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TracPy: Wrapping the Fortran Lagrangian trajectory
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Abstract—Numerical Lagrangian trajectory modeling is a natural method of
investigating transport in a circulation system and understanding the physics
on the wide range of length scales that are actually experienced by a drifter.
A previously-developed tool, TRACMASS, written in Fortran, accomplishes this
modeling with a clever algorithm that operates natively on the commonly used
staggered Arakawa C grid. TracPy is a Python wrapper written to ease running
batches of simulations. Some improvements in TracPy include updating to
netCDF4-CLASSIC from netCDF3 for saving drifter trajectories, providing an
iPython notebook as a usermanual for using the system, and adding unit tests
for stable continued development.

Index Terms—Lagrangian tracking, numerical drifters, Python wrapper

Introduction

Drifters are used in oceanography and atmospherics in situ in
order to demonstrate flow patterns created by individual fluid
parcels. For example, in the ocean, drifters will often be released
on the sea surface, and allowed to be passively transported with
the flow, reporting their location via GPS at regular intervals. In
this way, drifters are gathering data in a Lagrangian perspective.
For example, [LaCasce2003] analyzes a set of over 700 surface
drifters released in the northern Gulf of Mexico, using the tracks
to better understand the dynamics of the underlying circulation
fields.

Lagrangian trajectory modeling is a method of moving parcels
through a fluid based on numerically modeled circulation fields.
This approach enables analysis of many different drifter exper-
iments for a much lower cost than is required to gather one
relatively small set of drifters. Additionally, the inherent limits to
the number of drifters that can reasonably be used in situ can lead
to biased statistics [LaCasce2008]. In one study, numerical drifters
were used to understand where radio-nuclides from a storage
facility would travel if accidentally released [Döös2007]. Drifters
are also used in on-going response work by the Office of Re-
sponse and Restoration in the National Oceanic and Atmospheric
Administration (NOAA). Using model output made available by
various groups, responders apply their tool (General NOAA Oil
Modeling Environment, GNOME) to simulate drifters and get
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best estimates of predicted oil transport [Beegle-Krause1999],
[Beegle-Krause2001].

Numerical drifters may be calculated online, while a circu-
lation model is running, in order to use the highest resolution
model-predicted velocity fields available in time (on the order
of seconds to minutes). However, due to the high costs of the
hydrodynamic computation, many repeated online simulations is
not usually practical. In this case, Lagrangian trajectories can
also be calculated offline, using the velocity fields at the stored
temporal resolution (on the order of minutes to hours).

There are many sources of error in simulating offline La-
grangian trajectories. For example, the underlying circulation
model must be capturing the dynamics to be investigated, and
model output must be available often enough to represent the
simulated flow conditions accurately. On top of that, the La-
grangian trajectory model must properly reproduce the transport
pathways of the system. A given drifter’s trajectory is calculated
using velocity fields with a spatial resolution determined by the
numerical model grid. To move the drifter, the velocity fields
must be available at the drifter’s location, which in general will
not be co-located with all necessary velocity information. Many
Lagrangian trajectory models use low- or high-order interpolation
in space to extend the velocity information to the drifter location.
The algorithm discussed in this work has a somewhat different
approach.

TRACMASS is a Lagrangian trajectory model that runs na-
tively on velocity fields that have been calculated on a staggered
Arakawa C grid. Originally written about 2 decades ago, it has
been used in many applications (e.g., [Döös2007]). The core
algorithm for TRACMASS is written in Fortran for speed, and
has been wrapped in Python for increased usability. This code
package together is called TracPy [Thyng2014b].

TRACMASS

The TRACMASS algorithm for stepping numerical drifters in
space is distinct from many algorithms because it runs natively
on a staggered Arakawa C grid, i.e., it uses the velocity fields
at the grid locations at which they are calculated. This grid is
used in ocean modeling codes, including ROMS, MITgcm, and
HyCOM. In the staggered Arakawa C grid, the west-east or zonal
velocity, u, is located at the west and east walls of a grid cell; the
north-south or meridional velocity, v, is located at the north and
south walls; and the vertical velocity, w, is located at the vertically
top and bottom cell walls (Figure 1). Note that the algorithm

https://www.youtube.com/watch?v=8poLWacun50
http://response.restoration.noaa.gov/oil-and-chemical-spills/oil-spills/response-tools/gnome.html
mailto:kthyng@tamu.edu
http://tracmass.org
https://github.com/kthyng/tracpy
http://myroms.org
http://mitgcm.org
http://hycom.org


80 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

j

j-1
i-1 i

ui,jui-1,j

vi,j

vi,j-1
(x0,y0)

Longitude

La
tit
ud
e

u(x)

Fig. 1: A single rectangular grid cell is shown in the x-y plane.
Zonal (meridional) u (v) velocities are calculated at the east/west
(north/south) cell walls. In the vertical direction, w velocities are
calculated at the top and bottom cell walls. After [Döös2013].

is calculated using fluxes through grid cell walls instead of the
velocities themselves to account for differences in cell wall size
due to a curvilinear horizontal grid or a σ coordinate vertical grid.
The drifter is stepped as follows:

1) To calculate the time required for the drifter to exit the
grid cell in the x direction:

a. Linearly interpolate the velocity across the cell in
the zonal direction to find u(x).

b. Solve the ordinary differential equation u(x) = dx
dt

for x(t).
c. Back out the time required to exit the grid cell in

the zonal direction, tx.

