tools have been developed to allow
for configuring Python environments, including environments that
peacefully co-exist on the same computer (e.g., pip, virtualenv,
venv, conda, and buildout). These specialized tools can increase
our efficiency and provide ready access to a broader range of
options (such as different versions or compile-time settings).
But, we may also wish to coordinate the desktop environment,
including text editors, version control systems, and so on. As such,
these tools from the Python community to manage packages and
run-time environments cannot solve all of our problems. But any
of them could be used within the broader approach we’ll describe.

More recent configuration management tools are directed at
solving this larger problem of configuring nearly any aspect of
a compute system, and yet other DevOps tools provide efficient
ways of managing environments across compute contexts. Unfor-

6 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

tunately, the variety and complexity of tools match the variety and
complexity of the problem space, and the target space for most
of them was not scientific computing. Thus, before discussing
available tooling, we first lay out a fuller set of concerns relevant
to supporting scientific computing.

Issues for Scientific Computing

The users of computational tools (and their collaborators) are
often equipped with a suite of informally learned foundational
skills (command line usage, knowledge of specific applications,
etc.). Newcomers to a field often lack these technical skills, which
creates a boundary between those who do and do not (and perhaps
cannot) participate in that discipline. However, we are entering
an era where these boundaries are becoming barriers to the
research and educational mission of our university. Our primary
concern at present for the Berkeley Common Environment [BCE]
is educational, particularly introductory computational science
and statistics. However, where possible, we wish to build an
environment that supports the broader set of uses we outline here.

For instruction

We are entering an era where experimental philosophers want to
take courses in advanced statistics and sociologists need best-
of-breed text analysis. These students are willing to work hard,
and might sign up for the university courses meant to provide
these skills. But while the group that the course was originally
designed for (e.g., statistics or computer science students) have a
set of assumed skills that are necessary to succeed in the class,
these skills aren’t taught anywhere in the curriculum. In these
cases, instructors may spend a large amount of time addressing
installation and setup issues – taking time away from higher value
instruction. Alternatively, students with divergent backgrounds
often drop these classes with the sense that they simply can’t
obtain these skills. This is not an equitable situation.

It’s difficult, however, to write instructions that work for any
potential student. As mentioned above, students come to a course
with many possible environments (i.e., on their laptop or a server).
But if a standardized environment is provided, this task becomes
much simpler. Written instructions need fewer special cases, and
illustrations can be essentially pixel-identical to what students
should be seeing on their screen.

The most accessible instructions will only require skills pos-
sessed by the broadest number of people. In particular, many
potential students are not yet fluent with notions of package
management, scripting, or even the basic idea of command-line
interfaces [SWC]. Thus, installing an accessible solution should
require only GUI operations. The installed common environment,
then, can look and operate in a uniform way. This uniformity
can scaffold students’ use of more challenging “developer” tools.
This “uniformity of the environment in which the user is clicking”
cannot be implemented without full control of the graphical
environment, and systems that configure only a self-contained set
of libraries or computational tools cannot do this. At the other end,
it would be unreasonable to reconfigure students’ desktop on their
laptop. Thus, we wish to set up an isolated, uniform environment
in its totality where instructions can provide essentially pixel-
identical guides to what the student will see on their own screen.

For scientific collaboration

Across campus, we encounter increasing numbers of researchers
who wish to borrow techniques from other researchers. These

researchers often come from different domains with different
standards for tools. These would-be collaborators are increasingly
moving towards open-source tools – often developed in Python
or R – which already dramatically reduces financial barriers to
collaboration.

The current situation, however, results in chaos, misery, and
the gnashing of teeth. It is common to encounter a researcher
with three or more Python distributions installed on their ma-
chine, and this user will have no idea how to manage their
command-line path, or which packages are installed where. In
particularly pathological cases, pip will install packages to an
otherwise inactive python distribution. These nascent scientific
coders will have at various points had a working system for a
particular task, and often arrive at a state in which nothing seems
to work. A standard environment can eliminate this confusion,
and if needed, isolate environments that serve different projects.
Snapshots of working systems can provide even more resilience of
the continued functioning of already running projects. And it bears
repeating that we don’t want to disrupt the already productive
environments that these researchers are using!

This issue becomes even more pronounced when researchers
attempt to reproduce published results without access to the expert
who did the initial research. It is unreasonable to expect any
researcher to develop code along with instructions on how to run
that code on any potential environment. As with the instructional
case above, an easy way to do this is to ensure others have access
to the exact environment the original researcher was working on,
and again, “pixel-identical” instructions can be provided.

For administration

At UC Berkeley, the D-Lab supports tools for courses and short
trainings. Similarly, the Statistical Computing Facility (SCF) sup-
ports an instructional lab and “cloud” resources for some courses,
and grad student assistants often provide virtual machines for
computer science courses (we’ll explain virtual machines later). In
each and every case, multiple technical challenges are common.
These technical glitches can delay or reduce the quality of in-
struction as compared to an environment that students are already
familiar with. It is also a drag on the time of those supporting the
course – time that could be better directed at course content!

The more broadly a standard environment is adopted across
campus, the more familiar it will be to all students. Using infras-
tructure for collaborative administration, technical glitches can be
tracked or resolved by a community of competent contributors,
allowing course instructors to simply use a well-polished end
product, while reducing the complexity of instructions for students
to set up course-specific software. These environments can also
be tuned in ways that would be beyond the scope of what’s
worth doing for an individual course – for example optimizations
to increase the efficiency of numeric computations or network
bandwidth for remote desktops.

At this point that our use case starts to sound like the case in
which product developers are working together to deploy software
on a production server, while maintaining a useful development
environment on their own machines, testing servers, and so on.
However, going forwards, we will suggest that novel tools for
building and managing compute environments be largely the
domain of specialized administrator-contributors to a common en-
vironment. Technically skilled students, professors and researchers
can continue to use the tools they are familiar with, such as the
Ubuntu package manager, pip, shell scripts, and so on.

BCE: BERKELEY’S COMMON SCIENTIFIC COMPUTE ENVIRONMENT FOR RESEARCH AND EDUCATION 7

Technical challenges for a common environment

Any common environment needs to provide a base of generally
useful software, and it should be clear how it was installed and
configured. It should be equally clear how one could set up
additional software following the pattern of the “recipe” for the
environment, making it easy to share new software with other
users of the environment. More generally, we seek to address the
following challenges, though we have not definitely solved them!
After each problem, we list relevant tools, which will be described
in full in a later section.

Complex requirements

The quote at the beginning of this paper illustrates a case in which
requirements are not explicitly stated and there is an assumption
that all collaborators know how to set up the necessary environ-
ment. The number of steps or the time required is unknown, and
regularly exceeds the time available. For example, in the context of
a 1.5 hour workshop or a class with only handful of participants,
if all cannot be set up within a fixed amount of time (typically
20 minutes at most) it will jeopardize successfully completing the
workshop or class materials and will discourage participation. All
participants must be able to successfully complete the installation
with a fixed number of well-known steps across all platforms
within a fixed amount of time.

Additional difficulties arises when users are using different
versions of the “same” software. For example, Git Bash on
Windows lacks a man command. We can’t control the base
environment that users will have on their laptop or workstation,
nor do we wish to! A useful environment should provide consis-
tency and not depend on or interfere with users’ existing setup.
Relevant tools discussed below include Linux, virtual machines,
and configuration management.

Going beyond the laptop

Laptops are widely used across the research and teaching space
and in our experience it is reasonable to assume most individuals
will have at least a 64-bit laptop with 4GB of RAM. Such a laptop
is sufficient for many tasks, however the algorithms or size of
in-memory data may exceed the available memory of this unit-
of-compute and the participant may need to migrate to another
compute resource such as a powerful workstation with 128GB of
RAM (even the most advanced laptops typically max-out at 16GB
at the time of this writing). Thus, an environment should not be
restricted to personal computers. Across systems, a user should
be able to to replicate the data processing, transformations, and
analysis steps they ran on their laptop in this new environment, but
with better performance. Relevant tools discussed below include
Packer and Docker.

Managing cost / maximizing value

Imagine you have the grant money to buy a large workstation with
lots of memory and many processors, but you may only need that
resource for a 1 to 2 week period of time. Spending your money
on a resource that remains unused 95% of the time is a waste
of your grant money! A homogeneous, familiar environment can
enable easier usage of the public cloud. A private cloud approach
to managing owned resources can also allow more researchers to
get value out of those resources. This is a critical enabler to allow
us to serve less well-funded researchers. In addition, more recent
technologies can avoid exclusively reserving system resources for

Goal Relevant tools
Make Linux available as a
VM (regardless of host OS)

Local VM tool or public cloud (e.g.,
VirtualBox or Amazon EC2 – choose
something supported by Packer)

Apply configurations in a re-
peatable fashion

Scripting, package managers (e.g., apt,
pip), configuration management (e.g.,
Ansible)

Generate OS image for mul-
tiple platforms

Packer

Enable light-weight cus-
tom environment (instead of
heavy-weight virtualization)

Docker, LXC

TABLE 1: Recommended automation tools for our use-cases.

a single environment. Relevant tools discussed below are Packer,
Docker (and LXC), and cloud-based virtual machines.

Existing Tools

As discussed above, the problems outlined above are not unique
to scientific computing. Developers and administrators have pro-
duced a variety of tools that make it easier to ensure consistent
environments across all kinds of infrastructure, ranging from a
slice of your personal laptop, to a dynamically provisioned slice of
your hybrid public/private cloud. We cannot cover the breadth of
tooling available here, and so we will restrict ourselves to focusing
on those tools that we’ve found useful to automate the steps that
come before you start doing science. We’ll also discuss popular
tools we’ve found to add more complexity for our use-cases than
they eliminate. Table 1 provides an overview from the perspective
of the DevOps engineer (i.e., contributor, maintainer, you, etc.).

Linux OS (Operating System)

A foundational tool for our approach is the Linux operating sys-
tem. It is far easier to standardize on a single OS instead of trying
to manage cross-platform support. It is relatively easy to install
(or build) scientific code and DevOps tools on Linux. Moreover,
Linux is not encumbered by licensing constraints, which reduces
barriers to collaboration, distribution, and reuse. This choice of
a single target OS is a primary reason to use virtual machines
(described below) because most people don’t use Linux as their
primary laptop OS.

Virtual machines (VMs)

Virtual machine (VM) software enables running another OS (in
BCE, Ubuntu server with XFCE installed) as a guest OS inside the
host OS – often Mac OS or Windows. If a system is not virtualized
(for example, the host OS), it is said to be running on “bare metal.”
For BCE, we have focused on VirtualBox and VMware (the former
of which is free) as they both run on Windows, Mac OS, and
Linux. Cloud providers like EC2 only provide virtual machines
(there is no access to “bare metal”), and similar concepts apply
across local and cloud virtual systems. A notable distinction is
that web tools are often available for cloud services, as opposed
to a local GUI tool for systems like VirtualBox. Both kinds of
services provide command-line tools that can perform a superset
of the tasks possible with graphical interfaces.

For some users, a VM simply will not run locally, generally
because they have a very old operating system or computer.
Thus, one should assume that any VM solution will not work

8 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

for some individuals and provide a fallback solution (particularly
for instructional environments) on a remote server. In this case,
remote desktop software may be necessary, or in the case of
BCE, we are able to enable all essential functionality via a web
browser using IPython notebooks. RStudio server would provide a
similar approach to sidestepping the need for a full remote desktop
session.

One concern is that VMs reserve compute resources exclu-
sively. Some approaches, however, allow for more elastic usage of
resources, most notably with LXC-like solutions, discussed in the
Docker section below. Another issue that can arise is dealing with
mappings between host and guest OS, which vary from system
to system – arguing for the utility of an abstraction layer for
VM configuration like Vagrant or Packer (discussed below). This
includes things like port-mapping, shared files, enabling control
of the display for a GUI vs. enabling network routing for remote
operation. These settings may also interact with the way the
guest OS is configured. Specifically with BCE we noticed that
some desktop environments interacted poorly with VirtualBox (for
example, LXDE did not handle resize events properly).

Note that if you are already running Linux on “bare metal”, it’s
still useful to run a virtualized Linux guest OS. The BCE model
relies on a well-known, curated set of dependencies and default
configurations. To ensure that it is possible to consistently and
reliably manage those elements no matter what flavor, variant, or
version of Linux you may be running as the host OS. However, we
have intentionally made choices that allow an informed developer
set up a partial environment that matches BCE. For example,
python requirements are installed with pip using a requirements
file. This makes it easy to set up a virtualenv or conda environment
with those packages.

The easiest way to use a VM is to use a pre-existing image
– a file that contains all relevant data and metadata about an
environment (described more fully at [images]). It’s very easy to
make modifications to an environment and make a new image
by taking a snapshot. Note that while both local and cloud-based
VM systems often allow for easy snapshotting, it may be hard
to capture exactly how changes happened – especially changes
and configuration that was made “by hand.” So, snapshots are
not necessarily a good solution for reproducibility. You can also
install an OS to a virtual image in essentially the same manner
you would install it to bare metal. The primary difference is that
you need to use specialized VM software to start this process. For
example, you can do this directly in VirtualBox simply by clicking
the “New” button, and you’ll be guided through all of the steps.
There are more automated ways, however, and we discuss these
below.

Configuration management and automated image creation

Creating an image or environment is often called provisioning.
The way this was done in traditional systems operation was
interactively, perhaps using a hybrid of GUI, networked, and
command-line tools. The DevOps philosophy encourages that we
accomplish as much as possible with scripts (ideally checked into
version control!). Most readers of this paper will already be able
to create a list of shell commands in a file and execute it as a
script. So, if you already know how to execute commands at the
Bash prompt to configure Linux, this can do most of the system
setup for you.

Package managers in particular provide high-level commands
to install and configure packages. Currently, we use a combination

of apt, pip, and shell scripts. We also evaluated conda and found
that it introduced additional complexity. For example, it is still
hard to install a list of pip requirements with conda if some pack-
ages are not available for conda. Most package authors currently
make their packages available, however, for pip. Standard apt
packages were also adequate for things like databases, and ideal
for the desktop environment, where we could reap the benefit of
the careful work that went into the LTS Ubuntu distribution.

Some steps may even be done manually. As we explored
managing the complexity and reducing the number of tools for
the BCE development process, one of the steps in the “recipe” was
manual installation of Ubuntu from an ISO. It is straightforward to
make a binary image from a snapshot immediately after creating
a base image, so this initial step could be done once by a careful
individual.

Ultimately, however, we decided it was better to automate
installation from an ISO, which is enabled by the Debian Installer
[UDI], a system that allows a text file to specify answers to
the standard configuration prompts at install-time, in addition to
providing many more possibilities. You can find the BCE configu-
ration file for the debian-installer in the provisioning/http
directory. Later, we’ll discuss how we’re coordinating all of the
above using Packer.

Ansible and related tools

Ansible is one of a number of recent DevOps tools for con-
figuration management [Ansible]. These tools enable automated
management of customizations to the default status and configu-
ration of software. They are purpose-built domain-specific tools
that can replace the scripting approach described above. Such
systems provide checks and guarantees for applying changes that
would be hard to write as shell scripts alone – just as a makefile
handles builds more gracefully than a shell script. This approach
manages configuration complexity as an environment grows in
feature complexity. It may also allow an end-user to manage and
reliably apply personal customizations across multiple versions
of an environment over time. For BCE development, we felt
Ansible added the least complexity amongst comparable tools.
It may be used at build-time and also at run-time within the guest
OS, or from any other location with SSH access to the target
being configured. The only requirements for the target are an
SSH server and a Python interpreter (Ansible is Python-based).
Ansible execution is also more linear than some systems, which is
a limitation, but also a simplification.

At this phase, however, the complexity of BCE doesn’t warrant
contributors learning even a simple configuration management
tool. The maintainer of the Software Carpentry VM, Matt Davis,
has reported a similar observation. He has used another tool,
Puppet, to provision the Software Carpentry VM, but will likely
use shell scripts in the future. And as we will see below from the
OSGeo project, it is perhaps easier to coordinate certain kinds of
complexity with more commonly known tools like shell scripting.

While the syntax for each tool varies, the general concept is
the same – one describes the desired machine state with a tool-
specific language. After execution of this recipe – if you did a
good job – the machine state is guaranteed to be how you’ve
requested it to be. Unfortunately, all DevOps tools call their
recipes something different. While the process certainly seems
more like baking than, say, coaching a football team, Ansible calls
its scripts “playbooks.” Alternate tools with similar functionality
are Chef (which, unsurprisingly does call its scripts “recipes”),

BCE: BERKELEY’S COMMON SCIENTIFIC COMPUTE ENVIRONMENT FOR RESEARCH AND EDUCATION 9

Salt (also Python-based, and uses “states”), and Puppet (which
uses “manifests”). With any of these, a great way to start learning
would be to translate an existing configuration shell script into one
of these tools.

Packer

Packer is used at build-time and enables creating identical ma-
chine images targeting multiple machine image formats [Packer].
For example, we generate a (mostly) uniformly configured BCE
machine image in multiple formats including OVF for VirtualBox
and AMI for AWS EC2. Packer coordinates many of the tools
described above and below based on a JSON configuration file.
This file specifies the Ubuntu ISO to install, a Debian Installer
configuration file (which gets served over HTTP), and configures
the installed OS by copying files and running a shell script. Packer
can also readily use Ansible, Puppet, Chef, or Salt (and has a
plugin system if you want to use something more exotic). Images
can be built for many popular platforms, including a variety of
local and cloud-based providers.

Packer made it possible for us to learn a relatively simple tool
that executes the entire image-creation process as a single logical
operation. Moreover, end users need have no knowledge of Packer.
They can use the Amazon web console or the VirtualBox GUI with
no concerns for the complexity at build time.

It is worth noting that while indexes are available for a variety
of images (e.g, vagrantbox.es, the Docker index, and Amazon’s
list of AMIs), we have encountered surprisingly little effort to
publish consistent environment that allows one to readily migrate
between platforms. This is, however, precisely the goal of BCE,
and it’s enabled by Packer.

Vagrant

Vagrant is a run-time component that needs to be installed on the
host OS of the end user’s laptop [Vagrant]. Like Packer, it is a
wrapper around virtualization software that automates the process
of configuring and starting a VM from a special Vagrant box image
(Vagrant boxes may be created with any of the above tools). It is
an alternative to configuring the virtualization software using the
GUI interface or the system-specific command line tools provided
by systems like VirtualBox or Amazon. Instead, Vagrant looks for
a Vagrantfile which defines the configuration, and also establishes
the directory under which the vagrant command will connect to
the relevant VM. This directory is, by default, synced to the guest
VM, allowing the developer to edit the files with tools on their
host OS. From the command-line (under this directory), the user
can start, stop, or ssh into the Vagrant-managed VM. It should
be noted that (again, like Packer) Vagrant does no work directly,
but rather calls out to those other platform-specific command-line
tools.

The initial impetus for the BCE project came from a Vagrant-
based project called “jiffylab” [jl]. With a single command, this
project launches a VM in VirtualBox or on various cloud services.
This VM provides isolated shell and IPython notebook through
your web browser. But while Vagrant is conceptually very elegant
(and cool), we are not currently using it for BCE. In our evaluation,
it introduced another piece of software, requiring command-line
usage before students were comfortable with it. Should a use-
case arise, however, it would be trivial to create a “vagrant
box” (a Vagrant-tuned virtual image) with our current approach
using Packer. That said, other “data-science” oriented VMs have
chosen Vagrant as their method of distribution [DSTb], [DSTk].

Currently, Vagrant is most useful for experienced developers to
share environments with each other.

Docker

Docker is a platform to build, distribute, and run images built on
top of Linux Containers (LXC) which provides a lightweight style
of virtualization called containerization [Docker]. An important
distinction of LXC-based containerization is that the guest OS
and the host OS both run the same underlying Linux kernel.

At run-time Docker adds to this containerization a collection
of tools to manage configuring and starting an instance in much
the same way that Vagrant does for a virtualization environment.
Images are created using a simple build script called a Dockerfile
which usually runs a series of shell script commands which might
even invoke a configuration management system such as Ansible.

Another feature of the platform is the management and dis-
tribution of the images built by docker, including incremental
differences between images. Docker makes it possible (albeit in a
rudimentary way) to track changes to the binary image in a manner
similar to the way git allows you to track changes to source code.
This also includes the ability to efficiently maintain and distribute
multiple branches of binary images that may be derived from a
common root.

Docker is also more than just a tool. It is a quickly growing
community of open source and industry developers with a rapidly
evolving ecosystem of tools built on core OS primitives. There
is no clear set of best practices, and those that emerge are not
likely to fit all the use cases of the academic community without
us being involved in mapping the tools to our needs. However,
providing better access to hardware with containers is an important
and active research topic for performance [HPC].

Currently, Docker requires a Linux environment to host the
Docker server. As such, it clearly adds additional complexity on
top of the requirement to support a virtual machine. We also
evaluated Docker as a way to potentially provide around 30
students access to a VM on a reasonably powered server with only
16GB of RAM. However, in our use-cases, we have full control of
our Linux compute environment and existing methods of isolating
users with permissions was less complex than using Docker, and
of course allowed users to efficiently share all available physical
RAM. Moreover, the default method of deploying Docker (at
the time of evaluation) on personal computers was with Vagrant.
This approach would then also add the complexity of using
Vagrant. However, recent advances with boot2docker provide
something akin to a VirtualBox-only, Docker-specific replacement
for Vagrant that eliminates some of this complexity, though one
still needs to grapple with the cognitive load of nested virtual
environments and tooling.

OSGeo-Live: A Successful Common Environment

The OSGeo-Live VM is an example of a comprehensive geospatial
compute environment with a vibrant community process. It pro-
vides a successful example of solving the problems of complex
requirements described above – or in this case, perhaps more
properly called “dependency hell”. Notably, the project uses none
of the recent DevOps tools. OSGeo-Live is instead configured
using simple and modular combinations of Python, Perl and
shell scripts, along with clear install conventions and examples.
Documentation is given high priority.

The VM project began around the same time as, and ulti-
mately joined the Open Source Geospatial Foundation (OSGeo),

10 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

an international body modeled on the Apache Foundation [2g]. It
started as a smaller open project that sought to build an “easy to
try and use” software environment for spatial data applications.
Initial efforts consisted of shell scripts to install core geospatial
packages. These examples provided guides to the projects that
were invited and ultimately contributed packages to the project.
Many of these later contributors spoke English as a second lan-
guage, further highlighting the importance of clear, working code
examples. OSGeo-Live is not the only attempt at building such
an environment, but it is a highly successful one. More than fifty
open-source projects now contribute by actively maintaining and
improving their own install scripts, examples and documentation.

Tool Sets

OSGeo-Live itself is not a “Linux distribution” per se, rather
it relies on an apt-based ecosystem to handle the heavy-lifting
of system updates and upgrades. This is a win, as updates are
proven reliable over a very large Ubuntu community process, and
project participants can concentrate on adding value to its featured
components. Given the component architecture used to build the
VM, individual software projects can be installed as-needed on a
generic apt-enabled base.

A key component of the success of the overall project has been
the availability of widely-known and reliable tools. Rather than
require .deb installation packages for each project, OSGeo-Live
chose to use a simple install script format, with ample examples.
This choice proved crucial in the earliest stages, as an outside
open-source project evaluating participation in the Live ISO could
get started with fewer barriers to entry. Participating open-source
projects already had install scripts built for Linux, so they could
almost immediately adapt and iterate their own install scripts in
a straightforward way, with the flexibility to use the tools they
were already using, such as shell, Perl, or Python. Scripts may
call package managers, and generally have few constraints (apart
from conventions like keeping recipes contained to a particular di-
rectory). The project also maintains packages that support broader
kinds of packages, such as web-based applications. In this case,
OSGeo-Live provides a standard configuration for Apache, WSGI,
and other components, along with a standard layout for projects
that rely on this core. As a result, there is very little conflict
among packages that share common resources. Some concerns,
like port number usage, have to be explicitly managed at a global
level. But the overhead of getting 50 projects to adopt a uniform
configuration management tool would likely be much greater.

All recipes are currently maintained in a common subversion
repository, using standardized asset hierarchies, including instal-
lation scripts [6g]. An OSGeo-Live specific report is maintained
on the project trac ticketing system [10g]. And while OSGeo-
Live primarily targets a live/bootable ISO, the scripts that are used
to build that ISO provide a straightforward method for building
OSGeo software in other contexts.

Community Awareness

The initial stages of the adoption of new technology include
initial awareness and trialability [4g]. OSGeo-Live intentionally
incorporates targeted outreach, professional graphic design and
“easy to try” structure to build participation from both developers
and end-users. An original project design goal was to provide
tools to those doing geospatial fieldwork with limited resources
around the globe, and who often lack advanced programming

and administration skills. In other words, a community was built
around tools that the desired members already had.

Several years into the project, with a grant from the Australian
government, a professional-level documentation project was ini-
tiated for a single-page overview and quick-start instructions
for each application. Language internationalization was rendered
more efficient, specifically to support local field work. Much later,
a “percentage complete” graph for each human language group
was added, making translation into a sort of competitive game.
This translation has proven very successful. The project has facil-
itated collaboration across developer communities. For example,
we have seen productive application of software developed by the
U.S. military to environmental applications [Army].

Steps to Contribute

All build scripts are organized in the open, in source control
[6g]. A new contributors FAQ is maintained via wiki [7g] for
software projects, and for translation [8g]. At its core, the OSGeo-
Live project uses common skills for system administration as
opposed to more recent DevOps available, but it very much adopts
a DevOps philosophy. Contributors pay particular attention to
documenting each and every step, and standard approaches are
encouraged across the project. Gamification also played a role
in spurring useful documentation contributions. The low barrier
to entry (allowing contributing projects to use skills they likely
already have), combined with guidelines to ensure interoperability
have led to OSGeo-Live becoming a standard way to evaluate and
install software in the geospatial community.

BCE: The Berkeley Common Environment

The overarching, aspirational goal for the Berkeley Common
Environment (BCE) is to make it easy to do the “right” thing (or
hard to do “wrong” things), where “right” means you’ve managed
to use someone else’s code in the manner that was intended. In
particular, it allows for targeted instructions that can assume all
features of BCE are present. BCE also aims to be stable, reliable,
and reduce complexity more than it increases it.

More prosaically, to be useful in the cases described above,
BCE provides simple things like a standard GUI text editor, and
a command-line editor for when a GUI is not available. BCE pre-
configures applications with sensible defaults (e.g., spaces for tab-
stops are set up for nano). It also enables idiosyncratic features
on different VM platforms, for example, enabling simple access to
shared folders in VirtualBox and ensuring NFS functions properly
on Amazon EC2. The environment is also configured to make
minimal demands on underlying resources. For example, the BCE
desktop is a solid color to minimize network utilization for remote
desktop sessions, and efficient numerics libraries are configured.

BCE provides ready-made images for end-users, and the
“recipe” for setting up the image using Packer is maintained on
GitHub. Lists of Python packages are maintained in a separate
requirements file, and all setup is done via a master Bash script.
It is currently common for individuals to only distribute scripts,
which requires all potential users to install and configure the
relevant stack of DevOps tools. There are, however, free services
for distributing images for particular tools (e.g., the Docker index),
and services like Amazon can host AMIs for pennies a month.
(For example, building on a free, existing EBS-backed AMI, one
need only save a snapshot, with charges only for changes from
the base AMI. One GB of extra tools onto a standard EBS-backed

BCE: BERKELEY’S COMMON SCIENTIFIC COMPUTE ENVIRONMENT FOR RESEARCH AND EDUCATION 11

Fig. 1: The Berkeley Common Environment running in VirtualBox on
OS X. The interface (and opportunities for confusion) are minimized.
For example, all users have the same text editor available, and in
particular, it’s easy to configure common gotchas like spaces for tabs.

Ubuntu server AMI, currently costs <$0.1 / GB-month to store.)
We strongly recommend distributing a binary along with the recipe
for any environment that includes novices in its audience.

Using the BCE

You can see what BCE currently looks like (in a relatively small
window) in Figure 1. Throughout various iterations, students have
found working on a BCE VM to be confusing and counterproduc-
tive to being incredibly useful and efficient – strong evidence that
the details matter. It seems critical both to provide a rationale for
the use of VMs (i.e., explaining how a standard, “pixel-identical”
environment speeds instruction), and also a smooth initial ex-
perience. Thus, we’ve worked to make BCE easy for students,
researchers, and instructors. Simple instructions are provided on
our site for things like opening a terminal (including a description
of what the terminal icon looks like). However, for an experienced
programmer, the environment should be obvious to navigate.

In our experience, some students will not be able to run the
VM while others have difficulty getting regular access to a stable
network connection (though fortunately, almost never both!). So,
consistency across server and local versions of the environment
is critical to effectively support students with either of these
difficulties.

If you’re using VirtualBox, we require a 64-bit CPU with
support for 64-bit virtualization (note that some 32-bit operating
systems will support this on some hardware). A reasonable min-
imum of RAM is 4GB. The full instructions for importing BCE
from an OVA image into Virtualbox are available on our project
website [BCEVB]. After starting the VM – a process that can be
done entirely with the mouse – a user will have all the software
installed as part of BCE, including IPython, RStudio, and useful
packages.

If you’re using BCE on EC2, even a micro instance is suf-
ficient for basic tasks. Again, complete instructions are provided
on the BCE website [BCEAMI]. In brief, you can find our image
(AMI) in the public list. You can readily launch in instance, and
get instructions on connecting via the EC2 console.

Communicating with the maintainers of the BCE project

All development occurs in the open in our GitHub repository. This
repository currently also hosts the project website, with links to all
BCE materials. We provide channels for communication on bugs,
desired features, and the like via the repository and a mailing
list (also linked from the project page), or if a user is comfortable
with it, via the GitHub issue tracker. BCE will be clearly versioned
for each semester, and versions will not be modified, except for
potential bugfix releases.

Contributing to the BCE project

BCE provides a fully scripted (thus, reproducible) workflow that
creates the standard VM/image. If the appropriate software is
installed, the recipe should run reliably. However, you should
generally not need to build the binary VM for BCE for a given
semester. If you wish to customize or extend BCE, the best way
to do this is by simply writing a shell script that will install
requirements properly in the context of BCE (for a complex
example, see our bootstrap-bce.sh script [boot]). Much as
with OSGeo-Live, we have chosen our approach to provisioning
to be relatively simple for users to understand. It is our goal for
instructors or domain experts to be able to easily extend the recipe
for building BCE VMs or images. If not, that’s a bug!

As described above, while we have experimented with Docker,
Vagrant, and Ansible for setting up the various BCE images (and
evaluated even more tools), the only foundationally useful tool
for our current set of problems has been Packer. Packer runs a
shell script that uses standard installation mechanisms like pip
and apt-get to complete the setup of our environment. Of
central importance, Packer does not require end-users to install or
understand any of the current crop of DevOps tools – it operates
solely at build time. However, should the need arise, Packer will
readily target Vagrant, Docker, and many other targets, and we are
not opposed to adopting other tooling.

Conclusion

By merely using recent DevOps tools, you arrive at the cutting
edge of DevOps for the scientific community. Your collaborators
and students likely won’t have needed concepts, so extra care
should be taken to make your tooling accessible. Where appro-
priate, use tools that your collaborators already know – shell,
scripting, package management, etc. That said, technologies that
allow efficient usage of available hardware, like Docker, stand to
provide substantial savings and potential for re-use by researchers
with less direct access to capital.

So, let’s be intentional about creating and using environments
that are broadly accessible. Let’s follow the DevOps philosophy of
being transparent and explicit about our choices and assumptions.
That doesn’t have to mean “using the latest tools” – a simple text
file or even a PDF can provide ample explanation that a human
can understand, along with a simple reference script (in shell or
Python). In this paper, we’ve made fairly strong recommendations
based on what we are actually using (we are eating our own
dogfood!). A novice user can access BCE using only a few GUI
operations on their laptop, or the Amazon Web Console. As we’ve
seen with OSGeo-Live, the simple tools we’ve chosen make it easy
for our collaborators (instructors or researchers) to understand.
This standard reference allows us to return focus on the interesting
bits of developing code and doing science.

12 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

BCE currently provides a standard reference, built with an
easily understood recipe, that eliminates the complexity of de-
scribing how to run a large variety of projects across a wide
variety of platforms. We can now target our instruction to a single
platform. The environment is easy to deploy, and should provide
identical results across any base platform – if this is not the case,
it’s a bug! This environment is already available on VirtualBox
and Amazon EC2, and is straightforward to provision for other
environments. We welcome loose collaboration in the form of
forks that are specialized for other institutions, and eventually,
perhaps standardizing across institutions.

REFERENCES

[BCE] http://collaboratool.berkeley.edu
[OSGL] http://www.osgeo.org/
[BCEVB] http://collaboratool.berkeley.edu/using-virtualbox.html
[BCEAMI] http://collaboratool.berkeley.edu/using-ec2.html
[Ubuntu] https://help.ubuntu.com/14.04/serverguide/serverguide.pdf
[images] http://docs.openstack.org/image-guide/content/ch_introduction.

html
[Ansible] http://www.ansible.com/about
[Packer] http://www.packer.io/intro
[Vagrant] http://www.vagrantup.com/about.html
[Docker] http://www.docker.com/whatisdocker/
[HPC] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,

and C. A. De Rose, “Performance evaluation of container-based
virtualization for high performance computing environments,” in the
21st Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), 2013, pp. 233–240.

[SWC] G Wilson, “Software Carpentry: lessons learned,” F1000Research,
2014.

[jl] http://github.com/ptone/jiffylab
[DSTb] http://datasciencetoolbox.org/
[DSTk] http://www.datasciencetoolkit.org/
[UDI] https://help.ubuntu.com/14.04/installation-guide/i386/apb.html
[2g] http://www.osgeo.org/content/foundation/about.html
[4g] E M. Rogers, Diffusion of Innovations, 5th ed. New York: Free

Press, 2003.
[6g] http://svn.osgeo.org/osgeo/livedvd
[7g] http://wiki.osgeo.org/wiki/Live_GIS_Add_Project
[8g] http://wiki.osgeo.org/wiki/Live_GIS_Translate
[10g] http://trac.osgeo.org/osgeo/report/10
[Army] Army Corps of Engineers, “Army Corps of Engineers Wetlands

Regulatory program,” presented at the FOSS4G, 2007.
[boot] https://github.com/dlab-berkeley/collaboratool/blob/master/

provisioning/bootstrap-bce.sh

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014) 13

Measuring rainshafts: Bringing Python to bear on
remote sensing data

Scott Collis§∗, Scott Giangrande∗∗, Jonathan Helmus§, Di Wu‖, Ann Fridlind¶, Marcus van Lier-Walqui¶, Adam
Theisen‡

http://www.youtube.com/watch?v=1D0aTToHrCY

F

Abstract—Remote sensing data is complicated, very complicated! It is not
only geometrically tricky but also, unlike in-situ methods, indirect as the sensor
measures the interaction of the scattering media (eg raindrops) with the probing
radiation, not the geophysics. However the problem is made tractable by the
large number of algorithms available in the Scientific Python community. While
SciPy provides many helpful algorithms for signal processing in this domain,
a full software stack from highly specialized file formats from specific sensors
to interpretable geospatial analysis requires a common data model for active
remote sensing data that can act as a middle layer This paper motivates this
work by asking: How big is a rainshaft? What is the natural morphology of rainfall
patterns and how well is this represented in fine scale atmospheric models.
Rather than being specific to the domain of meteorology, we will break down
how we approach this problem in terms of the tools used from numerous Python
packages to read, correct, map and reduce the data into a form better able to
answer our science questions. This is a "how" paper, covering the Python-ARM
Radar Toolkit (Py-ART) containing signal processing using linear programming
methods and mapping using k-d trees. We also cover image analysis using
SciPy’s ndimage sub-module and graphics using matplotlib.

Index Terms—Remote sensing, radar, meteorology, hydrology

Introduction

RADARs (RAdio Detection And Ranging, henceforth radars) spe-
cialized to weather applications do not measure the atmosphere,
rather, the instrument measures the interaction of the probing radi-
ation with the scattering medium (nominally cloud or precipitation
droplets or ice particulate matter). Therefore, in order to extract
geophysical insight, such as the relationship between large scale
environmental forcing and heterogeneity of surface precipitation
patterns, a complex application chain of algorithms needs to be set
up.

This paper briefly outlines a framework, using a common
data model approach, for assembling such processing chains: the
Python-ARM Radar Toolkit, Py-ART [Heistermann2014]. This

* Corresponding author: scollis@anl.gov
§ Environmental Sciences Division, Argonne National Laboratory.
** Atmospheric Sciences, Brookhaven National Laboratory.
|| NASA Goddard Space Flight Center.
¶ NASA Goddard Institute of Space Sciences.
‡ University of Oklahoma, Cooperative Institute for Mesoscale Meteorological
Studies, ARM Climate Research Facility Data Quality Office.

Copyright © 2014 Scott Collis et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

paper also provides an example application: using rainfall maps to
objectively evaluate the skill of fine scale models in representing
precipitation morphology.

The data source: scanning centimeter wavelength radar

Rainfall can occur at many different scales. From small, descrete
storm cells at scales of 10’s of kilometers to to large scale
tropical systems such as hurricanes which cover 100’s to 1000’s
of kilometers. Some complex systems can contain many scales
and in order to understand this spatial complexity of precipitating
cloud systems a sensor is required that can collect spatially diverse
data. Radars emit a spatially discrete pulse of radiation with a
particular beamwidth and pulse length. A gated receiver detects
the backscattered signal and calculates a number of measurements
based on the radar spectrum (the power as a function of phase
delay which is due to the motion of the scattering medium relative
to the antenna). These moments include radar reflectivity factor Ze,
radial velocity of the scattering medium vr and spectrum width w.
Polarimetric radars transmit pulses with the electric field vector
horizontal to the earth’s surface as well as vertical to the earth’s
surface. These radars can give a measure of the anisotropy of
the scattering medium with measurements including differential
reflectivity ZDR, differential phase difference φd p and correlation
coefficient ρHV . The data is laid out on a time/range grid with
each ray (time step) having an associated azimuth and elevation.
Data presented in this paper are from 4 ARM [Mather2013] radar
systems: One C-Band (5 cm wavelength) and three X-Band (3 cm
wavelength) radars as outlined in table 1.

These instruments are arranged as show in figure 1.

The Python ARM Radar Toolkit: Py-ART

Radar data comes in a variety of binary formats but the content is
essentially the same: A time-range array for each radar moment
along with data describing the pointing and geolocating of the
platform. For mobile radar the platform’s motion must also be
described in the file. Py-ART takes a common data model ap-
proach, carefully designing the data containers and mandating that
functions and methods accept the container as an argument and
return the same data structure. The common data model for radar
data in Py-ART is the Radar class which stores data and metadata
in Python dictionaries in a particular instance’s attributes. Data is

14 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

X-SAPR C-SAPR
Frequency 9.4 GHZ 6.25GHz
Transmitter Magnetron Magnetron
Power 200kW 350kW
Gate spacing 50m 120m
Maximum
Range

40km 120km

Beam width 1◦ 1◦

Polar. mode Simul. H/V Simul. H/V
Manufacturer Radtec Adv. Radar Corp.
Native format Iris Sigmet NCAR MDV

TABLE 1: ARM radar systems used in this paper.

Fig. 1: Arrangement of radars around the ARM Southern Great Plains
Facility from [Giangrande2014].

stored in a NumPy array in the ’data’ key of the dictionary. For
example:
print xnw_radar.fields.keys()
['radar_echo_classification',
'corrected_reflectivity',
'differential_phase',
'cross_correlation_ratio',
'normalized_coherent_power',
'spectrum_width',
'total_power', 'reflectivity',
'differential_reflectivity',
'specific_differential_phase',
'velocity',
'corrected_differential_reflectivity']
print xnw_radar.fields['reflectivity'].keys()
['_FillValue', 'coordinates', 'long_name',
'standard_name', 'units', 'data']
print xnw_radar.fields['reflectivity']['long_name']
Reflectivity
print xnw_radar.fields['reflectivity']['data'].shape
(8800, 801)

The xnw_radar has a variety of fields, including ’reflectivity’ with
the numerical moment data stored in the ’data’ key with 8800 time
steps and 801 range gates. Data on instrument pointing is stored in

Format name Example radar system(s) Note
CF-Radial NCAR SPOL, ARM Cloud

Radars
Output format

UF Lots of legacy data Via RSL
Lassen BoM CPOL in Darwin, Aus-

tralia
Via RSL

IRIS Sigmet ARM X-SAPR Native
NCAR MDV ARM C-SAPR Native
GAMIC European radar network Native
WSR-88D USA operational network Native
CHILL NSF funded deployable S-

Band
Native

TABLE 2: Py-ART formats.

x_nw.azimuth and x_nw.elevation attributes while the center point
of each range gate is stored in x_nw.range. Again these attributes
are dictionaries with data stored in the ’data’ key. Functions in
Py-ART can append fields or modify data in existing fields (rare).

The vital key is a ’Babelfish’ layer which ingests a variety of
formats into the common data model. Currently table 2 outlines
the formats which are compatible with Py-ART. A number of these
formats are available via a Cython wrapper around NASA’s Radar
Software Library.

There is also active development on supporting NOAA NOX-
P and NASA D3R radars. Py-ART supports a single output format
for radial geometry radar data which is, CF-Radial. CF-Radial is
a NetCDF based community format on which the common data
model in Py-ART is based on.

Py-ART forms part of an ecosystem of open source radar
applications, many of which are outlined in [Heistermann2014].
A key challenge for the radar community is reaching consensus
on data transport layers so that an application chain can be built
using multiple applications. In terms of the rest of the Scientific
python ecosystem, Py-ART brings the data into Python in a very
simple way so users can simply and quickly get to doing Science.

Pre-mapping corrections and calculations

Once raw data is collected there is often a number of processing
steps that need to be performed. In our case this includes:

• Correcting false Azimuth readings in the Northwest X-
Band system.

• Cleaning data of undesirable components such as multiple
trips, clutter and non-meteorological returns.

• Processing the raw φDP and extracting the component
due to rain water content by using a linear programming
technique to fit a profile which mandates positive gradient,
see [Giangrande2013].

• Using reflectivity and φDP to retrieve attenuation (in
dBZ/km) due to rainwater path.

• Using the techniques outlined in [Ryzhkov2014] to re-
trieve rainfall rate (in mm/hr) from attenuation.

These are all outlined in the first of the three notebooks
which accompany this manuscript: http://nbviewer.ipython.org/
github/scollis/notebooks/tree/master/scipy2014/. Each process ei-
ther appends a new field to the Radar instance or returns a field
dictionary which can then be added to the instance. Py-ART also
comes with visualization methods allowing for the conical (or
Plan Position Indicator, PPI) scan to be plotted and geolocated

MEASURING RAINSHAFTS: BRINGING PYTHON TO BEAR ON REMOTE SENSING DATA 15

Fig. 2: Raw reflectivity factor and polarimetric phase difference from
the lowest (0.5 degree) tilt.

using matplotlib and Basemap. An example plot of raw φDP and
reflectivity is shown in figure 2.

The code necessary to create this plot:
fields_to_plot = ['differential_phase',

'reflectivity']
ranges = [(180, 240), (0, 52)]
display = pyart.graph.RadarMapDisplay(xnw_radar)

nplots = len(fields_to_plot)
plt.figure(figsize=[7 * nplots, 4])
for plot_num in range(nplots):

field = fields_to_plot[plot_num]
vmin, vmax = ranges[plot_num]
plt.subplot(1, nplots, plot_num + 1)
display.plot_ppi_map(field, 0, vmin=vmin,

vmax=vmax, lat_lines=np.arange(20, 60, .2),
lon_lines=np.arange(-99, -80, .4),
resolution='l')

display.basemap.drawrivers()
display.basemap.drawcountries()
display.plot_range_rings([20, 40])

Here, a RadarMapDisplay instance is instantiated by providing a
Radar object which is insensitive to the data source. The sample
plotting routines can be used to plot data ingested from any of the
formats which Py-ART supports.

Mapping to a Cartesian grid

Radars sample in radial coordinates of elevation, azimuth and
range. Mathematics for atmospheric phenomena are greatly sim-
plified on Cartesian and Cartesian-like (eg pressure surfaces) grids.
Therefore the raw and processed data in the Radar object often
need to be mapped onto a regular grid. In the field, this is known
as "Objective analysis" (see, for example [Trapp2000]). In this
paper we use a technique known as Barnes analysis [Barnes1964]
which is an inverse distance weighting, sphere of influence based
technique. For each grid point in the Cartesian grid a set of
radar gates within a radius of influence are interpolated using the
weighting function:

W (r) = e
−r2

in f l
2.0∗r2

where r is the distance from the grid point and rin f l is the search
radius of influence. A brute force method for performing this map-
ping would be to calculate the distance from each Cartesian point
to each radar gate to find those within the radius of influence, a
method which scales as n∗m where n is the number of points in the
grid and m the number of gates in the radar volume. With a typical
grid being 200 by 200 by 37 points and a modern radar having on
the order of 8000 time samples and 800 range gates this quickly
becomes intractable. A better method is to store the radar gates in
a k-d tree or related data structure. This reduces the search to an
order n∗ log(m) problem. This method is implemented in Py-ART.

Fig. 3: Single C-Band reflectivity factor field.

In addition a variable radius of influence algorithm is implemented
which analyzes the radar volume coverage pattern and deduces an
optimized rin f l at each grid point. Unlike many other objective
analysis codes Py-ART implementation can operate on multiple
Radar objects simultaneously, treating the radar gates as a cloud
of points. This allows the merging of multiple radar data sets. The
method is simple to invoke, for example the code snippet:

mesh_mapped_x = pyart.map.grid_from_radars(
(xnw_radar, xsw_radar, xse_radar),
grid_shape=(35, 401, 401),
grid_limits=((0, 17000), (-50000, 40000),

(-60000, 40000)),
grid_origin=(36.57861, -97.363611),
fields=['corrected_reflectivity','rain_rate_A',

'reflectivity'])

will map the gates in the three Radar objects (in this case the three
ARM X-Band systems in figure 1) to a grid that is (z,y,x) = (35,
401, 401) points with a domain of 0 to 17 km in altitude, -50 to
40 km in meridional extend and -60 to 40 km in zonal extent. The
method returns a Grid object which follows a similar layout to a
Radar object: fields are stored in the fields attribute, geolocation
data in the axes attribute with the numerical data found in the
’data’ key of the dictionaries.

Again, as with the Radar object Py-ART has a menu of
available routines to visualize data contained in Grid objects as
well as an input output layer that can inject CF-compliant netCDF
grids and write Grid object out to a CF-complaint file for future
analysis and distribution.

For example figure 3 shows a slice through mapped reflectivity
from the ARM C-SAPR at 500 m and cross sections at 36.5 N
degrees latitude and -97.65 E longitude.

In the vertical cross sections clear artifacts can be seen due to
the poor sampling. Figure 4 shows the same scene but using a grid
created from three X-Band radars in a network. In both figures the
radar data are mapped onto a grid with 225 m spacing.

It is clear that more fine scale detail is resolved due to the rain
systems being closer to any given radar in the X-Band network
grid. In addition, due to the higher density of high elevation beams
(essentially a "web" of radar beams sampling the convective anvil)
sampling artifacts are greatly reduced and finer details aloft are
able to be studied.

Mesh mapping only works for "specific" measurements, ie
not integrated measurements like φDP or directionally dependent
moments like vr. One measurement that can be mapped is our
retrieved rain rate.

Figures 5 and 6 show mappings for rain rate using just the C-
Band measurement and X-Band network respectively. Again the

16 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Fig. 4: Reflectivity factor mapped from a network of X-Band radars.

Fig. 5: Single C-Band rainfall field.

mesh map of the X-Band retrieval shows very fine detail resolving
(in a volumetric dataset) fall streak patterns. The maxima near
4 km (just below the freezing level) is due to melting particles.
The rainfall retrieval has a cut off at the sounding determined
freezing level but the "bright band" can extend some depth below
this. Future work will entail using polarimetric measurements to
determine where there is only pure liquid returns and conditionally
apply the rainfall retrieval to those positions.

Spatial distribution of rainfall: a objective test of fine scale
models

Previous sections have detailed the correction, retrieval from and
mapping to a Cartesian grid of radar data. The last section showed
enhanced detail can be retrieved by using a network of radars. The
question remains: how can the detail in rain fields be objectively
compared? Can parameters derived from radar data be compared
to those calculated from forecast models? The meshes generated

Fig. 6: Rainfall from a network of X-Band systems.

Fig. 7: An example of figure segmentation using scipy.ndimage.label.

using the mapping techniques previously discussed can be treated
like image data for which a number of packages exist for analysis.

Measuring rainshafts using SciPy’s ndimage subpackage

A simple technique for documenting the features present in an
image is to partition it into segments which are above a certain
threshold and calculate the number of segments, their accumulated
area and the mean rainfall across the segment. The ndimage
subpackage in Scipy is perfect for accomplishing this. Figure 7
shows the use of scipy.ndimage.label to segment regions above 5
and 20mm/h.

The code is very simple, for a given rain rate it creates a "black
and white" image with whites above the threshold point and the
black below, then scipy.ndimage.label segments the regions into a
list of regions from which metrics can be calculated:
def area_anal(pixel_area, rr_x, rain_rates):

A_rainrate = np.zeros(rr_x.shape)
N_rainrate = np.zeros(rr_x.shape)
Rm_rainrate = np.zeros(rr_x.shape)

MEASURING RAINSHAFTS: BRINGING PYTHON TO BEAR ON REMOTE SENSING DATA 17

Fig. 8: Number of regions, region covered and mean rain rate as a
function of rain rate threshold for a rainmap produced by a single
C-Band system.

for i in range(len(rr_x)):
b_fld = np.zeros(rain_rates.shape)
b_fld[rain_rates > rr_x[i]] = 1.0
regions, N_rainrate[i] = ndimage.label(b_fld)
try:

A_rainrate[i] = (len(np.where(
regions > 0.5)[0]) *
pixel_area)

Rm_rainrate[i] = rain_rates[
np.where(regions > 0.5)].mean()

except IndexError:
A_rainrate[i] = 0.0
Rm_rainrate[i] = 0.0

return N_rainrate, A_rainrate, Rm_rainrate

This produces plots for the X-Band mesh as seen in 9 and single
C-Band sytems in 8.

The results presented in this paper show that the rainfall field
for this case is under-resolved when observed by a single C-Band
system. While we have not established that a nework of X-Band
systems fully resolve the spatial complexity of the rainfall field it
clearly shows more detail, especially at higher altitudes.

Future work will focus on establishing limits to spatial com-
plexity and understanding how large scale forcing (instability,
mouisture etc) influence complexity. In addition we will be ap-
plying this technique to fine scale model data as an "observational
target" for the model to achieve. That is the methodes outlined in
this paper can be used as a simple optimization metric which can
be used when adjusting the parameters in a model.

Conclusions

This paper has covered the pipeline for proceeding from raw radar
measurements through quality control and geophysical retrieval
to mapping and finally to the extraction of geophysical insight.
The simple conclusion is that, with careful processing, a network
of X-Band radars can resolve finer details than a single C-Band
radar. More importantly, finer details exist. The paper also presents

Fig. 9: Number of regions, region covered and mean rain rate as a
function of rain rate threshold for a rainmap produced by a network
of X-Band systems.

a very simple, image processing based technique to take the
"morphological finger print" of rainfall maps. This technique can
be used on both remotely sensed and numerically modeled data
providing a objective basis for model assessment.

