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White Noise Test: detecting autocorrelation and
nonstationarities in long time series after ARIMA

modeling
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Abstract—Time series analysis has been a dominant technique for assess-
ing relations within datasets collected over time and is becoming increasingly
prevalent in the scientific community; for example, assessing brain networks by
calculating pairwise correlations of time series generated from different areas
of the brain. The assessment of these relations relies, in turn, on the proper
calculation of interactions between time series, which is achieved by rendering
each individual series stationary and nonautocorrelated (i.e., white noise, or to
“prewhiten” the series). This ensures that the relations computed subsequently
are due to the interactions between the series and do not reflect internal depen-
dencies of the series themselves. An established method for prewhitening time
series is to apply an Autoregressive (AR, p) Integrative (I, d) Moving Average
(MA, q) model (ARIMA) and retain the residuals. To diagnostically check whether
the model orders (p, d, q) are sufficient, both visualization and statistical tests
(e.g., Ljung-Box test) of the residuals are performed. However, these tests are
not robust for high-order models in long time series. Additionally, as dataset
size increases (i.e., number of time series to model) it is not feasible to visually
inspect each series independently. As a result, there is a need for robust
alternatives to diagnostic evaluations of ARIMA modeling. Here, we demonstrate
how to perform ARIMA modeling of long time series using Statsmodels, a library
for statistical analysis in Python. Then, we present a comprehensive procedure
(White Noise Test) to detect autocorrelation and nonstationarities in prewhitened
time series, thereby establishing that the series does not differ significantly
from white noise. This test was validated using time series collected from
magnetoencephalography recordings. Overall, our White Noise Test provides a
robust alternative to diagnostic checks of ARIMA modeling for long time series.

Index Terms—Time series, Statsmodels, ARIMA, statistics

Introduction

Time series are discrete, stochastic realizations of underlying
data generating processes [Yaffee]. In other words, a time series
is a set of consecutive samples collected over a time interval,
such as temperature recordings at regular intervals. They are
ubiquitous in any field where monitoring of data is involved. For
example, time series can be environmental, economic, or medical.
In addition, time series can provide information about trends (e.g.,
broad fluctuations in values) and cycles (e.g., systematic, periodic
fluctuations in values). Time series analysis are also used to predict
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the next value in the series, given some model of its history. This
is of special importance in environmental and econometric studies
where forecasting the next set of values (e.g., the weather or a
stock price) may have serious practical consequences. In other
fields, time series provide crucial information about an evolving
process (e.g., rate of spread of a disease or changing pollution
levels) with implications about the effect of interventions. Finally,
time series can provide fundamental information about the process
that generates them, leading to a scientific understanding of that
process (e.g., brain network analysis).

In time series analysis, there are two main investigative meth-
ods: frequency-domain and time-domain. In this paper, only anal-
ysis in the time-domain is considered. Within the time-domain,
typically crosscorrelation analysis is utilized as a measure of the
relation between two time series. Now, it is commonly the case
that a time series contains some autocorrelation, meaning that val-
ues in the time series are influenced by previous values. It is also
common for a time series to exhibit nonstationarities, such as drifts
or trends over time. In either case, the crosscorrelation function
calculated between two series containing either autocorrelation or
nonstationarities will give misleading results, such as an inflated
correlation between two series where there is none. To circumvent
this, time series are modeled to remove such effects, as in the case
of prewhitening.

Prewhitening

A white noise process is a continuous time series of random
values, with a constant mean and variance, normally and inde-
pendently distributed, and nonautocorrelated. If after modeling
a time series the residuals are practically white noise, then we
say the series has been prewhitened. An established method for
prewhitening time series is to apply an Autoregressive (AR)
Integrative (I) Moving Average (MA) model (ARIMA) and retain
the residuals [Box]. The full specification of an ARIMA model
comprises the orders of each component, (p, d, q), where p is the
number of preceding values in the autoregressive component, d
is the number of differencing, and q is the number of preceding
values in the moving average component. An ARIMA model with
orders p, d, and q, is a discrete time linear equations with noise of
the form:

(1−
p

∑
k=1

φkLk)(1−L)dXt = (1+
q

∑
k=1

θkLk)εt
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where L is the time lag operator, Lxt = xt−1.
In ARIMA modeling, the I component is addressed first,

followed by jointly addressing the AR and MA components. Most
importantly, the ARIMA method requires the input time series
to be: (1) equally spaced over time, (2) of sufficient length,
(3) continuous (i.e., no missing values), and, specifically for
the ARMA portion, (4) stationary in the second or weak sense,
meaning the mean and variance remain constant over time and the
autocovariance is only lag-dependent.