2) Follow the same methodology in the meridional and
vertical directions to find ty and tz.

3) The minimum time tmin; the minimum of tx, ty, tz; is when
the drifter would first exit the grid cell

4) The subsequent (x,y,z) position for the drifter is calcu-
lated using tmin.

This process occurs for each drifter each time it is moved
forward from one grid cell edge to the next. If a drifter will not
reach a grid cell edge, it stops in the grid cell. Calculations for
the drifter trajectories are done in grid index space so that the grid
is rectangular, which introduces a number of simplifications. The
velocity fields are linearly interpolated in time for each subsequent
stepping of each drifter. Because a drifter is moved according to
its distinct time and location, each drifter is stepped separately,
and the time step between each reinterpolation can be different.
The location of all drifters is sampled at regular intervals between
the available circulation model outputs for consistency. Because
reading in the circulation model output is one of the more time-
consuming parts of the process, all drifters are stepped between

Fig. 2: A trajectory from a damped inertial oscillation is shown from
several simulated cases with the analytic solution. Cases shown are
trajectories calculated using TRACMASS with zero [red], 10 [blue],
and 1000 [green] time interpolation steps between model outputs; the
analytic solution [black]; and the time-dependent algorithm [purple].
The green, black, and purple curves are indistinguishable. From
[Döös2013].

the velocity fields at two consecutive times, then the velocity fields
from the next output time are read in to continue stepping.

Drifters can be stepped forward or backward in time; this is
accomplished essentially by multiplying the velocity fields by -1.
Because of the analytic nature of the TRACMASS algorithm, the
trajectories found forward and backward in time are the same.

Time is assumed to be steady while a drifter is being stepped
through a grid cell—how much this will affect the resulting
trajectory depends on the size of the grid cell relative to the speed
of the drifter. When a drifter reaches another grid cell wall, the
fields are re-interpolated. The user may choose to interpolate the
velocity fields at shorter intervals if desired by setting a maximum
time before reinterpolation. A time-dependent algorithm has been
developed to extend the TRACMASS algorithm [DeVries2001],
but previous researchers have found that the steady approximation
is adequate in many cases [Döös2013] and it is not implemented
in TracPy.

The capability of the TRACMASS algorithm has been demon-
strated by creating synthetic model output, running numerical
drifters, and comparing with known trajectory solutions (Figure
2). A damped inertial oscillation is used in the test, for which
the analytic solutions for both the velocity fields and a particle’s
trajectory are known [Döös2013]. Cases of a drifter trajectory
calculated with different levels of interpolation between model
outputs are shown along with the analytic solution and a trajectory
calculated using the time-dependent TRACMASS algorithm. All
trajectories generally following the analytic solution, but the case
with no time interpolation of the fields clearly deviates. The case
with 10 interpolation steps in times performs well, and with 1000
interpolation steps, the curves are indistinguishable. Note that in
this test case, the size of the grid cell relative to the motion of the
trajectory emphasizes the effect of time interpolation.

Options are available to complement the basic algorithm
of TRACMASS. For example, it can be important to consider
whether or not to add additional explicit subgrid diffusion to
drifters. Energy at scales below a few spatial grid cells is not
included in an ocean circulation model except through a turbulence
closure scheme or other means. This energy is included in the
numerical scheme and implemented in the simulation, and in
this regard is implicitly included in the saved velocity fields
from the circulation model. From this perspective, adding any
additional subgrid energy is duplicating the energy that is already
included in the simulation. However, without including some
small-scale energy to drifter tracks, drifters starting at the same
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Fig. 3: Instead of being stepped forward to new location (x1,y1) by
the base velocity field, a drifter can be instead stepped forward by
the velocity field plus a random velocity fluctuation to include explicit
subgrid diffusion, such that the drifter ends up instead at (x1,y1)

′.
After [Döös2013].

time and location will follow the same path, which is clearly
not realistic—adding a small amount of energy to drifter tracks
acts to stir drifters in a way that often looks more realistic than
when explicit subgrid diffusion is not included. This added energy
will also affect Lagrangian metrics that are calculated from drifter
trajectories (e.g., [Döös2011]).

