
PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 77

Automated Image Quality Monitoring with IQMon

Josh Walawender‡∗

https://www.youtube.com/watch?v=dGLkDOvYOHA

F

Abstract—Automated telescopes are capable of generating images more
quickly than they can be inspected by a human, but detailed information on
the performance of the telescope is valuable for monitoring and tuning of their
operation. The IQMon (Image Quality Monitor) package1 was developed to
provide basic image quality metrics of automated telescopes in near real time.

Index Terms—astronomy, automated telescopes, image quality

Introduction

Using existing tools such as astropy [Astropy2013], astrome-
try.net [Lang2010], source extractor [Bertin1996], [Bertin2010a],
SCAMP [Bertin2006], [Bertin2010b], and SWARP [Bertin2010c],
IQMon analyzes images and provides the user with a quick way
to determine whether the telescope is performing at the required
level.

For projects which need to monitor the operation of an imaging
telescope, IQMon is meant to provide a middle ground solution
between simply examining the operations logs (e.g. those output
by the control system) and a full data analysis pipeline. IQMon
provides more information than typical operations logs while also
giving a "ground truth" analysis since it looks at the actual data and
not just what the system intended to do. While not as powerful as a
full data pipeline, it is designed to provide operational information
instead of scientific data products and thus its output is tuned to
the task of examining the quality of the data and evaluating it for
common problems.

IQMon can provide a determination of whether the telescope
is focused (from the typical Full Width at Half Maximum, or
FWHM, of stars in the image), whether it is pointing accurately
(obtained from a comparison of the target coordinates with the
astrometrically solved coordinates), whether the tracking or guid-
ing is adequate (from the typical ellipticity of stars in the image),
and whether the night is photometric (obtained from the typical
photometric zero point of stars in the image). For wide field
systems which detect many stars in each image, these metrics
can be spatially resolved allowing for more detailed analysis such
as differentiating between tracking error, focus error, and optical
aberration or determining if the dome is partially obscuring the
telescope aperture.

* Corresponding author: joshwalawender@me.com
‡ Subaru Telescope, National Astronomical Observatory of Japan

Copyright © 2015 Josh Walawender. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. Source code at https://github.com/joshwalawender/IQMon

To date, IQMon has been deployed on three disparate optical
systems. Two for the VYSOS Project which performs photometric
monitoring of young stars: a 735mm focal length wide field
imager with a monochrome CCD camera which undersamples
the point spread function (PSF) and an 0.5 meter f/8 telescope
with a monochrome CCD camera with well sampled PSF. It has
also been deployed on the prototype unit for the PANOPTES2

Project: an 85mm focal length camera lens and DSLR camera
(with Bayer color array) designed for very wide field photometry.
PANOPTES aims to create a global network of low-cost, robotic
observatories for citizen science projects. IQMon has provided
valuable diagnostic information about system performance in all
cases.

Structure and Example Use

IQMon operates by using Telescope and Image classes.
The Telescope object contains basic information about the
telescope which took the data. When a Telescope object is
instantiated, a configuration file is read which contains information
on the telescope and controls various user-configurable parameters
and preferences for IQMon. The configuration file is a YAML
document and is read using the pyyaml3 module.

An Image object is instantiated with a path to a file with
one of the supported image formats and with a reference to a
Telescope object. The image analysis process is simply a series
of calls to methods on the Image object.

At the most basic level, IQMon is a sequencing tool which
calls other programs (e.g. SExtractor, Astronometry.net) and tracks
their output. These calls are all made using the subprocess32
module, so all of these dependencies need to be installed and
visible in the path for IQMon to function properly.