Acknowledgements

Dr. Giangrande’s work is supported by the Climate Science
for a Sustainable Energy Future (CSSEF) project of the Earth
System Modeling (ESM) program in the DOE Office of Science.
Argonne National Laboratory’s work was supported by the U.S.
Department of Energy, Office of Science, Office of Biological
and Environmental Research (OBER), under Contract DE-AC02-
06CH11357.The work has also been supported by the OBER of
the DOE as part of the ARM Program. Adam Theisen’s work was
supported by Battelle – Pacific Northwest National Laboratory,
contract number 206248, and his home institution, CIMMS, is
supported by NOAA/Office of Oceanic and Atmospheric Research
under NOAA-University of Oklahoma Cooperative Agreement
#NA11OAR4320072, U.S. Department of Commerce. The authors
wish to thank Dr. Alexander Ryzhkov for support on implementa-
tion of specific attenuation-based rainfall methods. We would also
like to thank the reviewers of this paper, James Bergstra and Terry
Letsche.

REFERENCES

[Heistermann2014] Heistermann, M., S. Collis, M. J. Dixon, S. E. Gian-
grande, J. J. Helmus, B. Kelley, J. Koistinen, D. B.
Michelson, M. Peura, T. Pfaff and D. B. Wolff, 2014:
The Promise of Open Source Software for the Weather
Radar Community. Bull. Amer. Meteor. Soc., In Press.

[Mather2013] Mather, J. H., and J. W. Voyles, 2012: The Arm Cli-
mate Research Facility: A Review of Structure and
Capabilities. Bull. Amer. Meteor. Soc., 94, 377–392,
doi:10.1175/BAMS-D-11-00218.1.

18 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

[Giangrande2014] Giangrande, S. E., S. Collis, A. K. Theisen, and A. Tokay,
2014: Precipitation Estimation from the ARM Distributed
Radar Network During the MC3E Campaign. J. Appl.
Meteor. Climatol., doi:10.1175/JAMC-D-13-0321.1.
http://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-13-
0321.1

[Giangrande2013] Giangrande, S. E., R. McGraw, and L. Lei, 2013:
An Application of Linear Programming to Polarimet-
ric Radar Differential Phase Processing. Journal of At-
mospheric and Oceanic Technology, 30, 1716–1729,
doi:10.1175/JTECH-D-12-00147.1.

[Ryzhkov2014] Ryzhkov, A. V., M. Diederich, P. Zhang, C. Simmer, 2014:
Potential utilization of specific attenuation for rainfall
estimation, mitigation of partial beam blockage, and radar
networking. Submitted, J. Atmos. Oceanic Technol., in
press.

[Trapp2000] Trapp, R. J., and C. A. Doswell, 2000: Radar
Data Objective Analysis. Journal of Atmospheric and
Oceanic Technology, 17, 105–120, doi:10.1175/1520-
0426(2000)017<0105:RDOA>2.0.CO;2.

[Barnes1964] Barnes, S. L., 1964: A Technique for Maximizing De-
tails in Numerical Weather Map Analysis. Journal of
Applied Meteorology, 3, 396–409, doi:10.1175/1520-
0450(1964)003<0396:ATFMDI>2.0.CO;2.

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014) 19

Teaching numerical methods with IPython notebooks
and inquiry-based learning

David I. Ketcheson‡∗

http://www.youtube.com/watch?v=OaP6LiZuaFM

F

Abstract—A course in numerical methods should teach both the mathematical
theory of numerical analysis and the craft of implementing numerical algorithms.
The IPython notebook provides a single medium in which mathematics, explana-
tions, executable code, and visualizations can be combined, and with which the
student can interact in order to learn both the theory and the craft of numerical
methods. The use of notebooks also lends itself naturally to inquiry-based learn-
ing methods. I discuss the motivation and practice of teaching a course based
on the use of IPython notebooks and inquiry-based learning, including some
specific practical aspects. The discussion is based on my experience teaching
a Masters-level course in numerical analysis at King Abdullah University of
Science and Technology (KAUST), but is intended to be useful for those who
teach at other levels or in industry.

Index Terms—IPython, IPython notebook, teaching, numerical methods,
inquiry-based learning

Teaching numerical methods

Numerical analysis is the study of computational algorithms for
solving mathematical models. It is used especially to refer to
numerical methods for approximating the solution of continu-
ous problems, such as those involving differential or algebraic
equations. Solving such problems correctly and efficiently with
available computational resources requires both a solid theoret-
ical foundation and the ability to write and evaluate substantial
computer programs.

Any course in numerical methods should enable students to:

1) Understand numerical algorithms and related mathemat-
ical concepts like complexity, stability, and convergence

2) Select an appropriate method for a given problem
3) Implement the selected numerical algorithm
4) Test and debug the numerical implementation

In other words, students should develop all the skills necessary
to go from a mathematical model to reliably-computed solutions.
These skills will allow them to select and use existing numerical
software responsibly and efficiently, and to create or extend such
software when necessary. Usually, only the first of the objectives
above is actually mentioned in the course syllabus, and in some
courses it is the only one taught. But the other three objectives

* Corresponding author: david.ketcheson@kaust.edu.sa
‡ King Abdullah University of Science and Technology

Copyright © 2014 David I. Ketcheson. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

are likely to be of just as much value to students in their careers.
The last two skills are practical, and teaching them properly is in
some ways akin to teaching a craft. Crafts are not generally taught
through lectures and textbooks; rather, one learns a craft by doing.

Over the past few years, I have shifted the emphasis of my own
numerical courses in favor of addressing all four of the objectives
above. In doing so, I have drawn on ideas from inquiry-based
learning and used both Sage worksheets and IPython notebooks
as an instructional medium. I’ve found this approach to be very
rewarding, and students have told me (often a year or more after
completing the course) that the hands-on mode of learning was
particularly helpful to them.

The notebooks used in my course for the past two years are
available online:

• 2013 course:
https://github.com/ketch/finite-difference-course

• 2013 course: https://github.com/ketch/AMCS252

Please note that these materials are not nearly as polished as a
typical course textbook, and some of them are not self-contained
(they may rely strongly on my unpublished course notes). Never-
theless, I’ve made them publicly available in case others find them
useful. For more context, you may find it helpful to examine the
course syllabus. You can also examine the notebooks for my short
course on hyperbolic PDEs, which are more self-contained.

Inquiry-based learning

The best way to learn is to do; the worst way to teach
is to talk. --P. R. Halmos [Hal75]

Many great teachers of mathematics (most famously, R.L.
Moore) have argued against lecture-style courses, in favor of an
approach in which the students take more responsibility and there
is more in-class interaction. The many related approaches that fit
this description have come to be called inquiry-based learning
(IBL). In an inquiry-based mathematics course, students are ex-
pected to find the proofs for themselves -- with limited assistance
from the instructor. For a very recent review of what IBL is
and the evidence for its effectiveness, see [Ern14a], [Ern14b]
and references therein. If an active, inquiry-based approach is
appropriate for the teaching of theoretical mathematics, then it
seems even more appropriate for teaching the practical craft of
computational mathematics.

A related notion is that of the flipped classroom. It refers to a
teaching approach in which students read and listen to recorded
lectures outside of class. Class time is then used not for lectures

20 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

but for more active, inquiry-based learning through things like
discussions, exercises, and quizzes.

The value of practice in computational mathematics

Too often, implementation, testing, and debugging are viewed
by computational mathematicians as mundane tasks that anyone
should be able to pick up without instruction. In most courses,
some programming is required in order to complete the homework
assignments. But usually no class time is spent on programming,
so students learn it on their own -- often poorly and with much
difficulty, due to the lack of instruction. This evident disdain and
lack of training seem to mutually reinforce one another. I believe
that implementation, testing, and debugging are essential skills for
anyone who uses or develops numerical methods, and they should
be also taught in our courses.

In some situations, a lack of practical skills has the same effect
as a lack of mathematical understanding. Students who cannot
meaningfully test their code are like students who cannot read
proofs: they have no way to know if the claimed results are correct
or not. Students who cannot debug their code will never know
whether the solution blows up due to an instability or due to an
error in the code.

In many cases, it seems fair to say that the skills required to
implement state-of-the-art numerical algorithms consists of equal
parts of mathematical sophistication and software engineering. In
some areas, the development of correct, modular, portable imple-
mentations of proposed algorithms is as significant a challenge as
the development of the algorithms themselves. Furthermore, there
are signs that numerical analysts need to move beyond traditional
flop-counting complexity analysis and incorporate more intricate
knowledge of modern computer hardware in order to design
efficient algorithms for that hardware. As algorithms become
increasingly adapted to hardware, the need for implementation
skills will only increase.

Perhaps the most important reason for teaching implementa-
tion, testing, and debugging is that these skills can and should
be used to reinforce the theory. The student who learns about
numerical instability by reading in a textbook will forget it after
the exam. The student who discovers numerical instability by im-
plementing an apparently correct (but actually unstable) algorithm
by himself and subsequently learns how to implement a stable
algorithm will remember and understand it much better. Similarly,
implementing an explicit solver for a stiff problem and then seeing
the speedup obtained with an appropriate implicit solver makes a
lasting impression.

It should be noted that many universities have courses (often
called "laboratory" courses) that do focus on the implementation
or application of numerical algorithms, generally using MATLAB,
Mathematica, or Maple. Such courses may end up being those of
most lasting usefulness to many students. The tools and techniques
discussed in this article could very aptly be applied therein.
Unfortunately, these courses are sometimes for less credit than
a normal university course, with an attendant reduction in the
amount of material that can be covered.

Hopefully the reader is convinced that there is some value in
using the classroom to teach students more than just the theory
of numerical methods. In the rest of this paper, I advocate the
use of inquiry-based learning and IPython notebooks in full-credit
university courses on numerical analysis or numerical methods.
As we will see, the use of IPython notebooks and the teaching of
the craft of numerical methods in general lends itself naturally

to inquiry-based learning. While most of the paper is devoted
to the advantages of this approach, there are some significant
disadvantages, which I describe in the Drawbacks section near
the end.

Teaching with the IPython notebook

Python and IPython

The teacher of numerical methods has several choices of program-
ming language. These can broadly be categorized as

• specialized high-level interpreted languages (MATLAB,
Mathematica, Maple)

• general-purpose compiled languages (C, C++, Fortran).

High-level languages, especially MATLAB, are used widely
in numerical courses and have several advantages. Namely, the
syntax is very similar to the mathematical formulas themselves,
the learning curve is short, and debugging is relatively simple. The
main drawback is that such languages do not provide the necessary
performance to solve large research or industrial problems. This
may be a handicap for students if they never gain experience with
compiled languages.

Python strikes a middle ground between these options. It is a
high-level language with intuitive syntax and high-level libraries
for everything needed in a course on numerical methods. At
the same time, it is a general-purpose language. Although (like
MATLAB) it can be relatively slow [VdP14], Python makes it
relatively easy to develop fast code by using tools such as Cython
or f2py. For the kinds of exercises used in most courses, pure
Python code is sufficiently fast. In recent years, with the advent
of tools like numpy and matplotlib, Python has increasingly been
adopted as a language of instruction for numerical courses.

IPython [Per07] is a tool for using Python interactively. One of
its most useful components is the IPython notebook: a document
format containing text, code, images, and more, that can be
written, viewed, and executed in a web browser.

The IPython notebook as a textbook medium

Many print and electronic textbooks for numerical methods in-
clude code, either printed on the page or available online (or
both). Some of my favorite examples are [Tre00] and [LeV07].
Such books have become more common, as the importance of
exposing students to the craft of numerical methods -- and the
value of experimentation in learning the theory -- has become
more recognized. The IPython notebook can be viewed as the next
step in this evolution. As demonstrated in Figure 1, it combines in
a single document

• Mathematics (using LaTeX)
• Text (using Markdown)
• Code (in Python or other languages)
• Figures and animations

Mathematica, Maple, and (more recently) Sage have document
formats with similar capabilities. The Sage worksheet is very
similar to the IPython notebook (indeed, the two projects have
strongly influenced each other), so most of what I will say about
the IPython notebook applies also to the Sage worksheet.

The notebook has some important advantages over Mathemat-
ica and Maple documents:

• It can be viewed, edited, and executed using only free
software;

TEACHING NUMERICAL METHODS WITH IPYTHON NOTEBOOKS AND INQUIRY-BASED LEARNING 21

Fig. 1: An excerpt from Notebook 2 of HyperPython, showing the use of text, mathematics, code, and a code-generated plot in the IPython
notebook.

• It allows the use of multiple programming languages;
• It can be collaboratively edited by multiple users at the

same time (currently only on SageMathCloud);
• It is open source, so users can modify and extend it.

The second point above was especially important when I de-
cided to switch from using Sage worksheets to IPython notebooks.
Because both are stored as text, I was able to write a simple script
to convert them. If I had been using a proprietary binary format,
I would have lost a lot of time re-writing my materials in a new
format.

Perhaps the most important advantage of the notebook is the
community in which it has developed -- a community in which
openness and collaboration are the norm. Because of this, those
who develop teaching and research materials with IPython note-
books often make them freely available under permissive licenses;
see for example Lorena Barba’s AeroPython course [Bar14] or
this huge list of books, tutorials, and lessons. Due to this culture,
the volume and quality of available materials for teaching with
the notebook is quickly surpassing what is available in proprietary
formats. It should be mentioned that the notebook is also being
used as a medium for publishing research, both as open notebook
science and full articles.

Mechanics of an interactive, notebook-based course

I have successfully used IPython notebooks as a medium of
instruction in both

• semester-length university courses; and
• short 1-3 day tutorials

I will focus on the mechanics of teaching a university course,
but much of what I will say applies also to short tutorials. The

notebook is especially advantageous in the context of a tutorial
because one does not usually have the luxury of ensuring that
students have a textbook. The notebooks for the course can
comprise a complete, self-contained curriculum.

Typically I have used a partially-flipped approach, in which
half of the class sessions are traditional lectures and the other half
are lab sessions in which the students spend most of the time
programming and discussing their programs. Others have used
IPython notebooks with a fully-flipped approach; see for example
[Bar13].

Getting students started with the notebook

One historical disadvantage of using Python for a course was the
difficulty of ensuring that all students had properly installed the
required packages. Indeed, when I began teaching with Python
5 years ago, this was still a major hassle even for a course
with twenty students. If just a few percent of the students have
installation problems, it can create an overwhelming amount of
work for the instructor.

This situation has improved dramatically and is no longer a
significant issue. I have successfully used two strategies: local
installation and cloud platforms.

Local installation

It can be useful for students to have a local installation of all
the software on their own computer or a laboratory machine.
The simplest way to achieve this is to install either Anaconda
or Canopy. Both are free and include Python, IPython, and all
of the other Python packages likely to be used in any scientific
course. Both can easily be installed on Linux, Mac, and Windows
systems.

22 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Cloud platforms

In order to avoid potential installation issues altogether, or as a
secondary option, notebooks can be run using only cloud services.
Two free services exist for running IPython notebooks:

• Sage Math Cloud
• Wakari

Both services are relatively new and are developing rapidly.
Both include all relevant Python packages by default. I have
used both of them successfully, though I have more experience
with Sage Math Cloud (SMC). Each SMC project is a complete
sandboxed Unix environment, so it is possible for the user to install
additional software if necessary. On SMC, it is even possible for
multiple users to collaboratively edit notebooks at the same time.

Teaching Python

Since students of numerical methods do not usually have much
prior programming experience, and what they have is usually
in another language, it is important to give students a solid
foundation in Python at the beginning of the course. In the
graduate courses I teach, I find that most students have previously
programmed in MATLAB and are easily able to adapt to the
similar syntax of Numpy. However, some aspects of Python syntax
are much less intuitive. Fortunately, a number of excellent Python
tutorials geared toward scientific users are available. I find that
a 1-2 hour laboratory session at the beginning of the course is
sufficient to acquaint students with the necessary basics; further
details can be introduced as needed later in the course. Students
should be strongly encouraged to work together in developing their
programming skills. For examples of such an introduction, see this
notebook or this one.

Lab sessions

At the beginning of each lab session, the students open a new
notebook that contains some explanations and exercises. Generally
they have already been introduced to the algorithm in question, and
the notebook simply provides a short review. Early in the course,
most of the code is provided to the students already; the exercises
consist mainly of extending or modifying the provided code. As
the course progresses and students develop their programming
skills, they are eventually asked to implement some algorithms
or subroutines from scratch (or by starting from codes they have
written previously). Furthermore, the specificity of the instructions
is gradually decreased as students develop the ability to fill in the
intermediate steps.

It is essential that students arrive to the lab session already
prepared, through completing assigned readings or recordings.
This doesn’t mean that they already know everything contained
in the notebook for that day’s session; on the contrary, class time
should be an opportunity for guided discovery. I have found it very
useful to administer a quiz at the beginning of class to provide
extra motivation. Quizzes can also be administered just before
students begin a programming exercise, in order to check that
they have a good plan for completing it, or just after, to see how
successful they were.

The main advantage of having students program in class
(rather than at home on their own) is that they can talk to the
instructor and to other students as they go. Most students are
extremely reluctant to do this at first, and it is helpful to require
them to explain to one another what their code does (or is intended

to do). This can be accomplished by having them program in
pairs (alternating, with one programming while the other makes
comments and suggestions). Another option is to have them
compare and discuss their code after completing an exercise.

When assisting students during the lab sessions, it is important
not to give too much help. When the code fails, don’t immediately
explain what is wrong or how to fix it. Ask questions. Help them
learn to effectively read a traceback and diagnose their code. Let
them struggle a bit to figure out why the solution blows up. Even if
they seem to grasp things immediately, it’s worthwhile to discuss
their code and help them develop good programming style.

Typically, in an 80-minute class session the students spend
50-60 minutes working (thinking and programming) and 20-30
minutes listening to explanations, proposing ideas, discussing
their solutions, and taking quizzes. During the working time, the
instructor should assess and help students one-on-one as needed.

Designing effective notebooks

Prescribing how to structure the notebooks themselves is like
stipulating the style of a textbook or lecture notes. Each instructor
will have his or her own preferences. So I will share some
principles I have found to be effective.

Make sure that they type code from the start

This goes without saying, but it’s especially important early in
the course. It’s possible to write notebooks where all the code
involved is already completely provided. That’s fine if students
only need to understand the output of the code, but not if they need
to understand the code itself (which they generally do). The plain
truth is that nobody reads code provided to them unless they have
to, and when they do they understand only a fraction of it. Typing
code, like writing equations, dramatically increases the degree to
which we internalize it. At the very beginning of the course, it
may be helpful to have students work in an IPython session and
type code from a notebook into the IPython prompt.

Help students to discover concepts on their own

This is the central principle of inquiry-based learning. Students are
more motivated, gain more understanding, and retain knowledge
better when they discover things through their own effort and
after mentally engaging on a deep level. In a numerical methods
course, the traditional approach is to lecture about instability or
inaccuracy, perhaps showing an example of a method that behaves
poorly. In the flipped approach, you can instead allow the students
to implement and experiment in class with naive algorithms that
seem reasonable but may be inaccurate or unstable. Have them
discuss what they observe and what might be responsible for it.
Ask them how they think the method might be improved.

Teaching is tricky because you want the students to come up to
date on topics which have taken perhaps decades to develop. But
they gain the knowledge quickly without the discipline of having
struggled with issues. By letting them struggle and discover you
simulate the same circumstances which produced the knowledge
in the first place.

Tailor the difficulty to the students’ level

Students will lose interest or become frustrated if they are not
challenged or they find the first exercise insurmountable. It can
be difficult to accommodate the varying levels of experience and
skill presented by students in a course. For students who struggle

TEACHING NUMERICAL METHODS WITH IPYTHON NOTEBOOKS AND INQUIRY-BASED LEARNING 23

with programming, peer interaction in class is extremely helpful.
For students who advance quickly, the instructor can provide ad-
ditional, optional, more challenging questions. For instance, in my
HyperPython short course, some notebooks contain challenging
"extra credit" questions that only the more advanced students
attempt.

Gradually build up complexity

In mathematics, one learns to reason about highly abstract objects
by building up intuition with one layer of abstraction at a time.
Numerical algorithms should be developed and understood in
the same way, with the building blocks first coded and then
encapsulated as subroutines for later use. Let’s consider the
multigrid algorithm as an example. Multigrid is a method for
solving systems of linear equations that arise in modeling things
like the distribution of heat in a solid. The basic building block of
multigrid is some way of smoothing the solution; the key idea is
to apply that smoother successively on copmutational grids with
different levels of resolution.

I have students code things in the following sequence:

1) Jacobi’s method (a smoother that doesn’t quite work)
2) Under-relaxed Jacobi (a smoother that does work for high

frequencies)
3) A two-grid method (applying the smoother on two differ-

ent grids in succession)
4) The V-cycle (applying the smoother on a sequence of

grid)
5) Full multigrid (performing a sequence of V-cycles with

successively finer grids)

In each step, the code from the previous step becomes a
subroutine. In addition to being an aid to learning, this approach
teaches students how to design programs well. The multigrid
notebook from my course can be found (with some exercises
completed) here.

Use animations liberally

Solutions of time-dependent problems are naturally depicted as
animations. Printed texts must restrict themselves to waterfall
plots or snapshots, but electronic media can show solutions in
the natural way. Students learn more -- and have more fun -- when
they can visualize the results of their work in this way. I have
used Jake Vanderplas’ JSAnimation package [VdP13] to easily
create such animations. The latest release of IPython (version
2.1.0) natively includes interactive widgets that can be used to
animate simulation results.

Time-dependent solutions are not the only things you can ani-
mate. For iterative solvers, how does the solution change after each
algorithmic iteration? What effect does a given parameter have
on the results? Such questions can be answered most effectively
through the use of animation. One simple example of teaching a
concept with such an animation, shown in Figure 2, can be found
in this notebook on aliasing.

Drawbacks

The approach proposed here differs dramatically from a traditional
course in numerical methods. I have tried to highlight the advan-
tages of this approach, but of course there are also some potential
disadvantages.

Material covered

The most substantial drawback I have found relates to the course
coverage. Programming even simple algorithms takes a lot of time,
especially for students. Therefore, the amount of material that can
be covered in a semester-length course on numerical methods is
substantially less under the interactive or flipped model. This is
true for inquiry-based learning techniques in general, but even
more so for courses that involve programming. I believe that it is
better to show less material and have it fully absorbed and loved
than to quickly dispense knowledge that falls on deaf ears.

Scalability

While some people do advocate IBL even for larger classes, I
have found that this approach works best if there are no more
than twenty students in the course. With more students, it can be
difficult to fit everyone in a computer lab and nearly impossible
for the instructor to have meaningful interaction with individual
students.

Nonlinear notebook execution

Code cells in the notebook can be executed (and re-executed) in
any order, any number of times. This can lead to different results
than just executing all the cells in order, which can be confusing to
students. I haven’t found this to be a major problem, but students
should be aware of it.

Opening notebooks

Perhaps the biggest inconvenience of the notebook is that opening
one is not as simple as clicking on the file. Instead, one must open
a terminal, go to the appropriate directory, and launch the ipython
notebook. This is fine for users who are used to UNIX, but is non-
intuitive for some students. With IPython 2.0, one can also launch
the notebook from any higher-level directory and then navigate to
a notebook file within the browser.

It’s worth noting that on SMC one can simply click on a
notebook file to open it.

Lengthy programs and code reuse

Programming in the browser means you don’t have all the niceties
of your favorite text editor. This is no big deal for small bits
of code, but can impede development for larger programs. I also
worry that using the notebook too much may keep students from
learning to use a good text editor. Finally, running long programs
from the browser is problematic since you can’t detach the process.

Usually, Python programs for a numerical methods course can
be broken up into fairly short functions that each fit on a single
screen and run in a reasonable amount of time.

Placing code in notebooks also makes it harder to reuse code,
since functions from one notebook cannot be used in another with
copying. Furthermore, for the reasons already given, the notebook
is poorly suited to development of library code. Exclusive use
of the notebook for coding may thus encourage poor software
development practices. This can be partially countered by teaching
students to place reusable functions in files and then importing
them in the notebook.

Interactive plotting

In my teaching notebooks, I use Python’s most popular plotting
package, Matplotlib [Hun07]. It’s an extremely useful package,
whose interface is immediately familiar to MATLAB users, but

24 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Fig. 2: A short notebook on grid aliasing, including code, animation, and exercises.

it has a major drawback when used in the IPython notebook.
Specifically, plots that appear inline in the notebook are not
interactive -- for instance, they cannot be zoomed or panned. There
are a number of efforts to bring interactive plots to the notebook
(such as Bokeh and Plotly) and I expect this weakness will soon be
an area of strength for the IPython ecosystem. I plan to incorporate
one of these tools for plotting in the next course that I teach.

More resources

Many people are advocating and using the IPython notebook as a
teaching tool, for many subjects. For instance, see:

• Teaching with the IPython Notebook by Matt Davis
• How IPython Notebook and Github have changed the way

I teach Python by Eric Matthes
• Using the IPython Notebook as a Teaching Tool by Greg

Wilson
• Teaching with ipython notebooks -- a progress report by

C. Titus Brown

To find course actual course materials (in many subjects!),
the best place to start is this curated list: A gallery of interesting
IPython Notebooks.

Acknowledgments

I am grateful to Lorena Barba for helpful discussions (both online
and offline) of some of the ideas presented here. I thank Nathaniel
Collier, David Folch, and Pieter Holtzhausen for their comments
that significantly improved this paper. This work was supported
by the King Abdullah University of Science and Technology
(KAUST).

REFERENCES

[LeV07] R. J. LeVeque. Finite Difference Methods for Ordinary
and Partial Differential Equations, Society for
Industrial and Applied Mathematics, 2007.

[Tre00] L. N. Trefethen. Spectral Methods in MATLAB, Society
for Industrial and Applied Mathematics, 2000.

[Bar14] L. A. Barba, O. Mesnard. AeroPython,
10.6084/m9.figshare.1004727. Code repository,
Set of 11 lessons in classical Aerodynamics on
IPython Notebooks. April 2014.

[Bar13] L. A. Barba. CFD Python: 12 steps to Navier-
Stokes, http://lorenabarba.com/blog/cfd-python-
12-steps-to-navier-stokes/, 2013.

[Hal75] P. R. Halmos, E. E. Moise, and G. Piranian. The prob-
lem of learning how to teach, The American
Mathematical Monthly, 82(5):466--476, 1975.

[Ern14a] D. Ernst. What the heck is IBL?, Math Ed Mat-
ters blog, http://maamathedmatters.blogspot.com/2013/
05/what-heck-is-ibl.html, May 2014

[Ern14b] D. Ernst. What’s So Good about IBL Anyway?, Math Ed Mat-
ters blog, http://maamathedmatters.blogspot.com/2014/
01/whats-so-good-about-ibl-anyway.html, May 2014.

[VdP14] J. VanderPlas. Why Python is Slow: Looking
Under the Hood, Pythonic Perambulations blog,
http://jakevdp.github.io/blog/2014/05/09/why-python-is-
slow/, May 2014.

[VdP13] J. VanderPlas. JSAnimation, https://github.com/jakevdp/
JSAnimation, 2013.

[Per07] F. Pérez, B. E. Granger. IPython: A System for Interactive
Scientific Computing, Computing in Science and Engi-
neering, 9(3):21-29, 2007. http://ipython.org/

[Hun07] J. D. Hunter. Matplotlib: A 2D graphics environment,
Computing in Science and Engineering, 9(3):90-
-95, 2007. http://matplotlib.org/

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014) 25

Project-based introduction to scientific computing for
physics majors

Jennifer Klay‡∗

https://www.youtube.com/watch?v=eJhmMf6bHDU

F

Abstract—This paper presents an overview of a project-based course in com-
puting for physics majors using Python and the IPython Notebook that was
developed at Cal Poly San Luis Obispo. The course materials are made freely
available on GitHub as a project under the Computing4Physics [C4P] organiza-
tion.

Index Terms—physics, scientific computing, undergraduate education

Introduction

Computational tools and skills are as critical to the training of
physics majors as calculus and math, yet they receive much
less emphasis in the undergraduate curriculum. One-off courses
that introduce programming and basic numerical problem-solving
techniques with commercial software packages for topics that
appear in the traditional physics curriculum are insufficient to
prepare students for the computing demands of modern technical
careers. Yet tight budgets and rigid degree requirements constrain
the ability to expand computational course offerings for physics
majors.

This paper presents an overview of a recently revamped course
at California Polytechnic State University San Luis Obispo (Cal
Poly) that uses Python and associated scientific computing li-
braries to introduce the fundamentals of open-source tools, version
control systems, programming, numerical problem solving and
algorithmic thinking to undergraduate physics majors. The spirit
of the course is similar to the bootcamps organized by Software
Carpentry [SWC] for researchers in science but is offered as a ten-
week for-credit course. In addition to having a traditional in-class
component, students learn the basics of Python by completing
tutorials on Codecademy’s Python track [Codecademy] and prac-
tice their algorithmic thinking by tackling Project Euler problems
[PE]. This approach of incorporating online training may provide
a different way of thinking about the role of MOOCs in higher
education. The early part of the course focuses on skill-building,
while the second half is devoted to application of these skills
to an independent research-level computational physics project.
Examples of recent student projects and their results will be
presented.

* Corresponding author: jklay@calpoly.edu
‡ California Polytechnic State University San Luis Obispo

Copyright © 2014 Jennifer Klay. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Background

California Polytechnic State University San Luis Obispo (Cal
Poly) is one of the 23 campuses of the California State University
system. The university has a "learn by doing" emphasis for the
educational experience of its predominantly undergraduate popu-
lation of approximately 19,000 students, encapsulated in its motto
discere faciendo. Part of the university’s mission is to provide
students the opportunity to get directly involved in research at
the frontiers of knowledge through interaction with faculty. The
university is also committed to enhancing opportunities for under-
represented groups and is committed to fostering a diverse student
body.

The College of Engineering enrolls the largest fraction of
Cal Poly undergraduates (~28%). Due to the large number of
engineering undergraduates at Cal Poly, the distribution of male
(~54%) and female (~46%) students is opposite that of the national
average.

The Department of Physics, in the College of Science &
Mathematics, offers Bachelor of Science and Arts degrees in
Physics, and minors in astronomy and geology, with approxi-
mately 150 students enrolled. There are roughly 30 tenure-track
faculty, for a current student-to-faculty ratio of 1:5. In addition,
there are typically 5-10 full-time lecturers and fifteen part-time and
retired faculty teaching courses in physics and geology. A typical
introductory physics course for scientists and engineers has 48
students, in contrast to typical class sizes of over a hundred at large
public universities. The curriculum for physics majors includes a
Senior Project which is often the continuation of paid summer
internships undertaken with faculty members in the department
who have funding to support student assistants. Some internal
funding is made available to support these activities.

Cal Poly has one of the largest (in terms of degrees granted)
and most successful undergraduate physics programs in the United
States. Only about 5% of all physics programs in the United States
regularly award more than 15 degrees per year, and most of those
are at Ph.D. granting institutions. In 2013-2014, 28 B.S. and 1
B.A. degrees were awarded. The Cal Poly Physics Department is
uniquely successful among four-year colleges. As a result, Cal
Poly was one of 21 departments deemed to be "thriving" and
profiled in 2002 by the SPIN-UP study (Strategic Programs for
INnovation in Undergraduate Physics) sponsored by the American
Association of Physics Teachers, the American Physical Society,
and the American Institute of Physics [SPIN-UP]. The external
reviewers from SPIN-UP made special mention of the strong

26 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

faculty-student interactions and of the success of the physics
lounge (known as "h-bar") at making students feel welcome and
at home in an intense academic environment. Cal Poly hosted the
SPIN-UP Western Regional Workshop in June 2010 where faculty
teams from 15 western colleges and universities came to learn how
to strengthen their undergraduate physics programs.

Computational physics at Cal Poly

The physics department has a strong record of preparing students
for advanced degrees in physics, often at top tier research institu-
tions. Between 2005 and 2009, at least 20% of Cal Poly physics
graduates entered Ph.D. programs in physics and related disci-
plines with another 10% seeking advanced degrees in engineering,
mathematics, law, and business.

The Cal Poly physics program provides a strong base in the-
oretical physics with the standard traditional sequence of courses
while providing excellent experimental training of students in the
laboratory, with a full year of upper division modern physics
experiments and several additional specialty lab courses offered
as advanced physics electives. Unfortunately, the department has
not yet developed as cohesive and comprehensive of a program in
computational physics. There has been one course "Physics on the
Computer" on computational methods required for physics majors
since 1996. The current catalog description of the course is

Introduction to using computers for solving prob-
lems in physics: differential equations, matrix manipula-
tions, simulations and numerical techniques, nonlinear
dynamics. 4 lectures.

Students are encouraged to take the course in the Spring of
their sophomore year, after completing their introductory physics
and math courses. The original pre-requisites for the course were
General Physics III: Electricity and Magnetism and Linear Analy-
sis I (MATH), although in 1998 concurrent enrollment for Linear
Analysis was allowed and in 2001 the phrase "and computer
literacy" was added to the pre-requisites, although it was dropped
when enforceable pre-requisites were introduced in 2011.

Despite the desire for students to come to this course with
some "computer literacy", no traditional computer science courses
have been required for physics majors (although they can be
counted as free technical electives in the degree requirements).
Each instructor selects the tools and methods used to implement
the course. Early on, many numerical topics were covered using
Excel because students typically had access and experience with
it. Interactive computer algebra systems such as Maple and in-
teractive computing environments such as MATLAB were also
employed, but no open-source standard high level programming
languages were used. Between 2007 and 2012 MATLAB was the
preferred framework, although some use of Excel for introductory
tasks was also included.

Although simple data analysis and graphing tasks are taught in
upper division laboratories, there is no concerted effort to include
computational or numerical techniques in upper division theory
courses. Instructors choose to include this material at their own
discretion. There is also currently no upper division computational
physics elective in the catalog.

When I joined the faculty of Cal Poly in 2007 I quickly
obtained external funding from the National Science Foundation
to involve Cal Poly physics undergraduates in research at the
CERN Large Hadron Collider with the ALICE experiment. My
background in particle and nuclear physics has been very software

intensive, owing to the enormous and complex datasets generated
in heavy nucleus collisions. I have served as software coordinator
for one of the ALICE detector sub-systems and I am the architect
and lead developer of the offline analysis framework for the Neu-
tron Induced Fission Fragment Tracking Experiment (NIFFTE).
Most of my scientific software is written in C/C++, although I
have experience with Pascal, Fortran, Java and shell scripting. I
found it extremely challenging to engage students in my research
because of the steep learning curve for these software tools and
languages.

In 2012 I became interested in learning Python and decided
to offer an independent study course called "Python 4 Physicists"
so students could learn it with me. Over 30 eager students signed
up for the course. We followed Allen Downey’s "Think Python"
book [Downey2002] for six weeks, largely on our own, but met
weekly for one hour to discuss issues and techniques. For the
second half of the course, the students were placed in groups of
3 and assigned one of two projects, either a cellular automaton
model of traffic flow or a 3-D particle tracking algorithm for
particle collision data reconstruction. All code and projects were
version controlled with git and uploaded to GitHub. Examples
can be found on GitHub [Traffic], [3DTracker]. At the end of the
quarter the groups presented their projects to the class.

Not all groups were able to successfully complete the projects
but this is likely due to competing priorities consuming their
available coding time given that this was only a 1-unit elective
course. Nevertheless, they were excited to work on a research-level
problem and to be able to use their newly acquired programming
skills to do so. Most of them gained basic programming profi-
ciency and some students reported that the course helped them
secure summer internships. It became clear to me that Python is
an effective and accessible language for teaching physics majors
how to program. When my opportunity to teach "Physics on the
Computer" came in 2013-14, I decided to make it a project-based
Python programming course that would teach best practices for
scientific software development, including version control and
creation of publication quality graphics, while giving a broad
survey of major topics in computational physics.

Course Organization

The complete set of materials used for this course are available
on GitHub under the Computing4Physics [C4P] organization and
can be viewed with the IPython Notebook Viewer [nbviewer]. The
learning objectives for the course are a subset of those developed
and adopted by the Cal Poly physics department in 2013 for
students completing a degree in physics:

• Use basic coding concepts such as loops, control state-
ments, variable types, arrays, array operations, and boolean
logic. (LO1)

• Write, run and debug programs in a high level language.
(LO2)

• Carry out basic operations (e.g. cd, ls, dir, mkdir, ssh) at
the command line. (LO3)

• Maintain a version controlled repository of your files and
programs. (LO4)

• Create publication/presentation quality graphics, equa-
tions. (LO5)

• Visualize symbolic analytic expressions - plot functions
and evaluate their behavior for varying parameters. (LO6)

PROJECT-BASED INTRODUCTION TO SCIENTIFIC COMPUTING FOR PHYSICS MAJORS 27

• Use numerical algorithms (e.g. ODE solvers, FFT, Monte
Carlo) and be able to identify their limitations. (LO7)

• Code numerical algorithms from scratch and compare with
existing implementations. (LO8)

• Read from and write to local or remote files. (LO9)
• Analyze data using curve fitting and optimization. (LO10)
• Create appropriate visualizations of data, e.g. multidimen-

sional plots, animations, etc. (LO11)

The course schedule and learning objective map are summa-
rized in Table 1. Class time was divided into two 2-hour meetings
on Tuesdays and Thursdays each week for ten weeks. For the first
two weeks the students followed the Python track at Codecademy
[Codecademy] to learn basic syntax and coding concepts such as
loops, control statements, variable types, arrays, array operations,
and boolean logic. In class, they were instructed about the com-
mand line, ssh, the UNIX shell and version control. Much of the
material for the early topics came from existing examples, such as
Software Carpentry [SWC] and Jake Vanderplas’s Astronomy 599
course online [Vanderplas599]. These topics were demonstrated
and discussed as instructor-led activities in which they entered
commands in their own terminals while following along with me.

The IPython Notebook was introduced in the second week and
their first programming exercise outside of Codecademy was to
pair-program a solution to Project Euler [PE] Problem 1. They
created their own GitHub repository for the course and were
guided through the workflow at the start and end of class for the
first several weeks to help them get acclimated. We built on their
foundations by taking the Battleship game program they wrote in
Codecademy and combining it with ipythonblocks [ipythonblocks]
to make it more visual. We revisited the Battleship code again in
week 4 when we learned about error handling and a subset of
the students used ipythonblocks as the basis for their final project
on the Schelling Model of segregation. The introduction, rein-
forcement and advanced application of programming techniques
was employed to help students build lasting competency with
fundamental coding concepts.

For each class session, the students were provided a "tour" of
a specific topic for which they were instructed to read and code
along in their own IPython Notebook. They were advised not to
copy/paste code, but to type their own code cells, thinking about
the commands as they went to develop a better understanding of
the material. After finishing a tour they worked on accompanying
exercises. I was available in class for consultations and questions
but there was very little lecturing beyond the first week. Class
time was activity-based rather than lecture-based. Along with the
homework exercises, they completed a Project Euler problem each
week to practice efficient basic programming and problem solving.

A single midterm exam was administered in the fifth week
to motivate the students to stay on top of their skill-building and
to assess their learning at the midway point. The questions on
the midterm were designed to be straightforward and completable
within the two-hour class time.

Assessment of learning

Figuring out how to efficiently grade students’ assignments is a
non-trivial task. Grading can be made more efficient by automatic
output checking but that doesn’t leave room for quality assessment
and feedback. To deal with the logistics of grading, a set of
UNIX shell scripts was created to automate the bookkeeping and
communication of grades. Individual assignments were assessed

Week Topics Learning Objectives
1 Programming

Bootcamp
LO1, LO2, LO3,
LO4

2 Programming
Bootcamp

LO1-4, LO11

3 Intro to NumPy/SciPy,
Data I/O

LO1-4, LO9, LO11

4 Graphics, Animation
and Error handling

LO1-4, LO5, LO6,
LO11

5 Midterm Exam,
Projects and Program
Design

LO1-4, LO5, LO6,
LO9

6 Interpolation and Dif-
ferentiation

LO1-4, LO5, LO6,
LO7, LO8, LO11

7 Numerical Integration,
Ordinary Differential
Equations (ODEs)

LO1-4, LO5, LO6,
LO7, LO8, LO11

8 Random Numbers and
Monte-Carlo Methods

LO1-4, LO5, LO6,
LO7, LO8, LO11

9 Linear Regression and
Optimization

LO1-11

10 Symbolic Analysis,
Project Hack-a-thon!

LO1-4, LO5, LO6,
LO11

Final Project Demos LO1-11

TABLE 1: Course schedule of topics and learning objectives

Points Description
5 Goes above and beyond. Extra neat, con-

cise, well-commented code, and explores
concepts in depth.

4 Complete and correct. Includes an analysis
of the problem, the program, verification
of at least one test case, and answers to
questions, including plots.

3 Contains a few minor errors.
2 Only partially complete or has major er-

rors.
1 Far from complete.
0 No attempt.

TABLE 2: Grading rubric for assigned exercises.

personally by me while a grader was employed to evaluate the
Project Euler questions. The basic grading rubric uses a 5-point
scale for each assigned question, outlined in Table 2. Comments
and numerical scores were recorded for each student and com-
municated to them through a script-generated email. Students’
final grades in the course were determined by weighting the var-
ious course elements accordingly: Project Euler (10%), Exercises
(30%), Midterm (20%), Project (30%), Demo (10%).

Projects

Following the midterm exam one class period was set aside
for presenting three project possibilities and assigning them.
Two of the projects came from Stanford’s NIFTY assignment
database [Nifty] - "Schelling’s Model of Segregration" by Frank
McCown [McCown2014] and "Estimating Avogadro’s Number
from Brownian Motion" by Kevin Wayne [Wayne2013]. The
Schelling Model project required students to use IPython wid-
gets and ipythonblocks to create a grid of colored blocks that
move according to a set of rules governing their interactions.
Several recent physics publications on the statistical properties

28 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

of Schelling Model simulations and their application to physi-
cal systems [Vinkovic2006], [Gauvin2009], [DallAsta2008] were
used to define research questions for the students to answer using
their programs. For estimating Avogadro’s number, the students
coded a particle identification and tracking algorithm that they
could apply to the frames of a movie showing Brownian motion
of particles suspended in fluid. The initial test data came from the
Nifty archive, but at the end of the quarter the students collected
their own data using a microscope in the biology department to
image milkfat globules suspended in water. The challenges of
adapting their code to the peculiarities of a different dataset were
part of the learning experience. They used code from a tour and
exercise they did early in the quarter, based on the MultiMedia
programming lesson on Software Carpentry, which had them filter
and count stars in a Hubble image.

The third project was to simulate galaxy mergers by solving
the restricted N-body problem. The project description was devel-
oped for this course and was based on a 1972 paper by Toomre
and Toomre [Toomre1972]. They used SciPy’s odeint to solve the
differential equations describing the motion of a set of massless
point particles (stars) orbiting a main galaxy core as a disrupting
galaxy core passed in a parabolic trajectory. The students were
not instructed on solving differential equations until week 7, so
they were advised to begin setting up the initial conditions and
visualization code until they had the knowledge and experience to
apply odeint.

The projects I selected for the course are ones that I have
not personally coded myself but for which I could easily outline
a clear algorithmic path to a complete solution. Each one could
form a basis for answering real research questions. There are
several reasons for this approach. First, I find it much more
interesting to learn something new through the students’ work.
I would likely be bored otherwise. Second, having the students
work on a novel project is similar to how I work with students in
research mentoring. My interactions with them are much more
like a real research environment. By not already having one
specific solution I am able to let them choose their own methods
and algorithms, providing guidance and suggestions rather than
answers to every problem or roadblock they encounter. This gives
them the chance to experience the culture of research before
they engage in it outside of the classroom. Finally, these projects
could easily be extended into senior projects or research internship
opportunities, giving the students the motivation to keep working
on their projects after the course is over. As a consequence of these
choices, the project assessment was built less on "correctness" than
on their formulation of the solution, documentation of the results,
and their attempt to answer the assigned "research question". The
rubric was set up so that they could earn most of the credit for
developing an organized, complete project with documentation,
even if their results turned out to be incorrect.

When this course was piloted in 2013, project demonstrations
were not included, as they had been for the 2012 independent
study course. I was disappointed in the effort showed by the
majority of students in the 2013 class, many of whom ultimately
gave up on the projects and turned in sub-standard work, even
though they were given additional time to complete them. For
2014, the scheduled final exam time was used for 5-7 minute
project demonstrations by each individual student. Since the class
was divided into three groups, each working on a common project,
individual students were assigned a personalized research question
to answer with their project code and present during their demo.

The students were advised that they needed to present something,
even if their code didn’t function as expected. Only one student
out of 42 did not make a presentation. (That student ultimately
failed the course for turning in less than 50% of assignments and
not completing the project.) The rest were impressive, even when
unpolished.

It was clear from the demos that the students were highly
invested in their work and were motivated to make a good im-
pression. The project demos were assessed using a peer evaluation
oral presentation rubric that scored the demos on organization,
media (graphics, animations, etc. appropriate for the project),
delivery, and content. Presenters were also asked to evaluate their
own presentations. Grades were assigned using the average score
from all peer evaluation sheets. The success of the project demos
strongly suggest that they are an essential part of the learning
experience for students. This is supported in the literature. See for
example, Joughin and Collom [Joughin2003].

Project Examples

The most impressive example from 2014 came from a student who
coded the Galaxy Merger project [Parry2014]. Figure 1 shows a
still shot from an animated video he created of the direct passage
of an equal mass diruptor after the interaction has begun. He also
uploaded Youtube videos of his assigned research question (direct
passage of an equal mass diruptor) from two perspectives, the
second of which he coded to follow his own curiosity - it was not
part of the assignment. The main galaxy perspective can be viewed
here: http://www.youtube.com/watch?v=vavfpLwmT0o and the
interaction from the perspective of the disrupting galaxy can be
viewed here: http://www.youtube.com/watch?v=iy7WvV5LUZg

Fig. 1: Direct passage of an equal mass disruptor galaxy shortly
after the disrupting galaxy passes the minimum distance of approach.
[Parry2014]

There were also two other good Youtube video examples
of the galaxy merger project, although the solutions exhibited
pathologies that this one did not.

The best examples from the Schelling Model either did an ex-
cellent analysis of their research question [Nelson2014] or created
the most complete and useful interactive model [Parker2014].

Highlights from 2013

Although no project demos were required in 2013, students who
submitted excellent projects were invited to collaborate together

PROJECT-BASED INTRODUCTION TO SCIENTIFIC COMPUTING FOR PHYSICS MAJORS 29

on a group presentation of their work at the 2013 annual meeting
of the Far West Section of the American Physical Society held
at Sonoma State University Nov. 1-2, 2013 [Sonoma2013]. Two
talks were collaborations among four students each, one talk was
a pair collaboration, and one was given as a single author talk.

The single author talk came from the best project submitted
in 2013, an implementation of a 3-D particle tracking code
[VanAtta2013] for use with ionization chamber data from particle
collision experiments. Figure 2 shows an example of the output
from his tracker with the voxels associated with different trajec-
tories color coded. The notebook was complete and thorough, ad-
dressing all the questions and including references. Although the
code could be better organized to improve readability, the results
were impressive and the algorithm was subsequently adapted into
the NIFFTE reconstruction framework for use in real experiments.

Fig. 2: Matplotlib 3d plot of particle trajectories reconstructed from
ionization trails left by charged particles in a gaseous drift detector.
[VanAtta2013]

One of the students from the pair collaboration turned his
project from 2013 into a Cal Poly senior project recently submitted
[Rexrode2014]. He extended his initial work and created an open
library of code for modeling the geometry of nuclear collisions
with the Monte Carlo Glauber model. The project writeup and the
code can be found on GitHub under the [MCGlauber] organiza-
tion.

Pre- and Post- Assessment

In order to assess the course’s success at achieving the learning
objectives, both a pre-learner survey and course evaluations were
administered anonymously. The pre-learner survey, adapted from
a similar Software Carpentry example, was given on the first day
of class with 100% participation, while the course evaluation was
given in the last week. Some in class time was made available
for the evaluations but students were also able to complete it on
their own time. Course evaluations are conducted through the Cal
Poly "SAIL" (Student Assessment of Instruction and Learning)
online system. SAIL participation was 82%. Some questions were
common to both the pre and post assessment, for comparison.

Learning
Objective

Completely
or mostly

Neutral or
partially

Not met

LO1 33/36 3/36 0/36
LO2 31/36 5/36 0/36
LO3 33/36 2/36 0/36
LO4 31/36 5/36 0/36
LO5 32/36 4/36 0/36
LO6 31/35 4/35 0/35
LO7 25/35 10/35 0/35
LO8 27/35 7/35 1/35
LO9 30/35 5/35 0/35
LO10 26/35 9/35 0/35
LO11 30/35 5/35 0/35

TABLE 3: Student evaluation of how well the course met the learning
objectives.

Language Pre- Post-
Fortran 0/42 1/34
C 5/42 7/34
C++ 6/42 5/34
Perl 0/42 0/34
MATLAB 5/42 1/34
Python 3/42 31/34
R 1/42 1/34
Java 7/42 5/34
Others
(list)

7/42
Labview

1/34

None 20/42 2/34

TABLE 4: With which programming languages could you write a
program from scratch that reads a column of numbers from a text file
and calculates mean and standard deviation of that data? (Check all
that apply)

The first question on the post-assessment course evaluation
asked the students to rate how well the course met each of
the learning objectives. The statistics from this student-based
assessment are included in Table 3.

Students were also asked to rate the relevance of the learning
objectives for subsequent coursework at Cal Poly and for their
career goals beyond college. In both cases, a majority of students
rated the course as either "Extremely useful, essential to my
success" (21/34 and 20/34) or "Useful but not essential" (12/34
and 11/34) and all but one student out of 34 expected to use what
they learned beyond the course itself. Almost all students indicated
that they spent at least 5-6 hours per week outside of class doing
work for the course, with half (17/34) indicating they spent more
than 10 hours per week outside of class.

The four questions that were common to both the pre- and
post- evaluations and their corresponding responses are included
in Tables 4, 5, 6, and 7.

It is worth noting that the 7/42 students who indicated they
could complete the programming task with Labview at the begin-
ning of the course probably came directly from the introductory
electronics course for physics majors, which uses Labview heavily.

Of the free response comments in the post-evaluation, the most
common was that more lecturing by the instructor would have
enhanced their learning and/or helped them to better understand
some of the coding concepts. In future offerings, I might add

30 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Answer Pre- Post-
I could not complete
this task.

19/42 3/34

I could complete the
task with documenta-
tion or search engine
help.

22/42 13/34

I could complete the
task with little or
no documentation or
search engine help.

1/42 18/34

TABLE 5: In the following scenario, please select the answer that best
applies to you. A tab-delimited file has two columns showing the date
and the highest temperature on that day. Write a program to produce
a graph showing the average highest temperature for each month.

Answer Pre- Post-
I could not complete
this task.

42/42 2/34

I could complete the
task with documenta-
tion or search engine
help.

0/42 17/34

I could complete the
task with little or
no documentation or
search engine help.

0/42 15/34

TABLE 6: In the following scenario, please select the answer that
best applies to you. Given the URL for a project’s version control
repository, check out a working copy of that project, add a file called
notes.txt, and commit the change.

a brief mini-lecture to the beginning of each class meeting to
introduce and discuss concepts but I will keep the focus on
student-centered active learning.

Conclusion

This paper presented an example of a project-based course in
scientific computing for undergraduate physics majors using the
Python programming language and the IPython Notebook. The
complete course materials are available on GitHub through the
Computing4Physics [C4P] organization. They are released under
a modified MIT license that grants permission to anyone the
right to use, copy, modify, merge, publish, distribute, etc. any of
the content. The goal of this project is to make computational
tools for training physics majors in best practices freely available.
Contributions and collaboration are welcome.

The Python programming language and the IPython Notebook
are effective open-source tools for teaching basic software skills.
Project-based learning gives students a sense of ownership of
their work, the chance to communicate their ideas in oral live
software demonstrations and a starting point for engaging in
physics research.

REFERENCES

[C4P] All course materials can be obtained directly from the Com-
puting4Physics organization on GitHub at https://github.
com/Computing4Physics/C4P

[SWC] "Software Carpentry: Teaching lab skills for scientific com-
puting", http://software-carpentry.org/, accessed 2 July 2014.

