
PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 39

Creating a Real-Time Recommendation Engine using
Modified K-Means Clustering and Remote Sensing

Signature Matching Algorithms

David Lippa‡∗, Jason Vertrees‡

F

Abstract—Built on Google App Engine (GAE), RealMassive encountered chal-
lenges while attempting to scale its recommendation engine to match its
nationwide, multi-market expansion. To address this problem, we borrowed
a conceptual model from spectral data processing to transform our domain-
specific problem into one that the GAE’s search engine could solve. Rather
than using a more traditional heuristics-based relevancy ranking, we filtered and
scored results using a modified version of a spectral angle. While this approach
seems to have little in common with providing a recommendation based on
similarity, there are important parallels: filtering to reduce the search space;
independent variables that can be resampled into a signature; a signature
library to identify meaningful similarities; and an algorithm that lends itself to
an accurate but flexible definition of similarity. We implemented this as a web
service that provides recommendations in sub-second time. The RealMassive
platform currently covers over 4.5 billion square feet of commercial real estate
inventory and is expanding quickly.

Index Terms—algorithms, clustering, recommendation engine, remote sensing

Introduction

RealMassive helps tenants and their representatives locate com-
mercial real estate (CRE) space to lease or buy. Finding suitable
space in a market can be difficult. Each tenant has specific
requirements, and often, the knowledge of the current market
lives exclusively in the memory of domain experts. Automated
recommendation tools have substantial value, provided that they
operate in real time on an ever-increasing dataset and provide
similar or better accuracy to the judgment of domain experts. Our
initial recommendation engine attempted to use a variance-based
calculation that could not scale to match our growing database
of CRE listings, which now covers more than 30 US markets
and 4.5 billion square feet. We set out to create a new real-time
recommendation engine to meet these needs while negotiating the
restrictions of our platform, Google App Engine (GAE). This is
a classic problem of pattern matching and information retrieval
adapted to a specific domain of expertise coupled with engineering
restrictions and product requirements.

GAE is a powerful platform built to scale, yet it brings
along certain challenges that make implementing algorithms, such

* Corresponding author: david.lippa@realmassive.com
‡ RealMassive, Inc.

Copyright © 2015 RealMassive, Inc. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

as a recommendation engine, more difficult. Several of these
constraints are particularly difficult to overcome. Instances are
outfitted with at most 1 GB of memory and prohibited from
executing native code with the exception of a few provided
libraries, such as numpy [Goo15]. Though fast for relevance-based
search operations, the GAE search engine trades speed for limited
functionality: only a small subset of mathematical functions (ad-
dition, subtraction, multiplication, division, minimum, maximum,
geographical distance, natural logarithm, and absolute value) are
available [Goo15]. Implementing algorithms via the GAE search
infrastructure keeps memory usage low, provided that the only
functionality needed is a very limited math toolbox.

We set out to implement our recommendation engine using
GAE search to produce a solution that fits within the constraints
of our platform. The search results are ordered not by search term
relevance, but by a modified version of a spectral angle—a simple
computation borrowed from the domain of linear algebra and
spectral analysis. The Spectral Angle Mapper (SAM) algorithm
treats each pixel of an image as an n-dimensional vector ~vi j
and computes the angle θ between ~vi j and a vector ~s for all

rows i and all columns j: cos−1
(

~s·~vi j

|~s||~vi j|

)
. A potential candidate

match usually has an angle between 5 and 10 degrees, while a
collinear match has an angle of 0. For remote sensing applica-
tions, SAM has a roughly 83% accuracy rate when predicting
exact signature matches [Pet11] in a variety of applications and
domains including: determining the chemical composition of stars
[Ric15], analyzing the health of vegetation [Zha09], measuring
the quality of an RGB image, and detecting camouflage in times
of war [Lan05]. Unfortunately, one of the weaknesses of the SAM
algorithm is that a collinear match can show up as a false positive1,
requiring additional algorithmic steps that takes vector magnitude
into account.