The IQMon philosophy is to never operate on the raw
file itself, but instead to create a "working file" (using the
read_image method) and store it in a temporary directory. If
the raw image file is a FITS file, then read_image simply
copies the raw file to the temporary directory and records this
file name and path in the working_file property. If the file
is a raw image file from a DSLR (e.g. .CR2 or .dng format),
then read_image will call dcraw4 using the subprocess32
module5 to convert the file to .ppm. The file is then converted
to FITS format using either pamtofits or pnmtofits tools
from the netpbm6 package. IQMon then operates on the green
channel of that resulting FITS file. For full functionality, the user
should populate the header of this FITS file with appropriate FITS

2. http://projectpanoptes.org/v1/
3. http://pyyaml.org

https://www.youtube.com/watch?v=dGLkDOvYOHA
mailto:joshwalawender@me.com
https://github.com/joshwalawender/IQMon
http://projectpanoptes.org/v1/
http://pyyaml.org

78 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

keywords (e.g. RA, DEC, EXPTIME, DATE-OBS, etc.). To date,
IQMon has only been tested with FITS and .CR2 files, but should
in principle work with numerous DSLR raw format images.

IQMon has been tested with Python 2.7.X, testing with Python
3.X is pending. Python 3.X compatibility notes will be posted to
the readme file on the git repository. IQMon runs successfully on
both Mac OS X and linux. Windows compatibility is untested, but
will be limited by the availability of dependencies (astrometry.net,
SExtractor, etc.).

Because the system is designed to do quick evaluations of
image quality, the primary concept is an object representing a
single image. IQMon does not do any image stacking or other
processing which would be applied to more than one image at a
time nor is it built around other organizational concepts such as
targets or visits. It is not intended to supplant a full data reduction
and analysis package. The output of IQMon, however, can be
stored in a MongoDB7 database making it potentially useful for
collecting information on observing concepts which span multiple
images such as targets, nights, or visits. It might also be useful as
a preprocessing step for a more complex data pipeline.

The time to process an image varies depending on many
factors. It has been well studied for two of the systems mentioned
in the Introduction. Both of these systems are analyzed by the
same computer (a 2.3GHz Quad-Core Intel Core i7 with 8GB of
RAM), so they share the system resources during the night.

In both cases the full image analysis takes tens of seconds per
image, but depends on the number of stars in the image. The total
analysis time for these systems is dominated by the SCAMP solve
(roughly one third of the total time) and the generation of two
JPEG images (also roughly one third of the total time). IQMon
itself is single threaded, but many of the programs it calls, such as
SCAMP, are multi threaded and so will take advantage of multiple
cores.

In the following sections, I will describe a simple example
of evaluating image quality for a single image. A more complex
example which is updated in concert with IQMon can be found
in the measure_image.py script at the git repository for the
VYSOS project8. That process can then be wrapped in a simple
program to monitor a directory for images and analyze them as
they are written to disk (see the watch_directory.py script
in the same VYSOS repository for an example). This enables
automatic near real time analysis.

Configuration and Reading the Image In

After importing IQMon, the first step would be to instantiate the
Telescope object which takes a configuration file as its input.
The next step is to instantiate an Image object with the path to the
image file and the Telescope object representing the telescope
which took that image.
tel = IQMon.Telescope('~/MyTelescope.yaml')
im = IQMon.Image('~/MyImage.fits', tel)

IQMon writes a log which is intended to provide useful informa-
tion to the user (not just the developer) and shows the progress of

4. http://www.cybercom.net/~dcoffin/dcraw/
5. The subprocess32 module "is a backport of the subprocess standard

library module from Python 3.2 & 3.3 for use on Python 2.4, 2.5, 2.6 and
2.7" (from https://pypi.python.org/pypi/subprocess32). It is used instead of the
standard subprocess module due to its support for timeout functionality.

6. http://netpbm.sourceforge.net
7. http://www.mongodb.org
8. https://github.com/joshwalawender/VYSOStools

the analysis. We can either pass in a logger object from Python’s
logging module, or ask IQMon to create one:

create a new logger object
im.make_logger(verbose=False)
print('Logging to file {}'.format(im.logfile))
im.logger.info('This is a log entry')

The first step for any image analysis is likely to be to call the
read_image method. After calling read_image, the FITS
header is read and various Image object properties are populated
by calling the read_header method.