To address this issue, there are several optional means of
including explicit subgrid diffusion in TRACMASS, all of which
are low order schemes [LaCasce2008]. Drifter trajectories may
be stepped using not the basic velocity fields (u,v) but with the
velocity fields plus some small random velocity fluctuation (u′,
v′) (Figure 3). Alternatively, drifter trajectory locations can be
given an added random walk—randomly moved a small distance
away from their location each step within a circle whose radius is
controlled by an input parameter (Figure 4). Note that when using
additional subgrid diffusion, drifter tracks will not be the same
forward and backward in time.

TracPy

The goal of TracPy is to take advantage of the speed and ingenuity
of the TRACMASS algorithm, written in Fortran, but have access
to the niceties of Python and for quickly and simply setting up and
running batches of simulations. Being a scientific research code,
TRACMASS has been developed by different researchers and with
specific research purposes in mind, such that the complexity of the
code grew over time. TracPy was written to include the important
basic, computationally burdensome elements of calculating drifter
trajectories from TRACMASS, and do the rest in Python.

TracPy uses a class for a given simulation of drifters. The
TracPy class is initialized with all necessary parameters for the
simulation itself, e.g., number of days to run the simulation,
parameter for maximum time before reinterpolation between avail-
able circulation model outputs, whether to use subgrid diffusion,
and whether to run in 2D or 3D. The class has methods for reading
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Fig. 4: A drifter’s location can be randomly pushed within a circle
from its calculated position to add explicit subgrid diffusion. After
[Döös2013].

in the numerical grid, preparing for the simulation, preparing for
each model step (e.g., reading in the velocity fields at the next
time step), stepping the drifters forward between the two time
steps of velocity fields stored in memory, wrapping up the time
step, and wrapping up the simulation. Utilities are provided in
TracPy for necessary computations, such as moving between grid
spaces of the drifter locations. That is, drifter locations may, in
general, be given in geographic space (i.e., longitude/latitude) or
in projected space (e.g., universal traverse mercator or Lambert
conformal conic), and positions are converted between the two
using Python packages Basemap or Pyproj. Additionally, drifter
locations will need to be transformed between grid index space,
which is used in TRACMASS, and real space. Plotting functions
and common calculations are also included in the suite of code
making up TracPy.

Other improvements in the code system:

• Global variables have been removed in moving from the
original set of TRACMASS code to the leaner TRAC-
MASS algorithm that exists in TracPy, and have been
replaced with variables that are passed directly between
functions as needed.

• A user manual has been implemented in an iPython note-
book.

• A few simple test cases have been provided for users to
experiment with and as a set of unit tests to improve
stability during code development.

The parallelization of an offline Lagrangian trajectory model
could be relatively straight-forward. Each drifter trajectory in any
given simulation is independent of every other drifter. However,
one of the slowest parts of drifter tracking is often reading in the
velocity fields—separating out drifter trajectory calculations into
different processes would most likely increase the input/output
requirement. Still, an easy way to take advantage of the drifter
calculations being inherently decoupled is to run different sim-
ulations on different processes. Many times, drifter simulations

http://nbviewer.ipython.org/urls/raw.github.com/kthyng/tracpy/master/docs/manual.ipynb
http://nbviewer.ipython.org/urls/raw.github.com/kthyng/tracpy/master/docs/manual.ipynb
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netCDF3 netCDF4C % decrease
Simulation run time [s] 1038 1038 0
File save time [s] 3527 131 96
File size [GB] 3.6 2.1 42

TABLE 1: Comparisons between simulations run with
netCDF3_64BIT and netCDF4-CLASSIC.

are run in large sets to gather meaningful statistics, in which
case these separate simulations can all be distributed to different
processes—as opposed to subdividing individual simulations to
calculate different trajectories on different processes.

Drifter tracks are saved in netCDF files. The file format
was recently changed from netCDF3 to netCDF4-CLASSIC. This
change was made because netCDF4-CLASSIC combines many
of the good parts of netCDF3 (e.g., file aggregation along a
dimension) with some of the abilities of netCDF4 (compression).
It does not allow for multiple unlimited dimensions (available
in netCDF4), but that capability has not been necessary in this
application. Changing to netCDF4-CLASSIC sped up the saving
process, which had been slow with netCDF3 when a large number
of drifters was used. The 64 bit format is used for saving the tracks
for lossless compression of information.