We can draw some important parallels between the recommen-
dation algorithm and SAM. The "pixels" of an image are similar
to the pool of candidates to match against. User inputs, which
in our case are spaces added to a CRE survey, can represent
a library of "signatures," with the intensity of each signature
component taking its value from each item’s orthogonal attributes.
The dependence between variables, such as cost per unit, number

1. A signature whose vector is (1,2,3) is an exact match when compared
against a candidate pixel of (10,20,30), since they are collinear and therefore
the angle between them is 0.

mailto:david.lippa@realmassive.com

40 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 1: Clustering of 50 Spaces from across the US [Rea15].

of units, and total cost, are "within the same wavelength range,"
comparable to a spectral sensor’s center frequency and full-width
half maximum2. The attributes contained within an object are
like the wavelengths of a spectral signature, provided each vector
component is independent3 of all others. Furthermore, the false
positives observed from using SAM in remote sensing applications
translates into an asset when used as a recommendation score:
an angle of 0, regardless of vector magnitude, is indicative of
similarity.

Method

The implementation of our recommendation engine transforms a
domain-specific problem into a modified version of SAM. This
expands the potential use of Google App Engine to solve a subset
of linear algebra based problems using its search engine. There are
three phases of the algorithm: dynamically clustering user data to
produce signatures, applying fixed filters to limit search results,
and scoring those results based on a signature match instead of
search term relevance. Each are necessary to overcome one or
more constraints imposed by GAE: clustering reduces the length
of query strings and sort expressions, which are restricted to 2,000
and 5,000 characters respectively, and filtering keeps the results
within the 10,000 hit sort limit [Goo15].

The first phase starts with k-means clustering: the process of
breaking up n data points into k discrete clusters. Traditionally, one
divides the n data points into an initial set of clusters, whose new
center points are calculated as an unweighted average, causing the
clusters to shift in response to the distribution of their contents.
Iteratively, clusters are merged and center points are re-calculated
until no cluster intersects any other [Vat11]. We chose not to use
an iterative approach which has a worst-case complexity of 2Ω(n)

even in 2 dimensions [Vat11]. Though the worst case scenario

2. The full-width half maximum value for a band expresses the difference
between the extreme values that the center frequency could detect. For exam-
ple, QuickBird detects blue in the range of 446-512, whose center frequency
is 478 [War09].

3. When attributes are not independent of each other, some elements of the
signature are over-represented, skewing results. Mixing different types of units,
such as rates and values, is another form of variable dependence.

4. Since GAE restricts external libraries to be purely implemented in Python,
we have stripped out functionality from kdtree.py [Git15] that depends on
native code. Since the building KDTree is limited in size, we maintain a
KDTree singleton that periodically updates, following GAE’s guidelines of
eventual consistency.

5. The maximum number of iterations is determined by dlog2
(402.5

x

)
e,

where x is the starting radius.

doesn’t seem to arise in practice, we use a quick guess-and-
check method that has good asymptotic complexity and converges
quickly, even though other algorithms may produce better results.
The algorithm takes advantage of a few known attributes of the
data: there is a limited amount of overlap between data points
because they represent physical objects in 3-dimensional space;
the data points have a limited range since they are latitude and
longitude coordinates; and since we use the clusters as a geofence
in our search parameters, using a global KDTree of all building
coordinates in our datastore allows us to make a good estimation
of the initial cluster sizes. The algorithm executes as follows:

1) Create a set P of points p1, p2, . . . , pn, each representing
an office space.

2) Create a KDTree K using the set P.
3) Iterating while P is not empty, take the first point pi

and compute the radius ri of the circle containing the
nearest 50 neighboring buildings using a pre-built SciPy
KDTree4 with a starting maximum distance d = 0.082◦ ≈
9 km. Using K, find all nearest neighbors within ri, adding
them to cluster ci and removing them from P. Merge ci if
it intersects any other cluster.