Generate working file copy of the raw image
im.read_image()
Read the fits header
im.read_header()

Once the image has been read in and a working file created,
IQMon uses various third party tools to perform image analysis.
The following sections describe some of the analysis steps which
are available.

PSF Size Measurements with Source Extractor

Source Extractor (SExtractor) [Bertin1996], [Bertin2010a] is
a program which builds a catalog of sources (stars, galax-
ies, etc.) detected in an image. SExtractor is called using the
run_SExtractor method which invokes the command us-
ing the subprocess32 module. Customization parameters can be
passed to Source Extractor using the telescope configuration file.

The output file of SExtractor is read in and stored as an astropy
table object. Stars with SExtractor generated flags are removed
from the table and the table is stored as a property of the image
object.

Determining the PSF size from the SExtractor results is done
with the determine_FWHM method. The full width at half
maximum (FWHM) and ellipticity values for the image are a
weighted average of the FWHM and ellipticity values for the
individual stars.

These steps not only provide the typical FWHM (which can
indicate if the image is in focus), they can also be used to guess at
whether the image is "blank" (i.e. very few stars are visible either
because of cloud cover or other system failure). For example:

im.run_SExtractor()
Consider the image to be blank if <10 stars
if im.n_stars_SExtracted < 10:

im.logger.warning('Only {} stars found.'
.format(im.n_stars_SExtracted))

im.logger.warning('Image may be blank.')
else:

im.determine_FWHM()

Pointing Determination and Pointing Error

IQMon also contains a solve_astrometry method to invoke
the solve-field command which is part of the astrometry.net
software. The call to solve-field is only intended to deter-
mine basic pointing and orientation and so IQMon does not use
the SIP polynomial fit of distortion in the image.

Once a world coordinate system (WCS) is present in the image
header, then the determine_pointing_error method can
be called which compares the right ascension (RA) and declination
(DEC) values read from the RA and DEC keywords in the header
(which are presumed to be the telescope’s intended pointing) to the
RA and DEC values of the center pixel which are calculated using
the astropy.wcs module. The separation between the two

http://www.cybercom.net/~dcoffin/dcraw/
https://pypi.python.org/pypi/subprocess32
http://netpbm.sourceforge.net
http://www.mongodb.org
https://github.com/joshwalawender/VYSOStools

AUTOMATED IMAGE QUALITY MONITORING WITH IQMON 79

coordinates is determined using the separation method avail-
able in the SkyCoord object of the astropy.coordinates
module. The magnitude of the separation between the two is
reported as the pointing error.
If WCS is not present, solve with astrometry.net,
if not im.image_WCS:

im.solve_astrometry()
Determine pointing error by comparing telescope
pointing coordinates from the header with WCS.
im.determine_pointing_error()

Astrometric Distortion Correction

In order to make an accurate comparison of the photometry of
stars detected in the image and stars present in a chosen stellar
catalog, many optical systems require distortion coefficients to be
fitted as part of the astrometric solution. IQMon uses the SCAMP
software to fit distortions.

SCAMP is invoked with the run_SCAMP method. Once a
SCAMP solution has been determined, the image can be remapped
to new pixels without distortions using the SWARP tool with the
run_SWARP method.
If the image has a WCS and a SExtractor catalog,
run SCAMP to determine a WCS with distortions.
if im.image_WCS and im.SExtractor_results:

im.run_SCAMP()
if im.SCAMP_successful:

Remap the pixels to a rectilinear grid
im.run_SWarp()

A Note on Astrometry.net and SCAMP

In principle, Astrometry.net can solve for distortions. The -t
option on solve-field allows the user to specify the order
of the SIP polynomial which the program should fit. This is
available in IQMon by calling the solve_astrometry method
with the SIP keyword set to the polynomial order to pass to
solve-field.

In my experience working with the first two systems IQMon
was used on, I found that high order solves were not necessarily
reliable or timely. The solve-field operation would some-
times fail to solve or would process for a very long time which
would cause the analysis system to fail to keep up with the data
rate from the two telescopes.