Answer Pre- Post-
I could not create this
list.

35/42 3/34

I would create this list
using "Find in Files" and
"copy and paste"

2/42 0/34

I would create this list
using basic command
line programs.

4/42 2/34

I would create this list
using a pipeline of com-
mand line programs.

1/42 2/34

I would create this list
using some Python code
and the ! escape.

N/A 19/34

I would create this list
with code using the
Python ’os’ and ’sys’ li-
braries.

N/A 8/34

TABLE 7: How would you solve this problem? A directory contains
1000 text files. Create a list of all files that contain the word
"Drosophila" and save the result to a file called results.txt. Note: the
last two options on this question were included in the post-survey only.

[Codecademy] "Codecademy: Learn to code interactively, for free.", http:
//www.codecademy.com/, accessed 2 July 2014.

[PE] "ProjectEuler.net: A website dedicated to the puzzling world
of mathematics and programming", https://projecteuler.net/,
accessed 2 July 2014.

[SPIN-UP] "American Association of Physics Teacher: Strategic Pro-
grams for Innovations in Undergraduate Physics", http:
//www.aapt.org/Programs/projects/spinup/, accessed 2 July
2014.

[Downey2002] Allen B. Downey, Jeffrey Elkner, and Chris Meyers,
"Think Python: How to Think Like a Computer Scientist",
Green Tea Press, 2002, ISBN 0971677506, http://www.
greenteapress.com/thinkpython/thinkpython.html

[Traffic] D.Townsend, J. Fernandes, R. Mullen, and A. Parker, GitHub
repository for the cellular automaton model of traffic flow
created for the Spring 2012 PHYS 200/400 course at
Cal Poly, https://github.com/townsenddw/discrete-graphic-
traffic, accessed 2 July 2014.

[3DTracker] R.Cribbs, K. Boucher, R. Campbell, K. Flatland, and B.
Norris, GitHub repository for the 3-D pattern recognition
tracker created for the Spring 2012 PHYS 200/400 course at
Cal Poly, https://github.com/Rolzroyz/3Dtracker, accessed 2
July 2014.

[nbviewer] "nbviewer: A simple way to share IPython Notebooks", http:
//nbviewer.ipython.org, accessed 2 July 2014.

[Vanderplas599] Jake Vanderplas, "Astronomy 599: Introduction to Sci-
entific Computing in Python", https://github.com/jakevdp/
2013_fall_ASTR599/, accessed 2 July 2014.

[ipythonblocks] "ipythonblocks: code + color", http://ipythonblocks.org/, ac-
cessed 2 July 2014.

[Nifty] "Nifty Assignments: The Nifty Assignments session at
the annual SIGCSE meeting is all about gathering and
distributing great assignment ideas and their materials.",
http://nifty.stanford.edu/, accessed 2 July 2014.

[McCown2014] Frank McCown, "Schelling’s Model of Segregation",
http://nifty.stanford.edu/2014/mccown-schelling-model-
segregation/, accessed 2 July 2014.

[Wayne2013] Kevin Wayne, "Estimating Avogadro’s Number", http://nifty.
stanford.edu/2013/wayne-avogadro.html, accessed 2 July
2014.

[Vinkovic2006] D.Vinkovic and A.Kirman, Proc.Nat.Acad.Sci., vol. 103 no.
51, 19261-19265 (2006). http://www.pnas.org/content/103/
51/19261.full

[Gauvin2009] L.Gauvin, J.Vannimenus, J.-P.Nadal, Eur.Phys.J. B, Vol.
70:2 (2009). http://link.springer.com/article/10.1140%
2Fepjb%2Fe2009-00234-0

PROJECT-BASED INTRODUCTION TO SCIENTIFIC COMPUTING FOR PHYSICS MAJORS 31

[DallAsta2008] L.Dall’Asta, C.Castellano, M.Marsili, J.Stat.Mech.
L07002 (2008). http://iopscience.iop.org/1742-
5468/2008/07/L07002/

[Toomre1972] A.Toomre and J.Toomre, Astrophysical Journal, 178:623-
666 (1972). http://adsabs.harvard.edu/abs/1972ApJ...178.
.623T

[Joughin2003] G.Joughin and G.Collom, "Oral Assessment. The Higher
Education Academy", (2003) http://www.heacademy.ac.uk/
resources/detail/resource_database/id433_oral_assessment,
retrieved 2 July 2014.

[Parry2014] B.W. Parry, "Galaxy Mergers: The Direct Passage Case",
http://nbviewer.ipython.org/github/bwparry202/PHYS202-
S14/blob/master/GalaxyMergers/GalaxyMergersFinal.
ipynb, accessed 2 July 2014.

[Nelson2014] P.C. Nelson, "Schelling Model", http://nbviewer.ipython.org/
github/pcnelson202/PHYS202-S14/blob/master/IPython/
SchellingModel.ipynb, accessed 2 July 2014.

[Parker2014] J.Parker, "Schelling Model", http://nbviewer.ipython.
org/github/jparke08/PHYS202-S14/blob/master/
SchellingModel.ipynb, accessed 2 July 2014.

[Sonoma2013] "2013 Annual Meeting of the American Physical Soci-
ety, California-Nevada Section", http://epo.sonoma.edu/aps/
index.html, accessed 2 July 2014.

[VanAtta2013] John Van Atta, "3-D Trajectory Generation in Hexago-
nal Geometry", http://nbviewer.ipython.org/github/jvanatta/
PHYS202-S13/blob/master/project/3dtracks.ipynb, accessed
2 July 2014.

[Rexrode2014] Chad Rexrode, "Monte-Carlo Glauber Model Simulations
of Nuclear Collisions", http://nbviewer.ipython.org/
github/crexrode/PHYS202-S13/blob/master/SeniorProject/
MCGlauber.ipynb, accessed 2 July 2014.

[MCGlauber] "MCGlauber: An Open-source IPython-based Monte Carlo
Glauber Model of Nuclear Collisions", https://github.com/
MCGlauber, accessed 2 July 2014.

32 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Hyperopt-Sklearn: Automatic Hyperparameter
Configuration for Scikit-Learn

Brent Komer‡∗, James Bergstra‡, Chris Eliasmith‡

F

Abstract—Hyperopt-sklearn is a new software project that provides automatic
algorithm configuration of the Scikit-learn machine learning library. Following
Auto-Weka, we take the view that the choice of classifier and even the choice of
preprocessing module can be taken together to represent a single large hyper-
parameter optimization problem. We use Hyperopt to define a search space that
encompasses many standard components (e.g. SVM, RF, KNN, PCA, TFIDF)
and common patterns of composing them together. We demonstrate, using
search algorithms in Hyperopt and standard benchmarking data sets (MNIST,
20-Newsgroups, Convex Shapes), that searching this space is practical and
effective. In particular, we improve on best-known scores for the model space
for both MNIST and Convex Shapes.

Index Terms—bayesian optimization, model selection, hyperparameter opti-
mization, scikit-learn

Introduction

The size of data sets and the speed of computers have increased to
the point where it is often easier to fit complex functions to data
using statistical estimation techniques than it is to design them
by hand. The fitting of such functions (training machine learning
algorithms) remains a relatively arcane art, typically mastered
in the course of a graduate degree and years of experience. Re-
cently however, techniques for automatic algorithm configuration
based on Regression Trees [Hut11], Gaussian Processes [Moc78],
[Sno12], and density-estimation techniques [Ber11] have emerged
as viable alternatives to hand-tuning by domain specialists.

Hyperparameter optimization of machine learning systems was
first applied to neural networks, where the number of parameters
can be overwhelming. For example, [Ber11] tuned Deep Belief
Networks (DBNs) with up to 32 hyperparameters, and [Ber13a]
showed that similar methods could search a 238-dimensional
configuration space describing multi-layer convolutional networks
(convnets) for image classification.

Relative to DBNs and convnets, algorithms such as Support
Vector Machines (SVMs) and Random Forests (RFs) have a small-
enough number of hyperparameters that manual tuning and grid
or random search provides satisfactory results. Taking a step back
though, there is often no particular reason to use either an SVM
or an RF when they are both computationally viable. A model-
agnostic practitioner may simply prefer to go with the one that

* Corresponding author: bjkomer@uwaterloo.ca
‡ Centre for Theoretical Neuroscience, University of Waterloo

Copyright © 2014 Brent Komer et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

provides greater accuracy. In this light, the choice of classifier can
be seen as hyperparameter alongside the C-value in the SVM and
the max-tree-depth of the RF. Indeed the choice and configuration
of preprocessing components may likewise be seen as part of the
model selection / hyperparameter optimization problem.

The Auto-Weka project [Tho13] was the first to show that an
entire library of machine learning approaches (Weka [Hal09]) can
be searched within the scope of a single run of hyperparameter
tuning. However, Weka is a GPL-licensed Java library, and was
not written with scalability in mind, so we feel there is a need for
alternatives to Auto-Weka. Scikit-learn [Ped11] is another library
of machine learning algorithms. Is written in Python (with many
modules in C for greater speed), and is BSD-licensed. Scikit-learn
is widely used in the scientific Python community and supports
many machine learning application areas.

With this paper we introduce Hyperopt-Sklearn: a project
that brings the benefits of automatic algorithm configuration to
users of Python and scikit-learn. Hyperopt-Sklearn uses Hyperopt
[Ber13b] to describe a search space over possible configurations
of Scikit-Learn components, including preprocessing and classifi-
cation modules. Section 2 describes our configuration space of
6 classifiers and 5 preprocessing modules that encompasses a
strong set of classification systems for dense and sparse feature
classification (of images and text). Section 3 presents experimental
evidence that search over this space is viable, meaningful, and
effective. Section 4 presents a discussion of the results, and
directions for future work.

Background: Hyperopt for Optimization

The Hyperopt library [Ber13b] offers optimization algorithms for
search spaces that arise in algorithm configuration. These spaces
are characterized by a variety of types of variables (continuous,
ordinal, categorical), different sensitivity profiles (e.g. uniform vs.
log scaling), and conditional structure (when there is a choice be-
tween two classifiers, the parameters of one classifier are irrelevant
when the other classifier is chosen). To use Hyperopt, a user must
define/choose three things:

1) a search domain,
2) an objective function,
3) an optimization algorithm.

The search domain is specified via random variables, whose
distributions should be chosen so that the most promising com-
binations have high prior probability. The search domain can
include Python operators and functions that combine random

HYPEROPT-SKLEARN: AUTOMATIC HYPERPARAMETER CONFIGURATION FOR SCIKIT-LEARN 33

variables into more convenient data structures for the objective
function. The objective function maps a joint sampling of these
random variables to a scalar-valued score that the optimization
algorithm will try to minimize. Having chosen a search domain,
an objective function, and an optimization algorithm, Hyperopt’s
fmin function carries out the optimization, and stores results of
the search to a database (e.g. either a simple Python list or a
MongoDB instance). The fmin call carries out the simple analysis
of finding the best-performing configuration, and returns that to
the caller. The fmin call can use multiple workers when using the
MongoDB backend, to implement parallel model selection on a
compute cluster.

Scikit-Learn Model Selection as a Search Problem

Model selection is the process of estimating which machine
learning model performs best from among a possibly infinite set
of possibilities. As an optimization problem, the search domain
is the set of valid assignments to the configuration parameters
(hyperparameters) of the machine learning model, and the objec-
tive function is typically cross-validation, the negative degree of
success on held-out examples. Practitioners usually address this
optimization by hand, by grid search, or by random search. In
this paper we discuss solving it with the Hyperopt optimization
library. The basic approach is to set up a search space with
random variable hyperparameters, use scikit-learn to implement
the objective function that performs model training and model
validation, and use Hyperopt to optimize the hyperparamters.

Scikit-learn includes many algorithms for classification (clas-
sifiers), as well as many algorithms for preprocessing data into the
vectors expected by classification algorithms. Classifiers include
for example, K-Neighbors, SVM, and RF algorithms. Prepro-
cessing algorithms include things like component-wise Z-scaling
(Normalizer) and Principle Components Analysis (PCA). A full
classification algorithm typically includes a series of prepro-
cessing steps followed by a classifier. For this reason, scikit-
learn provides a pipeline data structure to represent and use a
sequence of preprocessing steps and a classifier as if they were just
one component (typically with an API similar to the classifier).
Although hyperopt-sklearn does not formally use scikit-learn’s
pipeline object, it provides related functionality. Hyperopt-sklearn
provides a parameterization of a search space over pipelines, that
is, of sequences of preprocessing steps and classifiers.

The configuration space we provide includes six preprocessing
algorithms and seven classification algorithms. The full search
space is illustrated in Figure 1. The preprocessing algorithms
were (by class name, followed by n. hyperparameters + n.
unused hyperparameters): PCA(2), StandardScaler(2),
MinMaxScaler(1), Normalizer(1), None, and
TF-IDF(0+9). The first four preprocessing algorithms were
for dense features. PCA performed whitening or non-whitening
principle components analysis. The StandardScaler,
MinMaxScaler, and Normalizer did various feature-
wise affine transforms to map numeric input features onto
values near 0 and with roughly unit variance. The TF-IDF
preprocessing module performed feature extraction from
text data. The classification algorithms were (by class name
(used + unused hyperparameters)): SVC(23), KNN(4+5),
RandomForest(8) , ExtraTrees(8) , SGD(8+4) ,
and MultinomialNB(2) . The SVC module is a fork of
LibSVM, and our wrapper has 23 hyperparameters because we

treated each possible kernel as a different classifier, with its own
set of hyperparameters: Linear(4), RBF(5), Polynomial(7), and
Sigmoid(6). In total, our parameterization has 65 hyperparameters:
6 for preprocessing and 53 for classification. The search space
includes 15 boolean variables, 14 categorical, 17 discrete, and 19
real-valued variables.

Although the total number of hyperparameters is large, the
number of active hyperparameters describing any one model is
much smaller: a model consisting of PCA and a RandomForest
for example, would have only 12 active hyperparameters (1 for
the choice of preprocessing, 2 internal to PCA, 1 for the choice of
classifier and 8 internal to the RF). Hyperopt description language
allows us to differentiate between conditional hyperparameters
(which must always be assigned) and non-conditional hyperpa-
rameters (which may remain unassigned when they would be
unused). We make use of this mechanism extensively so that
Hyperopt’s search algorithms do not waste time learning by trial
and error that e.g. RF hyperparameters have no effect on SVM
performance. Even internally within classifiers, there are instances
of conditional parameters: KNN has conditional parameters de-
pending on the distance metric, and LinearSVC has 3 binary
parameters (loss , penalty , and dual) that admit only 4
valid joint assignments. We also included a blacklist of (prepro-
cessing, classifier) pairs that did not work together, e.g. PCA and
MinMaxScaler were incompatible with MultinomialNB, TF-IDF
could only be used for text data, and the tree-based classifiers were
not compatible with the sparse features produced by the TF-IDF
preprocessor. Allowing for a 10-way discretization of real-valued
hyperparameters, and taking these conditional hyperparameters
into account, a grid search of our search space would still require
an infeasible number of evalutions (on the order of 1012).

Finally, the search space becomes an optimization problem
when we also define a scalar-valued search objective. Hyperopt-
sklearn uses scikit-learn’s score method on validation data to
define the search criterion. For classifiers, this is the so-called
"Zero-One Loss": the number of correct label predictions among
data that has been withheld from the data set used for training (and
also from the data used for testing after the model selection search
process).

Example Usage

Following Scikit-learn’s convention, hyperopt-sklearn provides an
Estimator class with a fit method and a predict method.
The fit method of this class performs hyperparameter optimiza-
tion, and after it has completed, the predict method applies
the best model to test data. Each evaluation during optimization
performs training on a large fraction of the training set, estimates
test set accuracy on a validation set, and returns that validation set
score to the optimizer. At the end of search, the best configuration
is retrained on the whole data set to produce the classifier that
handles subsequent predict calls.

One of the important goals of hyperopt-sklearn is that it is
easy to learn and to use. To facilitate this, the syntax for fitting a
classifier to data and making predictions is very similar to scikit-
learn. Here is the simplest example of using this software.

from hpsklearn import HyperoptEstimator
Load data ({train,test}_{data,label})
Create the estimator object
estim = HyperoptEstimator()
Search the space of classifiers and preprocessing
steps and their respective hyperparameters in

34 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Fig. 1: Hyeropt-sklearn’s full search space (“Any Classifier”) consists of a (preprocessing, classsifier) pair. There are 6 possible preprocessing
modules and 6 possible classifiers. Choosing a model within this configuration space means choosing paths in an ancestral sampling process.
The highlighted green edges and nodes represent a (PCA, K-Nearest Neighbor) model. The number of active hyperparameters in a model is
the sum of parenthetical numbers in the selected boxes. For the PCA+KNN combination, 7 hyperparameters are activated.

scikit-learn to fit a model to the data
estim.fit(train_data, train_label)
Make a prediction using the optimized model
prediction = estim.predict(unknown_data)
Report the accuracy of the classifier
on a given set of data
score = estim.score(test_data, test_label)
Return instances of the classifier and
preprocessing steps
model = estim.best_model()

The HyperoptEstimator object contains the information of
what space to search as well as how to search it. It can be con-
figured to use a variety of hyperparameter search algorithms and
also supports using a combination of algorithms. Any algorithm
that supports the same interface as the algorithms in hyperopt can
be used here. This is also where you, the user, can specify the
maximum number of function evaluations you would like to be
run as well as a timeout (in seconds) for each run.
from hpsklearn import HyperoptEstimator
from hyperopt import tpe
estim = HyperoptEstimator(algo=tpe.suggest,

max_evals=150,
trial_timeout=60)

Each search algorithm can bring its own bias to the search space,
and it may not be clear that one particular strategy is the best in
all cases. Sometimes it can be helpful to use a mixture of search
algorithms.
from hpsklearn import HyperoptEstimator
from hyperopt import anneal, rand, tpe, mix
define an algorithm that searches randomly 5% of
the time, uses TPE 75% of the time, and uses
annealing 20% of the time
mix_algo = partial(mix.suggest, p_suggest=[

(0.05, rand.suggest),
(0.75, tpe.suggest),
(0.20, anneal.suggest)])

estim = HyperoptEstimator(algo=mix_algo,
max_evals=150,
trial_timeout=60)

Searching effectively over the entire space of classifiers available
in scikit-learn can use a lot of time and computational resources.
Sometimes you might have a particular subspace of models that
they are more interested in. With hyperopt-sklearn it is possible to

specify a more narrow search space to allow it to be be explored
in greater depth.
from hpsklearn import HyperoptEstimator, svc
limit the search to only models a SVC
estim = HyperoptEstimator(classifier=svc('my_svc'))

Combinations of different spaces can also be used.
from hpsklearn import HyperoptEstimator, svc, knn, \
from hyperopt import hp
restrict the space to contain only random forest,
k-nearest neighbors, and SVC models.
clf = hp.choice('my_name',

[random_forest('my_name.random_forest'),
svc('my_name.svc'),
knn('my_name.knn')])

estim = HyperoptEstimator(classifier=clf)

The support vector machine provided by scikit-learn has a number
of different kernels that can be used (linear, rbf, poly, sigmoid).
Changing the kernel can have a large effect on the performance of
the model, and each kernel has its own unique hyperparameters.
To account for this, hyperopt-sklearn treats each kernel choice as
a unique model in the search space. If you already know which
kernel works best for your data, or you are just interested in
exploring models with a particular kernel, you may specify it
directly rather than going through the svc.
from hpsklearn import HyperoptEstimator, svc_rbf
estim = HyperoptEstimator(

classifier=svc_rbf('my_svc'))

It is also possible to specify which kernels you are interested in
by passing a list to the svc.
from hpsklearn import HyperoptEstimator, svc
estim = HyperoptEstimator(

classifier=svc('my_svc',
kernels=['linear',

'sigmoid']))

In a similar manner to classifiers, the space of preprocessing mod-
ules can be fine tuned. Multiple successive stages of preprocessing
can be specified by putting them in a list. An empty list means that
no preprocessing will be done on the data.
from hpsklearn import HyperoptEstimator, pca
estim = HyperoptEstimator(

preprocessing=[pca('my_pca')])

HYPEROPT-SKLEARN: AUTOMATIC HYPERPARAMETER CONFIGURATION FOR SCIKIT-LEARN 35

Combinations of different spaces can be used here as well.
from hpsklearn import HyperoptEstimator, tfidf, pca
from hyperopt import hp
preproc = hp.choice('my_name',

[[pca('my_name.pca')],
[pca('my_name.pca'), normalizer('my_name.norm')]
[standard_scaler('my_name.std_scaler')],
[]])

estim = HyperoptEstimator(preprocessing=preproc)

Some types of preprocessing will only work on specific types of
data. For example, the TfidfVectorizer that scikit-learn provides is
designed to work with text data and would not be appropriate for
other types of data. To address this, hyperopt-sklearn comes with
a few pre-defined spaces of classifiers and preprocessing tailored
to specific data types.
from hpsklearn import HyperoptEstimator, \

any_sparse_classifier, \
any_text_preprocessing

from hyperopt import tpe
estim = HyperoptEstimator(

algo=tpe.suggest,
classifier=any_sparse_classifier('my_clf')
preprocessing=any_text_preprocessing('my_pp')
max_evals=200,
trial_timeout=60)

So far in all of these examples, every hyperparameter available
to the model is being searched over. It is also possible for
you to specify the values of specific hyperparameters, and those
parameters will remain constant during the search. This could be
useful, for example, if you knew you wanted to use whitened PCA
data and a degree-3 polynomial kernel SVM.
from hpsklearn import HyperoptEstimator, pca, svc_poly
estim = HyperoptEstimator(

preprocessing=[pca('my_pca', whiten=True)],
classifier=svc_poly('my_poly', degree=3))

It is also possible to specify ranges of individual parameters. This
is done using the standard hyperopt syntax. These will override
the defaults defined within hyperopt-sklearn.
from hpsklearn import HyperoptEstimator, pca, sgd
from hyperopt import hp
import numpy as np
sgd_loss = hp.pchoice('loss',

[(0.50, 'hinge'),
(0.25, 'log'),
(0.25, 'huber')])

sgd_penalty = hp.choice('penalty',
['l2', 'elasticnet'])

sgd_alpha = hp.loguniform('alpha',
low=np.log(1e-5),
high=np.log(1))

estim = HyperoptEstimator(
classifier=sgd('my_sgd',

loss=sgd_loss,
penalty=sgd_penalty,
alpha=sgd_alpha))

All of the components available to the user can be found in the
components.py file. A complete working example of using
hyperopt-sklearn to find a model for the 20 newsgroups data set is
shown below.
from hpsklearn import HyperoptEstimator, tfidf, \

any_sparse_classifier
from sklearn.datasets import fetch_20newsgroups
from hyperopt import tpe
import numpy as np
Download data and split training and test sets
train = fetch_20newsgroups(subset='train')
test = fetch_20newsgroups(subset='test')
X_train = train.data

Fig. 2: For each data set, searching the full configuration space
(“Any Classifier”) delivered performance approximately on par with
a search that was restricted to the best classifier type. (Best viewed in
color.)

y_train = train.target
X_test = test.data
y_test = test.target
estim = HyperoptEstimator(

classifier=any_sparse_classifier('clf'),
preprocessing=[tfidf('tfidf')],
algo=tpe.suggest,
trial_timeout=180)

estim.fit(X_train, y_train)
print(estim.score(X_test, y_test))
print(estim.best_model())

Experiments

We conducted experiments on three data sets to establish that
hyperopt-sklearn can find accurate models on a range of data sets
in a reasonable amount of time. Results were collected on three
data sets: MNIST, 20-Newsgroups, and Convex Shapes. MNIST
is a well-known data set of 70K 28x28 greyscale images of hand-
drawn digits [Lec98]. 20-Newsgroups is a 20-way classification
data set of 20K newsgroup messages ([Mit96] , we did not
remove the headers for our experiments). Convex Shapes is a
binary classification task of distinguishing pictures of convex
white-colored regions in small (32x32) black-and-white images
[Lar07].

Figure 2 shows that there was no penalty for searching broadly.
We performed optimization runs of up to 300 function evaluations
searching the entire space, and compared the quality of solution
with specialized searches of specific classifier types (including
best known classifiers).

Figure 3 shows that search could find different, good models.
This figure was constructed by running hyperopt-sklearn with
different initial conditions (number of evaluations, choice of opti-
mization algorithm, and random number seed) and keeping track
of what final model was chosen after each run. Although support
vector machines were always among the best, the parameters of
best SVMs looked very different across data sets. For example, on
the image data sets (MNIST and Convex) the SVMs chosen never
had a sigmoid or linear kernel, while on 20 newsgroups the linear
and sigmoid kernel were often best.

Discussion and Future Work

Table 1 lists the test set scores of the best models found by cross-
validation, as well as some points of reference from previous work.

36 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

MNIST 20 Newsgroups Convex Shapes
Approach Accuracy Approach F-Score Approach Accuracy
Committee of
convnets

99.8% CFC 0.928 hyperopt-
sklearn

88.7%

hyperopt-
sklearn

98.7% hyperopt-
sklearn

0.856 hp-dbnet 84.6%

libSVM grid
search

98.6% SVMTorch 0.848 dbn-3 81.4%

Boosted trees 98.5% LibSVM 0.843

TABLE 1: Hyperopt-sklearn scores relative to selections from literature on the three data sets used in our experiments. On MNIST, hyperopt-
sklearn is one of the best-scoring methods that does not use image-specific domain knowledge (these scores and others may be found at
http://yann.lecun.com/exdb/mnist/). On 20 Newsgroups, hyperopt-sklearn is competitive with similar approaches from the literature (scores
taken from [Gua09]). In the 20 Newsgroups data set, the score reported for hyperopt-sklearn is the weighted-average F1 score provided
by sklearn. The other approaches shown here use the macro-average F1 score. On Convex Shapes, hyperopt-sklearn outperforms previous
automatic algorithm configuration approaches [Egg13] and manual tuning [Lar07] .

Fig. 3: Looking at the best models from all optimization runs
performed on the full search space (using different initial conditions,
and different optimization algorithms) we see that different data sets
are handled best by different classifiers. SVC was the only classifier
ever chosen as the best model for Convex Shapes, and was often
found to be best on MNIST and 20 Newsgroups, however the best
SVC parameters were very different across data sets.

Fig. 4: Using Hyperopt’s Anneal search algorithm, increasing the
number of function evaluations from 150 to 2400 lead to a modest
improvement in accuracy on 20 Newsgroups and MNIST, and a more
dramatic improvement on Convex Shapes. We capped evaluations to
5 minutes each so 300 evaluations took between 12 and 24 hours of
wall time.

Hyperopt-sklearn’s scores are relatively good on each data set, in-
dicating that with hyperopt-sklearn’s parameterization, Hyperopt’s
optimization algorithms are competitive with human experts.

The model with the best performance on the MNIST Digits
data set uses deep artificial neural networks. Small receptive
fields of convolutional winner-take-all neurons build up the large
network. Each neural column becomes an expert on inputs pre-
processed in different ways, and the average prediction of 35 deep
neural columns to come up with a single final prediction [Cir12].
This model is much more advanced than those available in scikit-

Fig. 5: Right: TPE makes gradual progress on 20 Newsgroups over
300 iterations and gives no indication of convergence.

learn. The previously best known model in the scikit-learn search
space is a radial-basis SVM on centered data that scores 98.6%,
and hyperopt-sklearn matches that performance [MNIST].

The CFC model that performed quite well on the 20 news-
groups document classification data set is a Class-Feature-
Centroid classifier. Centroid approaches are typically inferior to
an SVM, due to the centroids found during training being far
from the optimal location. The CFC method reported here uses a
centroid built from the inter-class term index and the inner-class
term index. It uses a novel combination of these indices along
with a denormalized cosine measure to calculate the similarity
score between the centroid and a text vector [Gua09]. This style of
model is not currently implemented in hyperopt-sklearn, and our
experiments suggest that existing hyperopt-sklearn components
cannot be assembled to match its level of performance. Perhaps
when it is implemented, Hyperopt may find a set of parameters
that provides even greater classification accuracy.

On the Convex Shapes data set, our Hyperopt-sklearn ex-
periments revealed a more accurate model than was previously
believed to exist in any search space, let alone a search space of
such standard components. This result underscores the difficulty
and importance of hyperparameter search.

HYPEROPT-SKLEARN: AUTOMATIC HYPERPARAMETER CONFIGURATION FOR SCIKIT-LEARN 37

Hyperopt-sklearn provides many opportunities for future
work: more classifiers and preprocessing modules could be in-
cluded in the search space, and there are more ways to combine
even the existing components. Other types of data require dif-
ferent preprocessing, and other prediction problems exist beyond
classification. In expanding the search space, care must be taken
to ensure that the benefits of new models outweigh the greater
difficulty of searching a larger space. There are some parameters
that scikit-learn exposes that are more implementation details than
actual hyperparameters that affect the fit (such as algorithm
and leaf_size in the KNN model). Care should be taken to
identify these parameters in each model and they may need to be
treated differently during exploration.

It is possible for a user to add their own classifier to the search
space as long as it fits the scikit-learn interface. This currently
requires some understanding of how hyperopt-sklearn’s code is
structured and it would be nice to improve the support for this so
minimal effort is required by the user. We also plan to allow the
user to specify alternate scoring methods besides just accuracy and
F-measure, as there can be cases where these are not best suited
to the particular problem.

We have shown here that Hyperopt’s random search, anneal-
ing search, and TPE algorithms make Hyperopt-sklearn viable,
but the slow convergence in e.g. Figure 4 and 5 suggests that
other optimization algorithms might be more call-efficient. The
development of Bayesian optimization algorithms is an active
research area, and we look forward to looking at how other
search algorithms interact with hyperopt-sklearn’s search spaces.
Hyperparameter optimization opens up a new art of matching
the parameterization of search spaces to the strengths of search
algorithms.

Computational wall time spent on search is of great practical
importance, and hyperopt-sklearn currently spends a significant
amount of time evaluating points that are un-promising. Tech-
niques for recognizing bad performers early could speed up search
enormously [Swe14], [Dom14]. Relatedly, hyperopt-sklearn cur-
rently lacks support for K-fold cross-validation. In that setting, it
will be crucial to follow SMAC in the use of racing algorithms to
skip un-necessary folds.

Conclusions

We have introduced Hyperopt-sklearn, a Python package for
automatic algorithm configuration of standard machine learning
algorithms provided by Scikit-Learn. Hyperopt-sklearn provides a
unified view of 6 possible preprocessing modules and 6 possible
classifiers, yet with the help of Hyperopt’s optimization functions
it is able to both rival and surpass human experts in algorithm con-
figuration. We hope that it provides practitioners with a useful tool
for the development of machine learning systems, and automatic
machine learning researchers with benchmarks for future work in
algorithm configuration.

Acknowledgements

This research was supported by the NSERC Banting Fellowship
program, the NSERC Engage Program and by D-Wave Systems.
Thanks also to Hristijan Bogoevski for early drafts of a hyperopt-
to-scikit-learn bridge.

REFERENCES

[Ber11] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl. Algorithms for
hyper-parameter optimization, NIPS, 24:2546–2554, 2011.

[Ber13a] J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures, In Proc. ICML, 2013a.

[Ber13b] J. Bergstra, D. Yamins, and D. D. Cox. Hyperopt: A Python library
for optimizing the hyperparameters of machine learning algorithms,
SciPy’13, 2013b.

[Cir12] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column Deep
Neural Networks for Image Classification, IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 3642-3649.
2012.

[Dom14] T. Domhan, T. Springenberg, F. Hutter. Extrapolating Learning
Curves of Deep Neural Networks, ICML AutoML Workshop, 2014.

[Egg13] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H.
Hoos, and K. Leyton-Brown. Towards an empirical foundation for
assessing bayesian optimization of hyperparameters, NIPS work-
shop on Bayesian Optimization in Theory and Practice, 2013.

[Gua09] H. Guan, J. Zhou, and M. Guo. A class-feature-centroid classifier for
text categorization, Proceedings of the 18th international conference
on World wide web, 201-210. ACM, 2009.

[Hal09] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: an update, ACM SIGKDD
explorations newsletter, 11(1):10-18, 2009.

[Hut11] F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based
optimization for general algorithm configuration, LION-5, 2011.
Extended version as UBC Tech report TR-2010-10.

[Lar07] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An
empirical evaluation of deep architectures on problems with many
factors of variation, ICML, 473-480, 2007.

[Lec98] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition, Proceedings of the IEEE,
86(11):2278-2324, November 1998.

[Mit96] T. Mitchell. 20 newsgroups data set, http://qwone.com/jason/
20Newsgroups/, 1996.

[Moc78] J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian
methods for seeking the extremum, L.C.W. Dixon and G.P. Szego,
editors, Towards Global Optimization, volume 2, pages 117–129.
North Holland, New York, 1978.

[MNIST] The MNIST Database of handwritten digits: http://yann.lecun.com/
exdb/mnist/

[Ped11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine Learning in Python, Journal of
Machine Learning Research, 12:2825–2830, 2011.

[Sno12] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian
optimization of machine learning algorithms, Neural Information
Processing Systems, 2012.

[Swe14] K. Swersky, J. Snoek, R.P. Adams. Freeze-Thaw Bayesian Optimiza-
tion, arXiv:1406.3896, 2014.

[Tho13] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-
WEKA: Automated selection and hyper-parameter optimization of
classification algorithms, KDD 847-855, 2013.

38 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Python Coding of Geospatial Processing in
Web-based Mapping Applications

James A. Kuiper‡∗, Andrew J. Ayers‡, Michael E. Holm‡, Michael J. Nowak‡

F

Abstract—Python has powerful capabilities for coding elements of Web-based
mapping applications. This paper highlights examples of analytical geospatial
processing services that we have implemented for several Open Source-based
development projects, including the Eastern Interconnection States’ Planning
Council (EISPC) Energy Zones Mapping Tool (http://eispctools.anl.gov), the
Solar Energy Environmental Mapper (http://solarmapper.anl.gov), and the Eco-
logical Risk Calculator (http://bogi.evs.anl.gov/erc/portal). We used common
Open Source tools such as GeoServer, PostGIS, GeoExt, and OpenLayers for
the basic Web-based portal, then added custom analytical tools to support more
advanced functionality. The analytical processes were implemented as Web
Processing Services (WPSs) running on PyWPS, a Python implementation of
the Open Geospatial Consortium (OGC) WPS. For report tools, areas drawn by
the user in the map interface are submitted to a service that utilizes the spatial
extensions of PostGIS to generate buffers for use in querying and analyzing
the underlying data. Python code then post-processes the results and outputs
JavaScript Object Notation (JSON)-formatted data for rendering. We made
use of PyWPS’s integration with the Geographic Resources Analysis Support
System (GRASS) to implement flexible, user-adjustable suitability models for
several renewable energy generation technologies. In this paper, we provide
details about the processing methods we used within these project examples.

Index Terms—GIS, web-based mapping, PyWPS, PostGIS, GRASS, spatial
modeling

BACKGROUND AND INTRODUCTION

Web-based mapping applications are effective in providing simple
and accessible interfaces for geospatial information, and often in-
clude large spatial databases and advanced analytical capabilities.
Perhaps the most familiar is Google Maps [Ggl] which provides
access to terabytes of maps, aerial imagery, street address data,
and point-to-point routing capabilities. Descriptions are included
herein of several Web-based applications that focus on energy and
environmental data and how their back-end geoprocessing services
were built with Python.

The Eastern Interconnection States’ Planning Council (EISPC)
Energy Zones Mapping Tool (EZMT) [Ezmt] was developed
primarily to facilitate identification of potential energy zones or
areas of high resource concentration for nine different low- or no-
carbon energy resources, spanning more than 30 grid-scale energy
generation technologies. The geographic scope is the Eastern
Interconnection (EI), the electrical grid that serves the eastern

* Corresponding author: jkuiper@anl.gov
‡ Argonne National Laboratory

Copyright © 2014 James A. Kuiper et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

United States and parts of Canada. The EZMT includes more
than 250 map layers, a flexible suitability modeling capability with
more than 35 pre-configured models and 65 input modeling layers,
and 19 reports that can be run for user-specified areas within the
EI. More background about the project is available from [Arg13].

Solar Energy Environmental Mapper (Solar Mapper) [Sol]
provides interactive mapping data on utility-scale solar energy
resources and related siting factors in the six southwestern states
studied in the Solar Energy Development Programmatic Envi-
ronmental Impact Statement [DOI12]. The application was first
launched in December 2010, and a version that has been reengi-
neered with open-source components is scheduled for launch in
June 2014. Solar Mapper supports identification and screening-
level analyses of potential conflicts between development and
environmental resources, and is designed primarily for use by
regulating agencies, project planners, and public stakeholders.
More details about Solar Mapper can be found in [Sol13].

The Ecological Risk Calculator (ERC) [Erc] estimates risk in
individual watersheds in the western United States to federally
listed threatened and endangered species, and their designated crit-
ical habitats from energy-related surface and groundwater with-
drawals. The approach takes into account several biogeographical
characteristics of watersheds including occupancy, distribution,
and imperilment of species, and their sensitivity to impacts from
water withdrawals, as well as geophysical characteristics of wa-
tersheds known to include designated critical habitats for species
of concern. The ERC is intended to help project planners identify
potential levels of conflicts related to listed species (and thus the
associated regulatory requirements), and is intended to be used as
a preliminary screening tool.

Each of these Web-based mapping applications includes both
vector (geographic data stored using coordinates) and raster (ge-
ographic data stored as a matrix of equally sized cells) spatial
data stored in a relational database. For each application, Python
was used to add one or more custom geoprocessing, modeling, or
reporting services. The following section provides background on
the software environment used, followed by specific examples of
code with a discussion about the unique details in each.

One of the distinctive elements of geographic data manage-
ment and processing is the need for coordinate reference systems
and coordinate transformations (projections), which are needed
to represent areas on the earth’s oblate spheroid shape as pla-
nar maps and to manage data in Cartesian coordinate systems.
These references appear in the code examples as "3857," the
European Petroleum Survey Group (EPSG) Spatial Reference ID
(SRID) reference for WGS84 Web Mercator (Auxiliary Sphere)

PYTHON CODING OF GEOSPATIAL PROCESSING IN WEB-BASED MAPPING APPLICATIONS 39

and "102003," the USA Contiguous Albers Equal Area Conic
projection commonly used for multi-state and national maps
of the United States. These standardized EPSG definitions are
now maintained by the International Association of Oil & Gas
Producers (OGP) Surveying & Positioning Committee [OGP].

The Web Mercator projection has poor properties for many
elements of mapping and navigation [NGA] but is used for
most current Web-based mapping applications because of the
wide availability of high-quality base maps in the Web Mercator
projection from providers such as Google Maps. In the Solar Map-
per project, we compared area computations in the southwestern
United States using Web Mercator against the Albers Equal Area
projection and found very large discrepancies in the results (Table
1).

The distortion inherent in world-scale Mercator projections
is easily seen by the horizontal expansion of features, which in-
creases dramatically in the higher northern and southern latitudes.
In each of our projects, we chose to store local geographic data in
Web Mercator to match the base maps and increase performance.
However, for geographic processing such as generating buffers and
computing lengths and areas, we first convert coordinates to the
Albers Equal Area projection to take advantage of the improved
properties of that projection.

SOFTWARE ENVIRONMENT

Each of these systems was built with a multi-tier architecture
composed of a Javascript/HTML (hypertext markup language)
interface built on Bootstrap [Btsrp], OpenLayers [OpLyr], and
ExtJS [Sen]; a Web application tier built on Ruby on Rails [RoR];
a mapping tier implemented with GeoServer [Gsrvr]; a persistence
tier implemented with PostGIS [PGIS]; and an analysis tier built
on Python, PyWPS [PyWPS], GRASS [GRASS], and the spatial
analysis functionality of PostGIS. These systems are deployed on
Ubuntu [Ub] virtual machines running in a private VMware [VM]
cloud. The Python-orchestrated analysis tier is the focus of this
paper.

Many of the examples show geospatial operations using
PostGIS. PostGIS extends the functionality of PostgreSQL for
raster and vector spatial data with a robust library of functions.
We found it to be well documented, reliable, and the "footprint
analysis" tools we describe in the examples run significantly faster
than similar tools we had previously developed with a popular
commerical GIS framework.

EXAMPLES

One of the primary capabilities of each of our Web applications
was using an area selected or drawn by the user for analysis (a
"footprint"); collecting vector and raster data inside, intersecting,
or near the footprint; and compiling it in a report. The first example
shows the steps followed through the whole process, including the
user interface, and later examples concentrate on refinements of
the Python-coded steps.

Full Process for Footprint Analysis of Power Plant Locations
Stored as Point Features

This example is from the EZMT and illustrates part of its Power
Plant report. The user draws an area of interest over the map
(Figure 1) and specifies other report parameters (Figure 2). The
"Launch Report" button submits a request to the Web application

Fig. 1: EZMT Interface View of User-Specified Analysis Area and
Power Plant Points

Fig. 2: EZMT Interface View of the Report Run Launcher

server to schedule, launch, track, and manage the report’s execu-
tion.

The Web application initiates the report run by making a
WPS request to the service, which is implemented in PyWPS.
The request is an XML (extensible markup language) document
describing the WPS "Execute" operation and is submitted via a
hypertext transfer protocol (HTTP) POST. PyWPS receives this
POST request, performs some basic validation and preprocessing,
and routes the request to the custom WPSProcess implemen-
tation for that request. PyWPS then prepares the HTTP response
and returns it to the application server. The code below illustrates
the major steps used to generate the data for the report.

We use the psycopg2 library to interact with the database,
including leveraging the geographic information system (GIS)
capabilities of PostGIS.
Import PostgresSQL library for database queries
import psycopg2

The user-specified footprint corresponding to Figure 1 is hard-
coded in this example with Web Mercator coordinates specified in
meters and using the Well-Known Text (WKT) format.
Footprint specified in WKT with web Mercator
coordinates
fp_webmerc = "POLYGON((-9152998.67 4312042.45,
-8866818.44 4319380.41,-8866818.44 4099241.77,

40 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Projection Area (square miles)
Large Horizontal Area Large Vertical Area Smaller Square Area

Albers Equal Area 7,498.7 10,847.3 35.8
Web Mercator 13,410.0 18,271.4 63.0
Difference 5,911.3 7,424.1 27.2
Percent Difference 44% 41% 43%

TABLE 1: Comparison of Area Computations between the Web Mercator Projection and the Albers Equal Area Projection in the Southwestern
United States

-9143214.73 4101687.75,-9152998.67 4312042.45))"
Input GIS data
layer="power_plant_platts_existing"

A database connection is then established, and a cursor is created.
Make database connection and cursor
conn = psycopg2.connect(host=pg_host,
database=pg_database, user=pg_user,
password=pg_password)

cur = self.conn().cursor()

Structured Query Language (SQL) is used to (1) convert the
Web Mercator footprint to the Albers Equal Area projection, (2)
generate a buffer around the Albers version of the footprint, and
(3) convert that buffer back to Web Mercator. In these sections,
ST_GeomFromText converts WKT to binary geometry, and
ST_AsText converts binary geometry back to WKT. Because
WKT does not store projection information, it is given as a
parameter in ST_GeomFromText.
Convert web Mercator footprint to Albers projection
(equal area)
sql = "SELECT ST_AsText(ST_Transform("+
"ST_GeomFromText('"+fp_webmerc+
"', 3857), 102003))"

cur.execute(sql)
fp_albers = cur.fetchone()[0]

Generate Albers projection buffer around footprint
sql = "SELECT ST_AsText(ST_Buffer("+
"ST_GeomFromText('"+fp_albers+
"', 102003), "+str(buffer_dist_m)+"))"

cur.execute(sql)
buffer_albers = cur.fetchone()[0]

Convert buffer to web Mercator projection
(rpt for second buffer)
sql = "SELECT ST_AsText(ST_Transform("+
"ST_GeomFromText('"+
buffer1_albers+"', 102003), 3857))"

cur.execute(sql)
buffer1_webmerc = cur.fetchone()[0]

The previous steps are handled similarly for every report in an
initialization method. The final SQL statement in this example
retrieves data for the report content itself. The ST_Intersects
method queries the geometries in the power plant layer and returns
the records intersecting (overlapping) the footprint. These records
are summarized [count(*), sum(opcap), and GROUP BY
energy_resource] to provide content for the initial graph and
table in the report. This SQL statement is repeated for the two
buffer distances around the footprint.
Return records falling within footprint and the
two buffer distances # (Repeat for two footprints)
sql = "SELECT energy_resource,count(*),sum(opcap) "+
"FROM "+layer+" WHERE ST_Intersects("+
layer+".geom, ST_GeomFromText('"+fp_webmerc+
"', 3857)) GROUP BY energy_resource "+
"ORDER BY energy_resource"

cur.execute(sql)

l = []
for row in cur:
Collect results in list...

Once the data have been retrieved, the code compiles it into a
Python dictionary which is rendered and returned as a JSON
document (excerpt below). This document is retained by the
application for eventual rendering into its final form, HTML with
the graphs built with ExtJS. Figure 3 shows a portion of the report.

Combine data and return results as JSON.
import json

"existing_summary": {
"header": [
"EISPC Energy Resource Type",
...

],
"data": {
"Natural Gas": [11,8716.6,14,11408.5,20,14705.5],
"Other/Unk": [36,186.135,39,365.335,48,838.185],
"Nuclear": [2,4851.8,4,6843.3,6,10461.9],
"Biomass": [7,77.3,11,97.3,17,397.08],
"Coal": [5,4333.1,10,6971.8,24,12253.2],
"Solar": [7,26.95,7,26.95,9,30.15],
"Hydro": [36,1127.875,54,1829.675,82,5308.875]

},
"metadata": {
"shortname": "power_plant_platts_existing",
"feature_type": "point"

}
}

Footprint Analysis of Transmission Lines Stored as Line Fea-
tures

Another EISPC report uses a user-specified footprint to analyze
electrical transmission line information; however, rather than only
listing features inside the footprint as in the previous example, (1)
in contrast to points, line features can cross the footprint boundary;
and (2) we want to report the total length of the portion within
the footprint rather than only listing the matching records. Note
that ST_Intersects is used to collect the lines overlapping
the footprint, whereas ST_Intersection is used to calculate
lengths of only the portion of the lines within the footprint. In
addition, the coordinates are transformed into the Albers Equal
Area projection for the length computation.

sql = "SELECT category, COUNT(*),sum(ST_Length("+
"ST_Transform(ST_Intersection("+layer+
".geom,ST_GeomFromText('"+fp_webmerc+
"', 3857)), 102003))) AS sum_length_fp "+
"FROM "+layer+" WHERE ST_Intersects("+layer+
".geom,ST_GeomFromText('"+fp_webmerc+
"', 3857)) GROUP BY category ORDER BY category"
cur.execute(sql)
list = []
for row in cur:
Collect results in list of lists...

PYTHON CODING OF GEOSPATIAL PROCESSING IN WEB-BASED MAPPING APPLICATIONS 41

Fig. 3: Portion of EZMT Power Plant Report

Results in JSON format:
{"existing_trans_sum": {

"header": [
"Voltage Category",
"Total Length (mi) within Analysis Area",
"Total Length (mi) within 1.0 Miles...",
"Total Length (mi) within 5.0 Miles..."],

"data": {
"115kV - 161kV": [209.24, 259.38, 477.57],
"100kV or Lower": [124.94, 173.15, 424.08],
"345kV - 450kV": [206.67, 239.55, 393.97]

},
"metadata": {
"shortname": "transmission_line_platts",
"feature_type": "multilinestring"

}
}

Footprint Analysis of Land Jurisdictions Stored as Polygon
Features

In the Solar Mapper report for Protected Lands, the first section
describes the land jurisdictions within a footprint, and a 5-
mile area around it, with areas. The sma_code field contains
jurisdiction types. The query below uses ST_Intersects to
isolate the features overlapping the outer buffer and computes the
areas within the buffer and footprint for each jurisdiction that
it finds for a particular report run. For the area computations,
ST_Intersection is used to remove extents outside of the
footprint or buffer, and ST_Transform is used to convert the
coordinates to an Albers Equal Area projection before the area
computation is performed.
table_name = "sma_anl_090914"
sql = "SELECT sma_code,sum(ST_Area(ST_Transform("+
"ST_Intersection("+table_name+".geom, "+
"ST_GeomFromText("+fp_wkt+", 3857)), 102003)))"+
"as footprint_area"

sql += ", sum(ST_Area(ST_Transform(ST_Intersection("+
table_name+".geom, ST_GeomFromText("+buffer_wkt+
", 3857)), 102003))) as affected_area"

sql += " FROM "+table_name
sql += " JOIN wps_runs ON ST_Intersects("+table_name+
".geom, ST_GeomFromText("+buffer_wkt+", 3857))"

sql += " AND wps_runs.pywps_process_id = "
sql += str(procId)+" GROUP BY sma_code"
cur.execute(sql)
list = []
for row in cur:
Collect results in list of lists...

Footprint Analysis of Watershed Areas Stored as Polygon Fea-
tures, with Joined Tables

The Environmental Risk Calculator [?] involves analysis of animal
and plant species that have been formally designated by the United
States as threatened or endangered. The ERC estimates the risk of
water-related impacts related to power generation. Reports and
maps focus on watershed areas and use U.S. Geological Survey
watershed boundary GIS data (stored in the huc_8 table in the
database). Each watershed has a Hydrologic Unit Code (HUC) as a
unique identifier. The huc8_species_natser table identifies
species occurring in each HUC, and the sensitivity table
has further information about each species. The ERC report uses
a footprint analysis similar to those employed in the previous
examples. The query below joins the wps_runs, huc8_poly,
huc8_species_natser, and sensitivity tables to list
sensitivity information for each species for a particular report
run for each species occurring in the HUCs overlapped by the
footprint. Some example results are listed in Table 2.

sql = "SELECT sens.species,sens.taxa,sens.status"
sql += " FROM sensitivity sens"
sql += " INNER JOIN huc8_species_natser spec"
sql += " ON sens.species = spec.global_cname"
sql += " INNER JOIN huc8_poly poly"
sql += " ON spec.huc8 = poly.huc_8"
sql += " INNER JOIN wps_runs runs"
sql += " ON ST_Intersects(poly.geom,"
sql += " ST_GeomFromText("+fp_wkt"', 3857))"
sql += " AND runs.pywps_process_id = "
sql += str(procId)
sql += " group by sens.species,sens.taxa,"
sql += "sens.status"
cur.execute(sql)
list = []

42 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Species Taxa Status
California Red-legged Frog Amphibian T
California Tiger Salamander - Sonoma
County

Amphibian E

Colusa Grass Plant T
Conservancy Fairy Shrimp Invertebrate E
Fleshy Owls clover Plant T

TABLE 2: Example Ecorisk Calculator Results Listing Threatened
and Endangered Species Occurring in a Watershed

for row in cur:
Collect results in list of lists...