4) If the number of clusters is greater than k, recursively
perform the previous step with the original set P and
2d as the new maximum distance. Otherwise, merge
intersecting clusters and compute a weighted centroid and
radius for each cluster.

The maximum number of recursive calls is determined by the
maximum distance between latitude and longitude points, which
if treated as cartesian coordinates, is

√
1802 +3602 ≈ 402.5, and

would have at most 26 calls5 when starting with an initial radius
of 1 meter ≈ 9 · 10−6 degrees. This never happens in practice,
since we take the nearest 50 buildings to compute the starting
radius. At worst, the radius, at its smallest, falls between 0.5 and
1 km, which would result in at most 17 recursive calls. The worst
case has a high constant, but is still asymptotically acceptable at
O(kn logk n). Since building the KDTree takes O(kn logk n) time
[Man01] and the clustering algorithm requires at most 26 passes,
each computing at most n lookups in the KDTree per pass at a total
cost of 26n logk n operations, the overall asymptotic complexity is
unchanged. The final result is similar to the mapless representation
of clusters shown in Fig 1. Once the spaces have been clustered, it
is trivial to compute each cluster’s aggregated characterization,
such as an average of each vector component, to produce its
signature ~sk.

The next part of the algorithm involves applying fixed filters
informed by domain expertise. For commercial real estate, this
includes the building type (such as "office", "industrial", etc.) and
location, along with any necessary exclusions6. These constraints
produce a reasonably sized subset of no more than 10,000 results
that can be matched against the signatures generated during the
clustering phase.

Executing the SAM algorithm on a reduced dataset of 10,000
items is comparable to performing material identification on a 115
x 87 pixel data collection7 from a 3-band multi-spectral sensor,
easily accomplished in sub-second time. The sample Python code
below illustrates the process of executing SAM on a 2-dimensional
array of pixels in R3:
from math import acos
import numpy as np

CREATING A REAL-TIME RECOMMENDATION ENGINE USING MODIFIED K-MEANS CLUSTERING AND REMOTE SENSING SIGNATURE MATCHING ALGORITHMS 41

def SAM(img, sig):
"""
>>> sig = [2, 2, 2]
>>> img = np.array([[(1, 2, 3), (1, 1, 0)],

[(4, 3, 2), (0, 1, 1)],
[(1, 1, 1), (4, 4, 1)]])

>>> SAM(img, sig)
"""
matches = []
sig_norm = sig/np.linalg.norm(sig)
for r in range(len(img)):
for c in range(len(img[r])):

pix = img[r][c]
cos_t = pix.dot(sig_norm)/np.linalg.norm(pix)
theta = acos(round(cos_t, 7))
if theta < .1745329: # 10 degrees, in radians
matches.append((r, c, theta))

return sorted(
matches,
cmp=lambda x, y: cmp(x[-1], y[-1]))

This solution fails our speed requirement, since it requires loading
the subset of candidates into memory and sorting the results.
GAE’s search service provides a faster mechanism in the form of
a sort expression, but it lacks the inverse cosine function [Goo15].
Our solution uses the cosine ratio as a proxy for the angle.
Since the components s1,s2, . . . ,sn of a signature vector ~s and
the components of all of the candidate vectors ~v1, ~v2, . . . , ~vn are all
non-negative, the cosine ratio between~s and ~vi =

~s·~vi
|~s||~vi| ∈ [0,1] and

is monotonically increasing. From this, we can deduce θ ∈ [0, π

2]

and is monotonically decreasing8. This means that sorting by
the cosine ratio in descending order is functionally equivalent to
sorting by the angle θ in ascending order to find the best match.