This is why SCAMP is also available in IQMon and is the
recommended astrometric solution if you want full distortion cor-
rection. By defining a SCAMP "ahead" file, you can incorporate
previous knowledge of the optical system’s distortion characteris-
tics rather then solving blindly. With a proper ahead file, SCAMP
was a more reliable solution.

SWarp is used because (at the time) astropy.wcs did not
handle the distortion coefficients as written by SCAMP. To solve
this, SWarp remaps the pixels to de-distort the image which means
that the WCS is properly described by a very basic set of header
keywords (CRPIXn, CRVALn, PCn_m, etc.) which almost every
analysis program supports.

Estimating the Photometric Zero Point

With a full astrometric solution, SExtractor photometry, and a
catalog of stellar magnitude values, we can estimate the zero
point for the image and use that as an indicator of clouds or other
aperture obscurations.

The get_catalog method can be used to download a
catalog of stars from VizieR using the astroquery9 module.

Alternatively, support for a local copy of the UCAC4 catalog is
available using the get_local_UCAC4 method.

Once a catalog is obtained, the run_SExtractor method
is invoked again, this time with the assoc keyword set to True.
This will limit the resulting catalog of detected stars to stars which
both exist in the catalog and also are detected in the image.
This may significantly decrease the number of stars used for the
FWHM and ellipticity calculation, but may also remove spurious
detections of image artifacts which would improve the reliability
of the measured values.
Retrieve catalog defined in config file
im.get_catalog()
im.run_SExtractor(assoc=True)
im.determine_FWHM()
im.measure_zero_point()

In the above example code, determine_FWHM is invoked again
in order to use the new SExtractor catalog for the calculation.

The measure_zero_point method determines the zero
point by taking the weighted average of the difference between the
measured instrumental magnitude from SExtractor and the catalog
magnitude in the same filter.

It should be noted that unless custom code is added to handle
reduction steps such as dark/bias subtraction and flat fielding, the
zero point result will be influenced by systematics due to those
effects. In addition, the choice of catalog and the relative response
curve of the filter in use and the filter defined by the catalog’s
photometric system will also introduce systematic offsets. For
many systems (especially typical visible light CCDs), the zero
point value from IQMon can be used to compare throughput from
image to image, but should not be used to compare different
equipment configurations.

Analysis Results and Mongo Database Integration

Results of the IQMon measurements for each image
are stored as properties of the Image object as
astropy.units.Quantity. For example, the FWHM
value is in units of pixels, but can be converted to arcseconds
using the equivalency which is automatically defined by the
Telescope object (tel.pixel_scale_equivalency)
for this purpose.
Results are typically astropy.units quantities
and can be manipulated as such. For example:
print('Image FWHM = {:.1f}'.format(im.FWHM))
print('Image FWHM = {:.1f}'.format(\

im.FWHM.to(u.arcsec, equivalencies=\
im.tel.pixel_scale_equivalency)))

print('Zero Point = {:.2f}'.format(im.zero_point))
print('Pointing Error = {:.1f}'.format(\

im.pointing_error.to(u.arcmin)))

These results can also be stored for later use. Meth-
ods exist to write them to an astropy.Table (the
add_summary_entry method) and to a YAML document (the
add_yaml_entry method), but the preferred storage solution is
to use a mongo database as that is compatible with the tornado
web application included with IQMon (see below).

The address, port number, database name, and collection
name to use with pyMongo to add the results to an existing
mongo database are set by the Telescope configuration file. The
add_mongo_entry method adds a dictionary of values with the
results of the IQMon analysis.

9. http://dx.doi.org/10.6084/m9.figshare.805208

http://dx.doi.org/10.6084/m9.figshare.805208

80 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Flags

For the four primary measurements (FWHM, ellipticity, pointing
error, and zero point), the configuration file may contain a thresh-
old value. If the measured value exceeds the threshold (or is below
the threshold in the case of zero point), then the image is "flagged"
as an indication that there may be a potential problem with the
data. The flags property of an Image object stores a dictionary
with the flag name and a boolean value as the dictionary elements.