Footprint Analysis of Imperiled Species Sensitivity Stored as
Raster (Cell-based) Data

Many of the layers used in the mapping tools are stored as raster
(cell-based) data rather than vector (coordinate-based) data. The
ST_Clip method can retrieve raster or vector data and returns
the data within the footprint. The WHERE clause is important for
performance because images in the database are usually stored as
many records, each with a tile. ST_Intersects restricts the
much more processing-intensive ST_Clip method to the tiles
overlapping the footprint. When the footprint overlaps multiple
image tiles, multiple records are returned to the cursor, and results
are combined in the loop.
list = []
sql = "SELECT (pvc).value as val,sum((pvc).count) "+
"FROM (SELECT ST_ValueCount(ST_Clip(rast,1, "+
"ST_GeomFromText('"+fp_wkt"', 3857))) as pvc "+
"FROM "+layer+" as x "+
"WHERE ST_Intersects(rast, ST_GeomFromText('"+
fp_wkt"',3857))) as y "+"GROUP BY val ORDER BY val"

cur.execute(sql)
for row in cur:
list.append([row[0],row[1]])

Results in JSON format:
{
"Imperiled Species": {
"header": [
"Value",
"Count"

],
"data": [
[0.0, 21621], [10.0, 1181], [100.0, 484],
[1000.0, 1610], [10000.0, 42]

],
"metadata": {
"shortname": "imperiled_species_area",
"feature_type": "raster"

}
}

Elevation Profile along User-Specified Corridor Centerline Us-
ing Elevation Data Stored as Raster Data

The Corridor Report in the EZMT includes elevation profiles along
the user-input corridor centerline. In this example, an elevation
layer is sampled along a regular interval along the centerline.
First, the coordinate of the sample point is generated with
ST_Line_Interpolate_Point, next, the elevation data are
retrieved from the layer with ST_Value.
d = {}
d['data'] = []

minval = 999999.0
maxval = -999999.0
interval = 0.1
samplepct = 0.0
i = 0.0
while i <= 1.0:
sql = "SELECT ST_AsText(ST_Line_Interpolate_Point("
sql += "line, "+str(i)+")) "
sql += "FROM (SELECT ST_GeomFromText('"+line
sql += "') as line) As point"
cur.execute(sql)
samplepoint = cur.fetchone()[0]

sql = "SELECT ST_Value(rast,ST_GeomFromText('"
sql += samplepoint+"',3857)) FROM "+table_name
sql += " WHERE ST_Intersects(rast,ST_GeomFromText('"
sql+= samplepoint+"',3857))"
cur.execute(sql)
value = cur.fetchone()[0]
if minval > value:
minval = value

if maxval < value:
maxval = value

d['data'].append(value)
i+= interval

d['min'] = minval
d['max'] = maxval

Results:
"Elevation Profiles": {
"header": [
"From Milepost (mi)",
"To Milepost (mi)",
"Data"

],
"data": [
[0.0, 10.0, {

"header": ["Values"],
"data": {
"data": [
137.0, 135.0, 134.0,
...
194.0, 190.0, 188.0

],
"max": 198.0,
"min": 131.0

},
"metadata": {
"shortname": "dem_us_250m",
"feature_type": "raster"

}
}

]
]

}

Footprint Analysis of Raster Population Density Data

In this example, the input data consist of population density
values in raster format, and we want to estimate the total
population within the footprint. As in the previous example,
ST_Intersects is used in the WHERE clause to limit the tiles
processed by the rest of the query, and multiple records will
be output if the footprint overlaps multiple tiles. First, image
cells overlapped by the footprint are collected and converted
to polygons (ST_DumpAsPolygons). Next, the polygons are
trimmed with the footprint (ST_Intersection) to remove
portions of cells outside the footprint and are converted to an equal
area projection (ST_Transform); and then the area is computed.
Finally, the total population is computed (density * area), prorated
by the proportion of the cell within the footprint.
sql = "SELECT orig_dens * orig_area * new_area/"+
"orig_area as est_total "+

PYTHON CODING OF GEOSPATIAL PROCESSING IN WEB-BASED MAPPING APPLICATIONS 43

"FROM (SELECT val as orig_dens,"+
"(ST_Area(ST_Transform(ST_GeomFromText("+
"ST_AsText(geom),3857),102003))"+
"/1000000.0) As orig_area,(ST_Area("+
"ST_Transform(ST_GeomFromText("+
"ST_AsText(ST_Intersection(geom,"+
"ST_GeomFromText('"+fp_wkt+
"',3857))),3857),102003))/1000000.0) "+
"as new_area "+
"FROM (SELECT (ST_DumpAsPolygons(ST_Clip("+
"rast,1,ST_GeomFromText('"+
fp_wkt+"',3857)))).* "+
"FROM "+table_name+" WHERE ST_Intersects("+
"rast,ST_GeomFromText('"+
fp_wkt+"',3857))) As sample) as x"

cur.execute(sql)
totpop = 0.0
for row in cur:
totpop += row[0]

Computation of Suitability for Wind Turbines Using Raster
Data Using GRASS

The suitability models implemented in the EZMT use GRASS
software for computations, which are accessed in Python through
WPSs. The code below shows the main steps followed when
running a suitability model in the EZMT. The models use a set
of raster layers as inputs, each representing a siting factor such as
wind energy level, land cover, environmental sensitivity, proximity
to existing transmission infrastructure, etc. Each input layer is
coded with values ranging from 0 (Completely unsuitable) to
100 (Completely suitable), and weights are assigned to each layer
representing its relative importance. A composite suitability map
is computed using a weighted geometric mean. Figure 4 shows
the EZMT model launcher with the default settings for land-based
wind turbines with 80-meter hub heights.

Processing in the Python code follows the same steps that
would be used in the command-line interface. First, the processing
resolution is set using g.region. Then, the input layers are
processed to normalize the weights to sum to 1.0 (this approach
simplifies the model computation). Next, an expression is gen-
erated, specifying the formula for the model, and r.mapcalc
is called to perform the model computation. r.out.gdal is
used to export the model result from GRASS format to Geo-
Tiff for compatibility with GeoServer, and the projection is set
using gdal_translate from the Geospatial Data Abstraction
Library [GDAL] plugin for GRASS.

Set the processing resolution
WPSProcess.cmd(self, "g.region res=250")

outmap = "run"+str(self.process_run_id)
layers = []
weights = []
Calculate sum of weights
total = 0.0
for l in model['layers']:
total = total + model['layers'][l]['weight']

Create input array of layer names, and
normalize weights
for l in model['layers']:
layers.append({
The reclass method applies user-specified
suitability scores to an input layer
'name': self.reclass(model, l),
'weight': model['layers'][l]['weight']/total

})

geometric_exp = []

Fig. 4: Land-based Wind Turbine Suitability Model Launcher in the
EISPC Energy Zones Mapping Tool

total_weight = 0.0
for l in layers:
total_weight = total_weight + l['weight']
geometric_exp.append("(pow("+l['name']+","+
str(l['weight'])+"))")

func = "round("+
string.join(geometric_exp, "*")+")"

Run model using r.mapcalc
WPSProcess.cmd(self, "r.mapcalc "+outmap+
"="+str(func))

user_dir = "/srv/ez/shared/models/users/"+
str(self.user_id)

if not os.path.exists(user_dir):
os.makedirs(user_dir)

Export the model result to GeoTIFF format
WPSProcess.cmd(self, "r.out.gdal -c input="+
outmap+" output="+outmap+".tif.raw"+
" type=Byte format=GTiff nodata=255 "+
"createopt='TILED=YES', 'BIGTIFF=IF_SAFER'")

Set the projection of the GeoTIFF to EPSG:3857
WPSProcess.cmd(self,
"gdal_translate -a_srs EPSG:3857 "+outmap+
".tif.raw "+user_dir+"/"+outmap+".tif")

CONCLUSIONS

Python is the de-facto standard scripting language in both the
open source and proprietary GIS world. Most, if not all, of the
major GIS software systems provide Python libraries for system
integration, analysis, and automation, including ArcGIS, GeoPan-
das [GeoP], geoDjango [geoD], GeoServer, GRASS, PostGIS,
pySAL [pySAL], and Shapely [Shp]. Some of these systems, such

44 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

as ArcGIS and geoDJango, provide frameworks for web-based
mapping applications different from the approach we described in
the SOFTWARE ENVIRONMENT section. While it is outside the
scope of this paper to discuss the merits of these other approaches,
we recommend considering them as alternatives when planning
projects.

The examples in this paper include vector and raster data, as
well as code for converting projections, creating buffers, retrieving
features within a specified area, computing areas and lengths,
computing a raster-based model, and exporting raster results in
GeoTIFF format. All examples are written in Python and run
within the OGC-compliant WPS framework provided by PyWPS.

One of the key points we make is that the Web Mercator
projection should not be used for generating buffers or computing
lengths or areas because of the distortion inherent in the projection.
The examples illustrate how these computations can be performed
easily in PostGIS. We chose to use the Albers Equal Area projec-
tion, which is commonly used for regional and national maps for
the United States. Different projections should be used for more
localized areas.

So far our Web-based mapping applications include fairly
straightforward analysis and modeling services. However, the
same approaches can be used for much more sophisticated ap-
plications that tap more deeply into PostGIS and GRASS, or the
abundant libraries available in the Python ecosystem. Matplotlib,
NetworkX, NumPi, RPy2, and SciPy can each be integrated with
Python to provide powerful visualization, networking, mathemat-
ics, statistical, scientific, and engineering capabilities.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy,
Office of Electricity Delivery and Energy Reliability; and the U.S.
Department of Interior, Bureau of Land Management, through
U.S. Department of Energy contract DE-AC02-06CH11357. The
submitted manuscript has been created by the University of
Chicago as Operator of Argonne National Laboratory ("Argonne")
under contract No. DE-AC02-06CH11357 with the U.S. Depart-
ment of Energy. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.

REFERENCES

[Arg13] Argonne National Laboratory, Energy Zones Study: A Comprehensive
Web-Based Mapping Tool to Identify and Analyze Clean Energy
Zones in the Eastern Interconnection, ANL/DIS-13/09, September
2013. Available at https://eispctools.anl.gov/document/21/file

[Btsrp] http://getbootstrap.com
[DOI12] U.S. Department of the Interior, Bureau of Land Management,

and U.S. Department of Energy, Final Programmatic Environmental
Impact Statement for Solar Energy Development in Six Southwest-
ern States, FES 12-24, DOE/EIS-0403, July 2012. Available at
http://solareis.anl.gov/documents/fpeis

[Erc] http://bogi.evs.anl.gov/erc/portal
[Ezmt] http://eispctools.anl.gov
[GDAL] http://www.gdal.org
[geoD] http://geodjango.org
[GeoP] http://geopandas.org
[Ggl] http://maps.google.com
[GRASS] http://grass.osgeo.org
[Gsrvr] http://geoserver.org
[NGA] http://earth-info.nga.mil/GandG/wgs84/web_mercator/index.html
[OGP] http://www.epsg.org

[OpLyr] http://openlayers.org
[PGIS] http://postgis.net/docs/manual-2.0/reference.html
[pySAL] http://pysal.readthedocs.org/en/v1.7
[PyWPS] http://pywps.wald.intevation.org
[RoR] http://rubyonrails.org
[Sen] http://www.sencha.com/products/extjs
[Shp] http://pypi.python.org/pypi/Shapely
[Sol] http://solarmapper.anl.gov
[Sol13] Kuiper, J., Ames, D., Koehler, D., Lee, R., and Quinby, T., "Web-

Based Mapping Applications for Solar Energy Project Planning," in
Proceedings of the American Solar Energy Society, Solar 2013 Con-
ference. Available at http://proceedings.ases.org/wp-content/uploads/
2014/02/SOLAR2013_0035_final-paper.pdf.

[Ub] http://www.ubuntu.com
[VM] http://www.vmware.com

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014) 45

Scaling Polygon Adjacency Algorithms to Big Data
Geospatial Analysis

Jason Laura‡∗, Sergio J. Rey‡

http://www.youtube.com/watch?v=kNcA-yE_iNI

F

Abstract—Adjacency and neighbor structures play an essential role in many
spatial analytical tasks. The computation of adjacenecy structures is non-trivial
and can form a significant processing bottleneck as the total number of observa-
tions increases. We quantify the performance of synthetic and real world binary,
first-order, adjacency algorithms and offer a solution that leverages Python’s
high performance containers. A comparison of this algorithm with a traditional
spatial decomposition shows that the former outperforms the latter as a function
of the geometric complexity, i.e the number of vertices and edges.

Index Terms—adjacency, spatial analysis, spatial weights

Introduction

Within the context of spatial analysis and spatial econometrics
the topology of irregularly shaped and distributed observational
units plays an essential role in modeling underlying processes
[Anselin1988]. First and higher order spatial adjacency is lever-
aged across a range of spatial analysis techniques to answer
the question - who are my neighbors? In answering this simple
question, more complex models can be formulated to leverage
the spatial distribution of the process under study. Three example
applications are: spatial regionalization, spatial regression models,
and tests for global spatial autocorrelation1.

Spatial regionalization algorithms seek to aggregate :math: n
polygon units into :math: r regions (:math: r < n) under some
set of constraints, e.g., minimization of some attribute variance
within a region [Duque2012]. A key constraint shared across
spatial regionalization algorithms is that of contiguity as regions
are required to be conterminous. One common application of
spatial regionalization is political redistricting, where large scale
census units, are aggregated into political districts with a conti-
guity constraint and one or more additional constrains, e.g. equal
population. In this context, the generation of a representation of
the spatial adjacency can become prohibitively expensive.

At its most basic, spatial regression [Ward2007] seeks to
formulate a traditional regression model with an added structure
to capture the spatially definable interaction between observations
when spatial autocorrelation (or spatial heterogeneity) is present.
The addition of a spatial component to the model requires the

* Corresponding author: jlaura@asu.edu
‡ School of Geographical Sciences and Urban Planning, Arizona State
University

Copyright © 2014 Jason Laura et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

generation of some measure of the interaction between neighbors.
First and higher order spatial adjacency fulfills that requirement.
An example application could be the formulation of a model
where the dependent variable is home value and the independent
variables are income and crime. Making the assumption that the
data is spatially autocorrelated, a spatial regression model can be
leveraged.

Moran’s I [Anselin1996a] concurrently measures some at-
tribute value and its spatial distribution to identify spatially clus-
tered (positively autocorrelated), random, or dispersed (negatively
autocorrelated) data. Therefore, a spatial adjacency structure is
an essential input. Measures of global spatial autocorrelation
find a large range of applications including the identification
of SIDs deaths [Anselin2005] and the identification of cancer
clusters [OSullivan2010]. As the total number of observations
becomes large, the cost to generate that data structure can become
prohibitive.

The computation of a spatial adjacency structure is most
frequently a precursor to more complex process models, i.e. a pre-
processing step. This processing step occurs dynamically, i.e. the
data is not loaded into a spatial database where efficient indexing
structures can be pre-generated. Therefore, the computational cost
of generating these data structures is often overlooked in the
assessment of global algorithmic performance.

Within the spatial analysis domain, ever increasing data sizes
due to improved data collection and digitization efforts, render
many spatial analyticial intractable in a Big Data environment
due to unoptimized, serial algorithm implementations [Yang2008].
Therefore, improved serial and distributed algorithms are required
to avoid the application of data reduction techniques or model
simplification. Binary spatial adjacency is one example of an
algorithm that does not scale to large observation counts due
to the complexity of the underlying algorithm. For example, a
key requirement of Exploratory Spatial Data Analysis (ESDA)
[Anselin1996b] is the rapid computation and visualization of
some spatially defined measures, e.g. Local Moran’s I. Within
the Python Spatial Analysis Library (PySAL), the computation
of a local indicator of spatial autocorrelation utilizes binary
adjacency in computing Local Moran’s I as a means to identify
the cardinality of each observation. In a small data environment
(n < 3000) a naive implementation is sufficiently performant, but
as the resolution of the observational unit increases (a move from
U.S. counties or county equivalents2 to census tracts3) computate
time increases non-linearily. When combined with the compute
cost to perform the primary analytical technique, and potential

46 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

network transmition costs in a Web based environment, ESDA at
medium to large data sizes is infeasible.

Scaling to even larger observation counts where longer run-
times are expected, heursitically solved regionalization models,
e.g., Max-P-Regions [Duque2012], require that a spatial contiguity
constraint be enforced. In large data setting, where a high number
of concurrent heuristic searches are to be performed, the computa-
tion of adjacency can be a serial processing bottleneck4. Improved
adjacency metrics are required within this domain for two reasons.
First, in a distributed environment with shared resources, reduction
of pre-processing directly correlates with time available for anal-
ysis. Using heuristic search methods this translates to additional
time available to search a solution space and potential identify
a maxima. Second, the scale at which regionalization is initiated
is an essential decision in research design as underlying attribute
data or processes may only manifest at some limited scale range.
Therefore, a significant bottleneck in adjaceny computation can
render the primary analytical task infeasible.

This work targets one processing step in larger analytical
workflows with the goal supporting increased data sizes and
reducing the total compute time. The application of an improved
adjacency algorithm solves one limitation in the application of
ESDA to Big Data and reduces the overall pre-processing time
required for spatial regionalization problems.

Spatial Weights Object

A spatial weights object or weights matrix, W , is an adjacency
matrix that represents potential interaction between each i, j within
a given study area of n spatial units. This interaction model yields
W a, typically sparse, n×n adjacency matrix. Within the context
of spatial analysis, the interaction between observational units
is generally defined as either binary, wi, j = 0,1, depending on
whether or not i and j are considered neighbors, or a continuous
value reflecting some general distance relationship, e.g. inverse
distance weighted, between observations i and j.

In the context of this work, we focus on binary weights where
the adjacency criteria requires either a shared vertex (Queen case)
or a shared edge (Rook case). Using regular lattice data, Figure
(1) illustrates these two adjacency criteria. In the Queen case
implementation is in line with expectations, i.e. a single shared
vertex is sufficient to assign adjacency. The Rook case, adjacency
is more complex and two shared vertices are not sufficient to
assert adjacency, i.e. a queen case implementation with a counter
for the number of shared vertices. Full geometry edges must be
compared as it is feasible that two shared vertices do not indicate
a shared edge. For example, a crescent geometry can share two
vertices with another geometry but fail to share an edge is another,
interceding geometry is present.

PySAL

This work is cited and implemented within the larger PySAL
(Python Spatial Analysis Library) project. PySAL is an open-
source, pure Python library that provides a broad array of spatial
computational methods [Rey2010]. This library has been selected
for three reasons. First, PySAL provides data structure, i.e. in-
frastructure for reading common spatial formats and rendering
spatial weights matrices, as a W class instance. This existing
functionality facilitated rapid development that could focus on al-
gorithm implementation and testing. Second, PySAL implements
two spatial adjacency algorithms that serve as benchmarks and
validation tools: (1) spatial decomposition through binning and (2)

r-tree generation and search. Finally, PySAL is a mature, open-
source project with a wide user base providing exposure of this
implementation to the community for further development and
testing.

Algorithms

Problem Definition

The population of an adjacency list, A, or adjacency matrix must
identify all polygon geometries which are conterminous. The
definition of adjacent is dependent upon the type of adjacency
matrix to be generated. Each adjacency algorithm requires a
list of polygon geometries, L, composed of sublists of vertices,
L = [p1, p2, . . . , pn]. Traditionally, the vertices composing each
polygon, pi, are stored in a fixed winding order (clockwise or
counter-clockwise) and share a common origin-termination vertex,
pi = [v1,v2,v3, . . . ,v1]. This latter constrain facilitates differentia-
tion between a polygon and polyline.

Below we review three adjacency computation algorithms:
a naive approach, a binning approach, and an r-tree approach.
We then introduce an improved adjacency algorithm using high
performance containers.

Naive Approach

The naive approach to compute spatial adjacency requires that
each vertex, in the case of rook contiguity, or edge, in the case
of queen contiguity, be compared to each other vertex or edge,
respectively. This is accomplished by iterating over a list or
array of input geometries, popping the first geometry from the
list, and then comparing all vertices or edges to all remaining
geometries within L. This approach leverages the fact that an
adjacency matrix, and by extension an adjacency list is diagonally
symmetrical, i.e. the upper right and lower left triangles are
identical. This algorithm is O(n2

2) as each input vertex or edge
is compared against each remaining, unchecked vertex or edge. A
minor modification to this approach allows the algorithm to break
once adjacency has been confirmed, thereby avoiding duplicate
checks on known neighbors.

Spatial Binning

Binning seeks to leverage the spatial distribution of L to reduce
the total number of vertex or edge checks. Binning approaches can
be static, whereby the size of each bin is computed a priori and
without consideration for the underlying data density or adaptive,
whereby the size of each bin is a function of the number of
geometries contained within. A quad-tree approach is a classic
example of the latter technique. Using a static binning approach
as an example, a regular grid or lattice can be overlaid with L and
the intersection of all p into a specific grid cell, gi, j computed.
Using binning, polygons may span one or more grid cells. Once
the global dataset has been decomposed into a number discrete
gird cells, all geometries which intersect a given cell are tested
for adjacency. This test can be performed by storing either a
dictionary (hash) of cell identifiers to member polygon identifiers
or a dictionary of geometries identifiers to cell identifiers. The end
result is identical, a subset of the global geometries that may be
conterminous.

The primary advantage of this approach over the naive algo-
rithm is the reduction in the total number of edge or vertex checks
to be performed. Those polygons which do not intersect the same
grid cell will never be checked and the spatial distribution of the

SCALING POLYGON ADJACENCY ALGORITHMS TO BIG DATA GEOSPATIAL ANALYSIS 47

Fig. 1: Rook (shared edge) and Queen (shared vertex) adjacency on a regular 3 by 3 lattice.

data is leveraged. The application of a quad-tree decomposition
also accounts for variation density. These advantages are not
without cost; the time to compute the initial decomposition can
exceed the benefits attained.

Parallel Spatial Binning

One approach to improve the performance of the binning algo-
rithm would be to utilize multiple processing cores (workers).
In this implementation binning is performed in serial and then
each bin is mapped to an available processing core for processing.
Therefore, the expensive O(n2

2) computation can be performed
concurrently, up to the number of available processing cores. An
implementation of this type requires three processing steps, with
only the second step being performed concurrently. First, derive
a domain decomposition and assign each geometry to one or
more bins5. Second, concurrently apply the naive algorithm to
all geometries within a bin. This requires that the full geometries
be communicated from the mother process to the worker process
or that the geometries be stored in a globally accessible shared
memory space. Finally, aggregate the results from each worker.
Boundary crossing geometries will be processed by more than one
worker that does not have knowledge of adjacent bins. Therefore,
this step is required to remove redundant adjacencies and generate
a single adjacency list.

Like the binning approach, decomposition is a non-trivial
compute cost. Additionally, the cost to communicate native python
data structures is high in parallel environment. Representation in
efficient arrays requires the generation of those arrays, another
upfront processing cost.

R-Tree

Like the binning approach, the r-tree seeks to leverage the spatial
distribution of the geometries to reduce the total number of O(n2

2)
computations that must be performed. An r-tree is composed of
multiple levels composed of multiple, ideally balanced nodes,
that store aggregated groups of geometry Minimum Bounding
Rectangles (MBR). At the most coarse, the MBR associated
with each geometry is a leaf in the tree. Each step up a branch
aggregates leaves into multi-geometry MBRs or multi-geometry
MBRs into larger MBRs. When generating an r-tree two key
considerations are the maximum size of each node and the method
used to split a node into sub-nodes6. An r-tree query uses a depth
first search to traverse the tree and identify those MBRs which
intersect the provided MBR. For example, assume that geometry
A has an MBR of AMBR. An r-tree query begins at level 0 and
steps down only those branches which could contain or intersect
AMBR.

The primary disadvantage to the r-tree is the cost of generation.
In addition to computing the MBR for each input geometry,
it is necessary to recursively populate the tree structure using
some bulk loading technique. These techniques seek to ensure
high query performance, but add significantly to the cost. The
implementation tested here utilizes a k-means clustering algorithm
to split full nodes and is shown by [Gutman1984] to outperform
the standard r-tree and compete with the R*-tree. Even with
this improved performance, generation of the data structure is
computationally expensive as a function of total compute time.
Additionally, scaling to large data sets in memory constrained
environments can introduce memory constraints. This is a sig-
nificantly less common disadvantage, but should nonetheless be
addressed.

High Performance Containers and Set Operations

Each of the preceding algorithms, save the naive approach,
leverage a decomposition strategy to improve performance. Even
with decomposition, the inter-cell or inter-MBR computation is
still O(n2

2). Combined with the cost to generate intermediary
data structures required to capture the decomposition, it is pos-
sible to leverage a higher number of lower cost operations and
robust error checking to significantly improve performance. At
the heart of our approach is the hashtable (dictionary), that
provides average case O(1) lookup by key, the set that provides
O(length(seta)+ length(setb)) set unions and lookup tables that
facilitate O(1) list (array) access by element. By minimizing data
allocation time and set unions, it is therefore possible to develop
an implementation where the majority of computation is, average
case, O(1).

In implementation, Algorithm (), the algorithm utilizes a
defaultdict where the key is the vertex coordinate and the value is
a set of those polygon identifiers which contain that vertex (Queen
case). Stepping over an input shapefile, line 9, this data structure
is iteratively populated. In line 10, we slice the vertex list such that
the final vertex is ignored, knowing that it is a duplicate of the first
vertex. The inner for loop, line 11, iterates over the list of vertices
for a given geometry and adds them to the vertices default dict,
line 8. Once this data structure is generated, the algorithm creates
another dictionary of sets where the key is a polygon identifier and
the value is a set of those polygons which are adjacent. Stepping
over the previous dictionary, line 15, the algorithm iterates over
the value, a set of neighbors, and populates a new dictionary
of sets which are keyed to the polygon identifiers. This yields
a dictionary with keys that are polygon ids and values which are
sets of neighbors. We define this as a two step algorithm due to
the two outer for loops.

48 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

1 def twostep(fname):
2 shpFileObject = fname
3 if shpFileObject.type != ps.cg.Polygon:
4 return
5 numPoly = len(shpFileObject)
6

7 vertices = collections.defaultdict(set)
8 for i, s in enumerate(shpFileObject):
9 newvertices = s.vertices[:-1]

10 for v in newvertices:
11 vertices[v].add(i)
12

13 w = collections.defaultdict(set)
14 for neighbors in vertices.itervalues():
15 for neighbor in neighbors:
16 w[neighbor] = w[neighbor] | neighbors
17

18 return w

Two step algorithm using higher performance containers for the
Queen case.

The Rook case is largely identical with the initial vertex
dictionary being keyed by shared edges (pairs of vertices) instead
of single vertices.

Experiment

Hardware

All tests were performed on a 3.1 Ghz, dual core Intel i3-2100
machine with 4GB of RAM running Ubuntu 64-bit 14.04 LTS.
The IPython [Perez2007] notebook environment was used to
initiate and analyse all tests. All other non-system processes were
terminated.

Experiments

We perform two sets of experiments, one using synthetically
generated data and one using U.S. Census data. These tests were
performed to quantify the performance of the list based contiguity
algorithm as compared to r-tree and binning implementations with
the goal of testing three hypothesis. First, we hypothesize that
the list based algorithm will be faster than r-tree and binning
algorithms across all datasets due to the reduced asymptotic cost.
Second, we expect the list based algorithm to scale as a function of
the total number of neighbors and the average number of vertices
(or edges in the Rook case) per geometry. We anticipate that this
scaling remains linear. Third, we hypothesize that the algorithm
should not scale significantly worse within the memory domain
than either the r-tree or binning approaches due to the reduced
number of data structures.

To test these hypotheses we generate both regularly tessellating
and randomly distributed synthetic data ranging in size from 1024
geometries to 262,144 geometries7. We utilize triangles, squares
and hexagons as evenly tessellating geometries with easily con-
trolled vertex count, edge count, and average neighbor cardinality.
We also densify the 4096 hexagon lattice to test the impact of
increased vertex count as the number of edges remains static. To
assess algorithm performance with real world data we utilize U.S.
census block group data.

Results

Across all synthetic data tests we report that the r-tree implemen-
tation was 7 to 84 times slower than the binning implementation
and 22 to 1400 times slower than the list based contiguity measure.
Additionally, we see that the r-tree implementation required sig-
nificant quantities of RAM to store the tree structure. We therefore

illustrate only the binning and list based approach in subsequent
figures.

Figure (2)(a - d) illustrate the results of four experiments
designed to compare the performance of the list based and binning
approaches as a function of total geometry count, total vertex
count (and by extension edge count), average neighbor cardi-
nality, and data distribution. Figure (2)(a) illustrates the scaling
performance of the list and binning algorithms. The former scales
linearly as the total number of polygons is increased and the latter
scales quadratically. As anticipated, the Rook contiguity measures
require slightly more processing time than the associated Queen
contiguity measures. In Figure (2)(b), the algorithm exhibits in-
creased computational cost as a function of geometric complexity,
e.g. the number of vertices, number of edges, and mean number
of neighbors. This is illustrated by the general trend of compute
times with the triangular tessellation requiring the least time and
the hexagon tessellation requiring the most. Densification of the
4096 hexagon polygon with between 6 and 300 additional vertices
per edge highlights an inversion point, where binning regains
dominance over the list based approach, Figure (2)(c). Finally,
in Figure (2)(d) the total compute time using randomly distributed
polygon datasets are shown. Again, we report quadratic scaling for
the existing binning approach and linear scaling for the list based
approach.

To test algorithm performance with real world data, we utilize
four, increasingly large subsets of the global U.S. census block
dataset, Figure (3). We report that neither binning nor our list
based solution are dominant in all use cases. We report that,
as a function of the total geometry count, it appears that a
threshold exhists around n = 32500 (lower x-axis). Utilizing the
upper x-axis, the previous assertion appear erroneous; overall
algorithm scaling is a function of the total count, but comparative
performance is a function of the geometric complexity with parity
existing around n = 275 and dominance of the list based method
being lost between 275 < n < 575.

Discussion

Our list based adjacency algorithm significantly outperforms the
current r-tree implementation within the PySAL library. We be-
lieve that this is a function of the increased overhead required
to generate a the tree structure. Across all synthetic data tests,
save the vertex densification, we see the list based approach
performs well. As anticipated, this method scales with the number
of vertices.

Utilizing real world data, the selection of algorithm becomes
significantly more challenging as the list based approach does
not behave in a linear manner. We suggest that the constant time
set operations become large as a function of total compute time.
Having gained this insight, we ran additional tests with a read
threshold. In this implementation a subset of the input dataset
is read, processed, and written to an in-memory W object. This
process iterates until the entire dataset is read. Using this method,
we see that the list based approach, in the Queen case, can
be as performant as the binning approach as a function of the
mean number of vertices. Since this information is not available
via the binary shapefile header, we suggest that the list based
approach may be performant enough across all use cases, i.e.
the performance does not significantly degrade at extremely high
vertex counts. The list based approach still dominates the binned
approach in the Rook case.

SCALING POLYGON ADJACENCY ALGORITHMS TO BIG DATA GEOSPATIAL ANALYSIS 49

Fig. 2: Spatial binning and list based performance comparison showing: (a) scaling a total synthetic data size increases, (b) list based scaling
using synthetic data, (c) scaling performance as the total number of vertices is increased, and (d) randomly distirbuted data with varying
neighbor cardinality and vertex counts.

Utilizing real world data, the binning approach is also able
to leverage an essential break function, where known neighbors
are no longer checked. This is not, to our knowledge, feasible
using the list based approach and two neighors with n shared
vertices must be compared n times. The introduction of a break, if
feasible, should continue to improve performance of the list based
approach.

Finally, in profiling both the binning and list based approaches,
we see that reading the input shapefile requires at least one
third of the processing time. Therefore, I/O is the largest current
processing bottleneck for which parallelization maybe a solution.

Next Steps

As described above, the r-tree implementation was significantly
slower than anticipated. To that end, we intend to profile and
potentially optimize the PySAL r-tree implementation with the
goal of identifying whether poor performance is a function of the
implementation or a product of the necessary overhead required to
generate the tree structure.

The improved adjacency algorithm provides multiple avenues
for future work. First, we have identified file i/o as the current
processing bottleneck and have shown that the algorithm can
leverage concurrent streams of geometries. Therefore, parallel
i/o and a map reduce style architecture may provide significant
performance improvements without major algorithm alterations.

This could be realized in a Hadoop style environment or with
a cluster computing environment. Second, we believe that error
and accuracy of spatial data products remain an essential research
topic and suggest that the integration of a ’fuzzy’ checker whereby
some tolerance value can be used to determine adjacency is an
important algorithm addition. Finally, we will continue integration
into PySAL of these methods into more complex spatial analytical
methods so that total algorithm processing time is improved, not
just the more complex analytical components.

REFERENCES

[Anselin1988] Anselin, L. Spatial econometrics: Methods and models,
Matrinus Nijhoff, Dordrecht, the Netherlands. 1988.

1. In contrast to local measures which identify local, statistically significant
autocorrelation.

2. {32,64,128,160,192,256,288,320,384,448,512} geometries squared.
3. n = 3,144
4. Clearly this can be overcome, in a distirbuted environment, using an ex-

cess computation strategy, but the increased cost due to algorithm performance
still exists.

5. n = 74,134 in the 2010 census
6. Conversely assign each bin to those geometries it contains.
7. While this section describes the function of an r-tree from fine to coarse,

they are generated from coarse to fine.

50 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Fig. 3: Spatial binning and list performance for the Queen contiguity case using four subsets of census blocks in the Western United states
with varying spatial densities, geometry counts, and mean vertex counts. Plot origin is based upon the number of geometries (lower x-axis).

[Anselin1996a] Anselin, L. and Smirnov, O. Efficient algorithms for con-
structing proper higher order spatial lag operators, Journal
of Regional Science, vol. 36, no. 1, pp.67 – 89, 1996.

[Anselin1996b] Anselin, L., Yong, W., and Syabri, I. Web-based analytical
tools for the exploration of spatial data, Journal of Geo-
graphical Systems, vol. 6, no. 2, pp. 197-218, 2004.

[Anselin2005] Anselin, L. Exploring Spatial Data with GeoDa: A Work-
book, Center for Spatially Integrated Social Science, Uni-
versity of Illinois, Urbana-Champaign, 2005.

[Duque2012] Duque, J. C., Anselin, L., and Rey, S. J. The Max-P-Regions
Problem, Journal of Regional Science, 52(3):pp. 397–419,
2012.

[Gutman1984] Gutman1984, A. R-Trees: A dynamic index structure for
spatial searching, Proceedings of the 1984 ACM SIGMOD
International Conference on Management of Data, 1984.

[OSullivan2010] O’Sullivan, D. and Unwin, D.J. Area Objects and Spatial
Autocorrelation, Geographic Information Analysis, Wiley,
Ch. 7, 2010.

[Perez2007] Pérez, F. and Granger, Brian E., IPython: A System for
Interactive Scientific Computing, Computing in Science
and Engineering, vol. 9, no. 3, pp. 21-29, 2007. URL:
http://ipython.org

[Rey2010] Rey, S. J. and Anselin, L. PySAL: A Python library of
spatial analytical methods, In Fischer, M.M ; Getis, A.,
editor, Handbook of Applied Spatial Analysis, pp. 175–193.
Springer, 2010.

[Ward2007] Ward, M. D. and Gleditsch, K. S. An Introductiuon to spatial
regression models in the social sciences*, https://web.duke.
edu/methods/pdfs/SRMbook.pdf, 2007, Retreived June 12,
2014.

[Yang2008] Yang, C., Li, W., Xie, J., and Zhou, B. Distributed geospa-
tial information processing: sharing distributed geospatial
resources to support Digital Earth, International Journal of
Digital Earth, pp. 259-278, 2008.

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014) 51

Campaign for IT literacy through FOSS and Spoken
Tutorials

Kannan M. Moudgalya‡∗

F

Abstract—This article explains an approach to promote Information Technology
(IT) literacy in India, which has evolved into a pyramid structure. We begin this
article by explaining the design decisions, such as the use of FOSS and being a
friendly interface between beginners and experts, in undertaking this activity.

A Spoken Tutorial is a ten minute audio video tutorial on open source
software, created to provide training on important IT topics. Spoken Tutorials
are made suitable for self learning, through a novice check of the underlying
script. The spoken part of these tutorials is dubbed in all Indian languages, to
help children who are weak in English, while retaining employment potential.
The effectiveness of conducting workshops using spoken tutorials is explained.
A total of 400,000 students have been trained in the past three years through
one or more Spoken Tutorial based Education and Learning through Free FOSS
study (SELF) workshops.

Students who undergo SELF workshops can create textbook companions,
which contain code for the solved problems of given textbooks using a particular
software. A Python Textbook Companion is a collection of Python code for a
given textbook. These companions and the associated textbook, together, form
a low cost document for Python in general, and the textbook, in particular. We
have completed approximately 80 Python Textbook Companions and another
80 are in progress. From textbook companions, the students can progress to lab
migration activity, the objective of which is to migrate labs based on proprietary
software to FOSS. Interested students are trained to use FOSS systems in their
projects and to contribute to the development of new FOSS systems. Using
this approach and Python as a glue language, we have developed the following
new FOSS systems: 1. Oscad, an electronic design automation tool, and a
FOSS alternative to commercial software, such as ORCAD. 2. Sandhi, a block
diagram based data acquisition for real time control, and a FOSS alternative to
commercial software, such as LabVIEW.

The pyramid structure explained in this work helps the beginners to become
IT literate. Our design solutions are especially suitable to poor and marginalised
sections of the society, which is at the bottom of the social pyramid. Our efforts to
create and promote the world’s lowest cost computing system Aakash is briefly
addressed in this work.

Index Terms—Python, spoken tutorials, FOSSEE

Introduction

This article explains the approach we have taken to promote IT
literacy in India. While India has the capability to create software
to help improve the lives of people around the world, its citizens do
not have the capability to absorb it. One main reason is that India
does not have a good infrastructure. In addition, the economic

* Corresponding author: kannan@iitb.ac.in
‡ Dept. of Chemical Engineering, Education Technology, and System and
Control Groups, IIT Bombay, India

Copyright © 2014 Kannan M. Moudgalya. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

conditions do not allow our citizens in general, and students in
particular, to buy expensive hardware and software. Lack of good
quality educational institutions and good teachers compound the
problem.

This paper begins with the design decisions we have taken
to achieve our objective while keeping in mind the problems
mentioned above. Some of the decisions have been arrived at
by trial and error, while some decisions, such as the use of
FOSS, have been a cornerstone of our efforts. The next section
explains a procedure we use to train a large number of students
through FOSS and spoken tutorials. The textbook companion
section explains how we create low cost documentation for FOSS
through textbook companions. We follow this with a section on
lab migration that helps shift lab courses based on proprietary
software to FOSS. After this, we explain how these activities lead
to a pyramid structure. Finally, we discuss the relevance of the low
cost computing device Aakash, and conclude. We emphasize the
role of Python in all of the above.

Approach and Design Decisions

We started in 2009 the effort explained in this article, to promote
FOSS, with the Indian Government support and funding [nm09].
Although there are many good FOSS systems, they are difficult
to use because of lack of documentation and support. If we could
bridge this gap, FOSS would become accessible to our students,
who do not have access to good software otherwise, as many of
them are proprietary in nature. We also did not want to promote
commercial software with tax payer’s money. Our funding agency
[nm09] had also made a policy decision to exclusively use FOSS.

It does not mean that we wanted to erect a wall between
us and those who use commercial software. We do work with
students who only know how to use the MS Windows operating
system, for example. We do accept tutorials that have been dubbed
with Windows Movie Maker. We believe that by creating a good
ecosystem, we can shift proprietary software users to equivalent
FOSS systems. We have always wished to be an inclusive project.

We have been using simple technologies to create our instruc-
tional material, as these allow school going students also to partic-
ipate in the creation effort. For example, we have eschewed the use
of instructional methodologies that help embed interaction in our
tutorials. In contrast, open source screen recording software, such
as RecordMyDesktop [rmd], has limited features. Nevertheless,
we have made the learning effective by developing strict processes
in creation [guidelines] and use of Spoken Tutorials, such as, the
side-by-side method (see Fig. 1) and SELF workshops, explained
in the next section.

52 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Fig. 1: A side by side arrangement for effective use of Spoken
Tutorials. The red arrow points to the video tutorial and the black
arrow points to the software studied, in this case, Scilab.

It is our policy that even “ordinary” people can participate
in our project, using whatever equipment they have, and get
recognised and also paid an honorarium. If an instructional tutorial
is below professional quality, but reasonably good, we accept it. At
the beginning of the project, we found that if we insisted on pro-
fessional quality, it would necessitate the use of pin drop silence
quality studios, established at a cost of millions of dollars. This
would make the cost of spoken tutorials prohibitively expensive.
Moreover, our project would become an elite one, filtering most
“ordinary” people from participating in it.

We also wanted our methodology to be beginner friendly.
When we started this work in 2009, most Forums that supported
FOSS were quite unfriendly to the questions posed by beginners.
For example, standard answers were,

• First learn how to post in the forum
• It is already answered, check the archives first
• Read the instruction manual first before asking a question

The reasons for the response given by the experts are under-
standable: there are only a few experts to answer the questions
of large numbers of beginners, many of which may be repetitive.
If the experts spend all their time in answering often repetitive
questions, when will they have time to do their own work, develop
the FOSS, remove bugs, write documents, etc., seem to be valid
questions. Nevertheless, we can confidently say that only a small
fraction of FOSS exploring/loving beginners stay with FOSS
because of the above mentioned scoldings and the lack of support
structure. The system we have built is beginner friendly, with
enthusiastic participation from the experts.

When we started the project in 2009, we decided to make our
project a friendly interface between beginners and experts. One
way to do this was through a Novice Check of the script, before
creating a video tutorial. Unless a script is approved by a novice,
it is not accepted for recording.

We illustrate the novice check with a bash script that the author
reviewed as a beginner. The script asked the learner to download
a bash file to the current directory and to type the name of the file
on the console to execute it. On following the above instruction,
the following error message appeared: Command not found. The

FOSS category No. of Workshops No. of Students

C and C++ 1,840 84,728
Linux 1,819 80,882
PHP and MySQL 997 44,414
Scilab 1,026 41,306
Java 672 31,795
LaTeX 771 30,807
LibreOffice (all components) 776 26,364
Python 419 18,863
Total 8,320 359,159

TABLE 1: Total number of workshops conducted and the students
trained in the past three years. The methodology is explained in the
next section.

script writer forgot to state that there should be a ./ (dot-slash)
before the file name, as the current directory is not in the path
of beginner. After correcting this mistake, the same error message
appeared. The reason for this is that this file is not executable.
The script writer missed the following statement: the downloaded
file should be made executable by the chmod command. These
corrections were incorporated into the script before recording it.

Thus, a spoken tutorial is recorded only after the script, created
by experts, is validated by beginners. After recording them, we
run pilot workshops with the spoken tutorials. If there are minor
difficulties, we mention the corrections in an instruction sheet. If
there are major difficulties, the tutorials are re-created.

Although the details to be addressed in our tutorials seem to
be excessive, the benefits are enormous. In Table 1, we give the
total number of workshops that we have conducted and the number
of students trained. The methodology developed by us to achieve
such large numbers is explained in the next section.

An expert who knows that their tutorial will be watched
10,000 times will not mind spending a lot of effort to create
outstanding instructional material. Insistence of passing through a
novice check makes beginners important and also make them feel
important. From the expert’s point of view, once it is created, all
beginners can be directed to see the tutorial. Finally, as we discuss
next, the novice check and pilot workshops make our tutorials
suitable for self learning, which in turn has resulted in large scale
training, as demonstrated in Table 1.

The fact that a large number of people have undergone our
LibreOffice workshops demonstrates that we are reaching out to
the clerical staff and those who are at the doorsteps of IT literacy,
and hence are at the bottom of the pyramid.

Our efforts to reach out to beginners has resulted in a pyramid
structure: once the beginners are trained in a FOSS, they are
encouraged to create textbook companions, to be explained below.
Motivated students are then invited to participate in migrating lab
courses to FOSS, and to use FOSS to create new software systems.
Thus, bringing a large number of developers to our fold has the
beneficial effect of producing a large number of FOSS developers
as well. We begin with our training effort.

Spoken Tutorial

A Spoken Tutorial is an audio - video instructional material
created for self learning through the Screencast technology. When
this project started in 2009, the main objective was to create
documentation for FOSS, so that it is accessible to everyone. A

CAMPAIGN FOR IT LITERACY THROUGH FOSS AND SPOKEN TUTORIALS 53

detailed set of objectives and the method followed to achieve them
are summarised in [kmm14].

We will begin with the reasons for calling this instructional
material as a Spoken Tutorial. When this work started, there were
a large number of silent Screencast tutorials on the Internet. To
distinguish ours from these, we used the word spoken. This word
is even more important, as we dub the spoken part into all Indian
languages. As we do not capture the face of the person creating
the tutorials, it is strictly not a video tutorial. Owing to the fact that
one can use Spoken Tutorial to learn a topic, we call it a tutorial.

Spoken Tutorials have been released under a Creative Com-
mons license and are freely downloadable from [Spoken]. There
are about 500 original spoken tutorials in English and more than
2,000 dubbed tutorials in various Indian languages.

The Python Team created a set of 14 Spoken Tutorials on
Python at the beginning. On using these tutorials, it was found
that the pace of some tutorials was fast and that some topics were
left out. A fresh set of 37 Spoken Tutorials have been created since
then. These have also been dubbed into a few Indian languages.

At present, we have the following Python Spoken Tutorials at
the basic level: 1) Getting started with IPython. 2) Using the plot
command interactively. 3) Embellishing a plot. 4) Saving plots. 5)
Multiple plots. 6) Additional features of IPython. 7) Loading data
from files. 8) Plotting the data. 9) Other types of plots - this helps
create scatter plot, pie and bar charts, for example. 10) Getting
started with sage notebook. 11) Getting started with symbolics.
12) Using Sage. 13) Using sage to teach.

At the intermediate level, we have the following tutorials: 1)
Getting started with lists. 2) Getting started with for. 3) Getting
started with strings. 4) Getting started with files. 5) Parsing data.
6) Statistics. 7) Getting started with arrays. 8) Accessing parts of
arrays. 9) Matrices. 10) Least square fit. 11) Basic data types and
operators. 12) I O. 13) Conditionals. 14) Loops. 15) Manipulating
lists. 16) Manipulating strings. 17) Getting started with tuples. 18)
Dictionaries. 19) Sets.

At the advanced level, we have the following tutorials: 1)
Getting started with functions. 2) Advanced features of functions.
3) Using Python modules. 4) Writing Python scripts. 5) Testing
and debugging.

Spoken tutorials are created for self learning. The side-by-side
method, a term defined in [kmm14]_ and illustrated in Fig. 1 is
recommended for the effective use of spoken tutorials. This is a
typical screen of the student running the tutorial. The learner is
supposed to reproduce all the steps demonstrated in the tutorial.
To achieve this, all supplementary material required for a tutorial
are provided. We illustrate this with the Python Spoken Tutorial,
loading data from files. In Fig. 2, in the command line, cat of
the file primes.txt is demonstrated. By clicking the Code files
link, shown with a red arrow, one may download the required
files. In the figure, we have shown the window that pops up when
the Code files link is clicked. This popped up window asserts
the availability of the file prime.txt and also other files that are
required for this tutorial. By clicking the link Video, also at the
second last line of this figure, one can download the tutorial for
offline use.

As these are created for self learning, and are freely download-
able, one should be able to learn from spoken tutorials directly
from the website [Spoken]. Nevertheless, there are many reasons
why we have been conducting organised workshops [kmm14]
using spoken tutorials. As these are created for self learning, a
domain expert is not required to explain the use of spoken tutorials

Fig. 2: Resources available for a spoken tutorial explained with an
example. The file used in the tutorial is available through the Code
files link, indicated by an arrow. On clicking this link, the available
code files are displayed in a new window.

- a volunteer can organise these workshops. Based on trial and
error, we have decided that our workshops should be of two
hour duration and should be conducted as SELF workshops, as
mentioned previously. Although these workshops are of only two
hour duration, quite a bit can be learnt in a two hour workshop. For
example, by no other method can a beginner learn LaTeX topics,
such as compilation, letter writing, report writing, mathematical
typesetting and introduction to beamer, in a two hour workshop
[kmm11-TUGboat]. Although no domain experts may be available
during these workshops, one may get one’s questions answered
through a specifically designed forum [forums].

Most students in India do not have access to good bandwidth
and hence cannot access our web page. As a result, we need to
provide the tutorials for offline use. In the previous paragraph, we
have explained how to download a single video. To be consistent
with our ethos, we have implemented a tool that allows the
creation of an image consisting of many tutorials and downloading
it for offline use. On choosing at [Spoken], Software Training >
Download Tutorials > Create your own disk image, one reaches
the page shown in Fig. 3. Through this shopping cart like facility,
we can create an image consisting of different FOSS families of
spoken tutorials, in languages of one’s choice. In this figure, one
can see that the Python spoken tutorials in English and Tamil have
been selected and these will take up about 680 MB. One may
add many more FOSS categories, in one or more languages to
the Selected Items list. Once all required tutorials are selected,
one may click the Submit button. The image consisting of all the
tutorials will be download as a zip file. On unzipping this file and
opening the index.html file contained therein in a web browser,
such as Firefox, all the selected videos can be played from the
local drive. This zip file can be copied to all computer systems
that are meant to be used in a workshop.

The Spoken Tutorial Team helps conduct SELF workshops
[events-team]. The workshops are offered on about 20 topics, such
as Python, Scilab, C, C++, Java, LibreOffice, LaTeX, PHP, Oscad
and GNU/Linux. Organisers of SELF workshops at different in-
stitutions download the required spoken tutorials using the facility
explained through Fig. 3, install the software to learn and ensure
that the computer system, audio/video player and the headphone
are in working condition. These organised workshops create a

54 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Fig. 3: The automatic CD content creation facility, available through
[Spoken], by clicking Software Training > Download Tutorials >
Create your own disk image. See that English and Tamil versions of
Python tutorials are selected, with a size estimate of about 680 MB.

conducive ecosystem to learn through spoken tutorials.
As two hours may not be sufficient, one may not learn all the

tutorials during a two hour workshop. After the workshop, the
students are encouraged to download the tutorials and to practise
by themselves at their home or office. The learners can post their
difficulties, if any, on the Spoken Tutorial Forum [forums] based
on the time line of a spoken tutorial. This special forum helps
even beginners to locate previous discussions relating to spoken
tutorials. An online exam is conducted a few weeks after the
workshop and the participants who pass the exam are provided
with certificates.

It is possible to get details of SELF workshops conducted by
our team. In [python-ws-info], one can see summary details of the
Python workshops that have taken place in the state of Gujarat.
One can reach this information on [Spoken] by clicking the map
of India, choosing Gujarat and sorting the result by FOSS. A
screenshot is given in Fig. 4. In this figure, we have shown a red
rectangle around a particular workshop that took place in Surat
on 12 July 2013. By clicking the lens symbol, one can see the
details of where the workshop took place, who conducted this
workshop and so on. When the number of students who attended
this workshop is shown in red (in this case, it is 51), it means that
some of them have given their feedback. By clicking the number
in red, one may locate the feedback given by students. A typical
feedback is shown in Fig. 5.

We present some statistics of the people who have under-
gone Python SELF workshops. The number of SELF workshops
conducted until now is 417, training close to 19,000 students,
with 9,300 of them being females. It is interesting because it is
believed that generally females do not take up programming in
large numbers. Some of the reasons for this could be that they
also find our methodology appealing, they are equally interested
in employment, etc. Python SELF workshops have taken place in
23 states of India. Year wise break up of workshops is given in
Table 2.

It should be pointed out that less than one half of the year is
over in 2014.

The Python SELF workshops are effective. We have the
following testimonials:

Through this workshop one can easily understand
the basics of Python, which in turn can develop an

Fig. 4: Summary of Python workshops, obtained by clicking the India
map in [Spoken], choosing Gujarat and then sorting by FOSS.

Fig. 5: Feedback given by a student of Shree Swami Atmanand
Saraswati Institute of Technology, Surat, Gujarat.

Year No. of workshops No. of students

2011 21 945
2012 144 6,562
2013 116 4,857
2014 138 6,499
Total 419 18,863

TABLE 2: Python SELF workshops, yearly statistics

CAMPAIGN FOR IT LITERACY THROUGH FOSS AND SPOKEN TUTORIALS 55

Fig. 6: Number of page views on [Spoken], since the beginning of
this website. As there are many offline viewers in India, the effective
number of page views may be considered to be at least twice these
numbers.

interest in one’s mind to learn more about Python. Thank
you very much for this wonderful workshop.

