
12 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Python as a First Programming Language for
Biomedical Scientists

Brian E. Chapman, Ph.D.§∗, Jeannie Irwin, Ph.D.‡

https://www.youtube.com/watch?v=kP_glnbesJ4

F

Abstract—We have been involved with teaching Python to biomedical scientists
since 2005. In all, seven courses have been taught: 5 at the University of
Pittsburgh, as a required course for biomedical informatics graduate students.
Students have primarily been biomedical informatics graduate students with
other students coming from human genetics, molecular biology, statistics, and
similar fields. The range of prior computing experience has been wide: the
majority of students had little or no prior programming experiences while a few
students were experienced in other languages such as C/C++ and wanted to
learn a scripting language for increased productivity. The semester-long courses
have followed a procedural first approach then an introduction to object-oriented
programming. By the end of the course students produce an independent
programming project on a topic of their own choosing.

The course has evolved as biomedical questions have evolved,
as the Python language has evolved, and as online resources have
evolved. Topics of primary interest now focus on biomedical
data science with analysis and visualization using tools such
as Pandas, scikit-learn, and Bokeh. Class format has evolved
from traditional slide-based lectures supplemented with IDLE
programming demonstrations to flipped-classrooms with IPython
notebooks with an interactive learning emphasis. Student evalua-
tions indicate that students tend to find the class challenging but
also empowering. The most difficult challenge for most students
has been working with their computers (installing software, setting
environment variables, etc.) Tools such as Canopy, Anaconda, and
the IPython notebook have significantly reduced the extraneous
cognitive burden on the students as they learn programming.

In addition to reviewing the nature of the course, we will
review the long-term impact the course has had on the students, in
terms of their retrospective evaluation of the course and the current
nature of their computational toolbox. We will also discuss how
our experience with these courses has been leveraged in designing
a Python-centric summer school for biomedical data science.

Index Terms—education, biomedical informatics, biomedical sciences

Introduction

Python has become the most popular language for majors at the
top computer science departments (Philip Guo, "Python is Now
the Most Popular Introductory Teaching Language at Top U.S.

* Corresponding author: brian.chapman@utah.edu
§ Department of Radiology, University of Utah
‡ Unaffiliated

Copyright © 2015 Brian E. Chapman, Ph.D. et al. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Universities"). Motivations for Python as the first language are
its simple semantics and syntax [Stefik2013], leading to students
making fewer mistakes, feeling more confidence, and having a
better grasp of programming concepts relative to peers taught
with more traditional, lower-level languages such as C or Java
[Koulouri2014]. Since Python is a multi-paradigm programming
language, it offer great pedagogical flexibility. Python is also an
active language with many open source projects and employers
looking for Python programmers ("Is Python Becoming the King
of the Data Science Forest?", "The RedMonk Programming Lan-
guage Rankings: January 2015").

These same characteristics make Python well-suited for teach-
ing programming to students without a computational background.
The biomedical sciences are increasingly becoming computation-
ally oriented. The installation of electronic medical records, digital
public health registries, and the rise of -omics (e.g., genomics, pro-
teomics, biomics) means biological discovery and healthcare de-
livery increasingly require the storage and analysis of digital data.
However, students in biomedical sciences largely arrive in gradu-
ate school without computational skills. For example, biomedical
informatics graduate students have diverse backgrounds including
medicine, nursing, library science, psychology, and linguistics. In
order to be successful in their graduate studies, the students must
quickly pick up programming skills relevant to the biomedical
problems they are addressing in their graduate studies.

Rather than asking students to take multiple undergraduate
computer science courses, we have designed a one-semester
Python programming course that allows the students to develop
programming skills for their graduate studies. In this paper we first
provide a brief summary of the course. Using both our personal
observations and surveys of past teaching assistants and students,
we then summarize our experiences with this course over the past
ten years. Finally, we provide suggestions for future teaching of
biomedical graduate students.