We ran a two-dimensional test with about 270,000 surface
drifters and over 100,000 grid cells for 30 days. A NaN is stored
once a drifter exits the domain and forever after in time for that
drifter (i.e., drifters do not reenter the numerical domain). This
results in a large amount of output (much of which may contain
NaNs), and saving such a large file can be really slow using
netCDF3. Run time and space requirement results comparing
simulations run with netCDF3 and netCDF4-CLASSIC show im-
proved results with netCDF4-CLASSIC (Table 1). The simulation
run time does not include time for saving the tracks, which is
listed separately. The simulation run time was the same regardless
of the file format used (since it only comes in when saving the file
afterward), but the file save time was massively reduced by using
netCDF4-CLASSIC (about 96%). Additionally, the file size was
reduced by about 42%. Note that the file size is the same between
netCDF4 and netCDF4-CLASSIC (not shown).

Suites of simulations were run using TracPy to test its time per-
formance on both a Linux workstation (Figure 5) and a Macintosh
laptop (not shown, but similar results). Changing the number of
grid cells in a simulation (keeping the number of drifters constant
at a moderate value) most affects the amount of time required to
prepare the simulation, which is when the grid is read in. The grid
will not be changing size in typical use cases so it may not be
a significant problem, but the rapid increase in time required to
run the code with an increasing number of grid cells may indicate
an opportunity for improvement in the way the simulations are
prepared. However, the time required to read in the grid increases
exponentially with number of grid cells due to the increase in
memory requirement for the grid arrays, so a change in approach
to what information is necessary to have on hand for a simulation
may be the only way to improve this. Changing the number of
drifters (keeping the number of grid cells constant at a moderate
value) affects the timing of several parts of the simulation. The
base time spent preparing the simulation is mostly consistent
since the grid size does not change between the cases. The time
for stepping the drifters with TRACMASS, and processing after

stepping drifters and at the end of the simulation increase with
an increasing number of drifters, as would be expected. The time
required for increasing the number of drifters should scale linearly.
Files used to run these tests are available on GitHub.

The TracPy suite of code has been used to investigate several
research problems so far. In one study, we sought to understand the
effect of the temporal resolution of the circulation model output
on the resulting drifter tracks (Figure 6). In another study, we
initialized drifters uniformly throughout a numerical domain of
the northwestern Gulf of Mexico and used the resulting tracks to
examine the connectivity of water across the shelf break and the
connectivity of surrounding waters with parts of the coastline (see
e.g., Figure 7). Drifters have also been initialized at the inputs of
the Mississippi and Atchafalaya rivers and tracked to illustrate the
complex pathways of the fresh water (Figure 8).

Many improvements and extensions could be made to TracPy.
It is intended to be integrated into NOAA’s GNOME oil tracking
system in order to contribute another mover to their tracking
system and take advantage of utilities in GNOME that are not
in the TRACMASS algorithm, such as the ability to directly apply
windage (this can be important for modeling material that directly
feels wind stress, such as large oil slicks). Potential improvements
include:

• The way the grid is read in and stored is taking too much
time, as was seen in the TracPy performance tests.

• Placeholders for all locations for all drifters are currently
stored for the entirety of a simulation run, which inflates
the memory required for a simulation. Instead, drifter
locations could be only temporarily stored and appended
to the output file as calculated.

• A drifter location is set to NaN when the drifter exits
the domain. This is currently somewhat accounted for by
using netCDF4-CLASSIC compression. However, another
way to minimize unnecessary NaN storage would be to
alter how drifter tracks are stored. Instead of the current
approach of storing tracks in a two-dimensional array of
drifter versus location in time, all drifter locations for a
given time step could be stored together on the same row.
This makes retrieval more difficult and requires ragged
rows, but eliminates the need to store a drifter that is
inactive. Alternatively, a sparse matrix could be used to
only store active drifters.

• Storage could be updated to full netCDF4 format.
• The modularity of the TracPy class should be improved.

Conclusions

A Python wrapper, TracPy, to a Lagrangrian trajectory model,
TRACMASS, combines the speed of the Fortran core algo-
rithm with the ease of using Python. TracPy uses netCDF4-
CLASSIC for saving trajectory paths, which is an improvement
over netCDF3 in both time required to save the file and disk space
required for the file. It also includes several improvements such
as including an iPython notebook user manual and eliminating
the use of global variables. TracPy performance tests indicate
expected behavior in simulation time increase when increasing
the number of drifters being simulated. However, when increasing
the number of grid cells in the underlying numerical circulation
model, preparing for the run takes more additional time than it
probably should. The TracPy suite of code has been used for

https://github.com/kthyng/tracpy_performance
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several applications so far, with more in the works for the future,
along with continual code improvements.
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Fig. 7: Connectivity of waters with the southern Texas coastline over a 30 day time period, for the winter and summer months. Averaged over
the years 2004-2010. Project available on GitHub.

Fig. 8: Integrated pathways of drifters initialized in the Atchafalaya
and Mississippi river inputs to the numerical domain.

https://github.com/kthyng/shelf_transport
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