—Brindersingh - Guru Nanak Institute of Technology,
West Bengal

Got the initiative of how to work on Python that
makes the programming comparative easy. Apart from
this, graphical representation of mathematical formula-
tion is quite good.

—Abhishek Bhargava - Institute of Engineering &
Technology, Alwar

Our website [Spoken] is becoming popular. Fig. 6 gives details
of page views on our website. One can see that the number of
page views are doubling every year. The number of people who
benefit from our work is much higher than the numbers indicated
in this figure. This is because, there are a lot of students in
India who access our material through offline mechanisms, as
explained earlier. For example, even though more than 80,000
students have undergone SELF workshops on Linux (Table 1), the
largest number of server-recorded page views for any Linux video
is only about 2,500. It seems that the equivalent number of page
views on our page is at least ten times the number indicated in
Fig. 6.

A student who is trained through a SELF workshop is ready to
contribute to the community. A textbook companion is the easiest
way for them to contribute and in the process also get rewarded.
This is explained in the next section.

Textbook Companion

One of the major shortcomings of FOSS tools is the lack of
documentation. Proprietary software creators can deploy a lot of
money and other resources to develop good documentation. We
explain now how we have addressed this important issue through
Textbook Companions.

We wanted to create documents for FOSS using India’s abun-
dantly available work force, namely, students. Unfortunately, cre-
ating a document requires a lot of experience in teaching. Students
are good in writing programs, not documents. We explored the
possibility of addressing this by solving the inverse problem: ask
the students to write programs for existing documents. Textbooks
can be considered as good documents. After doing a pilot with six
students from different parts of India in the summer of 2010, we
came up with the formula of one student, one month, one textbook
companion.

Textbook companion (TBC) activity creates code for solved
examples of standard textbooks using FOSS. These are created

by students and the faculty of colleges from different parts of
India. Students who create these books are given an honorarium
of Rs. 10,000 for each companion. We were initially giving Rs.
5,000 honorarium to the teachers of these students for review and
quality assurance. This has not worked well, as the teachers are
generally not as knowledgeable and not as serious as the student
who created the TBC. We have now shifted the review work to a
general pool of experts, who are often students.

If anyone wants to understand what a program does, all that
they have to do is to go through the corresponding example in the
associated textbook. If TBCs are available for all textbooks used
in educational programmes, students and teachers would not need
proprietary software, at least for classroom use.

This programme is so flexible that almost anyone can con-
tribute to the Python Textbook Companion (PTC) activity: from
students to employees, teachers and freelancers. They can choose
a textbook of their choice from engineering, science or social
sciences, the only requirement being that Python is suitable for
solving example problems. Upon successful completion of a PTC,
the participant is awarded with a certificate and a handsome hon-
orarium. PTCs are presented in the form of IPython Notebooks.

The PTC interface [PTC] displays all the completed books
together with a screen-shot of code snippets, so that the user can
easily download the PTC of their interest. The interface also allows
the users to view all the codes of a chapter as an IPython notebook,
which makes learning Python easy.

We use the following process to develop a PTC:

1) A student uploads Python code for the examples of
one of the chapters of a chosen textbook. They should
ensure that this book is not already completed nor under
progress. They should also propose two other textbooks
for PTC creation, in case the one they selected is already
allocated to someone else.

2) Based on the Python code received for one chapter, our
reviewers decide whether the student knows sufficient
Python to complete the PTC. In case the selected textbook
is already allocated to someone else, one of the other two
chosen books is assigned. The student is given a time
period of three months to complete the PTC.

3) The student has to upload the Python code in a specified
format, on our portal.

4) Our reviewers check the correctness of the submitted
code. They check whether the answers given by the code
agree with those given in the textbooks.

5) Students who get all the code correct during the first
review itself get a bonus, in addition to the honorarium
mentioned above. Those who increase the work of re-
viewers by submitting wrong code are penalised and their
honorarium gets reduced.

We currently have PTCs in the following categories: Fluid
Mechanics, Chemical Engineering, Thermodynamics, Mechanical
Engineering, Signal Processing, Digital Communications, Electri-
cal Technology, Mathematics & Pure Science, Analog Electronics,
Computer Programming and others. Currently, there are 80 com-
pleted PTCs and 80 are in progress. PTCs so created are available
for free download at [PTC].

The creators of PTC learn Python in a practical and effective
way. One may see below testimonials from a few of the partici-
pants:

56 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

I experienced that even an inexperienced person can
do coding/programming. I gradually got to advance my
skills in Python as I approached further in it. I got the
IIT-B certificate, plus I got paid a handsome amount of
cheque after completion which was good enough for me
at then. -- Amitesh Kumar

I learnt Python from Spoken-Tutorials available on
the website. The Python TBC team also helped me a lot
in starting my internship. Till now, I have completed 3
TBCs and now, I know pretty much about python. I plan
to take this project forward and Python is really helping
me shine my resume. -- Deepak Shakya

This internship provided me a perfect platform and
environment to learn Python. It helped me to incorporate
both my ideas and practical work skills to the best.
Especially, those concepts of C which are not present
in Python gave me an awesome experience. Moreover,
experience gained from it will make me capable of
facing and overcoming the upcoming challenges under
its applications. -- Ramgopal Pandey

We would like to point out some of the processes we have
followed in the creation of PTC. Initially we tried to use the Sprint
route to create PTCs. This involved a few people jointly coding
all the problems, including unsolved problems, of a given book in
one sitting. Solving unsolved problems made the task difficult. A
book could not be completed in one session and those who coded
for a part of the textbook often did not follow up to complete
the work. There was also no ownership of the activity as many
people were involved in one book. In contrast, the Scilab group
used the approach explained previously and found it to be more
effective, and more productive: there are 377 completed Scilab
TBC and 266 are in progress. As a result, the Python group also
changed the strategy for the creation of PTCs and this has yielded
good results, as explained above. We are also in the process of
contacting all who created Scilab TBC urging them to take up the
PTC work.

The FOSSEE Team at IIT Bombay [FOSSEE] supports the fol-
lowing well known FOSS systems: Python, Scilab, OpenFOAM,
COIN-OR. It also supports the following FOSS systems developed
at IIT Bombay: Oscad (a locally developed for Electronic Design
Automation and an alternative to OrCAD), Sandhi (an alternative
to LabVIEW) and OpenFormal. We are in the process of creating
TBCs for all of these systems.

Lab Migration

Students who successfully complete textbook companions, dis-
cussed in the previous section, are ready to help their colleges
participate in lab migration, to be explained now.

Most of the academic programmes in India have laboratory
courses that expect the students to carry out about ten experiments
in a semester, in as many lab sessions, each lasting about three
hours. Providing FOSS code through textbook companions does
not necessarily enforce its use. On the other hand, if a FOSS
system were to be used in a lab course, because of its compulsory
nature, the use of FOSS system gets into the main stream. Simi-
larly, the use of proprietary software in lab courses perpetuates its
use. So long as a proprietary software is used in a lab course, any
number of FOSS textbook companions will not wean the students
away from the former.

Commercial
software

FOSS equivalent

Matlab Scilab
ORCAD Oscad
Fluent OpenFOAM
AnyLogic, Arena
Witness, ExtendSim
Quest, FlexSIM

SimPy

LabVIEW Sandhi

TABLE 3: Migration of commercial software based labs to FOSS
based labs

The FOSSEE team helps migrate commercial software based
labs to FOSS. Once a faculty member in a college wants to migrate
a lab to FOSS, we ask them or others in our network to come
up with the required code in an equivalent FOSS and pay an
honorarium. This code is made available to the public. Our team
carries out lab migration given in Table 3. The most successful of
them is Matlab to Scilab lab migration [LM]. We have migrated
about 25 labs from Matlab to Scilab and about 15 more are in
progress. On other FOSS families, we have migrated only a few
labs, but the interest is growing. Although its progress is slower
than that of TBC, lab migration can have a profound and lasting
impact in promoting FOSS.

There is an important difference between a TBC and lab
migration. The former is for a standard textbook and its utility
is of general value: it may be of use to many students at more
than one institution. A TBC is considered useful whether it is
used or not in any one particular college. In contrast, the problem
statements of a lab could be specific to a particular institution.
Because of this, if the institution that participates in lab migration
does not use the FOSS code it creates, the effort may be wasted.
We insist that lab migration should not be just on paper, but be
put in practice. Naturally, the progress in lab migration is slower
compared to the TBC effort.

Completing the Pyramid Structure

In this section, we explain how our FOSS efforts help result in
a pyramid structure of trained students. We started with SELF
workshop based training, progressed to TBC and then reached
lab migration, with each stage having increased complexity, as
explained in the previous sections. In this section, we explain how
a few other higher level activities that we have undertaken help
result in a pyramid structure.

The next complicated task we have recently undertaken is to
help our students do full projects using the FOSS that we support.
Here is a feedback from a student who completed his Master’s
thesis using Oscad:

With intensive cooperation and guidance on Oscad
EDA tool, from all of You, I have completed the project
on “Design and Performance Analysis of OTA based
SNR Meter” successfully and also submitted the project
report today. Sincere thanks to all of You. Oscad is really
user friendly and also highly accurate which is the main
reason for completion of the project so smoothly.

We at Mangalore Institute of Technology and Engi-
neering have decided to use Oscad for two of the labs
“Linear Integrated Circuits and Analog communication”

CAMPAIGN FOR IT LITERACY THROUGH FOSS AND SPOKEN TUTORIALS 57

and “Power Electronics” labs. Your support is very much
needed mainly for power electronics lab. Hope you will
provide it. Thanks a lot. -- Harish Bhat

The next task is to help improve the FOSS itself or to use
the FOSS to create new software. Typically, existing FOSS tools
are used to create new FOSS systems. Python turns out to be
an excellent glue language. We have used Python extensively
in the creation of Oscad [oscad-book], [oscad-lj]. We are using
Python extensively, once again, in the creation of Sandhi, a FOSS
alternative to LabVIEW. Sandhi is yet to be released to the
public. We have been using Python also to create online evaluation
software to administer post SELF workshop tests.

The next level in this progression is possibly entrepreneurship.
It is next level, because, an entrepreneurship is a lot more dif-
ficult compared to being a programmer. We also hope that the
entrepreneurs who would come out of our work would be good
in programming at the minimum. We are exploring the feasibility
of grooming potential entrepreneurs from the students whom we
train. At present we train about 200,000 students a year through
SELF workshops. We expect about 1% of them to be good,
possibly as a result of our FOSS promotion efforts. If 10% of
this 1% are interested in becoming entrepreneurs, we will have
about 200 people to train. Initial enquiries convince us that many
groups that want to promote entrepreneurship may be interested
in working with our selection. We believe that we can generate an
army of entrepreneurs. If we succeed in this endeavour, we would
really have achieved a pyramid structure.

The benefits of our effort are also in a pyramid structure. At
the lowest level, the learners get IT literacy. At the next level, we
have students passing exams, because of our training material, see
a testimonial:

In my college, one of the students in btech 3rd
year 1st sem was having a makeup exam and and he
was looking for guidance in learning Java. We gave the
spoken-tutorial CD material on Java, and gave explana-
tion on the contents of the CD. After the exam he came
and told that the spoken tutorial CD on java helped him
a lot and that he developed confidence in Java by going
thru all the tutorials and doing the assignments. He also
told that the video tutorials cleared most of his doubts
on java and helped him in passing the makeup exam. --
Prof. K. V. Nagarjuna, Sree Dattha Inst. of Engg. and
Science

Then, there are several levels of employment, starting from
routine IT work, all the way up to work in niche areas, with
attractive salaries. Finally, there is a possibility of one starting
one’s own company.

Aakash: World’s lowest cost computing device

The agency that funded our FOSS promotion projects has created
several e-content resources. It has also provided large amounts
of bandwidth to educational institutions. These two do not get
utilised effectively if the students do not have an affordable access
device. If a student does not have an access device, they cannot
participate in some of our projects. This affects their learning,
while simultaneously resulting in loss of possible honorarium
income. Aakash is the result of our efforts to address this problem
[mpsv13], [sp13].

Fig. 7: Spoken Tutorials run on Aakash

Fig. 8: A Python Textbook Companion on Aakash, the world’s lowest
cost computing device.

Aakash has indeed become a convergence device for our
projects. Spoken Tutorials can be played on Aakash, see Fig. 7. A
PTC running on Aakash is shown in Fig. 8.

Conclusions and Future Work

This article has summarised how the FOSS promotion work we
started in 2009 has evolved into a massive training programme
that caters to the bottom of the pyramid and also to those at the
top. Given that our approach has worked for IT skills development,
we are exploring the possibility of replicating this method to other
skills development areas as well. It will be great if we can succeed
in this, as India has a big shortage of skilled personnel and a large

58 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

IT Information Technology
FOSS Free and open source software
FOSSEE Free and open source software

for education
PTC Python Textbook Companion
SELF Spoken Tutorial based Educa-

tion and Learning through free
FOSS study

ST Spoken Tutorial
TBC Textbook Companion

TABLE 4

number of youngsters who want employment. The training may
have to start at school level and this is an order of magnitude
larger problem. Finally, all our material and processes are in the
open and are available to FOSS enthusiasts all over the world.

Abbreviations

Acknowledgements

The work reported in this article has been carried out by the 100+
staff members of the FOSSEE and Spoken Tutorial teams. The
author wishes to acknowledge the contributions of the Principal
Investigators of these projects. The author wants to thank Prabhu
Ramachandran for his help in converting this article to the required
format.

REFERENCES

[events-team] Spoken Tutorial Project. Events team contact de-
tails. http://process.spoken-tutorial.org/index.php/Software-
Training#Organising_Workshops, seen on 29 June 2014.

[forums] Spoken Tutorial Project. Online forum. http://forums.
spoken-tutorial.org/, seen on 11 Feb. 2014.

[FOSSEE] FOSSEE Team. Free and open source software in education.
http://fossee.in, Seen on 11 Feb. 2014.

[guidelines] Spoken Tutorial Team. Guidelines to create spoken tutori-
als. See http://process.spoken-tutorial.org/index.php/FOSS_
Stages/Checklist, seen on 11 Feb. 2014.

[kmm11-TUGboat] K. M. Moudgalya. LaTeX Training through Spoken Tu-
torials. TUGboat, 32(3):251–257, 2011.

[kmm14] K. M. Moudgalya. Pedagogical and organisational issues
in the campaign for it literacy through spoken tutorials.
In R. Huang, Kinshuk, and N.-S. Chen, editors, The new
development of technology enhanced learning, chapter 13.
Springer-Verlag, Berlin Heidelberg, 2014.

[LM] Scilab Team of FOSSEE. Matlab to Scilab lab migration.
http://www.scilab.in/Lab_Migration_Project, Last seen on 5
July 2014.

[mpsv13] K. M. Moudgalya, D. B. Phatak, N. K. Sinha, and Pradeep
Varma. Genesis of Aakash 2. CSI Communications, pages
21--23 and 29, Jan. 2013. Available at http://aakashlabs.org/
media/pubs/genesis-reprint.pdf, seen on 11 Feb. 2014.

[nm09] Ministry of Human Resource Development. National mis-
sion on education through ICT. http://www.sakshat.ac.in,
Last seen on 11 Feb. 2014.

[oscad-book] Y. Save, R Rakhi, N. D. Shambulingayya, R. M. Rokade, A.
Srivastava, M. R. Das, L. Pereira, S. Patil, S. Patnaik, and
K. M. Moudgalya. Oscad: An open source EDA tool for
circuit design, simulation, analysis and PCB design. Shroff
Publishers, Mumbai, 2013.

[oscad-lj] R. Rakhi and K. M. Moudgalya. Oscad: open source com-
puter aided design tool. Linux Journal, pages 96–113, May
2014.

[PTC] Python Team of FOSSEE. Python textbook companion. http:
//tbc-python.fossee.in, Seen on 19 June 2014.

[python-ws-info] Spoken Tutorial Team. List of Python workshops in Gujarat.
http://www.spoken-tutorial.org/completed_workshops_list/
GUJ?page=42&sort=asc&order=FOSS, Last seen on 29
June 2014.

[rmd] recordMyDesktop Team., http://sourceforge.net/projects/
recordmydesktop/, Last seen on 27 June 2014.

[sp13] S. Patil and S. Patnaik. GNU/Linux on Aakash. CSI Com-
munications, pages 28–31, July 2013. Available at http:
//aakashlabs.org/media/pubs/GNU_Linux_on_Aakash.pdf.

[Spoken] Spoken Tutorial Project. Official web page. http://spoken-
tutorial.org/, seen on 11 Feb. 2014.

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014) 59

Python for research and teaching economics

David R. Pugh‡∗

http://www.youtube.com/watch?v=xHkGW1l5X8k

F

Abstract—Together with theory and experimentation, computational modeling
and simulation has become a “third pillar” of scientific inquiry. I am developing a
curriculum for a three part, graduate level course on computational methods
designed to increase the exposure of graduate students and researchers in
the School of Economics at the University of Edinburgh to basic techniques
used in computational modeling and simulation using the Python programming
language. My course requires no prior knowledge or experience with computer
programming or software development and all current and future course materi-
als will be made freely available on-line via GitHub.

Index Terms—python, computational economics, dynamic economic models,
numerical methods

Introduction

Together with theory and experimentation, computational model-
ing and simulation has become a “third pillar” of scientific inquiry.
In this paper, I discuss the goals, objectives, and pedagogical
choices that I made in designing and teaching a Python-based
course on computational modeling and simulation to first-year
graduate students in the Scottish Graduate Programme in Eco-
nomics (SGPE) at the University of Edinburgh. My course requires
no prior knowledge or experience with computer programming or
software development and all current and future course materials
will be made freely available on-line.1

Like many first-year PhD students, I began my research career
with great faith in the analytic methods that I learned as an
undergraduate and graduate student. While I was aware that
economic models without closed-form solutions did exist, at no
time during my undergraduate or graduate studies was I presented
with an example of an important economic result that could not
be analytically derived. While these analytic results were often ob-
tained by making seemingly restrictive assumptions, the manner in
which these assumptions were often justified gives the impression
that such assumptions did not substantially impact the economic
content of the result. As such, I started work as a PhD student
under the impression that most all "interesting" economic research

* Corresponding author: pugh@maths.ox.ac.uk
‡ School of Economics, University of Edinburgh; Institute for New Economic
Thinking at the Oxford Martin School and Oxford Mathematical Institute,
University of Oxford

Copyright © 2014 David R. Pugh. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. This course would not have been possible without generous funding and
support from the Scottish Graduate Programme in Economics (SGPE), the
Scottish Institute for Research in Economics (SIRE), the School of Economics
at the University of Edinburgh, and the Challenge Investment Fund (CIF).

questions could, and perhaps even should, be tackled analytically.
Given that both of the leading graduate-level micro and macro-
economics textbooks, [mas-colell1995] and [romer2011], fail to
mention that computational methods are needed to fully solve even
basic economic models, I do not believe that I was alone in my
ignorance of the import of these methods in economics.

Fortunately (or unfortunately?) I was rudely awakened to
the reality of modern economics research during my first year
as a PhD student. Most economic models, particularly dynamic
economic models, exhibit essential non-linearities or binding
constraints that render them analytically intractable. Faced with
reality I was confronted with two options: give up my original
PhD research agenda, which evidently required computational
methods, in favor of a modified research program that I could
pursue with analytic techniques; or teach myself the necessary
numerical techniques to pursue my original research proposal. I
ended up spending the better part of two (out of my alloted three!)
years of my PhD teaching myself computational modeling and
simulation methods. The fact that I spent two-thirds of my PhD
learning the techniques necessary to pursue my original research
agenda indicated, to me at least, that there was a substantial gap
in the graduate economics training at the University of Edinburgh.
In order to fill this gap, I decided to develop a three-part course
on computational modeling and simulation.

The first part of my course is a suite of Python-based, interac-
tive laboratory sessions designed to expose students to the basics
of scientific programming in Python. The second part of the course
is a week-long intensive computational methods “boot camp.” The
boot camp curriculum focuses on deepening students’ computer
programming skills using the Python programming language and
teaching important software design principles that are crucial
for generating high-quality, reproducible scientific research using
computational methods. The final part of the course, which is very
much under development, will be an advanced training course
targeted at PhD students and will focus on applying more cutting
edge computational science techniques to economic problems via
a series of interactive lectures and tutorials.

Why Python?

Python is a modern, object-oriented programming language
widely used in academia and private industry, whose clean, yet
expressive syntax, makes it an easy programming language to
learn while still remaining powerful enough for serious scientific
computing.2 Python’s syntax was designed from the start with
the human reader in mind and generates code that is easy to
understand and debug which shortens development time relative to

60 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

low-level, compiled languages such as Fortran and C++. Among
the high-level, general purpose languages, Python has the largest
number of Matlab-style library modules (both installed in the stan-
dard library and through additional downloads) which meaning
that one can quickly construct sophisticated scientific applications.
While the Python programming language has found widespread
use in private industry and many fields within academia, the
capabilities of Python as a research tool remain relatively unknown
within the economics research community. Notable exceptions are
[stachurski2009] and [sargent2014].

Python is completely free and platform independent, making
it a very attractive option as a teaching platform relative to other
high-level scripting languages, particularly Matlab. Python is also
open-source, making it equally attractive as a research tool for
scientists interested in generating computational results that are
more easily reproducible.3 Finally, Python comes with a powerful
interactive interpreter that allows real-time code development and
live experimentation. The functionality of the basic Python inter-
preter can be greatly increased by using the Interactive Python (or
IPython) interpreter. Working via the Python or IPython interpreter
eliminates the time-consuming (and productivity-destroying) com-
pilation step required when working with low-level languages at
the expense of slower execution speed. In many cases, it may be
possible to achieve the best of both worlds using "mixed language"
programming as Python can be easily extended by wrapping
compiled code written in Fortran, C, or C++ using libraries such
as f2Py, Cython, or swig. See [oliphant2007], [peterson2009],
[behnel2011], [van2011] and references therein for more details.

Motivating the use of numerical methods in economics

The typical economics student enters graduate school with great
faith in the analytical mathematical tools that he or she was
taught as an undergraduate. In particular this student is under
the impression that virtually all economic models have closed-
form solutions. At worst the typical student believes that if he
or she were to encounter an economic model without a close-
form solution, then simplifying assumptions could be made that
would render the model analytically tractable without sacrificing
important economic content.

The typical economics student is, of course, wrong about
general existence of closed-form solutions to economic models.
In fact the opposite is true: most economic models, particular
dynamic, non-linear models with meaningful constraints (i.e.,
most any interesting model) will fail to have an analytic solution.
In order to demonstrate this fact and thereby motivate the use
of numerical methods in economics, I begin my course with
a laboratory session on the Solow model of economic growth
[solow1956].

Economics graduate student are very familiar with the Solow
growth model. For many students, the Solow model will have

2. A non-exhaustive list of organizations currently using Python for scien-
tific research and teaching: MIT’s legendary Introduction to Computer Science
and Programming, CS 6.00, is taught using Python; Python is the in-house
programming language at Google; NASA, CERN, Los Alamos National Labs
(LANL), Lawrence Livermore National Labs (LLNL), and Industrial Light and
Magic (ILM) all rely heavily on Python.

3. The Python Software Foundation License (PSFL) is a BSD-style license
that allows a developer to sell, use, or distribute his Python-based application in
anyway he sees fit. In addition, the source code for the entire Python scientific
computing stack is available on GitHub making it possible to directly examine
the code for any specific algorithm in order to better understand exactly how a
result has been obtained.

been one of the first macroeconomic models taught to them as
undergraduates. Indeed, the dominant macroeconomics textbook
for first and second year undergraduates, [mankiw2010], devotes
two full chapters to motivating and deriving the Solow model. The
first few chapters of [romer2011], one of the most widely used
final year undergraduate and first-year graduate macroeconomics
textbook, are also devoted to the Solow growth model and its
descendants.

The Solow growth model

The Solow model boils down to a single non-linear differential
equation and associated initial condition describing the time evo-
lution of capital stock per effective worker, k(t).

k̇(t) = s f (k(t))− (n+g+δ)k(t), k(t) = k0

The parameter 0 < s < 1 is the fraction of output invested and the
parameters n,g,δ are the rates of population growth, technological
progress, and depreciation of physical capital. The intensive form
of the production function f is assumed to be to be strictly concave
with

f (0) = 0, limk→0 f ′ = ∞, limk→∞ f ′ = 0.

A common choice for the function f which satisfies the above
conditions is known as the Cobb-Douglas production function.

f (k) = kα

Assuming a Cobb-Douglas functional form for f also makes the
model analytically tractable (and thus contributes to the typical
economics student’s belief that all such models "must" have an
analytic solution). [sato1963] showed that the solution to the
model under the assumption of Cobb-Douglas production is

k(t) =

[(
s

n+g+δ

)(
1− e−(n+g+δ)(1−α)t

)
+

k1−α
0 e−(n+g+δ)(1−α)t

] 1
1−α

.

A notable property of the Solow model with Cobb-Douglas
production is that the model predicts that the shares of real income
going to capital and labor should be constant. Denoting capital’s
share of income as αK(k), the model predicts that

αK(k)≡
∂ ln f (k)

∂ lnk
= α

Unfortunately, from figure 1 it is clear that the prediction of
constant factor shares is strongly at odds with the empirical data
for most countries. Fortunately, there is a simple generalization
of the Cobb-Douglas production function, known as the constant
elasticity of substitution (CES) function, that is capable of gener-
ating the variable factor shares observed in the data.

f (k) =
[

αkρ +(1−α)

] 1
ρ

where −∞ < ρ < 1 is the elasticity of substitution between capital
and effective labor in production. Note that

lim
ρ→0

f (k) = kα

and thus the CES production function nests the Cobb-Douglas
functional form as a special case. To see that the CES production
function also generates variable factor shares note that

αK(k)≡
∂ ln f (k)

∂ lnk
=

αkρ

αkρ +(1−α)

PYTHON FOR RESEARCH AND TEACHING ECONOMICS 61

which varies with k.
This seemingly simple generalization of the Cobb-Douglas

production function, which is necessary in order for the Solow
model generate variable factor share, an economically important
feature of the post-war growth experience in most countries, ren-
ders the Solow model analytically intractable. To make progress
solving a Solow growth model with CES production one needs to
resort to computational methods.

Numerically solving the Solow model

A computational solution to the Solow model allows me to
demonstrate a number of numerical techniques that students will
find generally useful in their own research.

First and foremost, solving the model requires efficiently and
accurately approximating the solution to a non-linear ordinary
differential equation (ODE) with a given initial condition (i.e.,
an non-linear initial value problem). Finite-difference methods are
commonly employed to solve such problems. Typical input to
such algorithms is the Jacobian matrix of partial derivatives of
the system of ODEs. Solving the Solow growth model allows me
to demonstrate the use of finite difference methods as well as how
to compute Jacobian matrices of non-linear systems of ODEs.

Much of the empirical work based on the Solow model focuses
on the model’s predictions concerning the long-run or steady state
equilibrium of the model. Solving for the steady state of the
Solow growth model requires solving for the roots of a non-linear
equation. Root finding problems, which are equivalent to solving
systems of typically non-linear equations, are one of the most
widely encountered computational problems in economic appli-
cations. Typical input to root-finding algorithms is the Jacobian
matrix of partial derivatives of the system of non-linear equations.
Solving for the steady state of the Solow growth model allows
me to demonstrate the use of various root finding algorithms as
well as how to compute Jacobian matrices of non-linear systems
of equations.

Finally, given some data, estimation of the model’s structural
parameters (i.e., g, n, s, α, δ , ρ) using either as maximum
likelihood or non-linear least squares requires solving a non-
linear, constrained optimization problem. Typical inputs to algo-
rithms for solving such non-linear programs are the Jacobian and
Hessian of the objective function with respect to the parameters
being estimated.4 Thus structural estimation also allows me to
demonstrate the symbolic and numerical differentiation techniques
needed to compute the Jacobian and Hessian matrices.

Course outline

Having motivated the need for computational methods in eco-
nomics, in this section I outline the three major components of my
computational methods course: laboratory sessions, an intensive
week-long Python boot camp, and an advanced PhD training
course. The first two components are already up and running
(thanks to funding support from the SGPE, SIRE, and the CIF).
I am still looking to secure funding to develop the advanced PhD
training course component.

Laboratory sessions

The first part of the course is a suite of Python-based laboratory
sessions that run concurrently as part of the core macroeconomics

4. The Hessian matrix is also used for computing standard errors of param-
eter estimates.

sequence. There are 8 labs in total: two introductory sessions,
three labs covering computational methods for solving models
that students are taught in macroeconomics I (fall term), three
labs covering computational methods for solving models taught in
macroeconomics II (winter term). The overall objective of these
laboratory sessions is to expose students to the basics of scientific
computing using Python in a way that reinforces the economic
models covered in the lectures. All of the laboratory sessions make
use of the excellent IPython notebooks.

The material for the two introductory labs draws heavily from
part I and part II of Quantitative Economics by Thomas Sargent
and John Stachurski. In the first lab, I introduce and motivate
the use of the Python programming language and cover the
bare essentials of Python: data types, imports, file I/O, iteration,
functions, comparisons and logical operators, conditional logic,
and Python coding style. During the second lab, I attempt to
provide a quick overview of the Python scientific computing
stack (i.e., IPython, Matplotlib, NumPy, Pandas, and SymPy) with
a particular focus on those pieces that students will encounter
repeatedly in economic applications.

The material for the remaining 6 labs is designed to comple-
ment the core macroeconomic sequence of the SGPE and thus
varies a bit from year to year. During the 2013-2014 academic
year I covered the following material:

• Initial value problems: Using the [solow1956] model of
economic growth as the motivating example, I demonstrate
finite-difference methods for efficiently and accurately
solving initial value problems of the type typically encoun-
tered in economics.

• Boundary value problems: Using the neo-classical op-
timal growth model of [ramsey1928], [cass1965], and
[koopmans1965] as the motivating example, I demonstrate
basic techniques for efficiently and accurately solving
two-point boundary value problems of the type typically
encountered in economics using finite-difference methods
(specifically forward, reverse, and multiple shooting).

• Numerical dynamic programming: I demonstrate basic
techniques for solving discrete-time, stochastic dynamic
programming problems using a stochastic version of the
neo-classical optimal growth model as the motivating
example.

• Real business cycle models: I extend the stochastic op-
timal growth model to incorporate a household labor
supply decision and demonstrate how to approximate the
model solution using dynare++, a C++ library specializing
in computing k-order Taylor approximations of dynamic
stochastic general equilibrium (DSGE) models.

In future versions of the course I hope to include laboratory
sessions on DSGE monetary policy models, DSGE models with
financial frictions, and models of unemployment with search
frictions. These additional labs are likely to be based around
dissertations being written by current MSc students.

Python boot camp

Whilst the laboratory sessions expose students to some of the
basics of programming in Python as well as numerous applications
of computational methods in economics, these lab sessions are
inadequate preparation for those students wishing to apply such
methods as part of their MSc dissertations or PhD theses.

62 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Fig. 1: Labor’s share of real GDP has been declining, on average, for much of the post-war period. For many countries, such as India, China,
and South Korea, the fall in labor’s share has been dramatic.

In order to provide interested students with the skills needed
to apply computational methods in their own research I have
developed a week-long intensive computational methods "boot
camp." The boot camp requires no prior knowledge or experience
with computer programming or software development and all
current and future course materials are made freely available on-
line.

Each day of the boot camp is split into morning and afternoon
sessions. The morning sessions are designed to develop attendees
Python programming skills while teaching important software
design principles that are crucial for generating high-quality,
reproducible scientific research using computational methods. The
syllabus for the morning sessions closely follows Think Python by
Allen Downey.

In teaching Python programming during the boot camp I
subscribe to the principle of "learning by doing." As such my
primary objective on day one of the Python boot camp is to get
attendees up and coding as soon as possible. The goal for the first
morning session is to cover the first four chapters of Think Python.

• Chapter 1: The way of the program;
• Chapter 2: Variables, expressions, and statements;
• Chapter 3: Functions;
• Chapter 4: Case study on interface design.

The material in these introductory chapters is clearly presented
and historically students have generally had no trouble interac-
tively working through the all four chapters before the lunch
break. Most attendees break for lunch on the first day feeling
quite good about themselves. Not only have they covered a lot
of material, they have managed to write some basic computer
programs. Maintaining student confidence is important: as long as
students are confident and feel like they are progressing, they will
remain focused on continuing to build their skills. If students get
discouraged, perhaps because they are unable to solve a certain
exercise or decipher a cryptic error traceback, they will lose their
focus and fall behind.

The second morning session covers the next three chapters of
Think Python:

• Chapter 5: Conditionals and recursion;

• Chapter 6: Fruitful functions;
• Chapter 7: Iteration.

At the start of the session I make a point to emphasize that
the material being covered in chapters 5-7 is substantially more
difficult than the introductory material covered in the previous
morning session and that I do not expect many students to make
it through the all of material before lunch. The idea is to manage
student expectations by continually reminding them that the course
is designed in order that they can learn at their own pace

The objective of for the third morning session is the morning
session of day three the stated objective is for students to work
through the material in chapters 8-10 of Think Python.

• Chapter 8: Strings;
• Chapter 9: A case study on word play;
• Chapter 10: Lists.

The material covered in chapter 8 and chapter 10 is particularly
important as these chapters cover two commonly used Python
data types: strings and lists. As a way of drawing attention to
the importance of chapters 8 and 10, I encourage students to work
through both of these chapters before returning to chapter 9.

The fourth morning session covers the next four chapters of
Think Python:

• Chapter 11: Dictionaries;
• Chapter 12: Tuples;
• Chapter 13: Case study on data structure selection;
• Chapter 14: Files.

The morning session of day four is probably the most demand-
ing. Indeed many students take two full session to work through
this material. Chapters 11 and 12 cover two more commonly
encountered and important Python data types: dictionaries and
tuples. Chapter 13 is an important case study that demonstrates the
importance of thinking about data structures when writing library
code.

The final morning session is designed to cover the remaining
five chapters of Think Python on object-oriented programming
(OOP):

PYTHON FOR RESEARCH AND TEACHING ECONOMICS 63

• Chapter 15: Classes and Objects;
• Chapter 16: Classes and Functions;
• Chapter 17: Classes and Methods;
• Chapter 18: Inheritance;
• Chapter 19: Case Study on Tkinter.

While this year a few students managed to get through at
least some of the OOP chapters, the majority of students managed
only to get through chapter 13 over the course of the five, three-
hour morning sessions. Those students who did manage to reach
the OOP chapters in general failed to grasp the point of OOP
and did not see how they might apply OOP ideas in their own
research. I see this as a major failing of my teaching as I have
found OOP concepts to be incredibly useful in my own research.
[stachurski2009], and [sargent2014] also make heavy use of OOP
techniques.

While the morning sessions focus on building the foundations
of the Python programming language, the afternoon sessions are
devoted to demonstrating the use of Python in scientific computing
by exploring in greater detail the Python scientific computing
stack. During the afternoon session on day one I motivate the
use of Python in scientific computing and spend considerable time
getting students set up with a suitable Python environment and
demonstrating the basic scientific work flow.

I provide a quick tutorial of the Enthought Canopy distribution.
I then discuss the importance of working with a high quality
text editor, such as Sublime, and make sure that students have
installed both Sublime as well as the relevant Sublime plug-ins
(i.e., SublimeGit and LatexTools for Git and LaTex integration,
respectively; SublimeLinter for code linting, etc). I make sure
that students can install Git and stress the importance of using
distributed version control software in scientific computing and
collaboration. Finally I cover the various flavors of the IPython
interpreter: the basic IPython terminal, IPython QTconsole, and
the IPython notebook.

The afternoon curriculum for days two through five is built
around the Scientific Programming in Python lecture series and
supplemented with specific use cases from my own research. My
goal is to cover all of the material in lectures 1.3, 1.4, and 1.5
covering NumPy, Matplotlib and SciPy, respectively. In practice I
am only able to cover a small subset of this material during the
afternoon sessions.

Advanced PhD training course

The final part of the course (for which I am still seeking funding
to develop!) is a six week PhD advanced training course that fo-
cuses on applying cutting edge computational science techniques
to economic problems via a series of interactive lectures and
tutorials. The curriculum for this part of the course will derive
primarily from [judd1998], [stachurski2009], and parts III and IV
of [sargent2014]. In particular, I would like to cover the following
material.

• Linear equations and iterative methods: Gaussian elimi-
nation, LU decomposition, sparse matrix methods, error
analysis, iterative methods, matrix inverse, ergodic distri-
butions over-identified systems.

• Optimization: 1D minimization, multi-dimensional mini-
mization using comparative methods, Newton’s method for
multi-dimensional minimization, directed set methods for
multi-dimensional minimization, non-linear least squares,
linear programming, constrained non-linear optimization.

• Non-linear equations: 1D root-finding, simple methods
for multi-dimensional root-finding, Newton’s method for
multi-dimensional root-finding, homotopy continuation
methods.

• Approximation methods: local approximation methods,
regression as approximation, orthogonal polynomials,
least-squares orthogonal polynomial approximation, uni-
form approximation, interpolation, piece-wise polyno-
mial interpolation, splines, shape-preserving approxima-
tion, multi-dimensional approximation, finite-element ap-
proximations.

• Economic applications: finite-state Markov chains, linear
state space models, the Kalman filter, dynamic program-
ming, linear-quadratic control problems, continuous-state
Markov chains, robust control problems, linear stochastic
models.

Conclusion

In this paper I have outlined the three major components of my
computational methods course: laboratory sessions, an intensive
week-long Python boot camp, and an advanced PhD training
course. The first two components are already up and running
(thanks to funding support from the SGPE, SIRE, and the CIF).
I am still looking to secure funding to develop the advanced PhD
training course component.

I have been pleasantly surprised at the eagerness of eco-
nomics graduate students both to learn computational modeling
and simulation methods and to apply these techniques to the
analytically intractable problems that they are encountering in
their own research. Their eagerness to learn is, perhaps, a di-
rect response to market forces. Both within academia, industry,
and the public sector there is an increasing demand for both
applied and theoretical economists interested in inter-disciplinary
collaboration. The key to developing and building the capacity
for inter-disciplinary research is effective communication using a
common language. Historically that common language has been
mathematics. Increasingly, however, this language is becoming
computation. It is my hope that the course outlined in this paper
might served as a prototype for other Python-based computational
methods courses for economists and other social scientists.

REFERENCES

[behnel2011] S. Behnel, et al. Cython: The best of both worlds,
Computing in Science and Engineering, 13(2):31-
39, 2011.

[cass1965] D. Cass. Optimum growth in an aggregative model of
capital accumulation, Review of Economic Stud-
ies, 32, 233–240.

[judd1998] K. Judd. Numerical Methods for Economists, MIT
Press, 1998.

[koopmans1965] T. Koopmans. On the concept of optimal economic
growth, Econometric Approach to Development
Planning, 225–87. North-Holland, 1965.

[mankiw2010] N.G. Mankiw. Intermediate Macroeconomics, 7th edition,
Worth Publishers, 2010.

[mas-colell1995] A.Mas-Colell,et al. Microeconomic Theory, 7th ediition,
Oxford University Press, 1995.

[oliphant2007] T. Oliphant. Python for scientific computing, Comput-
ing in Science and Engineering, 9(3):10-20, 2007.

[peterson2009] P. Peterson. F2PY: a tool for connecting Fortran and
Python programs, International Journal of Com-
putational Science and Engineering, 4(4):296-305,
2009.

[ramsey1928] F. Ramsey. A mathematical theory of saving, Eco-
nomic Journal, 38(152), 543–559.

64 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

[romer2011] D. Romer. Advanced Macroeconomics, 4th edition,
MacGraw Hill, 2011.

[sargent2014] T. Sargent and J. Stachurski. Quantitative Economics,
2014.

[sato1963] R. Sato. Fiscal policy in a neo-classical growth
model: An analysis of time required for equili-
brating adjustment, Review of Economic Studies,
30(1):16-23, 1963.

[solow1956] R. Solow. A contribution to the theory of economic
growth, Quarterly Journal of Economics, 70(1):64-
95, 1956.

[stachurski2009] J. Stachurski. Economic dynamics: theory and com-
putation, MIT Press, 2009.

[van2011] S. Van Der Walt, et al. The NumPy array: a structure
for efficient numerical computation, Computing in
Science and Engineering, 13(2):31-39, 2011.

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014) 65

Validated numerics with Python: the ValidiPy package

David P. Sanders‡∗, Luis Benet§

F

Abstract—We introduce the ValidiPy package for validated numerics in Python.
This suite of tools, which includes interval arithmetic and automatic differenti-
ation, enables rigorous and guaranteed results using floating-point arithmetic.
We apply the ValidiPy package to two classic problems in dynamical systems,
calculating periodic points of the logistic map, and simulating the dynamics of a
chaotic billiard model.

Index Terms—validated numerics, Newton method, floating point, interval arith-
metic

Floating-point arithmetic

Scientific computation usually requires the manipulation of real
numbers. The standard method to represent real numbers inter-
nally in a computer is floating-point arithmetic, in which a real
number a is represented as

a =±2e×m.

The usual double-precision (64-bit) representation is that of the
IEEE 754 standard [IEEE754]: one bit is used for the sign, 11 bits
for the exponent e, which ranges from −1022 to +1023, and the
remaining 52 bits are used for the "mantissa" m, a binary string of
53 bits, starting with a 1 which is not explicitly stored.

However, most real numbers are not explicitly representable in
this form, for example 0.1, which in binary has the infinite periodic
expansion

0.0 0011 0011 0011 0011 . . . ,

in which the pattern 0011 repeats forever. Representing this in a
computer with a finite number of digits, via truncation or rounding,
gives a number that differs slightly from the true 0.1, and leads to
the following kinds of problems. Summing 0.1 many times -- a
common operation in, for example, a time-stepping code, gives
the following unexpected behaviour.
a = 0.1

total = 0.0

print("%20s %25s" % ("total", "error"))
for i in xrange(1000):

if i%100 == 0 and i>0:
error = total - i/10

* Corresponding author: dpsanders@ciencias.unam.mx
‡ Department of Physics, Faculty of Sciences, National Autonomous University
of Mexico (UNAM), Ciudad Universitaria, México D.F. 04510, Mexico
§ Institute of Physical Sciences, National Autonomous University of Mexico
(UNAM), Apartado postal 48-3, Cuernavaca 62551, Morelos, Mexico

Copyright © 2014 David P. Sanders et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

print("%20.16g %25.16g" % (total, error))
total += a

total error
9.99999999999998 -1.953992523340276e-14
20.00000000000001 1.4210854715202e-14
30.00000000000016 1.56319401867222e-13
40.0000000000003 2.984279490192421e-13
50.00000000000044 4.405364961712621e-13
60.00000000000058 5.826450433232822e-13
70.0000000000003 2.984279490192421e-13
79.99999999999973 -2.700062395888381e-13
89.99999999999916 -8.384404281969182e-13

Here, the result oscillates in an apparently "random" fashion
around the expected value.

This is already familiar to new users of any programming lan-
guage when they see the following kinds of outputs of elementary
calculations [Gold91]:

3.2 * 4.6

14.719999999999999

Suppose that we now apply an algorithm starting with an initial
condition x0 = 0.1. The result will be erroneous, since the initial
condition used differs slightly from the desired value. In chaotic
systems, for example, such a tiny initial deviation may be quickly
magnified and destroy all precision in the computation. Although
there are methods to estimate the resulting errors [High96], there
is no guarantee that the true result is captured. Another example is
certain ill-conditioned matrix computations, where small changes
to the matrix lead to unexpectedly large changes in the result.

Interval arithmetic

Interval arithmetic is one solution for these difficulties. In this
method, developed over the last 50 years but still relatively
unknown in the wider scientfic community, all quantities in a
computation are treated as closed intervals of the form [a,b]. If
the initial data are contained within the initial intervals, then the
result of the calculation is guaranteed to contain the true result.
To accomplish this, the intervals are propagated throughout the
calculation, based on the following ideas:

1) All intervals must be correctly rounded: the lower limit
a of each interval is rounded downwards (towards −∞)
and the upper limit b is rounded upwards (towards +∞).
[The availability of these rounding operations is stan-
dard on modern computing hardware.] In this way, the
interval is guaranteed to contain the true result. If we
do not apply rounding, then this might not be the case;
for example, the interval given by I = Interval(0.1,0.2)

66 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

does not actually contain the true 0.1 if the stan-
dard floating-point representation for the lower end-
point is used; instead, this lower bound corresponds to
0.10000000000000000555111

2) Arithmetic operations are defined on intervals, such that
the result of an operation on a pair of intervals is the
interval that is the result of performing the operation on
any pair of numbers, one from each interval.

3) Elementary functions are defined on intervals, such that
the result of an elementary function f applied to an
interval I is the image of the function over that interval,
f (I) := { f (x) : x ∈ I}.

For example, addition of two intervals is defined as

[a,b]+ [c,d] := {x+ y : x ∈ [a,b],y ∈ [c,d]},

which turns out to be equivalent to

[a,b]+ [c,d] := [a+ c,b+d].

The exponential function applied to an interval is defined as

exp([a,b]) := [exp(a),exp(b)],

giving the exact image of the monotone function exp evaluated
over the interval.

Once all required operations and elementary functions (such as
sin, exp etc.) are correctly defined, and given a technical condition
called "inclusion monotonicity", for any function f : R→R made
out of a combination of arithmetic operations and elementary
functions, we may obtain the interval extension f̃ . This is a
"version" of the function which applies to intervals, such that
when we apply f̃ to an interval I, we obtain a new interval
f̃ (I) that is guaranteed to contain the true, mathematical image
f (I) := { f (x) : x ∈ I}.

Unfortunately, f̃ (I) may be strictly larger than the true image
f (I), due to the so-called dependency problem. For example, let
I := [−1,1]. Suppose that f (x) := x∗x, i.e. that we wish to square
all elements of the interval. The true image of the interval I is then
f (I) = [0,1].

However, thinking of the squaring operation as repeated mul-
tiplication, we may try to calculate

I ∗ I := {xy : x ∈ I,y ∈ I}.

Doing so, we find the larger interval [−1,1], since we "do not
notice" that the x’s are "the same" in each copy of the interval;
this, in a nutshell, is the dependency problem.

In this particular case, there is a simple solution: we calculate
instead I2 := {x2 : x ∈ I}, so that there is only a single copy of I
and the true image is obtained. However, if we consider a more
complicated function like f (x) = x+ sin(x), there does not seem
to be a generic way to solve the dependency problem and hence
find the exact range.

This problem may, however, be solved to an arbitrarily good
approximation by splitting up the initial interval into a union of
subintervals. When the interval extension is instead evaluated over
those subintervals, the union of the resulting intervals gives an
enclosure of the exact range that is increasingly better as the size
of the subintervals decreases [Tuck11].

Validated numerics: the ValidiPy package

The name "validated numerics" has been applied to the com-
bination of interval arithmetic, automatic differentiation, Taylor
methods and other techniques that allow the rigorous solution of
problems using finite-precision floating point arithmetic [Tuck11].

The ValidiPy package, a Python package for validated
numerics, was initiated during a Masters’ course on validated nu-
merics that the authors taught in the Postgraduate Programmes in
Mathematics and Physics at the National Autonomous University
of Mexico (UNAM) during the second half of 2013. It is based
on the excellent textbook Validated Numerics by Warwick Tucker
[Tuck11], one of the foremost proponents of interval arithmetic
today. He is best known for [Tuck99], in which he gave a rigorous
proof of the existence of the Lorenz attractor, a strange (fractal,
chaotic) attractor of a set of three ordinary differential equations
modelling convection in the atmosphere that were computationally
observed to be chaotic in 1963 [Lorenz].

Naturally, there has been previous work on implementing the
different components of Validated Numerics in Python, such as
pyinterval and mpmath for interval arithmetic, and AlgoPy for
automatic differentiation. Our project is designed to provide an
understandable and modifiable code base, with a focus on ease of
use, rather than speed.

An incomplete sequence of IPython notebooks from the
course, currently in Spanish, provide an introduction to the theory
and practice of interval arithmetic; they are available on GitHub
and for online viewing at NbViewer.

Code in Julia is also available, in our package
ValidatedNumerics.jl [ValidatedNumerics].

Implementation of interval arithmetic

As with many other programming languages, Python allows us
to define new types, as class es, and to define operations on
those types. The following working sketch of an Interval
class may be extended to a full-blown implementation (which, in
particular, must include directed rounding; see below), available
in the [ValidiPy] repository.

class Interval(object):
def __init__(self, a, b=None):

constructor

if b is None:
b = a

self.lo = a
self.hi = b

def __add__(self, other):
if not isinstance(other, Interval):

other = Interval(other)
return Interval(self.lo+other.lo,

self.hi+other.hi)

def __mul__(self, other):
if not isinstance(other, Interval):

other = Interval(other)

S = [self.lo*other.lo, self.lo*other.hi,
self.hi*other.lo, self.hi*other.hi]

return Interval(min(S), max(S))

def __repr__(self):
return "[{}, {}]".format(self.lo, self.hi)

Examples of creation and manipulation of intervals:

VALIDATED NUMERICS WITH PYTHON: THE VALIDIPY PACKAGE 67

i = Interval(3)
i

[3, 3]

i = Interval(-3, 4)
i

[-3, 4]

i * i

[-12, 16]

def f(x):
return x*x + x + 2

f(i)

[-13, 22]

To attain multiple-precision arithmetic and directed rounding, we
use the gmpy2 package [gmpy2]. This provides a wrapper around
the MPFR [MPFR] C package for correctly-rounded multiple-
precision arithmetic [Fous07]. For example, a simplified version
of the Interval constructor may be written as follows, showing
how the precision and rounding modes are manipulated using the
gmpy2 package:

import gmpy2
from gmpy2 import RoundDown, RoundUp

ctx = gmpy2.get_context()

def set_interval_precision(precision):
gmpy2.get_context().precision = precision

def __init__(self, a, b=None):
ctx.round = RoundDown
a = mpfr(str(a))

ctx.round = RoundUp
b = mpfr(str(b))

self.lo, self.hi = a, b

Each arithmetic and elementary operation must apply directed
rounding in this way at each step; for example, the implemen-
tations of multiplication and exponentiation of intervals are as
follows:

def __mult__(self,other):

ctx.round = RoundDown
S_lower = [self.lo*other.lo, self.lo*other.hi,

self.hi*other.lo, self.hi*other.hi]
S1 = min(S_lower)

ctx.round = RoundUp
S_upper = [self.lo*other.lo, self.lo*other.hi,

self.hi*other.lo, self.hi*other.hi]
S2 = max(S_upper)

return Interval(S1, S2)

def exp(self):
ctx.round = RoundDown
lower = exp(self.lo)

ctx.round = RoundUp

upper = exp(self.hi)

return Interval(lower, upper)

The Interval Newton method

As applications of interval arithmetic and of ValidiPy, we will
discuss two classical problems in the area of dynamical systems.
The first is the problem of locating all periodic orbits of the
dynamics, with a certain period, of the well-known logistic map.
To do so, we will apply the Interval Newton method.

The Newton (or Newton--Raphson) method is a standard
algorithm for finding zeros, or roots, of a nonlinear equation, i.e.
x∗ such that f (x∗) = 0, where f : R→ R is a nonlinear function.

The Newton method starts from an initial guess x0 for the root
x∗, and iterates

xn+1 = xn−
f (xn)

f ′(xn)
,

where f ′ : R→ R is the derivative of f . This formula calculates
the intersection of the tangent line to the function f at the point xn
with the x-axis, and thus gives a new estimate of the root.

If the initial guess is sufficiently close to a root, then this
algorithm converges very quickly ("quadratically") to the root: the
number of correct digits doubles at each step.

However, the standard Newton method suffers from problems:
it may not converge, or may converge to a different root than the
intended one. Furthermore, there is no way to guarantee that all
roots in a certain region have been found.