Course Objectives

The course we describe here was originally created as a required
programming course for biomedical informatics students at the
University of Pittsburgh. Most recently it has been offered at the
University of Utah as a required course for an applied genomics
certificate and as an elective for a variety of biomedical science
graduate programs, including biomedical informatics, biology,
human genetics, and oncological science. One of us (BEC) has
seven years’ experience as the course designer and instructor, the

https://www.youtube.com/watch?v=kP_glnbesJ4
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
mailto:brian.chapman@utah.edu
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
(http://www.experfy.com/blog/python-data-science/
(http://www.experfy.com/blog/python-data-science/
(http://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/
(http://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/

PYTHON AS A FIRST PROGRAMMING LANGUAGE FOR BIOMEDICAL SCIENTISTS 13

other (JI) has one year’s experience as a student (with a prior
instructor) and four years’ experience as a TA with BEC at the
University of Pittsburgh.

As we conceive the course, it has two intended purposes.
First, the course is intended to provide the students sufficient
programming experience that they can use programming in their
graduate studies, meaning they should be able to

a. continue to learn and improve their Python programming
skills on their own,

b. successfully use Python in other programming-oriented
courses during their graduate studies,

c. use Python in their thesis or dissertation work,
d. use their experience with the Python course to teach

themselves another programming language, as needed.

Second, the course is intended to introduce students to the
nature of biomedical data: what it looks like, what some of the
standards associated with it are, and how to represent and model
the data. For example, with clinical lab values, students would
be asked to address whether integers, floating point numbers, or
strings would be most appropriate for representing the depicted
values, what type of meta-data should be associated with the
value (e.g., units, method of measurements), and what sort of data
structure would be most appropriate to store the data and meta-
data (e.g., list, tuple, or dictionary).

Simultaneously, the course tries to illustrate biomedical prob-
lems that researchers are currently addressing so that students are
not learning programming in a vacuum or purely abstractly but in
the context of problems in their fields.

The course is described to students as a “boot camp” to get
students with little or no programming experience up to speed
for starting their graduate work. Consequently, as a "boot camp"
the students should expect to spend more time than in an average
three-credit course. Because this course is viewed as a foundation
for subsequent graduate classes, we assume the students are self
motivated and are consequently more interested in learning than
in the grade received in the course.

The course is taught with a more empirical than theoretical
approach, using the Python (and IPython [Perez2007]) shell to try
out code snippets and see what happens. We occasionally quote
Ms. Frizzle from The Magic School Bus: "Take chances, make
mistakes, and get messy!" (http://magicschoolbus.wikia.com/wiki/
Ms._Frizzle)

First taught in 2005, the nature of the course has trans-
formed as the available computational and pedagogical tools
have expanded. For example, learning how to read files with
Pandas [McKinney2010] (http://pandas.pydata.org/) has replaced
exercises in reading and parsing comma-separated files using
low-level Python functionality. Similarly, static slides have been
replaced by interactive IPython/Jupyter notebooks (http://ipython.
org/notebook.html) and YouTube videos.

Course Structure

The course is structured around weekly homework assignments
and a course project. Additional features have included quizzes
(scheduled and pop), in-class and take-home exams, peer code-
review, and in-class individual, pair, group, and class-wide pro-
gramming assignments. Homeworks are designed to both reinforce
topics that were covered in class and to require students to learn
additional material on their own, primarily in the form of finding

and using modules within the Python standard library. Course
projects are intended to allow students to focus on an area of
interest, to require them to learn additional tools, and to require
them to integrate various topics covered in class. For example,
they must define a base class and inherited class, interface with
a database (e.g., SQLite), and have some sort of graphical user
interface (e.g., IPython notebook, TKinter (https://docs.python.
org/2/library/tkinter.html), Flask (http://flask.pocoo.org/), Django
(https://www.djangoproject.com/)).

The semester class is roughly split in half. In the first half-
semester, the course covers the fundamentals of imperative pro-
gramming including numeric and string manipulation, if/else,
while/for, functions, and classes. Homework assignments become
progressively more demanding. In the second half-semester, topics
learned in the first half are reinforced through exploration and
illustration of various Python packages. Homeworks are decreased
to allow the students more time to focus on their term projects.
Because the illustrative applications are somewhat arbitrary, the
students can request/select which topics are covered.

In-class lectures are minimized in favor of interactive program-
ming assignments, either in the form of class-wide, small group,
or individual programming projects, code reviews, or discussions
about sticking points encountered during the homework. To ensure
that students are motivated to be prepared for class, a "random
student selector" is used to determine who will be at the podium
for the next explanation or problem.

Students are encouraged to work together on homeworks and
optionally can work together on term projects.