This can be useful when summarizing results. For example, the
Tornado web application provided with IQMon (see the Tornado
Web Application section) lists images and will color code a field
red if that field is flagged. In this way, a user can easily see when
and where problems might have occurred.

Images and Plots

In addition to generating single values for FWHM, ellipticity, and
zero point to represent the image, IQMon can also generate more
detailed plots with additional information.

A plot with PSF quality information can be generated when
determine_FWHM is called by setting the plot=True key-
word. This generates a .png file (see Fig. 1) using matplotlib [mat-
plotlib] which shows detailed information about the point spread
function (FWHM and ellipticity metrics) including histograms of
individual values, a spatial map of FWHM and ellipticity over the
image, and plots showing the ellipticity vs. radius within the image
(which can be used to show whether off axis aberrations influence
the ellipticity measure) and the correlation between the measured
PSF position angle and the position angle of the star within the
image (which can be used to differentiate between tracking error
and off axis aberrations).

In the example plot (Fig. 1), we can see several different
effects. First, from the spatial distribution of FWHM and ellip-
ticity, as well as the ellipticity vs. radius plot, we see that image
quality is falling off at large radii. This image is from a wide
field imaging system and we are seeing the signature of off axis
aberrations. This is also suggested in the plot of the correlation
between the measured PSF position angle and the position angle of
the star within the image which shows strong diagonal components
indicating that position within the image influences the PSF. There
is also, however, a vertical component in that plot at PA ∼ 0
which is suggestive of image drift perhaps due to slight polar
misalignment or flexure.

A plot with additional information on the zero point can be
generated when calling measure_zero_point by setting the
plot keyword to True. This generates a .png file (see Fig. 2)
using matplotlib which shows plots of instrumental magnitude vs.
catalog magnitude, a histogram of zero point values, a plot of
magnitude residuals vs. catalog magnitude, and a a spatial map of
zero point over the image.

JPEG versions of the image can be generated using the
make_JPEG method. The jpeg can be binned or cropped using
the binning or crop keyword arguments and various overlays
can be generated showing, for example, the pointing error and
detected and catalog stars.

The JPEG overlays can be useful in evaluating the performance
of SExtractor and SCAMP. In the example shown in Fig. 3, the
stars marked as detected by SExtractor (which was run with the
assoc keyword set to True) show that there are no stars detected
in the very corners of the image. This indicates that the SCAMP
distortion solution did not accurately fit the WCS in the corners

and could be improved. Poor SCAMP solutions can also show up
even more dramatically when entire radial zones of the image have
no matched stars.

Tornado Web Application

IQMon comes with a tornado web application which, while it
can be run stand alone, is intended to be used as a template
for adding IQMon results to a more customized web page. The
web application (web_server.py) contains two tornado
web handlers: ListOfNights and ListOfImages. The first
generates a page which lists UT dates and if there are image results
associated with a date, then it provides a link to a page with the
list of image results for that date. The second handler (see Fig.
4) produces the page which lists the images for a particular UT
date (or target name) and provides a table formatted list of the
IQMon measurement results for each image with flagged values
color coded red, along with links to jpegs and plots generated for
that image.

This web application is intended to be the primary interface
for users. It provides three levels of interaction to the user. First,
a custom plot of IQMon results over the course of a night is easy
to generate from the mongo database entries and represents the
highest level of interaction. Using such a plot, serious problems
which affect many images can be detected at a glance. Users
can then drill down to see a list of images for that UT date
and see system performance as a table of IQMon results with
flagged values highlighted in red. Finally an individual image can
be examined as a jpeg with overlays or by using the PSF quality
plots or zero point plots to examine detailed performance.

Conclusions

IQMon provides a way to evaluate the performance of automated
telescopes. It allows the user to build a customized analysis for
their particular application by assembling a script which includes
only those steps which are required. Using the included tornado
web application, a user can quickly and easily view the results and
determine whether the observatory is performing acceptably or if
it needs attention.