An important, but too little-known, contribution of interval
analysis is a version of the Newton method that is modified to
work with intervals, and is able to locate all roots of the equation
within a specified interval I, by isolating each one in a small sub-
interval, and to either guarantee that there is a unique root in each
of those sub-intervals, or to explicitly report that it is unable to
determine existence and uniqueness.

To understand how this is possible, consider applying the
interval extension f̃ of f to an interval I. Suppose that the image
f̃ (I) does not contain 0. Since f (I) ⊂ f̃ (I), we know that f (I)
is guaranteed not to contain 0, and thus we guarantee that there
cannot be a root x∗ of f inside the interval I. On the other hand, if
we evaluate f at the endpoints a and b of the interval I = [a,b] and
find that f (a) < 0 < f (b) (or vice versa), then we can guarantee
that there is at least one root within the interval.

The Interval Newton method does not just naively extend the
standard Newton method. Rather, a new operator, the Newton
operator, is defined, which takes an interval as input and returns
as output either one or two intervals. The Newton operator for the
function f is defined as

N f (I) := m− f (m)

f̃ ′(I)
,

where m := m(I) is the midpoint of the interval I, which may
be treated as a (multi-precision) floating-point number, and f̃ ′(I)
is an interval extension of the derivative f ′ of f . This interval
extension may easily be calculated using automatic differentiation
(see below). The division is now a division by an interval, which
is defined as for the other arithmetic operations. In the case when
the interval f̃ ′(I) contains 0, this definition leads to the result
being the union of two disjoint intervals: if I = [−a,b] with a >
0 and b > 0, then we define 1/I = (1/[−a,−0])∪ (1/[0,b]) =
[−∞,−1/a]∪ [1/b,∞].

68 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Fig. 1: Convergence of the Interval Newton method to the roots of 2.

The idea of this definition is that the result of applying the
operator N f to an interval I will necessarily contain the result of
applying the standard Newton operator at all points of the interval,
and hence will contain all possible roots of the function in that
interval.

Indeed, the following strong results may be rigorously proved
[Tuck11]: 1. If N f (I)∩ I = /0, then I contains no zeros of f ; 2. If
N f (I)⊂ I, then I contains exactly one zero of f .

If neither of these options holds, then the interval I is split into
two equal subintervals and the method proceeds on each. Thus
the Newton operator is sufficient to determine the presence (and
uniqueness) or absence of roots in each subinterval.

Starting from an initial interval I0, and iterating In+1 := In ∩
N f (In), gives a sequence of lists of intervals that is guaranteed
to contain the roots of the function, as well as a guarantee of
uniqueness in many cases.

The code to implement the Interval Newton method com-
pletely is slightly involved, and may be found in an IPython note-
book in the examples directory at <https://github.com/computo-
fc/ValidiPy/tree/master/examples>.

An example of the Interval Newton method in action is shown
in figure 1, where it was used to find the roots of f (x) = x2− 2
within the initial interval [−5,5]. Time proceeds vertically from
bottom to top.

Periodic points of the logistic map

An interesting application of the Interval Newton method is to
dynamical systems. These may be given, for example, as the
solution of systems of ordinary differential equations, as in the
Lorenz equations [Lor63], or by iterating maps. The logistic map
is a much-studied dynamical system, given by the map

f (x) := fr(x) := rx(1− x).

The dynamics is given by iterating the map:

xn+1 = f (xn),

so that
xn = f (f (f (· · ·(x0) · · ·))) = f n(x0),

where f n denotes f ◦ f ◦· · ·◦ f , i.e. f composed with itself n times.
Periodic points play a key role in dynamical system: these are

points x such that f p(x) = x; the minimal p > 0 for which this

is satisfied is the period of x. Thus, starting from such a point,
the dynamics returns to the point after p steps, and then eternally
repeats the same trajectory. In chaotic systems, periodic points are
dense in phase space [Deva03], and properties of the dynamics
may be calculated in terms of the periodic points and their
stability properties [ChaosBook]. The numerical enumeration of
all periodic points is thus a necessary part of studying almost any
such system. However, standard methods usually do not guarantee
that all periodic points of a given period have been found.

On the contrary, the Interval Newton method, applied to the
function gp(x) := f p(x)− x, guarantees to find all zeros of the
function gp, i.e. all points with period at most p (or to explicitly
report where it has failed). Note that this will include points of
lower period too; thus, the periodic points should be enumerated
in order of increasing period, starting from period 1, i.e. fixed
points x such that f (x) = x.

To verify the application of the Interval Newton method to
calculate periodic orbits, we use the fact that the particular case of
f4 the logistic map with r = 4 is conjugate (related by an invertible
nonlinear change of coordinates) to a simpler map, the tent map,
which is a piecewise linear map from [0,1] onto itself, given by

T (x) :=

{
2x, if x < 1

2 ;
2−2x, if x > 1

2 .

The nth iterate of the tent map has 2n "pieces" (or "laps") with
slopes of modulus 2n, and hence exactly 2n points that satisfy
T n(x) = x.

The ith "piece" of the nth iterate (with i = 0, . . . ,2n− 1) has
equation

T n
i (x) =

{
2nx− i, if i is even and i

2n ≤ x < i+1
2n

i+1−2nx, if i is odd and i
2n ≤ x < i+1

2n

Thus the solution of T n
i (x) = x satisfies

xn
i =

{
i

2n−1 , if i is even;
i+1

1+2n , if i is odd,

giving the 2n points which are candidates for periodic points of
period n. (Some are actually periodic points with period p that is
a proper divisor of n, satisfying also T p(x) = x.) These points are
shown in figure 2.

It turns out [Ott] that the invertible change of variables

x = h(y) = sin2(πy
2)

converts the sequence (yn), given by iterating the tent map,

yn+1 = T (yn),

into the sequence (xn) given by iterating the logistic map f4,

xn+1 = f4(xn) = 4xn(1− xn).

Thus periodic points of the tent map, satisfying T m(y) = y, are
mapped by h into periodic points x of the logistic map, satisfying
T m(x) = x, shown in figure 3.

The following table (figure 4) gives the midpoint of the
intervals containing the fixed points x such that f 4

4 (x) = x of the
logistic map, using the Interval Newton method with standard
double precision, and the corresponding exact values using the
correspondence with the tent map, together with the difference.
We see that the method indeed works very well. However, to find
periodic points of higher period, higher precision must be used.

VALIDATED NUMERICS WITH PYTHON: THE VALIDIPY PACKAGE 69

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2: Periodic points of the tent map with period dividing 4.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3: Periodic points of the logistic map with period dividing 4.

Automatic differentiation

A difficulty in implementing the Newton method (even for the
standard version), is the calculation of the derivative f ′ at a given
point a. This may be accomplished for any function f by auto-
matic (or algorithmic) differentiation, also easily implemented in
Python.

The basic idea is that to calculate f ′(a), we may split a
complicated function f up into its constituent parts and propagate
the values of the functions and their derivatives through the
calculations. For example, f may be the product and/or sum of

 0.0000000000000000 0.0000000000000000 0.0000000000000000
 0.0337638852978221 0.0337638852978221 -0.0000000000000000
 0.0432272711786996 0.0432272711786995 0.0000000000000000
 0.1304955413896703 0.1304955413896704 -0.0000000000000001
 0.1654346968205710 0.1654346968205709 0.0000000000000001
 0.2771308221117308 0.2771308221117308 0.0000000000000001
 0.3454915028125262 0.3454915028125263 -0.0000000000000001
 0.4538658202683487 0.4538658202683490 -0.0000000000000003
 0.5522642316338270 0.5522642316338265 0.0000000000000004
 0.6368314950360415 0.6368314950360414 0.0000000000000001
 0.7500000000000000 0.7499999999999999 0.0000000000000001
 0.8013173181896283 0.8013173181896283 0.0000000000000000
 0.9045084971874738 0.9045084971874736 0.0000000000000002
 0.9251085678648071 0.9251085678648070 0.0000000000000001
 0.9890738003669028 0.9890738003669027 0.0000000000000001
 0.9914865498419509 0.9914865498419507 0.0000000000000002

Fig. 4: Period 4 points: calculated, exact, and the difference.

simpler functions. To combine information on functions u and v,
we use

(u+ v)′(a) = u′(a)+ v′(a),

(uv)′(a) = u′(a)v(a)+u(a)v′(a),

(g(u))′(a) = g′(u(a))u′(a).

Thus, for each function u, it is sufficient to represent it as an
ordered pair (u(a),u′(a)) in order to calculate the value and
derivative of a complicated function made out of combinations
of such functions.

Constants C satisfy C′(a) = 0 for all a, so that they are repre-
sented as the pair (C,0). Finally, the identity function id : x 7→ x
has derivative id′(a) = 1 at all a.

The mechanism of operator overloading in Python allows us
to define an AutoDiff class. Calculating the derivative of a
function f(x) at the point a is then accomplished by calling
f(AutoDiff(a, 1)) and extracting the derivative part.

class AutoDiff(object):
def __init__(self, value, deriv=None):

if deriv is None:
deriv = 0.0

self.value = value
self.deriv = deriv

def __add__(self, other):
if not isinstance(other, AutoDiff):

other = AutoDiff(other)

return AutoDiff(self.value+other.value,
self.deriv+other.deriv)

def __mul__(self, other):
if not isinstance(other, AutoDiff):

other = AutoDiff(other)

return AutoDiff(self.value*other.value,
self.value*other.deriv +
self.deriv*other.value)

def __repr__(self):
return "({}, {})".format(

self.value, self.deriv)

As a simple example, let us differentiate the function f (x) = x2 +
x+2 at x = 3. We define the function in the standard way:

def f(x):
return x*x + x + 2

70 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

We now define a variable a where we wish to calculate the
derivative and an object x representing the object that we will use
in the automatic differentiation. Since it represents the function
x→ x evaluated at a, it has derivative 1:

a = 3
x = AutoDiff(a, 1)

Finally, we simply apply the standard Python function to this new
object, and the automatic differentiation takes care of the rest:

result = f(x)
print("a={}; f(a)={}; f'(a)={}".format(

a, result.value, result.deriv))

giving the result

a=3; f(a)=14; f'(a)=7.0

The derivative f ′(x) = 2x+ 1, so that f (a = 3) = 14 and f ′(a =
3) = 7. Thus both the value of the function and its derivative have
been calculated in a completely automatic way, by applying the
rules encoded by the overloaded operators.

Simulating a chaotic billiard model

A dynamical system is said to be chaotic if it satisfies certain
conditions [Deva03], of which a key one is sensitive dependence
on initial conditions: two nearby initial conditions separate expo-
nentially fast.

This leads to difficulties if we want precise answers on the
long-term behaviour of such systems, for example simulating the
solar system over millions of years [Lask13]. For certain types
of systems, there are shadowing theorems, which say that an
approximate trajectory calculated with floating point arithmetic,
in which a small error is committed at each step, is close to a true
trajectory [Palm09]; however, these results tend to be applicable
only for rather restricted classes of systems which do not include
those of physical interest.

Interval arithmetic provides a partial solution to this problem,
since it automatically reports the number of significant figures in
the result which are guaranteed correct. As an example, we show
how to solve one of the well-known "Hundred-digit challenge
problems" [Born04], which consists of calculating the position
from the origin in a certain billiard problem.

Billiard problems are a class of mathematical models in which
pointlike particles (i.e. particles with radius 0) collide with fixed
obstacles. They can be used to study systems of hard discs or hard
spheres with elastic collisions, and are also paradigmatic examples
of systems which can be proved to be chaotic, since the seminal
work of Sinaï [Chern06].

Intuitively, when two nearby rays of light hit a circular mirror,
the curvature of the surface leads to the rays separating after
they reflect from the mirror. At each such collision, the distance
in phase space between the rays is, on average, multiplied by
a factor at each collision, leading to exponential separation and
hence chaos, or hyperbolicity.

The trajectory of a single particle in such a system will hit a
sequence of discs. However, a nearby initial condition may, after
a few collisions, miss one of the discs hit by the first particle,
and will then follow a completely different future trajectory. With
standard floating-point arithmetic, there is no information about
when this occurs; interval arithmetic can guarantee that this has
not occurred, and thus that the sequence of discs hit is correct.

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Fig. 5: Trajectory of the billiard model up to time 10; the black dot
shows the initial position.

The second of the Hundred-digit challenge problems [Born04]
is as follows:

A point particle bounces off fixed discs of radius 1
3 , placed at

the points of a square lattice with unit distance between neigh-
bouring points. The particle starts at (x,y) = (0.5,0.1), heading
due east with unit speed, i.e. with initial velocity (1,0). Calculate
the distance from the origin of the particle at time t = 10, with 10
correct significant figures.

To solve this, we use a standard implementation of the billiard
by treating it as a single copy of a unit cell, centred at the origin
and with side length 1, and periodic boundary conditions. We keep
track of the cell that is reached in the corresponding "unfolded"
version in the complete lattice.

The code used is a standard billiard code, that may be written
in an identical way to use either standard floating-point method or
interval arithmetic using ValidiPy, changing only the initial
conditions to use intervals instead of floating-point variables.
Since 0.1 and 1/3 are not exactly representable, they are replaced
by the smallest possible intervals containing the true values, using
directed rounding as discussed above.

It turns out indeed to be necessary to use multiple precision
in the calculation, due to the chaotic nature of the system. In
fact, our algorithm requires a precision of at least 96 binary digits
(compared to standard double precision of 53 binary digits) in
order to guarantee that the correct trajectory is calculated up to
time t = 10. With fewer digits than this, a moment is always
reached at which the intervals have grown so large that it is not
guaranteed whether a given disc is hit or not. The trajectory is
shown in figure 5.

With 96 digits, the uncertainty on the final distance, i.e. the
diameter of the corresponding interval, is 0.0788. As the number
of digits is increased, the corresponding uncertainty decreases
exponentially fast, reaching 4.7× 10−18 with 150 digits, i.e. at
least 16 decimal digits are guaranteed correct.

VALIDATED NUMERICS WITH PYTHON: THE VALIDIPY PACKAGE 71

Extensions

Intervals in higher dimensions

The ideas and methods of interval arithmetic may also be applied
in higher dimensions. There are several ways of defining intervals
in 2 or more dimensions [Moo09]. Conceptually, the simplest is
perhaps to take the Cartesian product of one-dimensional intervals:

I = [a,b]× [c,d]

We can immediately define, for example, functions like f (x,y) :=
x2 + y2 and apply them to obtain the corresponding interval ex-
tension f̃ ([a,b], [c,d]) := [a,b]2 +[c,d]2, which will automatically
contain the true image f (I). Similarly, functions f : R2→R2 will
give an interval extension producing a two-dimensional rectangu-
lar interval. However, the result is often much larger than the true
image, so that the subdivision technique must be applied.

Taylor series

An extension of automatic differentiation is to manipulate Taylor
series of functions around a point, so that the function u is
represented in a neighbourhood of the point a by the tuple
(a,u′(a),u′′(a), . . . ,u(n)(a)). Recurrence formulas allow these to
be manipulated relatively efficiently. These may be used, in
particular, to implement arbitrary-precision solution of ordinary
differential equations.

An implementation in Python is available in ValidiPy, while
an implementation in the Julia is available separately, including
Taylor series in multiple variables [TaylorSeries].

Conclusions

Interval arithmetic is a powerful tool which has been, perhaps,
under-appreciated in the wider scientific community. Our contri-
bution is aimed at making these techniques more widely known,
in particular at including them in courses at masters’, or even un-
dergraduate, level, with working, freely available code in Python
and Julia.

Acknowledgements

The authors thank Matthew Rocklin for helpful comments during
the open refereeing process, which improved the exposition. Fi-
nancial support is acknowledged from DGAPA-UNAM PAPIME
grants PE-105911 and PE-107114, and DGAPA-UNAM PAPIIT
grants IG-101113 and IN-117214. LB acknowledges support
through a Cátedra Moshinsky (2013).

REFERENCES

[IEEE754] IEEE Standard for Floating-Point Arithmetic, 2008,
IEEE Std 754-2008.

[Gold91] D. Goldberg (1991), What Every Computer Scientist
Should Know About Floating-Point Arithmetic, ACM
Computing Surveys 23 (1), 5-48.

[High96] N.J. Higham (1996), Accuracy and Stability of Numeri-
cal Algorithms, SIAM.

[Tuck11] W. Tucker (2011), Validated Numerics: A Short Intro-
duction to Rigorous Computations, Princeton University
Press.

[Tuck99] W. Tucker, 1999, The Lorenz attractor exists, C. R. Acad.
Sci. Paris Sér. I Math. 328 (12), 1197-1202.

[ValidiPy] D.P. Sanders and L. Benet, ValidiPy package for
Python, <https://github.com/computo-fc/ValidiPy>

[ValidatedNumerics] D.P. Sanders and L. Benet,
ValidatedNumerics.jl package for Julia,
<https://github.com/dpsanders/ValidatedNumerics.jl>

[gmpy2] GMPY2 package, <https://code.google.com/p/gmpy>
[MPFR] MPFR package, <http://www.mpfr.org>
[Fous07] L. Fousse et al. (2007), MPFR: A multiple-precision

binary floating-point library with correct rounding, ACM
Transactions on Mathematical Software 33 (2), Art. 13.

[Lor63] E.N. Lorenz (1963), Deterministic nonperiodic flow, J.
Atmos. Sci. 20 (2), 130-141.

[ChaosBook] P. Cvitanović et al. (2012), Chaos: Classical and Quan-
tum, Niels Bohr Institute. <http://ChaosBook.org>

[Ott] E. Ott (2002), Chaos in Dynamical Systems, 2nd edition,
Cambridge University Press.

[Deva03] R.L. Devaney (2003), An Introduction to Chaotic Dy-
namical Systems, Westview Press.

[Lask13] J. Laskar (2013), Is the Solar System Stable?, in Chaos:
Poincaré Seminar 2010 (chapter 7), B. Duplantier, S.
Nonnenmacher and V. Rivasseau (eds).

[Palm09] K.J. Palmer (2009), Shadowing lemma for flows,
Scholarpedia 4 (4). http://www.scholarpedia.org/article/
Shadowing_lemma_for_flows

[Born04] F. Bornemann, D. Laurie, S. Wagon and J. Waldvogel
(2004), The SIAM 100-Digit Challenge: A Study in
High-Accuracy Numerical Computing, SIAM.

[Chern06] N. Chernov and R. Markarian (2006), Chaotic Billiards,
AMS.

[TaylorSeries] L. Benet and D.P. Sanders, TaylorSeries package,
<https://github.com/lbenet/TaylorSeries.jl>

[Moo09] R.E. Moore, R.B. Kearfott and M.J. Cloud (2009),
Introduction to Interval Analysis, SIAM.

[Lorenz] E.N. Lorenz (1963), Deterministic nonperiodic flow, J.
Atmos. Sci 20 (2), 130-148.

72 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Creating a browser-based virtual computer lab for
classroom instruction

Ramalingam Saravanan‡∗

http://www.youtube.com/watch?v=LiZJMYxvJbQ

F

Abstract—With laptops and tablets becoming more powerful and more ubiqui-
tous in the classroom, traditional computer labs with rows of expensive desktop
computers are slowly beginning to lose their relevance. An alternative approach
for teaching Python is to use a browser-based virtual computer lab, with a
notebook interface. The advantages of physical computer labs, such as face-to-
face interaction, and the challenge of replicating them in a virtual environment
are discussed. The need for collaborative features like terminal/notebook shar-
ing and chatting is emphasized. A virtual computer lab is implemented using
the GraphTerm server, with several experimental features including a virtual
dashboard for monitoring tasks and progressively fillable notebooks for ensuring
step-by-step completion of a sequence of tasks.

Index Terms—virtual computer lab, notebook interface, cloud computing,
browser-based terminal

Introduction

A computer lab, with rows of identical desktop computers, is
a commonly used resource when teaching programming or sci-
entific computing [Thompson11]. However, with the increasing
popularity of Bring Your Own Device solutions everywhere, com-
puter labs are slowly losing their relevance. Physical labs are
expensive to provision and maintain. Personal laptop computers
and even tablets have more than sufficient computing horsepower
for pedagogical use. As infrastructure costs increase, cloud-based
virtual computing environments look increasingly attractive as
replacements for physical computer labs.

As we inevitably, albeit slowly, move away from hardware
computer labs, it is worth analyzing the pros and cons of the
physical vs. the virtual approach. Some of the advantages of a
physical lab are:

• Uniform software without installation or compatibility
issues

• Ability to walk around and monitor students’ progress
• Students raise their hand to request assistance from the

instructor
• Students can view each other’s screens and collaborate
• Large files and datasets can be shared through cross-

mounted file systems

* Corresponding author: sarava@tamu.edu
‡ Texas A&M University

Copyright © 2014 Ramalingam Saravanan. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Some of the shortcomings of physical computer labs are:

• Need to purchase and maintain hardware, ensuring security
• Need to create user accounts and install course-specific

software
• Instructor may not want or may not have root access,

leading to delays in fixing problems
• Students typically need to be physically present to use the

lab

Many of the advantages of the physical computer lab are
difficult to replicate when students use laptops in an ad hoc
fashion, with differing software installations and without shared
file systems or collaborative features. A browser-based virtual
computing lab running on a remote server can address many of the
shortcomings of physical computer labs, while still retaining the
advantages of a uniform software environment and shared files.
However, the human interaction aspects of a physical lab will
never be fully reproducible in a virtual environment.

This study documents experiences gained from using hybrid
physical-virtual computer lab in teaching an introductory pro-
gramming course for meteorology undergraduates during Spring
2014. The course was aimed at students with no prior knowledge
of programming. The goal was to teach them to write code
that can access and visualize meteorological data, and Python is
ideally suited for this task [Lin12]. The students had access to a
physical lab with identical iMac computers, but several expressed
an interest in using their laptops so that they could continue to
work on assignments at home.

Students began using the IPython Notebook interface
[Perez12] early on during the course. Some of them installed
Enthought or Anaconda distributions on their laptop computers
and used the bundled notebook server. They were also given the
option of remotely accessing a browser-based virtual computer
lab using GraphTerm, which is an open-source graphical terminal
interface that is backwards compatible with the xterm terminal,
and also supports a lightweight notebook interface [Saravanan13].
Some of the students used the remote GraphTerm option to work
on their assignments and collaborate on their group project.

There are several "virtual computer lab" implementations on
university campuses which typically use a Citrix server to provide
remote desktop access to Windows computers. There are also
many commercial products providing Python computing environ-
ments in cloud, such as PythonAnywhere and Wakari [Wakari].
This study focuses on alternative “roll your own” solutions using
open-source software that are specifically targeted for use in

CREATING A BROWSER-BASED VIRTUAL COMPUTER LAB FOR CLASSROOM INSTRUCTION 73

an interactive classroom instruction setting, with collaborative
features that mimic physical computer labs. Creating such a virtual
computing lab usually involves instantiating a server using a cloud
infrastructure provider, such as Amazon. A new server can be set-
up within minutes, with a scientific Python distribution automati-
cally installed during set-up. Students can then login to their own
accounts on the server using a browser-based interface to execute
Python programs and visualize graphical output. Typically, each
student would use a notebook interface to work on assignments.

The different approaches to providing a virtual computing
environment for Python, and the associated challenges, are dis-
cussed. Options for providing a multi-user environment include
running a public IPython Notebook server, or using alternative
free/commercial solutions that incorporate the notebook interface.
Enhancements to the notebook interface that promote step-by-
step instruction are described, as are collaborative features that
are important if the virtual environment is to retain some of the
advantages a physical computer lab. User isolation and security
issues that arise in a multi-user software environment are also
considered.

Multi-user virtual computing environments for Python

The simplest approach to creating a shared environment for
teaching Python would be to run a public IPython Notebook server
[IPython]. At the moment, the server does not support a true
multi-user environment, but multiple notebooks can be created
and edited simultaneously. (Full multi-user support is planned in
the near future.) The obvious disadvantage is that there is no user
isolation, and all notebooks are owned by the same user.

One can get around the current single-user limitation by
running multiple server processes, one for each student. This could
be done simply by creating a separate account for each student
on a remote server, or using more sophisticated user isolation
approaches. One of the most promising solutions uses Docker,
which is an emerging standard for managing Linux containers
[Docker]. Unlike virtual machines, which work at the operating
system level, lightweight Docker isolation works at the application
level.

JiffyLab is an open source project that uses Docker to provide
multi-user access to the IPython Notebook interface [JiffyLab]. It
creates a separate environment for each user to run the notebook
server. New accounts are created by entering an email address.
JiffyLab addresses the user isolation issue, but does not currently
provide collaborative features.

In the commercial world, Wakari is a cloud Python hosting
solution from the providers of the Anaconda distribution, with
a free entry-level account option [Wakari]. It supports browser-
based terminal and editing capabilities, as well as access to
IPython Notebooks. Wakari provides user isolation and the ability
to share files and notebooks for collaboration.

Perhaps the most comprehensive free solution currently avail-
able for a shared virtual Python environment is the Sage Math
Cloud (SMC) [Sage]. It provides support for command line termi-
nals, LaTeX editing and includes numerous math-related programs
such as R, Octave, and the IPython Notebook. SMC is being used
for course instruction and now supports a real-time collaborative
version of the IPython Notebook [Stein13].

This study describes an alternative open-source solution using
GraphTerm that is derived from the terminal interface, with
graphical and notebook interfaces that appear as an extension of

terminal [GraphTerm]. It includes all features of the xterm-based
command-line interface (CLI) along with additional graphical user
interface (GUI) options. In particular, users can use CLI editors
like vim or Javascript-based graphical editors to modify programs.
Inline matplotlib graphics is supported, rather like the Qt
Console for IPython [QtConsole]. Multiple users can access the
server simultaneously, with collaborative features such as being
able to view each others’ terminals. GraphTerm also implements a
lightweight notebook interface that is compatible with the IPython
Notebook interface.

A browser-based Python Integrated Development Environment
(IDE) such as Wakari or SMC typically consists of the following
components: a graphical file manager, a Javascript-based editor,
a shell terminal, and a notebook window. A web GUI is used
to bind these components together. GraphTerm also serves as an
IDE, but it blurs some of the distinctions between the different
components. For example, the same GraphTerm window may
function at times like a plain xterm, a Qt Console with inline
graphics, or a simplified IPython Notebook, depending upon the
command being executed.

For the introductory programming course, a remote computer
was set up to run the GraphTerm server, and students were
able to automatically create individual accounts on it using a
group access code. (Appendices 1 and 2 provide details of the
installation and remote access procedures involved in creating
the virtual computing lab.) Students used the virtual lab accounts
to execute shell commands on the remote terminal, and also to
use the notebook interface, either by using GraphTerm’s own
notebook implementation or by running the full IPython Notebook
server on their account. (The distinction between GraphTerm and
IPython notebooks will be explained later.) Having a custom,
lightweight notebook interface enabled the implementation and
testing of several experimental features to the GraphTerm server
to support collaboration and a new feature called progressively
fillable notebooks. This feature allows an instructor to assign a
set of notebook-based tasks to students, where each task must be
completed before the automatically displaying the correct solution
for the task and proceeding to the next task, which may depend on
the correct solutions to all the previous tasks.

Sharing terminal sessions

One of the common sights in a physical computer lab is a group
of students huddled around a computer animatedly discussing
something visible on the screen. It would be nice to reproduce
this ability to view each other’s terminals and communicate in the
virtual computer lab. If students use their laptop computers in a
regular classroom with row seating, rather than a lab, then collab-
orative features in the virtual setting could make a big difference.
Such features would also allow the students to work with each
other after hours. Another crucial feature of the physical computer
lab is the instructor’s ability to grab a student’s mouse/keyboard
to make some quick fixes to his/her code. This feature would very
much be desirable to have in a virtual computer lab.

Although the default multi-user account setup in GraphTerm
isolates users with Unix account permissions, the instructor can
choose to enable terminal sharing for all, or create specific
user groups for shared work on projects etc. As super user, the
instructor has access to the students’ terminals. (A list of all users
currently watching a terminal session can be accessed from the
menu.)

74 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

For the programming course, group-based sharing was enabled
to allow students to work together on the end-of-semester project.
Students were able to watch someone else’s terminal, without
controlling it, or steal control of someone else’s terminal, if the
terminal owner had permitted it. (To regain control, the terminal
owner would have to steal it back.)

GraphTerm supports a rudimentary chat command for com-
munication between all watchers for a terminal session. The
command displays a chat button near the top right corner. Any
user who is currently watching a terminal session can type lines
of text that will be displayed as a feed, translucently overlaid on
the terminal itself. When chatting, an alert button also becomes
available to attract the attention of the terminal watchers (which
may include the instructor).

There is also an experimental tandem control option, which
allows two or more people to control a terminal simultaneously.
This needs to be used with caution, because it can lead to unpre-
dictable results due to the time lags between terminal operations
by multiple users.

Notebook interface

The IPython Notebook interface was a huge hit with students in
the most recent iteration of the programming course, as com-
pared to the clunky text-editor/command-line/graphics-window
development environment that was used in previous iterations. In
addition to running the IPython Notebook server locally on the lab
computers, students accessed the notebook interface on the remote
server in two ways, depending upon individual preference:

1. Activating the lightweight notebook interface built
into the remote GraphTerm terminal. This can be as
simple as typing Shift-Enter after starting the standard
command line Python interpreter.

2. Running the public IPython Notebook server on
the remote computer and accessing it using a browser on
the local computer. (A separate server process is started
for each user who initiates it by typing a command, with
a unique port number and a password that is the same as
the user’s access code.)

The two notebook implementations run separately, although
they share the user’s home directory.

The GraphTerm notebook interface is implemented as a wrap-
per on top of the standard Python command line interface. It
provides basic notebook functionality, but is not a full-featured
environment like IPython Notebook. It does support the same
notebook format, which means that notebooks can be created in a
GraphTerm window, saved as .ipynb files and opened later using
IPython Notebook, and vice versa. Notebooks are opened within
GraphTerm using the standard python (or ipython) command,
and pre-loading the GraphTerm-compatible pylab environment
(Fig. 1):
python -i $GTERM_DIR/bin/gpylab.py notebook.ipynb

A shortcut command, gpython notebook.ipynb, can also
be used instead of the long command line shown above. Like the
IPython Notebook, typing Control-Enter executes code in-place,
and Shift-Enter executes code and moves to the next cell. The
GraphTerm notebook interface is integrated into the terminal (Fig.
2), allowing seamless switching between the python command
line and notebook mode, "live sharing" of notebooks across shared
terminals, and inline graphics display that can work across SSH
login boundaries [Saravanan13].

Fig. 1: Snippet showing a portion of a notebook session in the virtual
lab.

Fig. 2: Another snippet showing a notebook session in the virtual lab,
with inline graphics.

Fig. 3: The instructor "dashboard" in the virtual computer lab,
showing all currently logged in users. Clicking on the user name will
open a list of terminals for that user.

CREATING A BROWSER-BASED VIRTUAL COMPUTER LAB FOR CLASSROOM INSTRUCTION 75

Fig. 4: The instructor "dashboard" in the virtual computer lab, with
a listing of all user terminals, including notebook names and the last
modified cell count, generated by the gadmin command. Clicking on
the terminal session name will open a view of the terminal.

A dashboard for the lab

An important advantage of a physical computer lab is the ability to
look around and get a feel for the overall level of student activity.
The GraphTerm server keeps track of terminal activity in all the
sessions (Fig. 3). The idle times of all the terminals can be viewed
to see which users are actively using the terminal (Fig. 4). If a
user is running a notebook session, the name of the notebook and
the number of the last modified cell are also tracked. During the
programming course, this was used assess how much progress was
being made during notebook-based assignments.

The gadmin command is used to list terminal activity, serving
as a dashboard. Regular expressions can be used to filter the list of
terminal sessions, restricting it to particular user names, notebook
names, or alert status. As mentioned earlier, students have an alert
button available when they enable the built-in chat feature. This
alert button serves as the virtual equivalent of raising a hand, and
can be used to attract the attention of the instructor by flagging the
terminal name in gadmin output.

The terminal list displayed by gadmin is hyperlinked. As
the super user has access to all terminals, clicking on the output
of gadmin will open a specific terminal for monitoring (Fig.
5). Once a terminal is opened, the chat feature can be used to
communicate with the user.

Progressively fillable notebooks

A common difficulty encountered by students on their first expo-
sure to programming concepts is the inability to string together
simple steps to accomplish a complex task. For example, they
may grasp the concept of an if block and a for loop separately,
but putting those constructs together turns out to be much harder.
When assigned a multi-step task to perform, some of the students
will get stuck on the first task and never make any progress. One
can address this by progressively revealing the solutions to each
step, and then moving on to the next step. However, if this is done

in a synchronous fashion for the whole lab, the stronger students
will need to wait at each step for the weaker students to catch up.

An alternative approach is to automate this process to allow
students make incremental progress. As the Notebook interface
proved to be extremely popular with the students, an experimental
progressively fillable version of notebooks was recently imple-
mented in the GraphTerm server. A notebook code cell is assigned
to each step of a multi-step task, with associated Markdown cells
for explanatory text. Initially, only the first code cell is visible,
and the remaining code cells are hidden. The code cell contains
a "skeleton" program, with missing lines (Fig. 6). The expected
textual or graphical output of the code is also shown. Students
can enter the missing lines and repeatedly execute the code using
Control-Enter to reproduce the expected results. If the code runs
successfully, or if they are ready to give up, they press Shift-Enter
to move on. The last version of the code executed by the student,
whether right or wrong, is saved in the notebook (as Markdown),
and the correct version of the code is then displayed in the cell
and executed to produce the desired result (Fig. 7). The next code
cell becomes visible and the whole process is repeated for the next
step of the task.

The user interface for creating progressively fillable notebooks
in this experimental version is very simple. The instructor creates
a regular notebook, with each code cell corresponding to a specific
step of a complex task. The comment string ## ANSWER is
appended to all code lines that are to be hidden (Fig. 7). The
code in each successive step can depend on the previous step
being completed correctly. Each code cell is executed in sequence
to produce output for the step. The notebook is then saved with
the suffix -fill appended to the base filename to indicate that
it is fillable. The saving step creates new Markdown content
from the output of each code cell to display the expected output
in the progressive version of the notebook. Once filled by the
students, the notebooks can be submitted for grading, as they
contain a record of the last attempt at completing each step, even
if unsuccessful.

One can think of progressively fillable notebooks as providing
"training wheels" for the inexperienced programmer trying to
juggle different algorithmic concepts at the same time. They can
work on assignments that require getting several pieces of code
right for the the whole program to work, without being stymied
by a pesky error in a single piece. (This approach is also somewhat
analogous to simple unit testing using the doctest Python
module, which runs functions with specified input and compares
the results to the expected output.)

Some shortcomings

Cost is an issue for virtual computer labs, because running a
remote server using a cloud service vendor does not come free.
For example, an AWS general purpose m3.medium server, which
may be able to support 20 students, costs $0.07 per hour, which
works out to $50 per month, if running full time. This would
be much cheaper than the total cost of maintaining a lab with
20 computers, even if it can be used for 10 different courses
simultaneously. However, this is a real upfront cost whereas
the cost of computer labs is usually hidden in the institutional
overheads. Of course, on-campus servers could be used to host
the virtual computer labs, instead of commercial providers. Also,
dedicated commercial servers may be considerably cheaper than
cloud-based servers for sustained long-term use.

76 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Fig. 5: The instructor "dashboard" in the virtual computer lab, with embedded views of student terminals generated using the gframe
command.

Fig. 6: View of progressively fillable notebook before user completes
Step 1. Note two comment line where it says (fill in code
here). The user can replace these lines with code and execute it. The
resulting output should be compared to the expected output, shown
below the code cell.

Depending upon whether the remote server is located on
campus or off campus, a good internet connection may be essential
for the performance a virtual computer lab during work hours. For
a small number of students, server capacity should not be an issue,
because classroom assignments are rarely compute-intensive. For
large class sizes, more expensive servers may be needed.

When compared to using a physical computer lab, typically
managed by professional system administrators, instructors plan-
ning to set up their own virtual computer lab would need some
minimal command line skills. The GraphTerm server runs only
on Linux/Mac systems, as it requires access to the Unix terminal
interface. (The browser-based GraphTerm client can be used on
Windows computers, as well as iPads and Android tablets.)

GraphTerm supports a basic notebook interface that is closely

Fig. 7: View of progressively fillable notebook after user has com-
pleted Step 1. The last version of code entered and executed by
the user is included the markup, and the code cell now displays the
"correct" version of the code. Note the comment suffix ## ANSWER
on selected lines of code. These lines were hidden in the unfilled view.

integrated with the command line, and supports the collabora-
tive/administrative features of the virtual computer lab. How-
ever, this interface will never be as full-featured as the IPython
Notebook interface, which is a more comprehensive and mature
product. For this reason, the virtual computer lab also provides
the ability for users who need more advanced notebook features

CREATING A BROWSER-BASED VIRTUAL COMPUTER LAB FOR CLASSROOM INSTRUCTION 77

to run their own IPython Notebook server and access it remotely.
The compatibility of the .ipynb notebook file format and the
shared user directory should make it fairly easy to switch between
the two interfaces.

Although the notebook interface has been a boon for teaching
students, it is not without its disadvantages. It has led to decreased
awareness of the file and directory structure, as compared to
the traditional command line interface. For example, as students
download data, they often have no idea where the files are being
saved. The concept of a modular project spread across functions in
multiple files also becomes more difficult to grasp in the context
of a sequential notebook interface. The all-inclusive pylab envi-
ronment, although very convenient, can lead to reduced awareness
of the modular nature of Python packages.

Conclusions

Students would like to break free of the physical limitations of
a computer lab, and to be able to work on their assignments
anywhere, anytime. However, the human interactions in a physical
computer lab have considerable pedagogical value, and any virtual
environment would need to support collaborative features to make
up for that. With further development of the IPython Notebook,
and other projects like SMC, one can expect to see increased sup-
port for collaboration through browser-based graphical interfaces.

The collaborative features of the GraphTerm server enable it
to be used as a virtual computer lab, with automatic user creation,
password-less authentication, and terminal sharing features. De-
veloping a GUI for the complex set of tasks involved in managing
a virtual lab can be daunting. Administering the lab using just
command line applications would also be tedious, as some actions
like viewing other users’ terminals are inherently graphical oper-
ations. The hybrid CLI-GUI approach of GraphTerm gets around
this problem by using a couple of tricks to implement the virtual
"dashboard":

(i) Commands that produce hyperlinked (clickable)
listings, to easily select terminals for opening etc.

(ii) A single GraphTerm window can embed multiple
nested GraphTerm terminals for viewing

The IPython Notebook interface, with its blending of ex-
planatory text, code, and graphics, has evolved into a powerful
tool for teaching Python as well as other courses involving
computation and data analysis. The notebook format can provide
the "scaffolding" for structured instruction [AeroPython]. One of
the dilemmas encountered when using notebooks for interactive
assignments is when and how to reveal the answers. Progressively
fillable notebooks address this issue by extending the notebook
interface to support assignments where students are required to
complete tasks in a sequential fashion, while being able to view
the correct solutions to completed tasks immediately.

Appendix 1: GraphTerm server setup

The GraphTerm server is implemented purely in Python, with
HTML+Javascript for the browser. Its only dependency is the Tor-
nado web server. GraphTerm can be installed using the following
shell command:

sudo pip install graphterm

To start up a multi-user server on a Linux/Mac computer, a
variation of the following command may be executed (as root):

Fig. 8: Automatic form display for the ec2launch command, used
to configure and launch a new virtual lab using the AWS cloud. The
form elements are automatically generated from the command line
options for ec2launch

gtermserver --daemon=start --auth_type=multiuser
--user_setup=manual --users_dir=/home
--port=80 --host=server_domain_or_ip

If a physical server is not readily available for multi-user ac-
cess, a virtual server can be created on demand using Amazon
Web Services (AWS). The GraphTerm distribution includes the
convenience scripts ec2launch, ec2list, ec2scp, and
ec2ssh to launch and monitor AWS Elastic Computing Cloud
(EC2) instances running a GraphTerm server. (An AWS account
is required to use these scripts, and the boto Python module
needs to be installed.)

To launch a GraphTerm server in the cloud using AWS, first
start up the single-user version of GraphTerm:

gtermserver --terminal --auth_type=none

The above command should automatically open up a GraphTerm
window in your browser. You can also open one using the
URL http://localhost:8900 Within the GraphTerm window, run the
following command to create a virtual machine on AWS:

ec2launch

The above command will display a web form within the Graph-
Term window (Fig. 8). This is an example of the hybrid CLI-GUI
interface supported by GraphTerm that avoids having to develop
a new web GUI for each additional task. Filling out the form and
submitting it will automatically generate and execute a command
line which looks like:

ec2launch --type=m3.medium --key_name=ec2key
--ami=ami-2f8f9246 --gmail_addr=user@gmail.com
--auth_type=multiuser --pylab --netcdf testlab

78 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Fig. 9: Output of the ec2list command, listing currently active
AWS cloud instances running the virtual computer lab. Clickable links
are displayed for terminating each instance

Fig. 10: Login page for GraphTerm server in multiuser mode. The
user needs to enter the group access code, and may choose to use
Google Authentication

The above command can be saved, modified, and re-used as
needed. After the new AWS Linux server has launched and com-
pleted configuration, which can take several minutes, its IP address
and domain name will be displayed. The following command can
then be used to list, access or terminate all running cloud instances
associated with your AWS account (Fig. 9):

ec2list

Detailed instructions for accessing the newly launched server are
provided on the GraphTerm website [GraphTerm].

Appendix 2: Multiple user authentication and remote access

Assuring network security is a real headache for roll your own
approaches to creating multi-user servers. Institutional or commer-
cial support is essential for keeping passwords secure and software
patched. Often, the only sensitive information in a remotely-
accessed academic computer lab account is the student’s password,
which may be the same as one used for a more confidential
account. It is therefore best to avoid passwords altogether for
virtual computer labs, and remove a big burden of responsibility
from the instructor.

The GraphTerm server uses two approaches for password-less
authentication: (i) A randomly-generated user access code, or (ii)
Google authentication. The secret user access code is stored in a
protected file on the students’ local computers and a hash-digest
scheme is used for authentication without actually transmitting
the secret code. Students create an account using a browser URL
provided by the instructor, selecting a new user name and entering
a group access code (Fig. 10). A new Unix account is created
for each user and the user-specific access code is displayed (Fig.
11). Instead of using this access code, students can choose to use
password-less Google Authentication.

After logging in, users connect to an existing terminal session
or create a new terminal session. A specific name can be used for
a new terminal session, or the special name new can be used to
automatically choose names like tty1, tty2 etc. When sharing
terminals with others, it is often useful to choose a meaningful
name for the terminal session.

Users can detach from a terminal session any time and connect
to it at a later time, without losing any state information. For
example, a terminal created at work can be later accessed from

Fig. 11: New user welcome page, with access code displayed.

home, without interrupting program execution. The students found
the ability to access their terminal sessions from anywhere to be
perhaps the most desirable feature of the virtual computer lab.

REFERENCES

[AeroPython] AeroPython http://lorenabarba.com/blog/announcing-
aeropython/

[Docker] Docker sandboxed linux containers http://www.docker.com/
whatisdocker/

[GraphTerm] GraphTerm home page http://code.mindmeldr.com/graphterm
[IPython] IPython Notebook public server http://ipython.org/ipython-

doc/stable/notebook/public_server.html
[JiffyLab] JiffyLab multiuser IPython notebooks https://github.com/

ptone/jiffylab
[Lin12] J. Lin. A Hands-On Introduction to Using Python in the

Atmospheric and Oceanic Sciences [Chapter 9, Exercise 29,
p. 162] http://www.johnny-lin.com/pyintro

[Perez12] F. Perez. The IPython notebook: a historical retrospective.
Jan 2012 http://blog.fperez.org/2012/01/ipython-notebook-
historical.html

[QtConsole] A Qt Console for IPython. http://ipython.org/ipython-doc/2/
interactive/qtconsole.html

[Sage] Sage Math Cloud https://cloud.sagemath.com/
[Saravanan13] R. Saravanan. GraphTerm: A notebook-like graphical termi-

nal interface for collaboration and inline data visualization,
Proceedings of the 12th Python in Science Conference, 90-94,
July 2013. http://conference.scipy.org/proceedings/scipy2013/
pdfs/saravanan.pdf

[Stein13] W. Stein. IPython Notebooks in the Cloud with Realtime
Synchronization and Support for Collaborators. Sep 2013
http://sagemath.blogspot.com/2013/09/ipython-notebooks-in-
cloud-with.html

[Thompson11] A. Thompson. The Perfect Educational Computer Lab.
Nov 2011 http://blogs.msdn.com/b/alfredth/archive/2011/11/
30/the-perfect-educational-computer-lab.aspx

[Wakari] Wakari collaborative data analytics platform http://continuum.
io/wakari

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014) 79

TracPy: Wrapping the Fortran Lagrangian trajectory
model TRACMASS

Kristen M. Thyng‡∗, Robert D. Hetland‡

https://www.youtube.com/watch?v=8poLWacun50

F

Abstract—Numerical Lagrangian trajectory modeling is a natural method of
investigating transport in a circulation system and understanding the physics
on the wide range of length scales that are actually experienced by a drifter.
A previously-developed tool, TRACMASS, written in Fortran, accomplishes this
modeling with a clever algorithm that operates natively on the commonly used
staggered Arakawa C grid. TracPy is a Python wrapper written to ease running
batches of simulations. Some improvements in TracPy include updating to
netCDF4-CLASSIC from netCDF3 for saving drifter trajectories, providing an
iPython notebook as a usermanual for using the system, and adding unit tests
for stable continued development.

Index Terms—Lagrangian tracking, numerical drifters, Python wrapper

Introduction

Drifters are used in oceanography and atmospherics in situ in
order to demonstrate flow patterns created by individual fluid
parcels. For example, in the ocean, drifters will often be released
on the sea surface, and allowed to be passively transported with
the flow, reporting their location via GPS at regular intervals. In
this way, drifters are gathering data in a Lagrangian perspective.
For example, [LaCasce2003] analyzes a set of over 700 surface
drifters released in the northern Gulf of Mexico, using the tracks
to better understand the dynamics of the underlying circulation
fields.

Lagrangian trajectory modeling is a method of moving parcels
through a fluid based on numerically modeled circulation fields.
This approach enables analysis of many different drifter exper-
iments for a much lower cost than is required to gather one
relatively small set of drifters. Additionally, the inherent limits to
the number of drifters that can reasonably be used in situ can lead
to biased statistics [LaCasce2008]. In one study, numerical drifters
were used to understand where radio-nuclides from a storage
facility would travel if accidentally released [Döös2007]. Drifters
are also used in on-going response work by the Office of Re-
sponse and Restoration in the National Oceanic and Atmospheric
Administration (NOAA). Using model output made available by
various groups, responders apply their tool (General NOAA Oil
Modeling Environment, GNOME) to simulate drifters and get

* Corresponding author: kthyng@tamu.edu
‡ Texas A&M University

Copyright © 2014 Kristen M. Thyng et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

best estimates of predicted oil transport [Beegle-Krause1999],
[Beegle-Krause2001].

Numerical drifters may be calculated online, while a circu-
lation model is running, in order to use the highest resolution
model-predicted velocity fields available in time (on the order
of seconds to minutes). However, due to the high costs of the
hydrodynamic computation, many repeated online simulations is
not usually practical. In this case, Lagrangian trajectories can
also be calculated offline, using the velocity fields at the stored
temporal resolution (on the order of minutes to hours).

There are many sources of error in simulating offline La-
grangian trajectories. For example, the underlying circulation
model must be capturing the dynamics to be investigated, and
model output must be available often enough to represent the
simulated flow conditions accurately. On top of that, the La-
grangian trajectory model must properly reproduce the transport
pathways of the system. A given drifter’s trajectory is calculated
using velocity fields with a spatial resolution determined by the
numerical model grid. To move the drifter, the velocity fields
must be available at the drifter’s location, which in general will
not be co-located with all necessary velocity information. Many
Lagrangian trajectory models use low- or high-order interpolation
in space to extend the velocity information to the drifter location.
The algorithm discussed in this work has a somewhat different
approach.

TRACMASS is a Lagrangian trajectory model that runs na-
tively on velocity fields that have been calculated on a staggered
Arakawa C grid. Originally written about 2 decades ago, it has
been used in many applications (e.g., [Döös2007]). The core
algorithm for TRACMASS is written in Fortran for speed, and
has been wrapped in Python for increased usability. This code
package together is called TracPy [Thyng2014b].

TRACMASS

The TRACMASS algorithm for stepping numerical drifters in
space is distinct from many algorithms because it runs natively
on a staggered Arakawa C grid, i.e., it uses the velocity fields
at the grid locations at which they are calculated. This grid is
used in ocean modeling codes, including ROMS, MITgcm, and
HyCOM. In the staggered Arakawa C grid, the west-east or zonal
velocity, u, is located at the west and east walls of a grid cell; the
north-south or meridional velocity, v, is located at the north and
south walls; and the vertical velocity, w, is located at the vertically
top and bottom cell walls (Figure 1). Note that the algorithm

80 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

j

j-1
i-1 i

ui,jui-1,j

vi,j

vi,j-1
(x0,y0)

Longitude

La
tit
ud
e

u(x)

Fig. 1: A single rectangular grid cell is shown in the x-y plane.
Zonal (meridional) u (v) velocities are calculated at the east/west
(north/south) cell walls. In the vertical direction, w velocities are
calculated at the top and bottom cell walls. After [Döös2013].

is calculated using fluxes through grid cell walls instead of the
velocities themselves to account for differences in cell wall size
due to a curvilinear horizontal grid or a σ coordinate vertical grid.
The drifter is stepped as follows:

1) To calculate the time required for the drifter to exit the
grid cell in the x direction:

a. Linearly interpolate the velocity across the cell in
the zonal direction to find u(x).

b. Solve the ordinary differential equation u(x) = dx
dt

for x(t).
c. Back out the time required to exit the grid cell in

the zonal direction, tx.

2) Follow the same methodology in the meridional and
vertical directions to find ty and tz.

3) The minimum time tmin; the minimum of tx, ty, tz; is when
the drifter would first exit the grid cell

4) The subsequent (x,y,z) position for the drifter is calcu-
lated using tmin.

This process occurs for each drifter each time it is moved
forward from one grid cell edge to the next. If a drifter will not
reach a grid cell edge, it stops in the grid cell. Calculations for
the drifter trajectories are done in grid index space so that the grid
is rectangular, which introduces a number of simplifications. The
velocity fields are linearly interpolated in time for each subsequent
stepping of each drifter. Because a drifter is moved according to
its distinct time and location, each drifter is stepped separately,
and the time step between each reinterpolation can be different.
The location of all drifters is sampled at regular intervals between
the available circulation model outputs for consistency. Because
reading in the circulation model output is one of the more time-
consuming parts of the process, all drifters are stepped between

Fig. 2: A trajectory from a damped inertial oscillation is shown from
several simulated cases with the analytic solution. Cases shown are
trajectories calculated using TRACMASS with zero [red], 10 [blue],
and 1000 [green] time interpolation steps between model outputs; the
analytic solution [black]; and the time-dependent algorithm [purple].
The green, black, and purple curves are indistinguishable. From
[Döös2013].

the velocity fields at two consecutive times, then the velocity fields
from the next output time are read in to continue stepping.

Drifters can be stepped forward or backward in time; this is
accomplished essentially by multiplying the velocity fields by -1.
Because of the analytic nature of the TRACMASS algorithm, the
trajectories found forward and backward in time are the same.

Time is assumed to be steady while a drifter is being stepped
through a grid cell—how much this will affect the resulting
trajectory depends on the size of the grid cell relative to the speed
of the drifter. When a drifter reaches another grid cell wall, the
fields are re-interpolated. The user may choose to interpolate the
velocity fields at shorter intervals if desired by setting a maximum
time before reinterpolation. A time-dependent algorithm has been
developed to extend the TRACMASS algorithm [DeVries2001],
but previous researchers have found that the steady approximation
is adequate in many cases [Döös2013] and it is not implemented
in TracPy.