Evaluation Methods

We reviewed previous course materials and end-of-course stu-
dent evaluations. Course evaluation formats varied across years
and institutions making quantitative analysis difficult, but were
valuable for qualitative information. In addition, we solicited
input from past teaching assistants and sent a questionnaire to
previous students to better assess the long-term usefulness of the
course. The questionnaire was generated using SurveyMonkey
and consisted of a combination of multiple-choice, Likert scale,
and free-response questions. Past course lists were obtained from
the University of Pittsburgh and the University of Utah. Where
current e-mails were not known from the University, connections
were sought through LinkedIn and other social media. Previous
teaching assistants for the courses were e-mailed directly. Course
materials were reviewed to observe changes in content over the
years. Previous teaching assistants for the course were solicited
for their analysis of the course. Twenty-seven previous students
responded to the survey. However, one of the responses was blank
on all questions, and so our results are based on 26 responses.

Results

Instructors’ Perceived Successes and Challenges

All in all, we believe that the course has been very successful. The
vast majority of students enrolling in the class achieve a functional
proficiency in Python by the end of the semester. Frequently, the
term project for the class has expanded into thesis or dissertation
projects. At least one student with little prior programming ex-
perience started taking on "moonlighting" Python programming
projects for other students and faculty. The personally commu-
nicated responses of two students remain memorable. The first
student who took the course later in her graduate studies referred

http://magicschoolbus.wikia.com/wiki/Ms._Frizzle
http://magicschoolbus.wikia.com/wiki/Ms._Frizzle
http://pandas.pydata.org/
http://ipython.org/notebook.html
http://ipython.org/notebook.html
https://docs.python.org/2/library/tkinter.html
https://docs.python.org/2/library/tkinter.html
http://flask.pocoo.org/
https://www.djangoproject.com/

14 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

to the course as "liberating." Specifically, she felt liberated from
dependency on her advisor’s programming staff for conducting her
own graduate work. She ultimately changed course and completed
a programming-centric dissertation project. The second student,
a physician who attended the course as part of a short-term fel-
lowship, referred to the class as "life changing." After completing
the fellowship, he left his medical practice, received a graduate
degree in biomedical informatics from Stanford University, and
is currently employed by a company recently named as one of
the 50 smartest companies of 2015 by MIT Technology Review
(http://www.technologyreview.com/lists/companies/2015/).

The greatest challenge we have observed in teaching pro-
gramming to the biomedical science graduate students is the
lack of basic computer skills among students. Students have
had difficulty using a shell, installing Python and an appropri-
ate code editor and/or an integrated development environment,
getting environment variables set, etc. These challenges have
been substantially diminished by the use of third-party, complete
Python installations, such as Anaconda or Canopy. The use of
the IPython notebook has also simplified getting started for the
students. However, the notebook has in some ways become a long-
term detriment to some students as they are slower to adopt more
powerful code editors or debugging tools.

Another challenge that we have observed repeatedly is a lack
of general problem solving skills among students. This is immedi-
ately manifested in the difficulty students have in learning how to
debug their programs, but lack of problem solving skills has also
been manifested in tackling open-ended problems. Students have
struggled with how to break a problem into small parts, and how
to start with a partial solution, test it, and then move on to a more
complete solution.

A final challenge with the course has been keeping the class
relevant to each student. This challenge can be broken down
into three parts. First, a common pedagogical problem is the
breadth of prior programming experience of the students. With
the limited teaching support available in most health sciences
settings, it is not feasible to have multiple courses where skill
levels can better match student backgrounds. Consequently, we
must continually strive to not drown the weaker students while
not boring the more advanced students. We believe the course
evaluations indicate that we generally achieve this balance, but the
balance always feels unstable. Further, we have observed that as
we make the classroom more interactive, there is more opportunity
for students to become frustrated with each other. Second, as the
computational fields within biomedical sciences expand, it is more
difficult to fashion a single course in which the instructor can
meaningfully match the increasingly diverse needs of the students.
Third, and perhaps most important, it has been difficult to provide
relevant data sets for the students to explore. This is particularly
true for students interested in clinical informatics, where privacy
rules severely restrict access to data. Thankfully, federally funded
efforts to increase data sharing have resulted in many relevant
publicly available medical data sets. The NCI Biomedical Imaging
Archive (https://imaging.nci.nih.gov/ncia/login.jsf), MT Samples
(http://www.mtsamples.com/), MIMIC II [Goldberger2000]. A
variety of -omic datasets (see for example http://www.ncbi.nlm.
nih.gov/guide/all/ for a partial list) are now publicly available,
largely due to NIH data sharing requirements connected to fund-
ing. Nonetheless, availability of large, rich data sets remains a
limitation for the dual purpose of the class.