Over roughly two years of routine operation with two tele-
scopes, it has enabled quick alerting of problems including stuck
focus drives, poorly aligned dome rotation, and poor tracking
model correction. Previously, some of these problems would have
gone unnoticed until a spot check of the data downloaded from the
site revealed them or they would have required a time consuming
reading of the nightly system logs to reveal. Use of IQMon has
resulted in greater uptime and improved data quality for both
telescopes.

REFERENCES

[Astropy2013] Astropy Collaboration, Robitaille, T.~P., Tollerud, E.~J., et al.
Astropy: A community Python package for astronomy 2013,
A&A, 558, A33

[Bertin1996] Bertin, E., & Arnouts, S. SExtractor: Software for source
extraction, 1996, A&AS, 117, 393

[Bertin2006] Bertin, E. Automatic Astrometric and Photometric Calibration
with SCAMP, 2006, Astronomical Data Analysis Software and
Systems XV, 351, 112

[Bertin2010b] Bertin, E. SCAMP: Automatic Astrometric and Photomet-
ric Calibration, 2010, Astrophysics Source Code Library,
1010.063

[Bertin2010a] Bertin, E., & Arnouts, S. SExtractor: Source Extractor, 2010,
Astrophysics Source Code Library, 1010.064

AUTOMATED IMAGE QUALITY MONITORING WITH IQMON 81

Fig. 1: An example of the plot which can be produced using the determine_FWHM method. The plot shows histograms of the FWHM and
ellipticity values (upper left and upper right respectively), the spatial distribution of FWHM and ellipticity values (middle left and middle
right), ellipticity vs. radius within the image (lower left), and the correlation between the measured PSF position angle and the position angle
of the star within the image (lower right).

82 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 2: An example of the plot which can be produced using the
measure_zero_point method. The plot shows the correlation
between instrumental magnitude and catalog magnitude (upper left),
a histogram of zero point values (upper right), a plot of the residuals
vs. catalog magnitude (lower left), and a spatial distribution of the
residuals (lower left).

Fig. 3: An example jpeg generated by the make_JPEG method using
the mark_detected_stars and mark_pointing options. In
this example, pointing error has placed the target (marked by the
cyan crosshair) to the lower right (southwest) of the image center
(marked by the yellow lines). Stars from the UCAC4 catalog which
were detected in the image are marked with green circles.

[Bertin2010c] Bertin, E. SWarp: Resampling and Co-adding FITS Images
Together 2010, Astrophysics Source Code Library, 1010.068

[Lang2010] Lang, D., Hogg, D. W., Mierle, K., Blanton, M., & Roweis,
S., Astrometry.net: Blind astrometric calibration of arbitrary
astronomical images 2010, AJ, 137, 1782–1800

[matplotlib] Hunter, J. D., Matplotlib: A 2D graphics environment 2007,
Computing In Science & Engineering, 9, 90-95

AUTOMATED IMAGE QUALITY MONITORING WITH IQMON 83

Fig. 4: An example of the ListOfImages handler of the tornado web application. In this example, a user can easily determine that the first
few images of the night had a problem (indicated by the red flagged values). Based on examination of the JPEGs, this turns out to have been
due to the dome rotation being misaligned and partially blocking the telescope aperture leading to large FWHM and ellipticity values (image
elongation due to "glints" of the dome edge) and low zero point values (due to aperture obscuration). The problem resolved itself without
human intervention as can be seen by the green, un-flagged images which follow and which continued for the rest of the night.

	Introduction
	Structure and Example Use
	Configuration and Reading the Image In
	PSF Size Measurements with Source Extractor
	Pointing Determination and Pointing Error
	Astrometric Distortion Correction
	A Note on Astrometry.net and SCAMP
	Estimating the Photometric Zero Point

	Analysis Results and Mongo Database Integration
	Flags

	Images and Plots
	Tornado Web Application
	Conclusions
	References