Results

From design to production, the recommendation engine took 3
weeks to complete, and in practice, has been performant, execut-
ing on every page view of a space [Rea15] and on-demand in
the survey view. To date, it has generated more than 302,925
recommendations, sifting through over 80,000 spaces at sub-
second speeds. The workload averaged in the thousands per
work day, with loads peaking at 18,327 per day and 1,407 per
minute9. These speeds were reached when deployed as part of
the RealMassive API10 on F4_1G instances, each outfitted with
a 2.4 Ghz proecssor, 1 GB RAM, and configured with automatic
scaling on a per-request basis [Goo15]. Benchmarks of the GAE
search service showed that search queries limited to 100 results
clocked in between 6-600 ms depending on caching and query
complexity. The clustering and SAM algorithm added up to
200 ms, mostly in the form of reads from the datastore prior to
building clusters. At 6-800 ms, GAE performed nearly 8 times
slower than consumer hardware11 but scaled well during traffic
spikes. Recently, we performed a stress test outside of a standard
use case: 80+ recommendations generated from 100+ user inputs
lagged at an unacceptable 3 seconds—a performance hit caused by
returning entire objects rather than utilizing a projection query, an

6. Some reasons to exclude are items that have insufficient data to be a valid
comparison or have been declined by a user.

7. For a 4:3 image: 4
√

10000
12 ≈ 115×3

√
10000

12 ≈ 87

8. This can easily be proven graphically or by contradiction: if the angle
θ > π

2 , at least one component of ~vi < 0 or one component of~s < 0.

optimization that would lower response time back to sub-second
speeds.

Future Work

There are three improvements that we can make to the recom-
mendation algorithm. First, we can use a 3-dimensional projection
for the geo-coordinates rather than cartesian coordinates. Earth-
Centered Earth-Fixed coordinates would make nearest-neighbor
calculations in the KDTree more accurate, especially with extreme
coordinates that are adjacent, but do not appear to be so when
represented in 2 dimensions. Second, we can consider generating
the clusters in parallel using a tasklet [Goo15]. And lastly, we
may investigate other cluster signature calculations, though aver-
aging vector components works well in practice and is simple to
implement.

Conclusions

Google App Engine provides a scalable infrastructure with an
advanced search engine that can be utilized for purposes beyond
typical search use cases. In this paper, we present a novel ap-
proach to recommendation systems by drawing parallels between
domain-specific recommendation matching and material identifi-
cation processes used in remote sensing. Remapping independent
object attributes into vectors allows for sub-second scoring and
sorting. This implementation enables RealMassive to scale its
recommendation engine and continue to innovate in an industry
that is currently hampered by closed data and its dependence upon
a select few domain experts.

Though our specific problem is a case of pattern matching, the
strategy of leveraging, rather than fighting, constraints can produce
innovations that prefer satisficing over optimizing [Bra00]. Rather
than simply considering only the input dataset, we used a related
dataset to inform initial cluster sizes, sacrificing some speed
in the average case to put an upper bound on the worst-case.
Instead of continuing to use a variance-based approach to signature
matching, the simpler Spectral Angle Mapper suffices for positive
vectors whose magnitude are irrelevant. The seemingly restrictive
toolbox provided by Google App Engine became a catalyst for
a mathematically simpler solution that yielded the speed and
accuracy required. Our experience with implementing a recom-
mendation engine on Google’s App Engine platform shows that
the structure, and not just the content, of a problem is significant,
and may be the key to a new breed of solutions.

Acknowledgments

The authors would like to thank Fatih Akici, Natalya Shelburne,
and Hannah Kocurek for providing suggestions and edits for this
paper.

Appendix

For a demonstration of RealMassive’s clustering service used by
the recommendation engine, you may use the search query lan-
guage described in our Apiary documentation with the clustering
endpoint https://www.realmassive.com/api/v1/spaces/cluster, such
as this.