Students’ Retrospective Assessment of the Course

Overall Assessment: We assessed the students’ overall
retrospective assessment of the course value with four Likert-scale
(1: Strongly Disagree, 2: Disagree, 3: Neither Disagree or Agree,
4: Agree, 5: Strongly Agree) questions:

The responses to these questions are tabulated in Table 1.
In addition to these Likert-scale questions, we asked two open-

ended questions:

• "What weaknesses and strengths do you perceive Python
as having related to your work? What other programming
languages (if any) do you now use? Please comment on
how and why you chose them with respect to Python."

• "Please provide a short paragraph describing your retro-
spective analysis of the usefulness (or lack thereof) of the
course. Please comment on how difficult it was for your
to learn, how well you feel you still remember what you
learned in the class, and whether what you learned in the
class seemed relevant and up to date.

In response to our first open-ended question, reasons people
listed for not using Python after the class included not program-
ming at all, limitations of the language (memory management,
speed), not considering it a statistical language (as compared to
R), and collaborators using other languages (Java, Perl).

Responses to the second question were primarily positive and
were similar to comments made in course evaluations. "Because I
had only brief programming experience prior, the course made me
much more comfortable with not only my own work and trying
to incorporate automation or analysis, but also with understanding
the work of others." "For me- being a novice at programming.
Understanding the basics of Object Oriented Programming how to
read code and think logically within a program was the best part
which continues to help me today." "I thought this was a great
course and perfect way to introduce OOP. I left the course feeling
confident of taking on most programming challenges. Initially is
was difficult to learn, but once you start thinking that way the
learning accelerates."

Negative comments primarily addressed the work load of the
class. "The class was too time-consuming." "I was behind on day
one and was drowning in information pretty much the whole time."
Similar comments can be found in course evaluation. For example,
in one recent evaluation a student commented, "I felt like the
class was preparing to take the mid-term on the second day of
class. A fire house [hose] of information." In another evaluation
a student wrote "way too much homework. I cannot stress this
enough....Spending 12+hrs on homework is not conducive to a
graduate student." Some negative comments indicate that we could
do better in scaffolding the learning process for the students.

Prior Programming Experience of Students: We asked the
students to assess their own programming experience at the time
they enrolled in the class. Responses are shown in Figure 1. For
students with prior programming experience, most of that prior
experience was with Java (9 students) or C/C++ (9 students) with
a few students reporting experience with BASIC (2), Perl (2), and
JavaScript (1).

Although these responses are anonymous, and we do not know
which responses correspond to which students, as an instructor
BEC did not see a noticeable difference in class performance be-
tween students with no and with some prior experience. However,
at least one TA felt strongly that prior experience was necessary for
success in the course. Acknowledging that the course is certainly

http://www.technologyreview.com/lists/companies/2015/
https://imaging.nci.nih.gov/ncia/login.jsf
http://www.mtsamples.com/
http://www.ncbi.nlm.nih.gov/guide/all/
http://www.ncbi.nlm.nih.gov/guide/all/

PYTHON AS A FIRST PROGRAMMING LANGUAGE FOR BIOMEDICAL SCIENTISTS 15

Question 1 2 3 4 5

Learning Python was valuable for helping me subsequently
learn additional programming language(s)

1 1 3 12 9

Learning Python was valuable for my career development 0 1 1 10 14
Programming is an integral part of my professional work 2 3 4 12 5
Python is my primary programming tool 3 4 5 9 5

TABLE 1: Students’ retrospective evaluation of course value

Fig. 1: Figure 1. Prior programming experience

easier for someone with prior programming experience, it was not
uncommon for a student with no prior programming experience
to be the top performing student in the course. Responses from
students with some programming experience indicate that they
thought the class could be difficult for a student with no prior
programming experience.