Prewhitening using ARIMA modeling takes three main steps.
First, identify and select the model, by detecting factors that
influence the time series, such as nonstationarities or periodic-
ities, and identifying the AR and MA components (i.e., model
orders). Second, estimate parameter values, by using an estimation
function to optimize the parameter values for the desired model.
Third, evaluate the model, by checking the model’s adequacy
through establishing that the series has been rendered stationary
and nonautocorrelated. This time series modeling is iterative,
successively refining the model until stationary and nonauto-
correlated residuals are obtained. Overall, a good model serves
three purposes: providing the background information for further
research on the process that generated the time series; enabling
accurate forecasting of future values in the series; and yielding the
stationary and nonautocorrelated residuals necessary to evaluate
accurately associations between time series, since they are devoid
of any dependencies stemming from within the series themselves.

Here, we implement two complementary tests to establish sta-
tionarity, which determines the value of the I(d) order. Using these
stationary series, we use median correlation values at each lag
of the autocorrelation (ACF) and partial autocorrelation (PACF)
functions to identify a range of AR(p) and MA(q) orders to im-
plement combinatorially. Then we utilize the Statsmodels package
to find the method-solver combination that provides good metrics
for long time series. Finally, we present a novel approach (White
Noise Test) to diagnostic checking of ARIMA modeling for long
time series, which evaluates residual series based on stationarity
and nonautocorrelation. Using our approach, an investigator can
perform ARIMA modeling and evaluate candidate models with
ease for large datasets and datasets containing long time series.

Model Identification and Selection

There are several factors that can influence a value in a time
series, which arise from previous values in the series, variability in
these values, or nonstationarities (trend, drift, changing variance,
or random walk). It is important to properly remove the effects of
these factors by modeling the time series and taking the residuals.
To identify the model orders for an ARIMA(p, d, q), the ACF and
PACF are used.

First, nonstationarities need to be removed before ARMA
modeling. A nonstationary process is identified by an ACF that
does not tail away to zero quickly or cut-off after a finite number
of steps. If the time series is nonstationary, then a first differencing
of the series is computed. This process is repeated until the time
series is stationary, which determines the value of d (i.e., the value
of d is the number of times the derivative of the series is taken
to achieve stationarity). Two of the most frequently used tests
for detecting nonstationarities are the augmented Dickey-Fuller
(ADF) test [Said] and the Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) test [Kwiatkowski]. The ADF is a unit root test for the
null hypothesis that a time series is I(1) while the KPSS is a
stationarity test for the null hypothesis that a time series is I(0).

Since these tests are complementary, we use them together to
determine whether a series is stationary. In our case, a series
taken to be nonstationary, if the ADF null hypothesis is accepted
and the KPSS null is rejected. We implement the ADF test using
Statsmodels and the KPSS test using the Arch Python package.

Once nonstationarities have been removed, ARMA modeling
can begin. To choose the p and q orders, the ACF and PACF of the
stationary (differenced) series will show patterns based on which
tentative ARMA model can be postulated. There are three main
patterns. A pure MA(q) process will have an ACF that cuts off
after q lags and a PACF that tails off with exponential or oscillating
decay. A pure AR(p) process will have an ACF that tails off with
exponential or oscillating decay and a PACF that cuts off after p
lags. For a mixed-model ARMA(p, q) process, both the ACF and
PACF will tail off with exponential or oscillating decay. Using
these patterns, the model selection begins by using the minimum
orders to achieve stationary and nonautocorrelated residuals.

Parameter Value Estimation

ARIMA modeling has been implemented in Python with the
Statsmodels package [McKinney], [Seabold]. It includes param-
eter value estimation and model evaluation procedures. We import
the Statsmodels and Numpy packages as:
import statsmodels.api as sm
import numpy as np

After the model orders have been selected, the
model parameter values can be estimated with the
sm.tsa.arima_model.ARIMA.fit() function to
maximize the likelihood that these parameter values (i.e.,
coefficients) describe the data, as follows. First, initial estimates
of the parameter values are used to get close to the desired
parameter values. Second, optimization functions are applied
to adjust the parameter values to maximize the likelihood by
minimizing the negative log-likelihood function. If adequate initial
parameter value estimates were selected, a local optimization
algorithm will find the local log-likelihood minimum near the
parameter value estimates, which will be the global minimum.

In Statsmodels, default starting parameter value estimations are
calculated using the Hannan-Rissanen method [Hannan] and these
parameter values are checked for stationarity and invertibility
(these concepts are discussed in further detail in the next section).
If method is set to css-mle, starting parameter values are
estimated further with conditional sum of squares methods. How-
ever, parameter values estimated in this way are not guaranteed to
be stationary; therefore, we advise specifying starting parameter
values as an input variable (start_params) to ARIMA.fit().
A custom starting parameter value selection method may be built
upon a copy of sm.tsa.ARMA._fit_start_params_hr,
which forces stationarity and invertibility on the estimated
start_params when necessary. For example,
if not np.all(np.abs(np.roots(np.r_