9. Results were calculated as of Jun 27, 2015 from KeenIO event data.
10. http://docs.realmassive.apiary.io
11. Benchmarks were performed with the Opticks toolkit [Opt15] on a 614

x 512 pixels x 224 band AVARIS spectral data cube [AVA15], courtesy of
NASA/JPL-Caltech. Processing time was no larger than 3 seconds using a
memory-mapped file.

http://docs.realmassive.apiary.io/#reference/spaces/search-for-a-space-by-full-text-query
https://www.realmassive.com/api/v1/spaces/cluster?building.address.city=Austin&limit=1000
http://docs.realmassive.apiary.io

42 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

REFERENCES

[AVA15] AVARIS Home page. (2015, June 26). Retrieved from http://aviris.
jpl.nasa.gov/data/free_data.html

[Bra00] Bradley, P. S., Bennett, K. P., & Demiriz, A. (2000). Constrained
k-means clustering. Microsoft Research, Redmond, 1-8.

[DeC00] De Carvalho, O. A., & Meneses, P. R. (2000, February). Spectral
correlation mapper (SCM): an improvement on the spectral angle
mapper (SAM). In Summaries of the 9th JPL Airborne Earth Science
Workshop, JPL Publication 00-18 (Vol. 9). Pasadena, CA: JPL
Publication.

[Git15] Github. (2015, June 11). SciPy source code. Retrieved from https:
//github.com/scipy/scipy/blob/master/scipy/spatial/kdtree.py

[Goo15] Google. (2015, June 11). Google App Engine for Python 1.9.21 Doc-
umentation. Retrieved from https://cloud.google.com/appengine/
docs/python

[Lan05] Landgrebe, David A (2005). Signal Theory Methods in Multispectral
Remote Sensing. Hoboken, NJ: John Wiley & Sons.

[Man01] Maneewongvatana, S., & Mount, D. M. (2001). On the efficiency of
nearest neighbor searching with data clustered in lower dimensions
(pp. 842-851). Springer Berlin Heidelberg.

[Opt15] Opticks. (2015, June 26). Opticks remote sensing toolkit. Retrieved
from https://opticks.org

[Pet11] G. Petropoulos, K. Vadrevu, et. al. A Comparison of Spectral Angle
Mapper and Artificial Neural Network Classifiers Combined with
Landsat TM Imagery Analysis for Obtaining Burnt Area Mapping,
Sensors. 10(3):1967-1985. 2011.

[Rea15] RealMassive. (2015, June 10). Retrieved from https://www.
realmassive.com

[Ric15] M. Richmond. Licensed under Creative Commons. Re-
trieved from http://spiff.rit.edu/classes/phys301/lectures/
comp/comp.html

[Vat11] A. Vattani. k-means Requires Exponentially Many Iterations
Even in the Plane, Discrete Comput Geom. 45(4): 596–616.
2011.

[War09] T. Warner, G. Foody, M. Duane Nellis (2009). The SAGE
Handbook of Remote Sensing. Thousand Oaks, CA: SAGE
Publications Inc.

[Zha09] H. Zhang, Y. Lan, R. Lacey, W. Hoffmann, Y. Huang. Analysis
of vegetation indices derived from aerial multispectral and ground
hyperspectral data, International Journal of Agricultural and Bio-
logical Engineering. 2(3): 33. 2009.

http://aviris.jpl.nasa.gov/data/free_data.html
http://aviris.jpl.nasa.gov/data/free_data.html
https://github.com/scipy/scipy/blob/master/scipy/spatial/kdtree.py
https://github.com/scipy/scipy/blob/master/scipy/spatial/kdtree.py
https://cloud.google.com/appengine/docs/python
https://cloud.google.com/appengine/docs/python
https://opticks.org
https://www.realmassive.com
https://www.realmassive.com
http://spiff.rit.edu/classes/phys301/lectures/comp/comp.html
http://spiff.rit.edu/classes/phys301/lectures/comp/comp.html

	Introduction
	Method
	Results
	Future Work
	Conclusions
	Acknowledgments
	Appendix
	References