Several students have suggested breaking the class into two
parts: one class where the very basics of programming were
covered and a second course that assumed basic knowledge of
programming and covered most of the materials in the present
course.

Application Areas and Valued Skill Sets: Students reported
what their focus area was when they enrolled in the class and what
it is currently (Figure 2). Related to this we asked them to report
what topics covered in class were most valuable for them (Figure
3).

As mentioned previously, we view it as a challenge to keep
the course relevant to all students. Responses indicate that we
are doing reasonably well in this. Most topics covered in the
class are broadly valued by the students, with web programming
being less valued. However, free responses indicate that we are
not covering all the topics students would have liked to learn (e.g.,
Biopython, scikit-learn). Some responses demonstrate a lack of
understanding by students about why certain topics were covered,
indicating a need for better explanation of motivation for a topic
by the instructors. We concur with the following critique: "I didn’t
see the usefulness of some of the material while I was taking the
class. Now, I wish I had continued learning some of the material
after the class had ended. As a result, I am re-learning some of the

Fig. 2: Figure 2. Student areas of focus when they enrolled in class
and currently.

Fig. 3: Figure 3. Topics most valuable to the students.

16 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 4: Figure 4.

scientific tools so that I can apply them to data science concepts.
Perhaps a stronger emphasis on motivating the subject would be
good."

Suggested Pre-course Preparation: In the retrospective
student survey, ten respondents said they would like to have
been taught how to work in computer shells prior to beginning
instruction in programming. In a related response, six would have
liked to have been taught UNIX/Linux skills prior to beginning
instruction in Python.

These responses affirm our own experience that the greatest
barrier to the students’ success is lack of basic computer skills. It
should also be noted that the survey was only sent to students who
had completed the course. Anecdotally a large number of students
dropped the class before programming really began simply out
of frustration with trying to install Python and text editors, set
environment variables, etc. (In the most recent course, about one-
third of the students dropped the course within the first month.)
This was especially true of Windows users. In the most recent
class, we used git for homework, and Windows users almost all
adopted the git shell as their default shell rather than the Windows
terminal. Anecdotally, the adoption of the git shell and the survey
responses showing interest in learning UNIX/Linux occurs in the
context of students (primarily bioinformatics focused) becoming
familiar with a wide variety of Linux-based tools being used in
their field as well as learning the power of such UNIX/Linux tools
as grep, awk, and sed.

Some of our peers insist that all instruction be done in Linux
and provide Linux virtual machines for their students. We concur
in the value of learning the value of Linux, since it is arguably the
primary scientific programming platform. However, in this class,
we have opted to emphasize the platform-independent nature of
Python and have let students use their own platform, particularly
since clinical environments are dominated by Windows. BEC has
always taught with a Mac while JI was a Windows user. Platform
independence is, however, only an approximation, and there were
frequent problems with the variety of platforms being used in the
class. In one course evaluation a student wrote, "The instructor
used a different platform (mac) but many many times there were
differences between mac & windows which is what the students

used. This led to annoying delays/struggles. The instructor should
have done all the homework in advance on windows before
assignments were given to class as well as in class examples too."
In another evaluation, a student complained, "Use of Mac OS by
the instructor created problems in teaching and homework, etc."

With the interest in UNIX/Linux expressed by the students,
the nuisance of teaching across platforms, the acknowledged role
of Linux in scientific programming, and the availability of cross-
platform virtualization tools (e.g., VirtualBox, Vagrant, Docker),
we believe the course would be best run using a common Linux
platform.

One-third of survey respondents requested being taught gen-
eral problem solving skills prior to starting programming. Two of
the respondents to our survey touched upon this in their open
responses. One student wrote "it did take some time to work
in that problem-solving mindset," and the other wrote, "Since I
came from the natural sciences it was a challenge to approach
programming abstraction tasks."

Summary and Conclusion

Based on our experience over the last decade, we believe that
Python is an excellent choice for teaching programming to gradu-
ate students in biomedical sciences, even when they have no prior
programming experience. In the course of a semester, students
were able to progress from absolute beginners to students tackling
fairly complex and often useful term projects. Student responses
to our survey and course evaluations support this conclusion.
While including a range of responses, these survey responses
and end-of-course evaluations primarily reflect the fact that our
Python course is challenging but useful. We acknowledge that
there might be biases in our responses in that we only e-mailed
people who completed the course (not all those who enrolled in
the class) and for students enrolled at the University of Pittsburgh,
we were limited to contacting students for whom the Department
of Biomedical Informatics had current contact information (thus
excluding students from outside of the department who had
enrolled) or with whom we had maintained professional contact
with.