The capability of the TRACMASS algorithm has been demon-
strated by creating synthetic model output, running numerical
drifters, and comparing with known trajectory solutions (Figure
2). A damped inertial oscillation is used in the test, for which
the analytic solutions for both the velocity fields and a particle’s
trajectory are known [Döös2013]. Cases of a drifter trajectory
calculated with different levels of interpolation between model
outputs are shown along with the analytic solution and a trajectory
calculated using the time-dependent TRACMASS algorithm. All
trajectories generally following the analytic solution, but the case
with no time interpolation of the fields clearly deviates. The case
with 10 interpolation steps in times performs well, and with 1000
interpolation steps, the curves are indistinguishable. Note that in
this test case, the size of the grid cell relative to the motion of the
trajectory emphasizes the effect of time interpolation.

Options are available to complement the basic algorithm
of TRACMASS. For example, it can be important to consider
whether or not to add additional explicit subgrid diffusion to
drifters. Energy at scales below a few spatial grid cells is not
included in an ocean circulation model except through a turbulence
closure scheme or other means. This energy is included in the
numerical scheme and implemented in the simulation, and in
this regard is implicitly included in the saved velocity fields
from the circulation model. From this perspective, adding any
additional subgrid energy is duplicating the energy that is already
included in the simulation. However, without including some
small-scale energy to drifter tracks, drifters starting at the same

TRACPY: WRAPPING THE FORTRAN LAGRANGIAN TRAJECTORY MODEL TRACMASS 81

j

j-1
i-1 i

ui,j+u’ui-1,j+u’

vi,j+v’

vi,j-1+v’
(x0,y0)

Longitude

La
tit
ud
e

(x1,y1)

(x1,y1)’

Fig. 3: Instead of being stepped forward to new location (x1,y1) by
the base velocity field, a drifter can be instead stepped forward by
the velocity field plus a random velocity fluctuation to include explicit
subgrid diffusion, such that the drifter ends up instead at (x1,y1)

′.
After [Döös2013].

time and location will follow the same path, which is clearly
not realistic—adding a small amount of energy to drifter tracks
acts to stir drifters in a way that often looks more realistic than
when explicit subgrid diffusion is not included. This added energy
will also affect Lagrangian metrics that are calculated from drifter
trajectories (e.g., [Döös2011]).

To address this issue, there are several optional means of
including explicit subgrid diffusion in TRACMASS, all of which
are low order schemes [LaCasce2008]. Drifter trajectories may
be stepped using not the basic velocity fields (u,v) but with the
velocity fields plus some small random velocity fluctuation (u′,
v′) (Figure 3). Alternatively, drifter trajectory locations can be
given an added random walk—randomly moved a small distance
away from their location each step within a circle whose radius is
controlled by an input parameter (Figure 4). Note that when using
additional subgrid diffusion, drifter tracks will not be the same
forward and backward in time.

TracPy

The goal of TracPy is to take advantage of the speed and ingenuity
of the TRACMASS algorithm, written in Fortran, but have access
to the niceties of Python and for quickly and simply setting up and
running batches of simulations. Being a scientific research code,
TRACMASS has been developed by different researchers and with
specific research purposes in mind, such that the complexity of the
code grew over time. TracPy was written to include the important
basic, computationally burdensome elements of calculating drifter
trajectories from TRACMASS, and do the rest in Python.

TracPy uses a class for a given simulation of drifters. The
TracPy class is initialized with all necessary parameters for the
simulation itself, e.g., number of days to run the simulation,
parameter for maximum time before reinterpolation between avail-
able circulation model outputs, whether to use subgrid diffusion,
and whether to run in 2D or 3D. The class has methods for reading

j

j-1
i-1 i

ui,jui-1,j

vi,j

vi,j-1
(x0,y0)

Longitude

La
tit
ud
e

(x1,y1)
(x1,y1)’

Fig. 4: A drifter’s location can be randomly pushed within a circle
from its calculated position to add explicit subgrid diffusion. After
[Döös2013].

in the numerical grid, preparing for the simulation, preparing for
each model step (e.g., reading in the velocity fields at the next
time step), stepping the drifters forward between the two time
steps of velocity fields stored in memory, wrapping up the time
step, and wrapping up the simulation. Utilities are provided in
TracPy for necessary computations, such as moving between grid
spaces of the drifter locations. That is, drifter locations may, in
general, be given in geographic space (i.e., longitude/latitude) or
in projected space (e.g., universal traverse mercator or Lambert
conformal conic), and positions are converted between the two
using Python packages Basemap or Pyproj. Additionally, drifter
locations will need to be transformed between grid index space,
which is used in TRACMASS, and real space. Plotting functions
and common calculations are also included in the suite of code
making up TracPy.

Other improvements in the code system:

• Global variables have been removed in moving from the
original set of TRACMASS code to the leaner TRAC-
MASS algorithm that exists in TracPy, and have been
replaced with variables that are passed directly between
functions as needed.

• A user manual has been implemented in an iPython note-
book.

• A few simple test cases have been provided for users to
experiment with and as a set of unit tests to improve
stability during code development.

The parallelization of an offline Lagrangian trajectory model
could be relatively straight-forward. Each drifter trajectory in any
given simulation is independent of every other drifter. However,
one of the slowest parts of drifter tracking is often reading in the
velocity fields—separating out drifter trajectory calculations into
different processes would most likely increase the input/output
requirement. Still, an easy way to take advantage of the drifter
calculations being inherently decoupled is to run different sim-
ulations on different processes. Many times, drifter simulations

82 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

netCDF3 netCDF4C % decrease
Simulation run time [s] 1038 1038 0
File save time [s] 3527 131 96
File size [GB] 3.6 2.1 42

TABLE 1: Comparisons between simulations run with
netCDF3_64BIT and netCDF4-CLASSIC.

are run in large sets to gather meaningful statistics, in which
case these separate simulations can all be distributed to different
processes—as opposed to subdividing individual simulations to
calculate different trajectories on different processes.

Drifter tracks are saved in netCDF files. The file format
was recently changed from netCDF3 to netCDF4-CLASSIC. This
change was made because netCDF4-CLASSIC combines many
of the good parts of netCDF3 (e.g., file aggregation along a
dimension) with some of the abilities of netCDF4 (compression).
It does not allow for multiple unlimited dimensions (available
in netCDF4), but that capability has not been necessary in this
application. Changing to netCDF4-CLASSIC sped up the saving
process, which had been slow with netCDF3 when a large number
of drifters was used. The 64 bit format is used for saving the tracks
for lossless compression of information.

We ran a two-dimensional test with about 270,000 surface
drifters and over 100,000 grid cells for 30 days. A NaN is stored
once a drifter exits the domain and forever after in time for that
drifter (i.e., drifters do not reenter the numerical domain). This
results in a large amount of output (much of which may contain
NaNs), and saving such a large file can be really slow using
netCDF3. Run time and space requirement results comparing
simulations run with netCDF3 and netCDF4-CLASSIC show im-
proved results with netCDF4-CLASSIC (Table 1). The simulation
run time does not include time for saving the tracks, which is
listed separately. The simulation run time was the same regardless
of the file format used (since it only comes in when saving the file
afterward), but the file save time was massively reduced by using
netCDF4-CLASSIC (about 96%). Additionally, the file size was
reduced by about 42%. Note that the file size is the same between
netCDF4 and netCDF4-CLASSIC (not shown).

Suites of simulations were run using TracPy to test its time per-
formance on both a Linux workstation (Figure 5) and a Macintosh
laptop (not shown, but similar results). Changing the number of
grid cells in a simulation (keeping the number of drifters constant
at a moderate value) most affects the amount of time required to
prepare the simulation, which is when the grid is read in. The grid
will not be changing size in typical use cases so it may not be
a significant problem, but the rapid increase in time required to
run the code with an increasing number of grid cells may indicate
an opportunity for improvement in the way the simulations are
prepared. However, the time required to read in the grid increases
exponentially with number of grid cells due to the increase in
memory requirement for the grid arrays, so a change in approach
to what information is necessary to have on hand for a simulation
may be the only way to improve this. Changing the number of
drifters (keeping the number of grid cells constant at a moderate
value) affects the timing of several parts of the simulation. The
base time spent preparing the simulation is mostly consistent
since the grid size does not change between the cases. The time
for stepping the drifters with TRACMASS, and processing after

stepping drifters and at the end of the simulation increase with
an increasing number of drifters, as would be expected. The time
required for increasing the number of drifters should scale linearly.
Files used to run these tests are available on GitHub.

The TracPy suite of code has been used to investigate several
research problems so far. In one study, we sought to understand the
effect of the temporal resolution of the circulation model output
on the resulting drifter tracks (Figure 6). In another study, we
initialized drifters uniformly throughout a numerical domain of
the northwestern Gulf of Mexico and used the resulting tracks to
examine the connectivity of water across the shelf break and the
connectivity of surrounding waters with parts of the coastline (see
e.g., Figure 7). Drifters have also been initialized at the inputs of
the Mississippi and Atchafalaya rivers and tracked to illustrate the
complex pathways of the fresh water (Figure 8).

Many improvements and extensions could be made to TracPy.
It is intended to be integrated into NOAA’s GNOME oil tracking
system in order to contribute another mover to their tracking
system and take advantage of utilities in GNOME that are not
in the TRACMASS algorithm, such as the ability to directly apply
windage (this can be important for modeling material that directly
feels wind stress, such as large oil slicks). Potential improvements
include:

• The way the grid is read in and stored is taking too much
time, as was seen in the TracPy performance tests.

• Placeholders for all locations for all drifters are currently
stored for the entirety of a simulation run, which inflates
the memory required for a simulation. Instead, drifter
locations could be only temporarily stored and appended
to the output file as calculated.

• A drifter location is set to NaN when the drifter exits
the domain. This is currently somewhat accounted for by
using netCDF4-CLASSIC compression. However, another
way to minimize unnecessary NaN storage would be to
alter how drifter tracks are stored. Instead of the current
approach of storing tracks in a two-dimensional array of
drifter versus location in time, all drifter locations for a
given time step could be stored together on the same row.
This makes retrieval more difficult and requires ragged
rows, but eliminates the need to store a drifter that is
inactive. Alternatively, a sparse matrix could be used to
only store active drifters.

• Storage could be updated to full netCDF4 format.
• The modularity of the TracPy class should be improved.

Conclusions

A Python wrapper, TracPy, to a Lagrangrian trajectory model,
TRACMASS, combines the speed of the Fortran core algo-
rithm with the ease of using Python. TracPy uses netCDF4-
CLASSIC for saving trajectory paths, which is an improvement
over netCDF3 in both time required to save the file and disk space
required for the file. It also includes several improvements such
as including an iPython notebook user manual and eliminating
the use of global variables. TracPy performance tests indicate
expected behavior in simulation time increase when increasing
the number of drifters being simulated. However, when increasing
the number of grid cells in the underlying numerical circulation
model, preparing for the run takes more additional time than it
probably should. The TracPy suite of code has been used for

TRACPY: WRAPPING THE FORTRAN LAGRANGIAN TRAJECTORY MODEL TRACMASS 83

104 105

Number of grid cells

10-4

10-3

10-2

10-1

100

101

102
T
im

e
 [

s]
Initialization
Preparing for run
Preparing for step
Stepping
After step
After run

Effect of changing number of grid cells

101 102 103 104 105

Number of drifters

Effect of changing number of drifters

Fig. 5: Time required to run simulations with different numbers of grid cells (left) and drifters (right). A moderate number of drifters (5000)
(left) and grid cells (100,000) (right) were used as the independent variable in the tests. For timing, the code is split into initialization [red],
preparing for the run [orange], preparing for the model steps [yellow], stepping the drifters with TRACMASS [green], processing after the
steps [blue], and processing at the end of the simulation [purple].

0 5 10 15 20 25
Time [days]

0

20

40

60

80

100

120

D
 [

km
]

0

5

10

15

20

25

30

35

40
D

 [
∆

x]

300
600
1200
1800
2700
3600
7200
10800
14400
21600

Fig. 6: Separation distance between pairs of drifters run with circu-
lation model velocity fields output at different temporal resolutions
(given in seconds), averaged over many pairs of drifters. From
[Thyng2014a].

several applications so far, with more in the works for the future,
along with continual code improvements.

Acknowledgements

Thanks to Chris Barker for help in improving TracPy modularity
and unit tests, and for on-going work in integrating TracPy
into NOAA’s GNOME system. Thanks also to helpful review
comments from Terry Letsche.

REFERENCES

[Barker2000] C. H. Barker & J. A. Galt. Analysis of methods used
in spill response planning: Trajectory Analysis Planner
TAP II. Spill Science & Technology Bulletin, 6(2), 145-
152, 2000.

[Beegle-Krause1999] C. J. Beegle-Krause. GNOME: NOAA’s next-generation
spill trajectory model, Oceans ’99 MTS/IEEE Proceed-
ings. MTS/IEEE Conference Committee, Escondido,
CA, vol. 3, pp. 1262–1266, 1999.

[Beegle-Krause2001] C. J. Beegle-Krause. General NOAA oil modeling envi-
ronment (GNOME): a new spill trajectory model, IOSC
2001 Proceedings, Tampa, FL, March 26–29, 2001.
Mira Digital Publishing, Inc., St. Louis, MO, vol. 2,
pp. 865–871, 2001.

[DeVries2001] P. de Vries, K. Döös. Calculating Lagrangian trajec-
tories using time-dependent velocity fields, J Atmos
Ocean Technol 18:1092–1101, 2001.

[Döös2007] K. Döös, & A. Engqvist. Assessment of water exchange
between a discharge region and the open sea–A com-
parison of different methodological concepts. Estuarine,
Coastal and Shelf Science, 74(4), 709-721, 2007.

[Döös2011] K. Döös, V. Rupolo, & L. Brodeau. Dispersion of sur-
face drifters and model-simulated trajectories. Ocean
Modelling, 39(3), 301-310, 2011.

[Döös2013] K. Döös, J. Kjellsson, & B. Jönsson. TRACMASS—A
Lagrangian trajectory model. In Preventive Methods for
Coastal Protection (pp. 225-249). Springer International
Publishing, 2013.

[LaCasce2003] J. H. LaCasce & C. Ohlmann. Relative dispersion at
the surface of the Gulf of Mexico, Journal of Marine
Research, 61(3), 285-312, 2003.

[LaCasce2008] J. H. LaCasce. Statistics from Lagrangian observations,
Progress in Oceanography, 77(1), 1-29, 2008.

[Thyng2014a] K. M. Thyng, R. D. Hetland, R. Montuoro, J. Kurian.
Lagrangian tracking errors due to temporal subsam-
pling of numerical model output. Submitted to Journal
of Atmospheric and Oceanic Technology, 2014.

[Thyng2014b] K. M. Thyng. TracPy. ZENODO. doi:
10.5281/zenodo.10433, 2014.

84 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Fig. 7: Connectivity of waters with the southern Texas coastline over a 30 day time period, for the winter and summer months. Averaged over
the years 2004-2010. Project available on GitHub.

Fig. 8: Integrated pathways of drifters initialized in the Atchafalaya
and Mississippi river inputs to the numerical domain.

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014) 85

Frequentism and Bayesianism: A Python-driven
Primer

Jake VanderPlas‡∗

http://www.youtube.com/watch?v=KhAUfqhLakw

F

Abstract—This paper presents a brief, semi-technical comparison of the es-
sential features of the frequentist and Bayesian approaches to statistical infer-
ence, with several illustrative examples implemented in Python. The differences
between frequentism and Bayesianism fundamentally stem from differing defini-
tions of probability, a philosophical divide which leads to distinct approaches
to the solution of statistical problems as well as contrasting ways of asking
and answering questions about unknown parameters. After an example-driven
discussion of these differences, we briefly compare several leading Python sta-
tistical packages which implement frequentist inference using classical methods
and Bayesian inference using Markov Chain Monte Carlo.1

Index Terms—statistics, frequentism, Bayesian inference

Introduction

One of the first things a scientist in a data-intensive field hears
about statistics is that there are two different approaches: frequen-
tism and Bayesianism. Despite their importance, many researchers
never have opportunity to learn the distinctions between them and
the different practical approaches that result.

This paper seeks to synthesize the philosophical and pragmatic
aspects of this debate, so that scientists who use these approaches
might be better prepared to understand the tools available to them.
Along the way we will explore the fundamental philosophical
disagreement between frequentism and Bayesianism, explore the
practical aspects of how this disagreement affects data analysis,
and discuss the ways that these practices may affect the interpre-
tation of scientific results.

This paper is written for scientists who have picked up some
statistical knowledge along the way, but who may not fully
appreciate the philosophical differences between frequentist and
Bayesian approaches and the effect these differences have on both
the computation and interpretation of statistical results. Because
this passing statistics knowledge generally leans toward frequentist
principles, this paper will go into more depth on the details
of Bayesian rather than frequentist approaches. Still, it is not
meant to be a full introduction to either class of methods. In
particular, concepts such as the likelihood are assumed rather than

* Corresponding author: jakevdp@cs.washington.edu
‡ eScience Institute, University of Washington

Copyright © 2014 Jake VanderPlas. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. This paper draws heavily from content originally published in a series of
posts on the author’s blog, Pythonic Perambulations [VanderPlas2014].

derived, and many advanced Bayesian and frequentist diagnostic
tests are left out in favor of illustrating the most fundamental
aspects of the approaches. For a more complete treatment, see,
e.g. [Wasserman2004] or [Gelman2004].

The Disagreement: The Definition of Probability

Fundamentally, the disagreement between frequentists and
Bayesians concerns the definition of probability.

For frequentists, probability only has meaning in terms of
a limiting case of repeated measurements. That is, if an
astronomer measures the photon flux F from a given non-variable
star, then measures it again, then again, and so on, each time
the result will be slightly different due to the statistical error of
the measuring device. In the limit of many measurements, the
frequency of any given value indicates the probability of measur-
ing that value. For frequentists, probabilities are fundamentally
related to frequencies of events. This means, for example, that
in a strict frequentist view, it is meaningless to talk about the
probability of the true flux of the star: the true flux is, by definition,
a single fixed value, and to talk about an extended frequency
distribution for a fixed value is nonsense.

For Bayesians, the concept of probability is extended to cover
degrees of certainty about statements. A Bayesian might claim
to know the flux F of a star with some probability P(F): that
probability can certainly be estimated from frequencies in the
limit of a large number of repeated experiments, but this is not
fundamental. The probability is a statement of the researcher’s
knowledge of what the true flux is. For Bayesians, probabilities
are fundamentally related to their own knowledge about an
event. This means, for example, that in a Bayesian view, we can
meaningfully talk about the probability that the true flux of a star
lies in a given range. That probability codifies our knowledge of
the value based on prior information and available data.

The surprising thing is that this arguably subtle difference in
philosophy can lead, in practice, to vastly different approaches
to the statistical analysis of data. Below we will explore a few
examples chosen to illustrate the differences in approach, along
with associated Python code to demonstrate the practical aspects
of the frequentist and Bayesian approaches.

A Simple Example: Photon Flux Measurements

First we will compare the frequentist and Bayesian approaches
to the solution of an extremely simple problem. Imagine that we
point a telescope to the sky, and observe the light coming from

86 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

a single star. For simplicity, we will assume that the star’s true
photon flux is constant with time, i.e. that is it has a fixed value F ;
we will also ignore effects like sky background systematic errors.
We will assume that a series of N measurements are performed,
where the ith measurement reports the observed flux Fi and error
ei.2 The question is, given this set of measurements D = {Fi,ei},
what is our best estimate of the true flux F?

First we will use Python to generate some toy data to demon-
strate the two approaches to the problem. We will draw 50 samples
Fi with a mean of 1000 (in arbitrary units) and a (known) error ei:
>>> np.random.seed(2) # for reproducibility
>>> e = np.random.normal(30, 3, 50)
>>> F = np.random.normal(1000, e)

In this toy example we already know the true flux F , but the
question is this: given our measurements and errors, what is our
best point estimate of the true flux? Let’s look at a frequentist and
a Bayesian approach to solving this.

Frequentist Approach to Flux Measurement

We will start with the classical frequentist maximum likelihood
approach. Given a single observation Di =(Fi,ei), we can compute
the probability distribution of the measurement given the true flux
F given our assumption of Gaussian errors:

P(Di|F) =
(
2πe2

i
)−1/2

exp
(−(Fi−F)2

2e2
i

)
.

This should be read "the probability of Di given F equals ...". You
should recognize this as a normal distribution with mean F and
standard deviation ei. We construct the likelihood by computing
the product of the probabilities for each data point:

L (D|F) =
N

∏
i=1

P(Di|F)

Here D = {Di} represents the entire set of measurements. For
reasons of both analytic simplicity and numerical accuracy, it
is often more convenient to instead consider the log-likelihood;
combining the previous two equations gives

logL (D|F) =−1
2

N

∑
i=1

[
log(2πe2

i)+
(Fi−F)2

e2
i

]
.

We would like to determine the value of F which maximizes
the likelihood. For this simple problem, the maximization can be
computed analytically (e.g. by setting d logL /dF |F̂ = 0), which
results in the following point estimate of F :

F̂ =
∑wiFi

∑wi
; wi = 1/e2

i

The result is a simple weighted mean of the observed values.
Notice that in the case of equal errors ei, the weights cancel and
F̂ is simply the mean of the observed data.

We can go further and ask what the uncertainty of our estimate
is. One way this can be accomplished in the frequentist approach
is to construct a Gaussian approximation to the peak likelihood;
in this simple case the fit can be solved analytically to give:

σF̂ =

(
N

∑
i=1

wi

)−1/2

2. We will make the reasonable assumption of normally-distributed mea-
surement errors. In a Frequentist perspective, ei is the standard deviation of
the results of the single measurement event in the limit of (imaginary) repe-
titions of that event. In the Bayesian perspective, ei describes the probability
distribution which quantifies our knowledge of F given the measured value Fi.

This result can be evaluated this in Python as follows:
>>> w = 1. / e ** 2
>>> F_hat = np.sum(w * F) / np.sum(w)
>>> sigma_F = w.sum() ** -0.5

For our particular data, the result is F̂ = 999±4.

Bayesian Approach to Flux Measurement

The Bayesian approach, as you might expect, begins and ends with
probabilities. The fundamental result of interest is our knowledge
of the parameters in question, codified by the probability P(F |D).
To compute this result, we next apply Bayes’ theorem, a funda-
mental law of probability:

P(F |D) =
P(D|F) P(F)

P(D)

Though Bayes’ theorem is where Bayesians get their name, it is
important to note that it is not this theorem itself that is controver-
sial, but the Bayesian interpretation of probability implied by the
term P(F |D). While the above formulation makes sense given the
Bayesian view of probability, the setup is fundamentally contrary
to the frequentist philosophy, which says that probabilities have
no meaning for fixed model parameters like F . In the Bayesian
conception of probability, however, this poses no problem.

Let’s take a look at each of the terms in this expression:

• P(F |D): The posterior, which is the probability of the
model parameters given the data.

• P(D|F): The likelihood, which is proportional to the
L (D|F) used in the frequentist approach.

• P(F): The model prior, which encodes what we knew
about the model before considering the data D.

• P(D): The model evidence, which in practice amounts to
simply a normalization term.

If we set the prior P(F) ∝ 1 (a flat prior), we find

P(F |D) ∝ L (D|F).

That is, with a flat prior on F , the Bayesian posterior is maximized
at precisely the same value as the frequentist result! So despite the
philosophical differences, we see that the Bayesian and frequentist
point estimates are equivalent for this simple problem.

You might notice that we glossed over one important piece
here: the prior, P(F), which we assumed to be flat.3 The prior
allows inclusion of other information into the computation, which
becomes very useful in cases where multiple measurement strate-
gies are being combined to constrain a single model (as is the
case in, e.g. cosmological parameter estimation). The necessity to
specify a prior, however, is one of the more controversial pieces
of Bayesian analysis.

A frequentist will point out that the prior is problematic when
no true prior information is available. Though it might seem
straightforward to use an uninformative prior like the flat prior
mentioned above, there are some surprising subtleties involved.4

It turns out that in many situations, a truly uninformative prior
cannot exist! Frequentists point out that the subjective choice of a
prior which necessarily biases the result should have no place in
scientific data analysis.

3. A flat prior is an example of an improper prior: that is, it cannot be
normalized. In practice, we can remedy this by imposing some bounds on
possible values: say, 0 < F < Ftot , the total flux of all sources in the sky. As
this normalization term also appears in the denominator of Bayes’ theorem, it
does not affect the posterior.

FREQUENTISM AND BAYESIANISM: A PYTHON-DRIVEN PRIMER 87

A Bayesian would counter that frequentism doesn’t solve this
problem, but simply skirts the question. Frequentism can often be
viewed as simply a special case of the Bayesian approach for some
(implicit) choice of the prior: a Bayesian would say that it’s better
to make this implicit choice explicit, even if the choice might
include some subjectivity. Furthermore, as we will see below,
the question frequentism answers is not always the question the
researcher wants to ask.

Where The Results Diverge

In the simple example above, the frequentist and Bayesian ap-
proaches give basically the same result. In light of this, arguments
over the use of a prior and the philosophy of probability may
seem frivolous. However, while it is easy to show that the two
approaches are often equivalent for simple problems, it is also
true that they can diverge greatly in other situations. In practice,
this divergence most often makes itself most clear in two different
ways:

1) The handling of nuisance parameters: i.e. parameters
which affect the final result, but are not otherwise of
interest.

2) The different handling of uncertainty: for example, the
subtle (and often overlooked) difference between fre-
quentist confidence intervals and Bayesian credible re-
gions.

We will discuss examples of these below.

Nuisance Parameters: Bayes’ Billiards Game

We will start by discussing the first point: nuisance parameters.
A nuisance parameter is any quantity whose value is not directly
relevant to the goal of an analysis, but is nevertheless required to
determine the result which is of interest. For example, we might
have a situation similar to the flux measurement above, but in
which the errors ei are unknown. One potential approach is to
treat these errors as nuisance parameters.

Here we consider an example of nuisance parameters borrowed
from [Eddy2004] that, in one form or another, dates all the
way back to the posthumously-published 1763 paper written by
Thomas Bayes himself [Bayes1763]. The setting is a gambling
game in which Alice and Bob bet on the outcome of a process
they can’t directly observe.

Alice and Bob enter a room. Behind a curtain there is a billiard
table, which they cannot see. Their friend Carol rolls a ball down
the table, and marks where it lands. Once this mark is in place,
Carol begins rolling new balls down the table. If the ball lands
to the left of the mark, Alice gets a point; if it lands to the right
of the mark, Bob gets a point. We can assume that Carol’s rolls
are unbiased: that is, the balls have an equal chance of ending up
anywhere on the table. The first person to reach six points wins
the game.

Here the location of the mark (determined by the first roll)
can be considered a nuisance parameter: it is unknown and not
of immediate interest, but it clearly must be accounted for when
predicting the outcome of subsequent rolls. If this first roll settles

4. The flat prior in this case can be motivated by maximum entropy;
see, e.g. [Jeffreys1946]. Still, the use of uninformative priors like this often
raises eyebrows among frequentists: there are good arguments that even
"uninformative" priors can add information; see e.g. [Evans2002].

far to the right, then subsequent rolls will favor Alice. If it settles
far to the left, Bob will be favored instead.

Given this setup, we seek to answer this question: In a
particular game, after eight rolls, Alice has five points and Bob
has three points. What is the probability that Bob will get six points
and win the game?

Intuitively, we realize that because Alice received five of the
eight points, the marker placement likely favors her. Given that
she has three opportunities to get a sixth point before Bob can
win, she seems to have clinched it. But quantitatively speaking,
what is the probability that Bob will persist to win?

A Naïve Frequentist Approach

Someone following a classical frequentist approach might reason
as follows:

To determine the result, we need to estimate the location of the
marker. We will quantify this marker placement as a probability p
that any given roll lands in Alice’s favor. Because five balls out of
eight fell on Alice’s side of the marker, we compute the maximum
likelihood estimate of p, given by:

p̂ = 5/8,

a result follows in a straightforward manner from the binomial
likelihood. Assuming this maximum likelihood probability, we can
compute the probability that Bob will win, which requires him to
get a point in each of the next three rolls. This is given by:

P(B) = (1− p̂)3

Thus, we find that the probability of Bob winning is 0.053, or odds
against Bob winning of 18 to 1.

A Bayesian Approach

A Bayesian approach to this problem involves marginalizing (i.e.
integrating) over the unknown p so that, assuming the prior is
accurate, our result is agnostic to its actual value. In this vein, we
will consider the following quantities:

• B = Bob Wins
• D = observed data, i.e. D = (nA,nB) = (5,3)
• p = unknown probability that a ball lands on Alice’s side

during the current game

We want to compute P(B|D); that is, the probability that Bob
wins given the observation that Alice currently has five points to
Bob’s three. A Bayesian would recognize that this expression is a
marginal probability which can be computed by integrating over
the joint distribution P(B, p|D):

P(B|D)≡
∫ ∞

−∞
P(B, p|D)dp

This identity follows from the definition of conditional probability,
and the law of total probability: that is, it is a fundamental
consequence of probability axioms and will always be true. Even a
frequentist would recognize this; they would simply disagree with
the interpretation of P(p) as being a measure of uncertainty of
knowledge of the parameter p.

To compute this result, we will manipulate the above expres-
sion for P(B|D) until we can express it in terms of other quantities
that we can compute.

We start by applying the definition of conditional probability
to expand the term P(B, p|D):

P(B|D) =
∫

P(B|p,D)P(p|D)d p

88 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Next we use Bayes’ rule to rewrite P(p|D):

P(B|D) =
∫

P(B|p,D)
P(D|p)P(p)

P(D)
d p

Finally, using the same probability identity we started with, we
can expand P(D) in the denominator to find:

P(B|D) =

∫
P(B|p,D)P(D|p)P(p)d p∫

P(D|p)P(p)d p

Now the desired probability is expressed in terms of three quanti-
ties that we can compute:

• P(B|p,D): This term is proportional to the frequentist like-
lihood we used above. In words: given a marker placement
p and Alice’s 5 wins to Bob’s 3, what is the probability that
Bob will go on to six wins? Bob needs three wins in a row,
i.e. P(B|p,D) = (1− p)3.

• P(D|p): this is another easy-to-compute term. In words:
given a probability p, what is the likelihood of exactly 5
positive outcomes out of eight trials? The answer comes
from the Binomial distribution: P(D|p) ∝ p5(1− p)3

• P(p): this is our prior on the probability p. By the problem
definition, we can assume that p is evenly drawn between
0 and 1. That is, P(p) ∝ 1 for 0≤ p≤ 1.

Putting this all together and simplifying gives

P(B|D) =

∫ 1
0 (1− p)6 p5d p
∫ 1

0 (1− p)3 p5d p
.

These integrals are instances of the beta function, so we can
quickly evaluate the result using scipy:
>>> from scipy.special import beta
>>> P_B_D = beta(6+1, 5+1) / beta(3+1, 5+1)

This gives P(B|D) = 0.091, or odds of 10 to 1 against Bob
winning.

Discussion

The Bayesian approach gives odds of 10 to 1 against Bob, while
the naïve frequentist approach gives odds of 18 to 1 against Bob.
So which one is correct?

For a simple problem like this, we can answer this question
empirically by simulating a large number of games and count
the fraction of suitable games which Bob goes on to win. This
can be coded in a couple dozen lines of Python (see part II of
[VanderPlas2014]). The result of such a simulation confirms the
Bayesian result: 10 to 1 against Bob winning.

So what is the takeaway: is frequentism wrong? Not neces-
sarily: in this case, the incorrect result is more a matter of the
approach being "naïve" than it being "frequentist". The approach
above does not consider how p may vary. There exist frequentist
methods that can address this by, e.g. applying a transformation
and conditioning of the data to isolate dependence on p, or by
performing a Bayesian-like integral over the sampling distribution
of the frequentist estimator p̂.

Another potential frequentist response is that the question
itself is posed in a way that does not lend itself to the classical,
frequentist approach. A frequentist might instead hope to give the
answer in terms of null tests or confidence intervals: that is, they
might devise a procedure to construct limits which would provably
bound the correct answer in 100×(1−α) percent of similar trials,
for some value of α – say, 0.05. We will discuss the meaning of
such confidence intervals below.

There is one clear common point of these two frequentist
responses: both require some degree of effort and/or special exper-
tise in classical methods; perhaps a suitable frequentist approach
would be immediately obvious to an expert statistician, but is not
particularly obvious to a statistical lay-person. In this sense, it
could be argued that for a problem such as this (i.e. with a well-
motivated prior), Bayesianism provides a more natural framework
for handling nuisance parameters: by simple algebraic manipula-
tion of a few well-known axioms of probability interpreted in a
Bayesian sense, we straightforwardly arrive at the correct answer
without need for other special statistical expertise.

Confidence vs. Credibility: Jaynes’ Truncated Exponential

A second major consequence of the philosophical difference
between frequentism and Bayesianism is in the handling of un-
certainty, exemplified by the standard tools of each method: fre-
quentist confidence intervals (CIs) and Bayesian credible regions
(CRs). Despite their apparent similarity, the two approaches are
fundamentally different. Both are statements of probability, but
the probability refers to different aspects of the computed bounds.
For example, when constructing a standard 95% bound about a
parameter θ :

• A Bayesian would say: "Given our observed data, there is
a 95% probability that the true value of θ lies within the
credible region".

• A frequentist would say: "If this experiment is repeated
many times, in 95% of these cases the computed confi-
dence interval will contain the true θ ."5

Notice the subtle difference: the Bayesian makes a statement
of probability about the parameter value given a fixed credible
region. The frequentist makes a statement of probability about
the confidence interval itself given a fixed parameter value. This
distinction follows straightforwardly from the definition of proba-
bility discussed above: the Bayesian probability is a statement of
degree of knowledge about a parameter; the frequentist probability
is a statement of long-term limiting frequency of quantities (such
as the CI) derived from the data.

This difference must necessarily affect our interpretation of
results. For example, it is common in scientific literature to see
it claimed that it is 95% certain that an unknown parameter lies
within a given 95% CI, but this is not the case! This is erroneously
applying the Bayesian interpretation to a frequentist construction.
This frequentist oversight can perhaps be forgiven, as under most
circumstances (such as the simple flux measurement example
above), the Bayesian CR and frequentist CI will more-or-less
overlap. But, as we will see below, this overlap cannot always
be assumed, especially in the case of non-Gaussian distributions
constrained by few data points. As a result, this common misinter-
pretation of the frequentist CI can lead to dangerously erroneous
conclusions.

To demonstrate a situation in which the frequentist confidence
interval and the Bayesian credibility region do not overlap, let
us turn to an example given by E.T. Jaynes, a 20th century
physicist who wrote extensively on statistical inference. In his
words, consider a device that

5. [Wasserman2004], however, notes on p. 92 that we need not consider
repetitions of the same experiment; it’s sufficient to consider repetitions of any
correctly-performed frequentist procedure.

FREQUENTISM AND BAYESIANISM: A PYTHON-DRIVEN PRIMER 89

"...will operate without failure for a time θ because
of a protective chemical inhibitor injected into it; but
at time θ the supply of the chemical is exhausted,
and failures then commence, following the exponential
failure law. It is not feasible to observe the depletion of
this inhibitor directly; one can observe only the resulting
failures. From data on actual failure times, estimate the
time θ of guaranteed safe operation..." [Jaynes1976]

Essentially, we have data D drawn from the model:

P(x|θ) =
{

exp(θ − x) , x > θ
0 , x < θ

}

where p(x|θ) gives the probability of failure at time x, given an
inhibitor which lasts for a time θ . We observe some failure times,
say D = {10,12,15}, and ask for 95% uncertainty bounds on the
value of θ .

First, let’s think about what common-sense would tell us.
Given the model, an event can only happen after a time θ . Turning
this around tells us that the upper-bound for θ must be min(D).
So, for our particular data, we would immediately write θ ≤ 10.
With this in mind, let’s explore how a frequentist and a Bayesian
approach compare to this observation.

Truncated Exponential: A Frequentist Approach

In the frequentist paradigm, we’d like to compute a confidence
interval on the value of θ . We might start by observing that the
population mean is given by

E(x) =
∫ ∞

0
xp(x)dx = θ +1.

So, using the sample mean as the point estimate of E(x), we have
an unbiased estimator for θ given by

θ̂ =
1
N

N

∑
i=1

xi−1.

In the large-N limit, the central limit theorem tells us that the
sampling distribution is normal with standard deviation given by
the standard error of the mean: σ2

θ̂ = 1/N, and we can write the
95% (i.e. 2σ) confidence interval as

CIlarge N =
(

θ̂ −2N−1/2, θ̂ +2N−1/2
)

For our particular observed data, this gives a confidence interval
around our unbiased estimator of CI(θ) = (10.2,12.5), entirely
above our common-sense bound of θ < 10! We might hope that
this discrepancy is due to our use of the large-N approximation
with a paltry N = 3 samples. A more careful treatment of the
problem (See [Jaynes1976] or part III of [VanderPlas2014]) gives
the exact confidence interval (10.2,12.2): the 95% confidence
interval entirely excludes the sensible bound θ < 10!

Truncated Exponential: A Bayesian Approach

A Bayesian approach to the problem starts with Bayes’ rule:

P(θ |D) =
P(D|θ)P(θ)

P(D)
.

We use the likelihood given by

P(D|θ) ∝
N

∏
i=1

P(xi|θ)

and, in the absence of other information, use an uninformative flat
prior on θ to find

P(θ |D) ∝
{

N exp [N(θ −min(D))] , θ < min(D)
0 , θ > min(D)

}

where min(D) is the smallest value in the data D, which enters
because of the truncation of P(xi|θ). Because P(θ |D) increases
exponentially up to the cutoff, the shortest 95% credibility interval
(θ1,θ2) will be given by θ2 =min(D), and θ1 given by the solution
to the equation ∫ θ2

θ1

P(θ |D)dθ = f

which has the solution

θ1 = θ2 +
1
N

ln
[
1− f (1− e−Nθ2)

]
.

For our particular data, the Bayesian credible region is

CR(θ) = (9.0,10.0)

which agrees with our common-sense bound.

Discussion

Why do the frequentist CI and Bayesian CR give such different
results? The reason goes back to the definitions of the CI and CR,
and to the fact that the two approaches are answering different
questions. The Bayesian CR answers a question about the value
of θ itself (the probability that the parameter is in the fixed CR),
while the frequentist CI answers a question about the procedure
used to construct the CI (the probability that any potential CI will
contain the fixed parameter).

Using Monte Carlo simulations, it is possible to confirm that
both the above results correctly answer their respective questions
(see [VanderPlas2014], III). In particular, 95% of frequentist CIs
constructed using data drawn from this model in fact contain the
true θ . Our particular data are simply among the unhappy 5%
which the confidence interval misses. But this makes clear the
danger of misapplying the Bayesian interpretation to a CI: this
particular CI is not 95% likely to contain the true value of θ ; it is
in fact 0% likely!

This shows that when using frequentist methods on fixed data,
we must carefully keep in mind what question frequentism is
answering. Frequentism does not seek a probabilistic statement
about a fixed interval as the Bayesian approach does; it instead
seeks probabilistic statements about an ensemble of constructed
intervals, with the particular computed interval just a single draw
from among them. Despite this, it is common to see a 95%
confidence interval interpreted in the Bayesian sense: as a fixed
interval that the parameter is expected to be found in 95% of the
time. As seen clearly here, this interpretation is flawed, and should
be carefully avoided.

Though we used a correct unbiased frequentist estimator
above, it should be emphasized that the unbiased estimator is
not always optimal for any given problem: especially one with
small N and/or censored models; see, e.g. [Hardy2003]. Other
frequentist estimators are available: for example, if the (biased)
maximum likelihood estimator were used here instead, the con-
fidence interval would be very similar to the Bayesian credible
region derived above. Regardless of the choice of frequentist
estimator, however, the correct interpretation of the CI is the same:
it gives probabilities concerning the recipe for constructing limits,
not for the parameter values given the observed data. For sensible

90 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

parameter constraints from a single dataset, Bayesianism may be
preferred, especially if the difficulties of uninformative priors can
be avoided through the use of true prior information.

Bayesianism in Practice: Markov Chain Monte Carlo

Though Bayesianism has some nice features in theory, in practice
it can be extremely computationally intensive: while simple prob-
lems like those examined above lend themselves to relatively easy
analytic integration, real-life Bayesian computations often require
numerical integration of high-dimensional parameter spaces.

A turning-point in practical Bayesian computation was the
development and application of sampling methods such as Markov
Chain Monte Carlo (MCMC). MCMC is a class of algorithms
which can efficiently characterize even high-dimensional posterior
distributions through drawing of randomized samples such that
the points are distributed according to the posterior. A detailed
discussion of MCMC is well beyond the scope of this paper;
an excellent introduction can be found in [Gelman2004]. Below,
we will propose a straightforward model and compare a standard
frequentist approach with three MCMC implementations available
in Python.

Application: A Simple Linear Model

As an example of a more realistic data-driven analysis, let’s con-
sider a simple three-parameter linear model which fits a straight-
line to data with unknown errors. The parameters will be the the
y-intercept α , the slope β , and the (unknown) normal scatter σ
about the line.

For data D = {xi,yi}, the model is

ŷ(xi|α,β) = α +βxi,

and the likelihood is the product of the Gaussian distribution for
each point:

L (D|α,β ,σ) = (2πσ2)−N/2
N

∏
i=1

exp
[−[yi− ŷ(xi|α,β)]2

2σ2

]
.

We will evaluate this model on the following data set:

import numpy as np
np.random.seed(42) # for repeatability
theta_true = (25, 0.5)
xdata = 100 * np.random.random(20)
ydata = theta_true[0] + theta_true[1] * xdata
ydata = np.random.normal(ydata, 10) # add error

Below we will consider a frequentist solution to this problem
computed with the statsmodels package6, as well as a Bayesian so-
lution computed with several MCMC implementations in Python:
emcee7, PyMC8, and PyStan9. A full discussion of the strengths
and weaknesses of the various MCMC algorithms used by the
packages is out of scope for this paper, as is a full discussion
of performance benchmarks for the packages. Rather, the purpose
of this section is to show side-by-side examples of the Python
APIs of the packages. First, though, we will consider a frequentist
solution.

6. statsmodels: Statistics in Python http://statsmodels.sourceforge.net/
7. emcee: The MCMC Hammer http://dan.iel.fm/emcee/
8. PyMC: Bayesian Inference in Python http://pymc-devs.github.io/pymc/
9. PyStan: The Python Interface to Stan https://pystan.readthedocs.org/

Frequentist Solution

A frequentist solution can be found by computing the maximum
likelihood point estimate. For standard linear problems such as
this, the result can be computed using efficient linear algebra. If
we define the parameter vector, θ = [α β]T ; the response vector,
Y = [y1 y2 y3 · · · yN]

T ; and the design matrix,

X =

[
1 1 1 · · · 1
x1 x2 x3 · · · xN

]T

,

it can be shown that the maximum likelihood solution is

θ̂ = (XT X)−1(XTY).

The confidence interval around this value is an ellipse in parameter
space defined by the following matrix:

Σθ̂ ≡
[

σ2
α σαβ

σαβ σ2
β

]
= σ2(MT M)−1.

Here σ is our unknown error term; it can be estimated based on the
variance of the residuals about the fit. The off-diagonal elements of
Σθ̂ are the correlated uncertainty between the estimates. In code,
the computation looks like this:

>>> X = np.vstack([np.ones_like(xdata), xdata]).T
>>> theta_hat = np.linalg.solve(np.dot(X.T, X),
... np.dot(X.T, ydata))
>>> y_hat = np.dot(X, theta_hat)
>>> sigma_hat = np.std(ydata - y_hat)
>>> Sigma = sigma_hat ** 2 *\
... np.linalg.inv(np.dot(X.T, X))

The 1σ and 2σ results are shown by the black ellipses in Figure
1.

In practice, the frequentist approach often relies on many more
statistal diagnostics beyond the maximum likelihood and confi-
dence interval. These can be computed quickly using convenience
routines built-in to the statsmodels package [Seabold2010].
For this problem, it can be used as follows:

>>> import statsmodels.api as sm # version 0.5
>>> X = sm.add_constant(xdata)
>>> result = sm.OLS(ydata, X).fit()
>>> sigma_hat = result.params
>>> Sigma = result.cov_params()
>>> print(result.summary2())

==
Model: OLS AIC: 147.773
Dependent Variable: y BIC: 149.765
No. Observations: 20 Log-Likelihood: -71.887
Df Model: 1 F-statistic: 41.97
Df Residuals: 18 Prob (F-statistic): 4.3e-06
R-squared: 0.70 Scale: 86.157
Adj. R-squared: 0.68
--

Coef. Std.Err. t P>|t| [0.025 0.975]
--
const 24.6361 3.7871 6.5053 0.0000 16.6797 32.592
x1 0.4483 0.0692 6.4782 0.0000 0.3029 0.593
--
Omnibus: 1.996 Durbin-Watson: 2.75
Prob(Omnibus): 0.369 Jarque-Bera (JB): 1.63
Skew: 0.651 Prob(JB): 0.44
Kurtosis: 2.486 Condition No.: 100
==

The summary output includes many advanced statistics which we
don’t have space to fully discuss here. For a trained practitioner
these diagnostics are very useful for evaluating and comparing fits,

FREQUENTISM AND BAYESIANISM: A PYTHON-DRIVEN PRIMER 91

especially for more complicated models; see [Wasserman2004]
and the statsmodels project documentation for more details.

Bayesian Solution: Overview

The Bayesian result is encapsulated in the posterior, which is
proportional to the product of the likelihood and the prior; in
this case we must be aware that a flat prior is not uninformative.
Because of the nature of the slope, a flat prior leads to a much
higher probability for steeper slopes. One might imagine address-
ing this by transforming variables, e.g. using a flat prior on the
angle the line makes with the x-axis rather than the slope. It turns
out that the appropriate change of variables can be determined
much more rigorously by following arguments first developed by
[Jeffreys1946].

Our model is given by y = α + βx with probability element
P(α,β)dαdβ . By symmetry, we could just as well have written
x = α ′ + β ′y with probability element Q(α ′,β ′)dα ′dβ ′. It then
follows that (α ′,β ′) = (−β−1α,β−1). Computing the determinant
of the Jacobian of this transformation, we can then show that
Q(α ′,β ′) = β 3P(α,β). The symmetry of the problem requires
equivalence of P and Q, or β 3P(α,β) = P(−β−1α,β−1), which
is a functional equation satisfied by

P(α,β) ∝ (1+β 2)−3/2.

This turns out to be equivalent to choosing flat priors on the
alternate variables (θ ,α⊥) = (tan−1 β ,α cosθ).

Through similar arguments based on the invariance of σ under
a change of units, we can show that

P(σ) ∝ 1/σ ,

which is most commonly known a the Jeffreys Prior for scale
factors after [Jeffreys1946], and is equivalent to flat prior on logσ .
Putting these together, we find the following uninformative prior
for our linear regression problem:

P(α,β ,σ) ∝
1
σ
(1+β 2)−3/2.

With this prior and the above likelihood, we are prepared to
numerically evaluate the posterior via MCMC.

Solution with emcee

The emcee package [ForemanMackey2013] is a lightweight pure-
Python package which implements Affine Invariant Ensemble
MCMC [Goodman2010], a sophisticated version of MCMC sam-
pling. To use emcee, all that is required is to define a Python
function representing the logarithm of the posterior. For clarity,
we will factor this definition into two functions, the log-prior and
the log-likelihood:

import emcee # version 2.0

def log_prior(theta):
alpha, beta, sigma = theta
if sigma < 0:

return -np.inf # log(0)
else:

return (-1.5 * np.log(1 + beta**2)
- np.log(sigma))

def log_like(theta, x, y):
alpha, beta, sigma = theta
y_model = alpha + beta * x
return -0.5 * np.sum(np.log(2*np.pi*sigma**2) +

(y-y_model)**2 / sigma**2)

def log_posterior(theta, x, y):
return log_prior(theta) + log_like(theta,x,y)

Next we set up the computation. emcee combines multiple
interacting "walkers", each of which results in its own Markov
chain. We will also specify a burn-in period, to allow the chains
to stabilize prior to drawing our final traces:

ndim = 3 # number of parameters in the model
nwalkers = 50 # number of MCMC walkers
nburn = 1000 # "burn-in" to stabilize chains
nsteps = 2000 # number of MCMC steps to take
starting_guesses = np.random.rand(nwalkers, ndim)

Now we call the sampler and extract the trace:

sampler = emcee.EnsembleSampler(nwalkers, ndim,
log_posterior,
args=[xdata,ydata])

sampler.run_mcmc(starting_guesses, nsteps)

chain is of shape (nwalkers, nsteps, ndim):
discard burn-in points and reshape:
trace = sampler.chain[:, nburn:, :]
trace = trace.reshape(-1, ndim).T

The result is shown by the blue curve in Figure 1.

Solution with PyMC

The PyMC package [Patil2010] is an MCMC implementation
written in Python and Fortran. It makes use of the classic
Metropolis-Hastings MCMC sampler [Gelman2004], and includes
many built-in features, such as support for efficient sampling of
common prior distributions. Because of this, it requires more
specialized boilerplate than does emcee, but the result is a very
powerful tool for flexible Bayesian inference.

The example below uses PyMC version 2.3; as of this writing,
there exists an early release of version 3.0, which is a complete
rewrite of the package with a more streamlined API and more
efficient computational backend. To use PyMC, we first we define
all the variables using its classes and decorators:

import pymc # version 2.3

alpha = pymc.Uniform('alpha', -100, 100)

@pymc.stochastic(observed=False)
def beta(value=0):

return -1.5 * np.log(1 + value**2)

@pymc.stochastic(observed=False)
def sigma(value=1):

return -np.log(abs(value))

Define the form of the model and likelihood
@pymc.deterministic
def y_model(x=xdata, alpha=alpha, beta=beta):

return alpha + beta * x

y = pymc.Normal('y', mu=y_model, tau=1./sigma**2,
observed=True, value=ydata)

package the full model in a dictionary
model = dict(alpha=alpha, beta=beta, sigma=sigma,

y_model=y_model, y=y)

Next we run the chain and extract the trace:

S = pymc.MCMC(model)
S.sample(iter=100000, burn=50000)
trace = [S.trace('alpha')[:], S.trace('beta')[:],

S.trace('sigma')[:]]

92 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

The result is shown by the red curve in Figure 1.

Solution with PyStan

PyStan is the official Python interface to Stan, a probabilistic
programming language implemented in C++ and making use of a
Hamiltonian MCMC using a No U-Turn Sampler [Hoffman2014].
The Stan language is specifically designed for the expression of
probabilistic models; PyStan lets Stan models specified in the form
of Python strings be parsed, compiled, and executed by the Stan
library. Because of this, PyStan is the least "Pythonic" of the three
frameworks:

import pystan # version 2.2

model_code = """
data {

int<lower=0> N; // number of points
real x[N]; // x values
real y[N]; // y values

}
parameters {

real alpha_perp;
real<lower=-pi()/2, upper=pi()/2> theta;
real log_sigma;

}
transformed parameters {

real alpha;
real beta;
real sigma;
real ymodel[N];
alpha <- alpha_perp / cos(theta);
beta <- sin(theta);
sigma <- exp(log_sigma);
for (j in 1:N)
ymodel[j] <- alpha + beta * x[j];

}
model {

y ~ normal(ymodel, sigma);
}
"""

perform the fit & extract traces
data = {'N': len(xdata), 'x': xdata, 'y': ydata}
fit = pystan.stan(model_code=model_code, data=data,

iter=25000, chains=4)
tr = fit.extract()
trace = [tr['alpha'], tr['beta'], tr['sigma']]

The result is shown by the green curve in Figure 1.