In open responses to our survey, former students expressed a
variety of ways Python has helped them. The majority of students
continue to use Python, and even those who do not describe Python
as an important current tool, valued taking the course. In addition
to expected comments about increased personal productivity and
confidence, one former student who does not program as part of
his professional responsibilities noted how valuable the class was
for their future work supervising programmers.

The Python course has primarily been seen as a stand-alone
course. However, our past experience indicates that the program-
ming with Python course should be part of a larger series of
courses. First, the students need to be introduced to working
with the shell, preferably Linux. To avoid requiring students to
learn another skill before class (virtualization), we are building
an on-line, computational learning environment based on Git-
Lab, Docker, and the Jupyter notebook. The Terminado emulator
(https://github.com/takluyver/terminado) in the IPython notebook
will be used to help students learn Linux shells. Thus the students
can be exposed to the shell, Linux, and programming with no
prior technical skill other than running a web browser. We believe
the students would also benefit from a primer in problem solving
heuristics. The classic text on this is George Pólya’s How to

https://github.com/takluyver/terminado

PYTHON AS A FIRST PROGRAMMING LANGUAGE FOR BIOMEDICAL SCIENTISTS 17

Solve It [Pólya1971]. We are interested in whether this has been
generalized to problem solving outside of mathematics.

In addition to developing prelude courses, we also believe
the programming instruction would be improved by breaking
the course into smaller, sub-semester (quarter) pieces. In some
sense, our habit of teaching 3-credit courses has shaped the course
structure more than the needs of the students. By breaking the
course into smaller pieces that take part of a semester (or quarter)
and that the students can step into (or out of) as appropriate would
better serve the students.

These ideas are being implemented for a summer biomedical
data science boot camp for clinicians and others without a com-
putational background. Python will be used as the programming
language. As discussed here, the Python programming course,
similar to what is described here, will be preceded by mini courses
on working with Linux shells and problem solving. Following the
programming course, there will be short courses on visualization,
statistics, and machine learning, also using Python. The plan is
for the boot camp to feed into various computationally-oriented
biomedical graduate programs.

A final question related to this course might be, "Why teach a
beginning course when there are many excellent on-line resources
for learning Python (or other programming languages)?" We
have tried to create not just another programming class, but a
programming class for a specific subset of graduate students. We
try to incorporate as much as possible these excellent resources
into our course, but try to add to them the context of the students’
academic focus. We also believe value remains for traditional face-
to-face classes. Students especially valued in-class programming
illustrations. And, as one student reported, "one of the not so
obvious benefit of the class is the connection you made with other
students who now know python. Creating a user / support group."

REFERENCES

[Koulouri2014] T. Koulouri, et al. Teaching Introductory Programming:
A Quantitative Evaluation of Different Approaches, Trans.
Comput. Educ., 14(4):1---26, December 2014.

[Stefik2013] A. Stefik and S. Siebert. An Emperical Investigation
into Programming Language Syntax, Trans. Com-
put. Educ., 13(4):1---19, November 2013.

[McKinney2010] Wes McKinney. Data Structures for Statistical Computing
in Python, Proceedings of the 9th Python in Science Con-
ference, 51-56 (2010)

[Perez2007] Fernando Pérez and Brian E. Granger. IPython: A
System for Interactive Scientific Computing, Comput-
ing in Science & Engineering, 9, 21-29 (2007),
DOI:10.1109/MCSE.2007.53

[Pólya1971] George Pólya. How to Solve it: A New Aspect of Math-
ematical Method, Princeton University Press, 1971. pub-
lisher={Princeton University Press}

[Goldberger2000] Goldberger AL, et al. PhysioBank, PhysioToolkit, and
PhysioNet: Components of a New Research Resource for
Complex Physiologic Signals. Circulation 101(23):e215-
e220

	Introduction
	Course Objectives
	Course Structure
	Evaluation Methods
	Results
	Instructors' Perceived Successes and Challenges
	Students' Retrospective Assessment of the Course

	Summary and Conclusion
	References