Comparison

The 1σ and 2σ posterior credible regions computed with these
three packages are shown beside the corresponding frequentist
confidence intervals in Figure 1. The frequentist result gives
slightly tighter bounds; this is primarily due to the confidence
interval being computed assuming a single maximum likelihood
estimate of the unknown scatter, σ (this is analogous to the use
of the single point estimate for the nuisance parameter p in
the billiard game, above). This interpretation can be confirmed
by plotting the Bayesian posterior conditioned on the maximum
likelihood estimate σ̂ ; this gives a credible region much closer to
the frequentist confidence interval.

The similarity of the three MCMC results belie the differences
in algorithms used to compute them: by default, PyMC uses a
Metropolis-Hastings sampler, PyStan uses a No U-Turn Sampler
(NUTS), while emcee uses an affine-invariant ensemble sam-
pler. These approaches are known to have differing performance
characteristics depending on the features of the posterior being

Fig. 1: Comparison of model fits using frequentist maximum like-
lihood, and Bayesian MCMC using three Python packages: emcee,
PyMC, and PyStan.

explored. As expected for the near-Gaussian posterior used here,
the three approaches give very similar results.

A main apparent difference between the packages is the
Python interface. Emcee is perhaps the simplest, while PyMC
requires more package-specific boilerplate code. PyStan is the
most complicated, as the model specification requires directly
writing a string of Stan code.

Conclusion

This paper has offered a brief philosophical and practical glimpse
at the differences between frequentist and Bayesian approaches
to statistical analysis. These differences have their root in differ-
ing conceptions of probability: frequentists define probability as
related to frequencies of repeated events, while Bayesians define
probability as a measure of uncertainty. In practice, this means
that frequentists generally quantify the properties of data-derived
quantities in light of fixed model parameters, while Bayesians
generally quantify the properties of unknown models parameters
in light of observed data. This philosophical distinction often
makes little difference in simple problems, but becomes important
within more sophisticated analysis.

We first considered the case of nuisance parameters, and
showed that Bayesianism offers more natural machinery to deal
with nuisance parameters through marginalization. Of course, this
marginalization depends on having an accurate prior probability
for the parameter being marginalized.

Next we considered the difference in the handling of uncer-
tainty, comparing frequentist confidence intervals with Bayesian
credible regions. We showed that when attempting to find a single,
fixed interval bounding the true value of a parameter, the Bayesian
solution answers the question that researchers most often ask. The
frequentist solution can be informative; we just must be careful to
correctly interpret the frequentist confidence interval.

FREQUENTISM AND BAYESIANISM: A PYTHON-DRIVEN PRIMER 93

Finally, we combined these ideas and showed several examples
of the use of frequentism and Bayesianism on a more realistic
linear regression problem, using several mature packages available
in the Python language ecosystem. Together, these packages offer
a set of tools for statistical analysis in both the frequentist and
Bayesian frameworks.

So which approach is best? That is somewhat a matter of
personal ideology, but also depends on the nature of the problem
at hand. Frequentist approaches are often easily computed and are
well-suited to truly repeatible processes and measurements, but
can hit snags with small sets of data and models which depart
strongly from Gaussian. Frequentist tools for these situations
do exist, but often require subtle considerations and specialized
expertise. Bayesian approaches require specification of a poten-
tially subjective prior, and often involve intensive computation
via MCMC. However, they are often conceptually more straight-
forward, and pose results in a way that is much closer to the
questions a scientist wishes to answer: i.e. how do these particular
data constrain the unknowns in a certain model? When used with
correct understanding of their application, both sets of statistical
tools can be used to effectively interpret of a wide variety of
scientific and technical results.

REFERENCES

[Bayes1763] T. Bayes. An essay towards solving a problem in the
doctrine of chances. Philosophical Transactions of the
Royal Society of London 53(0):370-418, 1763

[Eddy2004] S.R. Eddy. What is Bayesian statistics?. Nature
Biotechnology 22:1177-1178, 2004

[Evans2002] S.N. Evans & P.B. Stark. Inverse Problems as Statis-
tics. Mathematics Statistics Library, 609, 2002.

[ForemanMackey2013] D. Foreman-Mackey, D.W. Hogg, D. Lang,
J.Goodman. emcee: the MCMC Hammer. PASP
125(925):306-312, 2014

[Gelman2004] A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin.
Bayesian Data Analysis, Second Edition. Chapman
and Hall/CRC, Boca Raton, FL, 2004.

[Goodman2010] J. Goodman & J. Weare. Ensemble Samplers with
Affine Invariance. Comm. in Applied Mathematics
and Computational Science 5(1):65-80, 2010.

[Hardy2003] M. Hardy. An illuminating counterexample. Am.
Math. Monthly 110:234–238, 2003.

[Hoffman2014] M.C. Hoffman & A. Gelman. The No-U-Turn Sam-
pler: Adaptively Setting Path Lengths in Hamiltonian
Monte Carlo. JMLR, submitted, 2014.

[Jaynes1976] E.T. Jaynes. Confidence Intervals vs Bayesian In-
tervals (1976) Papers on Probability, Statistics and
Statistical Physics Synthese Library 158:149, 1989

[Jeffreys1946] H. Jeffreys An Invariant Form for the Prior Probabil-
ity in Estimation Problems. Proc. of the Royal Society
of London. Series A 186(1007): 453, 1946

[Patil2010] A. Patil, D. Huard, C.J. Fonnesbeck. PyMC: Bayesian
Stochastic Modelling in Python Journal of Statistical
Software, 35(4):1-81, 2010.

[Seabold2010] J.S. Seabold and J. Perktold. Statsmodels: Economet-
ric and Statistical Modeling with Python Proceedings
of the 9th Python in Science Conference, 2010

[VanderPlas2014] J. VanderPlas. Frequentism and Bayesianism. Four-
part series (I, II, III, IV) on Pythonic Perambulations
http://jakevdp.github.io/, 2014.

[Wasserman2004] L. Wasserman. All of statistics: a concise course in
statistical inference. Springer, 2004.

94 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Blaze: Building A Foundation for Array-Oriented
Computing in Python

Mark Wiebe‡∗, Matthew Rocklin‡, TJ Alumbaugh‡, Andy Terrel‡

http://www.youtube.com/watch?v=9HPR-1PdZUk

F

Abstract—We present the motivation and architecture of Blaze, a library for
cross-backend data-oriented computation. Blaze provides a standard interface
to connect users familiar with NumPy and Pandas to other data analytics
libraries like SQLAlchemy and Spark. We motivate the use of these projects
through Blaze and discuss the benefits of standard interfaces on top of an
increasingly varied software ecosystem. We give an overview of the Blaze
architecture and then demonstrate its use on a typical problem. We use the
abstract nature of Blaze to quickly benchmark and compare the performance of
a variety of backends on a standard problem.

Index Terms—array programming, big data, numpy, scipy, pandas

Introduction

Standard Interfaces

Software and user communities around data analysis have changed
remarkably in the last few years. The growth in this ecosystem
come both from new computational systems and also from an
increasing breadth of users. On the software side we see activity
in different languages like Python [Pyt14], R [RLa14], and Julia
[Jul12], and also in distributed systems like the projects surround-
ing the Hadoop File System (HDFS) [Bor07]. On the user side we
see increased adoption both from physical sciencists, with a strong
tradition of computation, and also from social scientists and policy
makers with less rigorous training. While these upward trends are
encouraging, they also place significant strain on the programming
ecosystem. Keeping novice users adapted to quickly changing
programming paradigms and operational systems is challenging.

Standard interfaces facilitate interactions between layers of
complex and changing systems. For example, NumPy fancy
indexing syntax has become a standard interface among array
programming systems within the Python ecosystem. Projects with
very different implementations (e.g. NumPy [Van11], SciPy.sparse
[Jon01], Theano [Ber10]), SciDB [Bro10]) all provide the same
indexing interface despite operating very differently.

Standard interfaces help users to adapt to changing tech-
nologies without learning new programming paradigms. Standard
interfaces help project developers by bootstrapping a well trained
community of users. Uniformity smoothes adoption and allows the

* Corresponding author: mwiebe@continuum.io
‡ Continuum Analytics

Copyright © 2014 Mark Wiebe et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

ecosystem to evolve rapidly without the drag of everyone having
to constantly learn new technologies.

Interactive Arrays and Tables

Analysis libraries like NumPy and Pandas demonstrate the value
of interactive array and table objects. Projects such as these
connect a broad base of users to efficient low-level operations
through a high-level interface. This approach has given rise to
large and productive software ecosystems within numeric Python
(e.g. SciPy, Scikits, etc.) However, both NumPy and Pandas are
largely restricted to an in-memory computational model, limiting
problem sizes to a certain scale.

Concurrently developed data analytic ecosystems in other
languages like R and Julia provide similar styles of functionality
with different application foci. The Hadoop File System (HDFS)
has accrued a menagerie of powerful distributed computing sys-
tems such as Hadoop, Spark, and Impala. The broader scientific
computing community has produced projects like Elemental and
SciDB for distributed array computing in various contexts. Finally,
traditional SQL databases such as MySQL and Postgres remain
both popular and very powerful.

As problem sizes increase and applications become more
interdisciplinary, analysts increasingly require interaction with
projects outside of the NumPy/Pandas ecosystem. Unfortunately,
these foreign projects rarely feel as comfortable or as usable as
the Pandas DataFrame.

What is Blaze

Blaze provides a familiar interface around computation on a
diverse set of computational systems, or backends. It provides
extensible mechanisms to connect this interface to new compu-
tational backends. Backends which the Blaze project explicitly
provides hooks to include Python, Pandas, SQLAlchemy, and
Spark.

This abstract connection to a variety of projects has the
following virtues:

• Novice users gain access to relatively exotic technologies
• Users can trivially shift computational backends within a

single workflow
• Projects can trivially shift backends as technologies change
• New technologies are provided with a stable interface and

a trained set of users

Blaze doesn’t do any computation itself. Instead it depends
heavily on existing projects to perform computations. Currently

BLAZE: BUILDING A FOUNDATION FOR ARRAY-ORIENTED COMPUTING IN PYTHON 95

Blaze covers tabular computations as might fit into the SQL or
Pandas model of computation. We intend to extend this model
to arrays and other highly-regular computational models in the
future.

Related Work

We separate related work into two categories:

1) Computational backends useful to Blaze
2) Similar efforts in uniform interfaces

Computational backends on which Blaze currently relies in-
clude Pandas, SQLAlchemy, PyToolz, Spark, PyTables, NumPy,
and DyND. Pandas [McK10] provides an efficient in-memory
table object. SQLAlchemy [sqlal] handles connection to a variety
of SQL dialects like SQLite and Postgres. PyToolz [Roc13] pro-
vides tuned functions for streaming computation on core Python
data structures. NumPy [Van11] and DyND [Wie13] serve as in-
memory arrays and common data interchange formats. PyTables
[Alt03] provides efficient sequential computations on out-of-core
HDF5 files.

Uniform symbolic interfaces on varied computational re-
sources are also common. SQLAlchemy provides a uniform
interface onto various SQL implementations. Theano [Ber10]
maps array operations onto Python/NumPy, C, or CUDA code
generation. While computer algebra projects like SymPy [Sym08]
often have expression trees they also commonly include some
form of code generation to low-level languages like C, Fortran
but also to languages like LaTeX and DOT for visualization.

Blaze Architecture

Blaze separates data analytics into three isolated components:

• Data access: access data efficiently across different storage
systems,
e.g. CSV, HDF5, HDFS,

• Symbolic Expression: reason symbolically about the de-
sired result,
e.g. Join, Sum, Split-Apply-Combine,

• Backend Computation: execute computations on a variety
of backends,
e.g. SQL, Pandas, Spark,

We isolate these elements to enable experts to create well
crafted solutions in each domain without needing to understand
the others, e.g., a Pandas expert can contribute without knowing
Spark and vice versa. Blaze provides abstraction layers between
these components to enable them to work together cleanly.

The assembly of these components creates in a multi-format,
multi-backend computational engine capable of common data
analytics operations in a variety of contexts.

Blaze Data

Blaze Data Descriptors are a family of Python objects that provide
uniform access to a variety of common data formats. They provide
standard iteration, insertion, and NumPy-like fancy indexing over
on-disk files in common formats like CSV, JSON, and HDF5
in memory data strutures like core Python data structures and
NumPy arrays as well as more sophisticated data stores like SQL
databases. The data descriptor interface is analogous to the Python
buffer interface described in PEP 3118 [Oli06], but with a more
flexible API.

Over the course of this article we’ll refer to the following
simple accounts.csv file:

id, name, balance
1, Alice, 100
2, Bob, -200
3, Charlie, 300
4, Denis, 400
5, Edith, -500

>>> from blaze import *
>>> csv = CSV('accounts.csv') # Create data object

Iteration: Data descriptors expose the __iter__ method,
which provides an iterator over the outermost dimension of the
data. This iterator yields vanilla Python objects by default.

>>> list(csv)
[(1L, u'Alice', 100L),
(2L, u'Bob', -200L),
(3L, u'Charlie', 300L),
(4L, u'Denis', 400L),
(5L, u'Edith', -500L)]

Data descriptors also expose a chunks method, which also
iterates over the outermost dimension but instead of yielding
single rows of Python objects instead yields larger chunks of
compactly stored data. These chunks emerge as DyND arrays that
are more efficient for bulk processing and data transfer. DyND
arrays support the __array__ interface and so can be easily
converted to NumPy arrays.

>>> next(csv.chunks())
nd.array([[1, "Alice", 100],

[2, "Bob", -200],
[3, "Charlie", 300],
[4, "Denis", 400],
[5, "Edith", -500]],

type="5 * {id : int64, name : string, balance : int64}")

Insertion: Analagously to __iter__ and chunks, the
methods extend and extend_chunks allow for insertion of
data into the data descriptor. These methods take iterators of
Python objects and DyND arrays respectively. The data is coerced
into whatever form is native for the storage medium, e.g. text for
CSV, or INSERT statements for SQL.

>>> csv = CSV('accounts.csv', mode='a')
>>> csv.extend([(6, 'Frank', 600),
... (7, 'Georgina', 700)])

Migration: The combination of uniform iteration and
insertion along with robust type coercion enables trivial data
migration between storage systems.

>>> sql = SQL('postgresql://user:pass@host/',
'accounts', schema=csv.schema)

>>> sql.extend(iter(csv)) # Migrate csv file to DB

Indexing: Data descriptors also support fancy indexing. As
with iteration, this supports either Python objects or DyND arrays
through the .py[...] and .dynd[...] interfaces.

>>> list(csv.py[::2, ['name', 'balance']])
[(u'Alice', 100L),
(u'Charlie', 300L),
(u'Edith', -500L),
(u'Georgina', 700L)]

>>> csv.dynd[::2, ['name', 'balance']]
nd.array([["Alice", 100],

96 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

["Charlie", 300],
["Edith", -500],
["Georgina", 700]],

type="var * {name : string, balance : int64}")

Performance of this approach varies depending on the underlying
storage system. For file-based storage systems like CSV and
JSON, it is necessary to seek through the file to find the right
line (see [iopro]), but don’t incur needless deserialization costs
(i.e. converting text into floats, ints, etc.) which tend to dominate
ingest times. Some storage systems, like HDF5, support random
access natively.

Cohesion: Different storage techniques manage data dif-
ferently. Cohesion between these disparate systems is accom-
plished with the two projects datashape, which specifies the
intended meaning of the data, and DyND, which manages efficient
type coercions and serves as an efficient intermediate representa-
tion.

Blaze Expr

To be able to run analytics on a wide variety of computational
backends, it’s important to have a way to represent them inde-
pendent of any particular backend. Blaze uses abstract expression
trees for this, including convenient syntax for creating them and
a pluggable multiple dispatch mechanism for lowering them to
a computation backend. Once an analytics computation is repre-
sented in this form, there is an opportunity to do analysis and
transformation on it prior to handing it off to a backend, both for
optimization purposes and to give heuristic feedback to the user
about the expected performance.

To illustrate how Blaze expression trees work, we will build up
an expression on a table from the bottom , showing the structure
of the trees along the way. Let’s start with a single table, for which
we’ll create an expression node

>>> accts = TableSymbol('accounts',
... '{id: int, name: string, balance: int}')

to represent a abstract table of accounts. By defining operations
on expression nodes which construct new abstract expression
trees, we can provide a familiar interface closely matching that
of NumPy and of Pandas. For example, in structured arrays and
dataframes you can access fields as accts['name'].

Extracting fields from the table gives us Column objects, to
which we can now apply operations. For example, we can select
all accounts with a negative balance.

>>> deadbeats = accts[accts['balance'] < 0]['name']

or apply the split-apply-combine pattern to get the highest grade
in each class

>>> By(accts, accts['name'], accts['balance'].sum())

In each of these cases we get an abstract expression tree rep-
resenting the analytics operation we have performed, in a form
independent of any particular backend.

-----By-----------
/ | \

accts Column Sum
/ \ |

accts 'name' Column
/ \

accts 'balance'

Blaze Compute

Once an analytics expression is represented as a Blaze expression
tree, it needs to be mapped onto a backend. This is done by walk-
ing the tree using the multiple dispatch compute function, which
defines how an abstract Blaze operation maps to an operation in
the target backend.

To see how this works, let’s consider how to map the By node
from the previous section into a Pandas backend. The code that
handles this is an overload of compute which takes a By node
and a DataFrame object. First, each of the child nodes must
be computed, so compute gets called on the three child nodes.
This validates the provided dataframe against the accts schema
and extracts the ’name’ and ’balance’ columns from it. Then,
the pandas groupby call is used to group the ’balance’ column
according to the ’name’ column, and apply the sum operation.

Each backend can map the common analytics patterns sup-
ported by Blaze to its way of dealing with it, either by computing
it on the fly as the Pandas backend does, or by building up an
expression in the target system such as an SQL statement or an
RDD map and groupByKey in Spark.

Multiple dispatch provides a pluggable mechanism to connect
new back ends, and handle interactions between different back-
ends.

Example

We demonstrate the pieces of Blaze in a small toy example.
Recall our accounts dataset

>>> L = [(1, 'Alice', 100),
(2, 'Bob', -200),
(3, 'Charlie', 300),
(4, 'Denis', 400),
(5, 'Edith', -500)]

And our computation for names of account holders with negative
balances

>>> deadbeats = accts[accts['balance'] < 0]['name']

We compose the abstract expression, deadbeats with the data
L using the function compute.

>>> list(compute(deadbeats, L))
['Bob', 'Edith']

Note that the correct answer was returned as a list.
If we now store our same data L into a Pandas DataFrame and

then run the exact same deadbeats computation against it, we
find the same semantic answer.

>>> df=DataFrame(L, columns=['id', 'name', 'balance'])
>>> compute(deadbeats, df)
1 Bob
4 Edith
Name: name, dtype: object

Similarly against Spark

>>> sc = pyspark.SparkContext('local', 'Spark-app')
>>> rdd = sc.parallelize(L) # Distributed DataStructure

>>> compute(deadbeats, rdd)
PythonRDD[1] at RDD at PythonRDD.scala:37

>>> _.collect()
['Bob', 'Edith']

BLAZE: BUILDING A FOUNDATION FOR ARRAY-ORIENTED COMPUTING IN PYTHON 97

In each case of calling compute(deadbeats, ...) against
a different data source, Blaze orchestrates the right computational
backend to execute the desired query. The result is given in the
form received and computation is done either with streaming
Python, in memory Pandas, or distributed memory Spark. The
user experience is identical in all cases.

Blaze Interface

The separation of expressions and backend computation provides a
powerful multi-backend experience. Unfortunately, this separation
may also be confusing for a novice programmer. To this end
we provide an interactive object that feels much like a Pandas
DataFrame, but in fact can be driving any of our backends.

>>> sql = SQL('postgresql://postgres@localhost',
... 'accounts')
>>> t = Table(sql)
>>> t

id name balance
0 1 Alice 100
1 2 Bob -200
2 3 Charlie 300
3 4 Denis 400
4 5 Edith -500

>>> t[t['balance'] < 0]['name']
name

0 Bob
1 Edith

The astute reader will note the use of Pandas-like user experience
and output. Note however, that these outputs are the result of
computations on a Postgres database.

Discussion

Blaze provides both the ability to migrate data between data
formats and to rapidly prototype common analytics operations
against a wide variety of computational backends. It allows one
to easily compare options and choose the best for a particular
setting. As that setting changes, for example when data size grows
considerably, our implementation can transition easily to a more
suitable backend.

This paper gave an introduction to the benefits of separating
expression of a computation from its computation. We expect
future work to focus on integrating new backends, extending to
array computations, and composing Blaze operations to transform
existing in-memory backends like Pandas and DyND into an out-
of-core and distributed setting.

REFERENCES

[Zah10] Zaharia, Matei, et al. "Spark: cluster computing with working sets."
Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing. 2010.

[McK10] Wes McKinney. Data Structures for Statistical Computing in
Python, Proceedings of the 9th Python in Science Conference, 51-
56 (2010)

[sqlal] http://www.sqlalchemy.org/
[iopro] http://docs.continuum.io/iopro/index.html
[Roc13] Rocklin, Matthew and Welch, Erik and Jacobsen, John. Toolz Docu-

mentation, 2014 http://toolz.readthedocs.org/
[Wie13] Wiebe, Mark. LibDyND https://github.com/ContinuumIO/libdynd
[Sym08] SymPy Development Team. "SymPy: Python library for symbolic

mathematics." (2008).
[Ber10] Bergstra, James, et al. "Theano: a CPU and GPU math compiler in

Python." Proc. 9th Python in Science Conf. 2010.
[Bor07] Borthakur, Dhruba. "The hadoop distributed file system: Architecture

and design." Hadoop Project Website 11 (2007): 21.

[Alt03] Alted, Francesc, and Mercedes Fernández-Alonso. "PyTables: pro-
cessing and analyzing extremely large amounts of data in Python."
PyCon 2003 (2003).

[Van11] Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computation,
Computing in Science & Engineering, 13, 22-30 (2011),

[Oli06] Oliphant, Travis and Banks, Carl. http://legacy.python.org/dev/peps/
pep-3118/

[Pyt14] G. Van Rossum. The Python Language Reference Manual.
Network Theory Ltd., September 2003.

[RLa14] R Core Team (2014). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
URL http://www.R-project.org/.

[Jul12] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia:
A fast dynamic language for technical computing. CoRR,
abs/1209.5145, 2012.

[Jon01] Jones E, Oliphant E, Peterson P, et al. SciPy: Open Source Scientific
Tools for Python, 2001-, http://www.scipy.org/ [Online; accessed
2014-09-25].

[Bro10] Paul G. Brown, Overview of sciDB: large scale array storage,
processing and analysis, Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, June 06-10, 2010,
Indianapolis, Indiana, USA

98 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Simulating X-ray Observations with Python

John A. ZuHone‖∗, Veronica Biffi¶, Eric J. Hallman§, Scott W. Randall‡, Adam R. Foster‡, Christian Schmid∗∗

http://www.youtube.com/watch?v=fUMq6rmNshc

F

Abstract—X-ray astronomy is an important tool in the astrophysicist’s toolkit to
investigate high-energy astrophysical phenomena. Theoretical numerical simu-
lations of astrophysical sources are fully three-dimensional representations of
physical quantities such as density, temperature, and pressure, whereas astro-
nomical observations are two-dimensional projections of the emission generated
via mechanisms dependent on these quantities. To bridge the gap between
simulations and observations, algorithms for generating synthetic observations
of simulated data have been developed. We present an implementation of such
an algorithm in the yt analysis software package. We describe the underlying
model for generating the X-ray photons, the important role that yt and other
Python packages play in its implementation, and present a detailed workable
example of the creation of simulated X-ray observations.

Index Terms—astronomical observations, astrophysics simulations, visualiza-
tion

Introduction

In the early 21st century, astronomy is truly a multi-wavelength
enterprise. Ground and space-based instruments across the elec-
tromagnetic spectrum, from radio waves to gamma rays, provide
the most complete picture of the various physical processes
governing the evolution of astrophysical sources. In particular,
X-ray astronomy probes high-energy processes in astrophysics,
including high-temperature thermal plasmas (e.g., the solar wind,
the intracluster medium) and relativistic cosmic rays (e.g., from
active galactic nuclei). X-ray astronomy has a long and successful
pedigree, with a number of observatories. These include Einstein,
ROSAT , Chandra, XMM-Newton, Suzaku, and NuSTAR, as well as
upcoming missions such as Astro-H and Athena.

An important distinguishing feature of X-ray astronomy from
that of studies at longer wavelengths is that it is inherently discrete,
e.g., the numbers of photons per second that reach the detectors
are small enough that the continuum approximation, valid for
longer-wavelength photons such as those in the visible light,

* Corresponding author: jzuhone@milkyway.gsfc.nasa.gov
|| Astrophysics Science Division, Laboratory for High Energy Astrophysics,
Code 662, NASA/Goddard Space Flight Center, Greenbelt, MD 20771
¶ SISSA - Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea
265, 34136 Trieste, Italy
§ Center for Astrophysics and Space Astronomy, Department of Astrophysical
& Planetary Science, University of Colorado, Boulder, CO 80309
‡ Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge,
MA 02138
** Dr. Karl Remeis-Sternwarte & ECAP, Sternwartstr. 7, 96049 Bamberg,
Germany

Copyright © 2014 John A. ZuHone et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

infrared, microwave, and radio bands, is invalid. Instead of images,
the fundamental data products of X-ray astronomy are tables of
individual photon positions, energies, and arrival times.

Due to modeling uncertainties, projection effects, and contam-
inating backgrounds, combining the insights from observations
and numerical simulations is not necessarily straightforward. In
contrast to simulations, where all of the physical quantities in
3 dimensions are completely known to the precision of the
simulation algorithm, astronomical observations are by definition
2-D projections of 3-D sources along a given sight line, and
the observed spectrum of emission is a complicated function of
the fundamental physical properties (e.g., density, temperature,
composition) of the source.

Such difficulties in bridging these two worlds have given rise
to efforts to close the gap in the direction of the creation of
synthetic observations from simulated data (see, e.g., [Gardini04],
[Nagai06], [ZuHone09], and [Heinz11] for recent examples). This
involves the determination of the spectrum of the emission from
the properties of the source, the projection of this emission along
the chosen line of sight, and, in the case of X-ray (and γ-ray)
astronomy, the generation of synthetic photon samples. These
photons are then convolved with the instrumental responses and
(if necessary) background effects are added. One implementation
of such a procedure, PHOX, was described in [Biffi12] and
[Biffi13], and used for the analysis of simulated galaxy clusters
from smoothed-particle hydrodynamics (SPH) cosmological simu-
lations. PHOX was originally implemented in C using outputs from
the Gadget SPH code. PHOX takes the inputs of density, temper-
ature, velocity, and metallicity from a 3D Gadget simulation,
using them as inputs to create synthetic spectra (using spectral
models from the X-ray spectral fitting package XSPEC). Finally,
PHOX uses these synthetic spectra convolved with instrument
response functions to simulate samples of observed photons.

In this work, we describe an extension of this algorithm to
outputs from other simulation codes. We developed the module
photon_simulator, an implementation of PHOX within the
Python-based yt simulation analysis package. We outline the
design of the PHOX algorithm, the specific advantages to imple-
menting it in Python and yt, and provide a workable example of
the generation of a synthetic X-ray observation from a simulation
dataset.

Model

The overall model that underlies the PHOX algorithm may be split
up into roughly three steps: first, constructing an original large
sample of simulated photons for a given source, second, choosing

SIMULATING X-RAY OBSERVATIONS WITH PYTHON 99

a subset of these photons corresponding to parameters appropriate
to an actual observation and projecting them onto the sky plane,
and finally, applying instrumental responses for a given detector.
We briefly describe each of these in turn.

Step 1: Generating the Original Photon Sample

In the first step of the PHOX algorithm, we generate a large
sample of photons in three dimensions, with energies in the rest
frame of the source. These photons will serve as a "Monte-Carlo"
sample from which we may draw subsets to construct realistic
observations.

First, to determine the energies of the photons, a spectral
model for the photon emissivity must be specified. In general,
the normalization of the photon emissivity for a given volume
element will be set by the number density of emitting particles,
and the shape of the spectrum will be set by the energetics of the
same particles.

As a specific and highly relevant example, one of the most
common sources of X-ray emission is that from a low-density,
high-temperature, thermal plasma, such as that found in the
solar corona, supernova remnants, "early-type" galaxies, galaxy
groups, and galaxy clusters. The specific photon count emissivity
associated with a given density, temperature T , and metallicity Z
of such a plasma is given by

εγ
E = nenHΛE(T,Z) photons s−1 cm−3 keV−1 (1)

where the superscript γ refers to the fact that this is a photon
count emissivity, E is the photon energy in keV, ne and nH are the
electron and proton number densities in cm−3, and ΛE(T,Z) is the
spectral model in units of photons s−1 cm3 keV−1. The dominant
contributions to ΛE for an optically-thin, fully-ionized plasma
are bremmstrahlung ("free-free") emission and collisional line
excitation. A number of models for the emissivity of such a plasma
have been developed, including Raymond-Smith [Raymond77],
MeKaL [Mewe95], and APEC [Smith01]. These models (and
others) are all built into the XSPEC package, which includes a
Python interface, PyXspec, which is a package we will use to
supply the input spectral models to generate the photon energies.

The original PHOX algorithm only allowed for emission from
variants of the APEC model for a thermal plasma. However,
astrophysical X-ray emission arises from a variety of physical
processes and sources, and in some cases multiple sources may
be emitting from within the same volume. For example, cosmic-
ray electrons in galaxy clusters produce a power-law spectrum of
X-ray emission at high energies via inverse-Compton scattering
of the cosmic microwave background. Recently, the detection of
previously unidentified line emission, potentially from decaying
sterile neutrinos, was made in stacked spectra of galaxy clusters
[Bulbul14]. The flexibility of our approach allows us to implement
one or several models for the X-ray emission arising from a variety
of physical processes as the situation requires.

Given a spectral model, for a given volume element i with
volume ∆Vi (which may be grid cells or Lagrangian particles),
a spectrum of photons may be generated. The total number
of photons that are generated in our initial sample per volume
element i is determined by other factors. We determine the number
of photons for each volume element by artificially inflating the
parameters that determine the number of photons received by
an observer to values that are large compared to more realistic
values. The inflated Monte-Carlo sample should be large enough
that realistic sized subsets from it are statistically representative. In

the description that follows, parameters with subscript "0" indicate
those with "inflated" values, whereas we will drop the subscripts
in the second step when choosing more realistic values.

To begin with, the bolometric flux of photons received by the
observer from the volume element i is

Fγ
i =

ne,inH,iΛ(Ti,Zi)∆Vi

4πD2
A,0(1+ z0)2 photons s−1 cm−2 (2)

where z0 is the cosmological redshift and DA,0 is the angular
diameter distance to the source (if the source is nearby, z0 ≈ 0
and DA,0 is simply the distance to the source). The physical
quantities of interest are constant across the volume element. The
total number of photons associated with this flux for an instrument
with a collecting area Adet,0 and an observation with exposure time
texp,0 is given by

Nphot = texp,0Adet,0 ∑
i

Fγ
i (3)

By setting texp,0 and Adet,0 to values that are much larger than those
associated with typical exposure times and actual detector areas,
and setting z0 to a value that corresponds to a nearby source (thus
ensuring DA,0 is similarly small), we ensure that we create suitably
large Monte-Carlo sample to draw subsets of photons for more
realistic observational parameters. Figure 1 shows a schematic
representation of this model for a roughly spherical source of X-
ray photons, such as a galaxy cluster.

Step 2: Projecting Photons to Create Specific Observations

The second step in the PHOX algorithm involves using this large
3-D sample of photons to create 2-D projections of simulated
events, where a subsample of photons from the original Monte-
Carlo sample is selected.

First, we choose a line-of-sight vector n̂ to define the primed
coordinate system from which the photon sky positions (x′,y′) in
the observer’s coordinate system O ′ are determined (c.f. Figure
1). The total emission from any extended object as a function of
position on the sky is a projection of the total emission along the
line of sight, minus the emission that has been either absorbed or
scattered out of the sight-line along the way. In the current state of
our implementation, we assume that the source is optically thin to
the photons, so they pass essentially unimpeded from the source
to the observer (with the caveat that some photons are absorbed
by Galactic foreground gas). This is appropriate for most X-ray
sources of interest.

Next, we must take into account processes that affect on the
photon energies. The first, occurring at the source itself, is Doppler
shifting and broadening of spectral lines, which arises from bulk
motion of the gas and turbulence. Each volume element has a
velocity vi in O , and the component vi,z′ of this velocity along the
line of sight results in a Doppler shift of each photon’s energy of

E1 = E0

√
c+ vz′

c− vz′
(4)

where E1 and E0 are the Doppler-shifted and rest-frame energies
of the photon, respectively, and c is the speed of light in vacuum.
Second, since many X-ray sources are at cosmological distances,
each photon is cosmologically redshifted, reducing its energy
further by a factor of 1/(1 + z) before being received in the
observer’s frame.

Since we are now simulating an actual observation, we choose
more realistic values for the exposure time texp and detector area

100 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Fig. 1: Schematic representation of a roughly spherical X-ray emitting object, such as a galaxy cluster. The volume element ∆Vi at position ri
in the coordinate system O of the source has a velocity vi. Photons emitted along the direction given by n̂ will be received in the observer’s
frame in the coordinate system O ′, and will be Doppler-shifted by the line-of-sight velocity component vi,z′ . Chandra telescope image credit:
NASA/CXC.

Adet than we did in the first step to determine the number of
photons to use from the original Monte-Carlo sample. Similarly,
we may also specify alternative values for the angular diameter
distance DA and the cosmological redshift z, if desired. The
fraction f of the photons that will be used in the actual observation
is then given by

f =
texp

texp,0

Adet

Adet,0

D2
A,0

D2
A

(1+ z0)
3

(1+ z)3 (5)

where f ≤ 1.
Before being received by the observer, a number of the pho-

tons, particularly on the softer end of the spectrum, are absorbed
by foregrounds of hydrogen gas in the Milky Way Galaxy. The last
operation that is applied in our implementation of the PHOX algo-
rithm is to use a tabulated model for the absorption cross-section
as a function of energy (examples include wabs [Morrison83],
phabs [Balucinska-Church92], tbabs [Wilms00], all included
in XSPEC) as an acceptance-rejection criterion for which photons
will be retained in the final sample, e.g., which of them are actually
received by the observer.

The advantage of the PHOX algorithm is that the two steps of
generating the photons in the source frame and projecting them
along a given line of sight are separated, so that the first step,
which is the most computationally expensive, need only be done
once for a given source, whereas the typically cheaper second step
may be repeated many times for many different lines of sight,
different instruments, and different exposure times.

Step 3: Modeling Instrumental Effects

Unfortunately, the data products of X-ray observations do not
simply consist of the original sky positions and energies of the
received photons. Spatially, the positions of the received photons

on the detector are affected by a number of instrumental factors.
These include vignetting, the layout of the CCD chips, and a
typically spatially dependent point-spread function. Similarly, the
photon energies are binned up by the detectors into a set of
discrete energy channels, and there is typically not a simple one-
to-one mapping between which channel a given photon ends up
in and its original energy, but is instead represented by a non-
diagonal response matrix. Finally, the "effective" collecting area
of the telescope is also energy-dependent, and also varies with
position on the detector. When performing analysis of X-ray data,
the mapping between the detector channel and the photon energy
is generally encapsulated in a redistribution matrix file (RMF), and
the effective area curve as a function of energy is encapsulated in
an ancillary response file (ARF).

In our framework, we provide two ways of convolving the de-
tected photons with instrumental responses, depending on the level
of sophistication required. The first is a "bare-bones" approach,
where the photon positions are convolved with a user-specified
point-spread function, and the photon energies are convolved with
a user-input energy response functions. This will result in photon
distributions that are similar enough to the final data products of
real observations to be sufficient for most purposes.

However, some users may require a full simulation of a
given telescope or may wish to compare observations of the
same simulated system by multiple instruments. Several software
packages exist for this purpose. The venerable MARX software
performs detailed ray-trace simulations of how Chandra responds
to a variety of astrophysical sources, and produces standard event
data files in the same FITS formats as standard Chandra data
products. SIMX and Sixte are similar packages that simulate
most of the effects of the instrumental responses for a variety of
current and planned X-ray missions. We provide convenient output

SIMULATING X-RAY OBSERVATIONS WITH PYTHON 101

formats for the synthetic photons in order that they may be easily
imported into these packages.

Implementation

The model described here has been implemented as the analysis
module photon_simulator in yt [Turk11], a Python-based
visualization and analysis toolkit for volumetric data. yt has a
number of strengths that make it an ideal package for implement-
ing our algorithm.

The first is that yt has support for analyzing data from a
large number of astrophysical simulation codes (e.g., FLASH,
Enzo, Gadget, Athena), which simulate the formation and
evolution of astrophysical systems using models for the relevant
physics, including magnetohydrodynamics, gravity, dark matter,
plasmas, etc. The simulation-specific code is contained within
various "frontend" implementations, and the user-facing API to
perform the analysis on the data is the same regardless of the type
of simulation being analyzed. This enables the same function calls
to easily generate photons from models produced by any of these
simulation codes making it possible to use the PHOX algorithm
beyond the original application to Gadget simulations only. In
fact, most previous approaches to simulating X-ray observations
were limited to datasets from particular simulation codes.

The second strength is related, in that by largely abstracting
out the simulation-specific concepts of "cells", "grids", "particles",
"smoothing lengths", etc., yt provides a window on to the data
defined primarily in terms of physically motivated volumetric
region objects. These include spheres, disks, rectangular regions,
regions defined on particular cuts on fields, etc. Arbitrary combi-
nations of these region types are also possible. These volumetric
region objects serve as natural starting points for generating X-
ray photons from not only physically relevant regions within a
complex hydrodynamical simulation, but also from simple "toy"
models which have been constructed from scratch, when complex,
expensive simulations are not necessary.

The third major strength is that implementing our model in yt
makes it possible to easily make use of the wide variety of useful
libraries available within the scientific Python ecosystem. Our
implementation uses SciPy for integration, AstroPy for han-
dling celestial coordinate systems and FITS I/O, and PyXspec
for generating X-ray spectral models. Tools for analyzing astro-
physical X-ray data are also implemented in Python (e.g., CIAO’s
Sherpa package, [Refsdal09]), enabling an easy comparison
between models and observations.

Example

Here we present a workable example of creating simu-
lated X-ray events using yt’s photon_simulator analy-
sis module. We implemented the module in yt v. 3.0 as
yt.analysis_modules.photon_simulator. yt v. 3.0
can be downloaded from http://yt-project.org. The example code
here is available as an IPython notebook. This is not meant to be
an exhaustive explanation of all of the photon_simulator’s
features and options--for these the reader is encouraged to visit the
yt documentation.

As our input dataset, we will use an Athena simulation
of a galaxy cluster core, which can be downloaded from the
yt website at http://yt-project.org/data/MHDSloshing.tar.gz. You
will also need to download a version of APEC from http:
//www.atomdb.org. Finally, the absorption cross section table used

here and the Chandra response files may be downloaded from
http://yt-project.org/data/xray_data.tar.gz.

First, we must import the necessary modules:
import yt
from yt.analysis_modules.photon_simulator.api \

import TableApecModel, ThermalPhotonModel, \
PhotonList, TableAbsorbModel

from yt.utilities.cosmology import Cosmology

Next, we load the dataset ds, which comes from a set of
simulations presented in [ZuHone14]. Athena datasets require
a parameters dictionary to be supplied to provide unit con-
versions to Gaussian units; for most datasets generated by other
simulation codes that can be read by yt, this is not necessary.
parameters={"time_unit":(1.0,"Myr"),

"length_unit":(1.0,"Mpc"),
"mass_unit":(1.0e14,"Msun")}

ds = yt.load("MHDSloshing/virgo_low_res.0054.vtk",
parameters=parameters)

Slices through the density and temperature of the simulation
dataset are shown in Figure 2. The luminosity and temperature
of our model galaxy cluster roughly match that of Virgo. The
photons will be created from a spherical region centered on the
domain center, with a radius of 250 kpc:
sp = ds.sphere("c", (250., "kpc"))

This will serve as our data_source that we will use later. Now,
we are ready to use the photon_simulator analysis module
to create synthetic X-ray photons from this dataset.

Step 1: Generating the Original Photon Sample

First, we need to create the SpectralModel instance that
will determine how the data in the grid cells will generate
photons. A number of options are available, but we will use
the TableApecModel, which allows one to use the APEC data
tables:
atomdb_path = "/Users/jzuhone/Data/atomdb"

apec_model = TableApecModel(atomdb_path,
0.01, 10.0, 2000,
apec_vers="2.0.2",
thermal_broad=False)

where the first argument specifies the path to the APEC files, the
next three specify the bounds in keV of the energy spectrum and
the number of bins in the table, and the remaining arguments
specify the APEC version to use and whether or not to apply
thermal broadening to the spectral lines.

Now that we have our SpectralModel, we need to connect
this model to a PhotonModel that will connect the field data
in the data_source to the spectral model to and generate the
photons which will serve as the sample distribution for obser-
vations. For thermal spectra, we have a special PhotonModel
called ThermalPhotonModel:
thermal_model = ThermalPhotonModel(apec_model,

X_H=0.75,
Zmet=0.3)

Where we pass in the SpectralModel, and can optionally set
values for the hydrogen mass fraction X_H and metallicity Z_met,
the latter of which may be a single floating-point value or the name
of the yt field representing the spatially-dependent metallicity.

Next, we need to specify "fiducial" values for the telescope
collecting area in cm2, exposure time in seconds, and cosmological

102 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Fig. 2: Slices of density (left) and temperature (right) of an Athena dataset of a galaxy cluster core.

redshift, choosing generous values so that there will be a large
number of photons in the Monte-Carlo sample. We also construct
a Cosmology object, which will be used to determine the source
distance from its redshift.

A = 6000. # must be in cm**2!
exp_time = 4.0e5 # must be in seconds!
redshift = 0.05
cosmo = Cosmology()

By default the Cosmology object uses the WMAP7 cosmolog-
ical parameters from [Komatsu11], but others may be supplied,
such as the [Planck13] parameters:

cosmo = Cosmology(hubble_constant = 0.67,
omega_matter = 0.32,
omega_lambda = 0.68)

Now, we finally combine everything together and create a
PhotonList instance, which contains the photon samples:

photons = PhotonList.from_scratch(sp, redshift, A,
exp_time,
thermal_model,
center="c",
cosmology=cosmo)

where we have used all of the parameters defined above, and
center defines the reference coordinate which will become the
origin of the photon coordinates, which in this case is "c", the
center of the simulation domain. This object contains the positions
and velocities of the originating volume elements of the photons,
as well as their rest-frame energies.

Generating this Monte-Carlo sample is the most computation-
ally intensive part of the PHOX algorithm. Once a sample has
been generated it can be saved to disk and loaded as needed
rather than needing to be regenerated for different observational
scenarios (instruments, redshifts, etc). The photons object can be
saved to disk in the HDF5 format with the following method:

photons.write_h5_file("my_photons.h5")

To load these photons at a later time, we use the from_file
method:

photons = PhotonList.from_file("my_photons.h5")

Step 2: Projecting Photons to Create Specific Observations

At this point the photons can be projected along a line of sight
to create a specific synthetic observation. First, it is necessary
to set up a spectral model for the Galactic absorption cross-
section, similar to the spectral model for the emitted photons
set up previously. Here again, there are multiple options, but for
the current example we use TableAbsorbModel, which allows
one to use an absorption cross section vs. energy table written
in HDF5 format (available in the xray_data.tar.gz file mentioned
previously). This method also takes the column density N_H in
units of 1022 cm−2 as an additional argument.

N_H = 0.1
a_mod = TableAbsorbModel("tbabs_table.h5", N_H)

We next set a line-of-sight vector L:

L = [0.0, 0.0, 1.0]

which corresponds to the direction within the simulation domain
along which the photons will be projected. The exposure time,
telescope area, and source redshift may also be optionally set to
more appropriate values for a particular observation:

texp = 1.0e5
z = 0.07

If any of them are not set, those parameters will be set to the
original values used when creating the photons object.

Finally, an events object is created using the line-of-
sight vector, modified observation parameters, and the absorption
model:

events = photons.project_photons(L,
exp_time_new=texp,
redshift_new=z,
absorb_model=a_mod)

project_photons draws events uniformly from the photons
sample, orients their positions in the coordinate frame defined
by L, and applies the Doppler and cosmological energy shifts,
and removes a number of events corresponding to the supplied
Galactic absorption model.

SIMULATING X-RAY OBSERVATIONS WITH PYTHON 103

Fig. 3: 100 ks exposure of our simulated galaxy cluster, from a FITS
image plotted with APLpy.

Step 3: Modeling Instrumental Effects

If desired, instrumental response functions may be supplied to
convolve the photons with a particular instrumental model. The
files containing these functions are defined and put in a single list
resp:

ARF = "chandra_ACIS-S3_onaxis_arf.fits"
RMF = "chandra_ACIS-S3_onaxis_rmf.fits"
resp = [ARF,RMF]

In this case, we would replace our previous call to
project_photons with one that supplies resp as the
responses argument:

events = photons.project_photons(L,
exp_time_new=texp,
redshift_new=z,
absorb_model=a_mod,
responses=resp)

Supplying instrumental responses is optional. If they are provided,
project_photons performs 2 additional calculations. If an
ARF is provided, the maximum value of the effective area curve
will serve as the area_new parameter, and after the absorption
step a number of events are further removed using the effective
area curve as the acceptance/rejection criterion. If an RMF is
provided, it will be convolved with the event energies to produce
a new array with the resulting spectral channels.

However, if a more accurate simulation of a particular X-ray
instrument is needed, or if one wishes to simulate multiple instru-
ments, there are a couple of options for outputting our simulated
events to be used by other software that performs such simulations.
Since these external packages apply instrument response functions
to the events list, the original events object generated from the
project_photons method must not be convolved with instru-
ment responses (e.g., the ARF and RMF) in that step. For input to
MARX, we provide an implementation of a MARX "user source" at
http://bitbucket.org/jzuhone/yt_marx_source, which takes as input
an HDF5 file. The events list can be written in the HDF5 file
format with the following method:

events.write_h5_file("my_events.h5")

Input to SIMX and Sixte is handled via SIMPUT, a file format
designed specifically for the output of simulated X-ray data. The

Fig. 4: Spectral energy distribution of our simulated observation.

events list can be written in SIMPUT file format with the following
method:
events.write_simput_file("my_events",

clobber=True,
emin=0.1, emax=10.0)

where emin and emax are the energy range in keV of the
outputted events. Figure 5 shows several examples of the generated
photons passed through various instrument simulations. SIMX and
MARX produce FITS event files that are the same format as the
data products of the individual telescope pipelines, so they can
be analyzed by the same tools as real observations (e.g., XSPEC,
CIAO).

Examining the Data

The events may be binned into an image and written to a FITS
file:
events.write_fits_image("my_image.fits",

clobber=True,
emin=0.5, emax=7.0)

where emin and emax specify the energy range for the image.
Figure 3 shows the resulting FITS image plotted using APLpy.

We can also create a spectral energy distribution (SED) by
binning the spectrum into energy bins. The resulting SED can
be saved as a FITS binary table using the write_spectrum
method. In this example we bin up the spectrum according to
the original photon energy, before it was convolved with the
instrumental responses:
events.write_spectrum("my_spec.fits",

energy_bins=True,
emin=0.1, emax=10.0,
nchan=2000, clobber=True)

here energy_bins specifies whether we want to bin the events
in unconvolved photon energy or convolved photon channel.
Figure 4 shows the resulting spectrum.

Summary

We have developed an analysis module within the Python-based
volumetric data analysis toolkit yt to construct synthetic X-ray
observations of astrophysical sources from simulation datasets,
based on the PHOX algorithm. This algorithm generates a large

104 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Fig. 5: 100 ks exposures of our simulated galaxy cluster, observed with several different existing and planned X-ray detectors. The Chandra
image was made with MARX, while the others were made with SIMX. All images have the same angular scale.

sample of X-ray photons in the rest frame of the source from
the physical quantities of the simulation dataset, and uses these
as a sample from which a smaller number of photons are drawn
and projected onto the sky plane, to simulate observations with
a real detector. The utility of this algorithm lies in the fact that
the most expensive step, namely that of generating the photons
from the source, need only be done once, and these may be
used as a Monte Carlo sample from which to generate as many
simulated observations along as many projections and with as
many instrument models as desired.

We implement PHOX in Python, using yt as an interface
to the underlying simulation dataset. Our implementation takes
advantage of the full range of capabilities of yt, especially its
focus on physically motivated representations of simulation data
and its support for a wide variety of simulation codes as well as
generic NumPy array data generated on-the-fly. We also benefit
from the object-oriented capabilities of Python as well as the
ability to interface with existing astronomical and scientific Python
packages.

Our module provides a crucial link between observations of
astronomical sources and the simulations designed to represent
the objects that are detected via their electromagnetic radiation,
enabling some of the most direct testing of these simulations.
Also, it is useful as a proposer’s tool, allowing observers to gen-
erate simulated observations of astrophysical systems, to precisely
quantify and motivate the needs of a proposal for observing time
on a particular instrument. Our software also serves as a model
for how similar modules in other wavebands may be designed,
particularly in its use of several important Python packages for
astronomy.

REFERENCES

[Balucinska-Church92] Balucinska-Church, M., & McCammon, D. 1992,
ApJ, 400, 699

[Biffi12] Biffi, V., Dolag, K., Böhringer, H., & Lemson, G.
2012, MNRAS, 420, 3545

[Biffi13] Biffi, V., Dolag, K., Böhringer, H. 2013, MNRAS,
428, 1395

[Bulbul14] Bulbul, E., Markevitch, M., Foster, A., et al. 2014,
ApJ, 789, 13

[Gardini04] Gardini, A., Rasia, E., Mazzotta, P., Tormen, G., De
Grandi, S., & Moscardini, L. 2004, MNRAS, 351,
505

[Heinz11] Heinz, S., Brüggen, M., & Friedman, S. 2011, ApJS,
194, 21

[Komatsu11] Komatsu, E., Smith, K. M., Dunkley, J., et al. 2011,
ApJS, 192, 18

[Mewe95] Mewe, R., Kaastra, J. S., & Liedahl, D. A. 1995,
Legacy, 6, 16

[Morrison83] Morrison, R. & McCammon, D. 1983, ApJ, 270, 119
[Nagai06] Nagai, D., Vikhlinin, A., & Kravtsov, A. V. 2007, ApJ,

655, 98
[Planck13] Planck Collaboration, Ade, P. A. R., Aghanim, N., et

al. 2013, arXiv:1303.5076
[Raymond77] Raymond, J. C., & Smith, B. W. 1977, ApJS, 35, 419
[Refsdal09] B. Refsdal et al. Sherpa: 1D/2D modeling and

fitting in Python. Proceedings of the 8th
Python in Science conference (SciPy 2009),
G Varoquaux, S van der Walt, J Millman
(Eds.), pp. 51-57

[Smith01] Smith, R. K., Brickhouse, N. S., Liedahl, D. A., &
Raymond, J. C. 2001, ApJL, 556, L91

[Turk11] Turk, M. J., Smith, B. D., Oishi, J. S., Skory, S.,
Skillman, S. W., Abel, T., & Norman, M. L. 2011,
ApJS, 192, 9

[Wilms00] Wilms, J., Allen, A., & McCray, R. 2000, ApJ, 542,
914

[ZuHone09] ZuHone, J. A., Ricker, P. M., Lamb, D. Q., & Karen
Yang, H.-Y. 2009, ApJ, 699, 1004

[ZuHone14] ZuHone, J. A., Kunz, M. W., Markevitch, M., Stone,
J. M., & Biffi, V. 2014, arXiv:1406.4031