[1, -start_params[k:k + p]])) < 1) or
not np.all(np.abs(np.roots(np.r_

[1, start_params[k + p:]])) < 1):
start_params = np.array(start_params[0:k]

+ [1./(p+1)] * p + [1./(q+1)] * q)

In addition, the Hannan-Rissanen method uses an initial AR
model with an order selected by minimizing Bayesian Information
Criterion (BIC); then it estimates ARMA using the residuals from
that model. This initial AR model is required to be larger than
max(p, q) of the desired ARIMA model, which is not guaranteed
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with an AR selected by BIC criterion. We have implemented a
method similar to Hannan-Rissanen, the long AR method, which
is equivalent to Hannan-Rissanen except the initial AR model
is set to be large (AR = 300). This results in an initial AR
model order which is guaranteed to be larger than max(p, q),
and starting parameter value selection is more time efficient since
fitting multiple AR model orders to optimize BIC is not required.

To fit ARIMA models, Statsmodels has options for meth-
ods and solvers. The chosen method will determine the type
of likelihood for estimation, where mle is the exact likelihood
maximization (MLE), css is the conditional sum of squares
(CSS) minimization, and css-mle involves first estimating the
starting parameter values with CSS followed by an MLE fit. The
solver variable in ARIMA.fit() designates the optimizer from
scipy.optimize for minimizing the negative loglikelihood
function. Optimization solvers nm (Nelder-Mead) and powell
are the most time efficient because they do not require a score,
gradient, or Hessian. The next fastest solvers, lbfgs (limited
memory Broyden-Fletcher-Goldfarb-Shanno), bfgs (Broyden-
Fletcher-Goldfarb-Shanno), cg (conjugate gradient), and ncg
(Newton conjugate-gradient), require a score or gradient, but no
Hessian. The newton (Newton-Raphson) solver requires a score,
gradient, and Hessian. Lastly, a global solver basinhopping,
displaces parameter values randomly before minimizing with
another local optimizer. For more information about these solvers,
see sm.base.model.GenericLikelihoodModel.

Model Evaluation

There are two components in evaluating an ARIMA model,
namely, model stability and model adequacy. For the model to
be stable, the roots of the characteristic equations

1−φ1L−·· ·−φpLp = 0

where φi are the estimated AR parameter values, L is the time lag
operator, and

1+θ1L+ · · ·+θqLq = 0

where θi are the estimated MA parameter values, should lie
outside the unit circle, i.e., within bounds of stationarity (for
the p parameter values) and invertibility (for the q parameter
values) [Pankratz]. For the model to be adequate, the residual time
series should not be significantly different from white noise; in
other words, the series should have constant mean and variance,
and each value in the series should be uncorrelated with other
realizations up to k lags. If either model stability or adequacy
have not been established, then model identification and selection
should be revised, and the diagnostic cycle continued, iteratively,
until established.

Inspecting the p and q parameter values for being within
the bounds of stationarity and invertibility checks model stabil-
ity. Typically, this will be accomplished during parameter value
estimation. The model adequacy is checked by examining the
time-varying mean of the residuals (should be close to zero),
their variance (should not differ appreciably along time), and their
autocorrelation (should not be different from chance). Finally, the
ACF and PACF of the residuals should not contain statistically
significant terms more than the number expected by chance. This
number depends on the number of lags; for example, if k = 40 lags,
one would expect 2 values (5% of 40) to exceed their standard
error. Under the assumption that the process is white noise and
when the length (N) of the series is long, the standard error of

the sample autocorrelation (and partial autocorrelation) [Bartlett]
approximates to:

Standard Error = 1/
√

N

Several statistical tests are available to detect autocorrelation.
Most notable is the Ljung-Box test [Ljung], which is applied
to residuals to detect whether they exhibit autocorrelation. The
test statistic is calculated for each of h lags being tested. Another
common test to detect autocorrelation is the Durbin-Watson test
[Durbin]; however, unlike the Ljung-Box test which is calculated
for h lags, the Durbin-Watson test is calculated only for lag 1.
Therefore, any autocorrelation beyond lag 1 will not be detected
by this test. Similar to the Ljung-Box test is the Breusch-Godfrey
Lagrange multiplier test [Breusch], [Godfrey]. This test also aims
to detect autocorrelation up to h lags tested. We compare our
model evaluation, namely the White Noise Test, to both the Ljung-
Box and Breusch-Godfrey tests.

White Noise Test

The White Noise Test (Figure 1) calculates multiple attributes
on residuals. Inclusively, the attributes characterize an individual
residual series by its “whiteness”. To change the degree of “white-
ness”, the thresholds in the red boxes of Figure 1 may be made
more or less conservative.

Excluded data: Channels that could not be modeled with the
given model order were excluded from further analysis. Addition-
ally, channels with extreme values beyond a threshold of 5 per
channel, calculated on the residuals for each model order, were
also excluded from further analysis (xVAL in Table 1 and 5).
Extreme values are calculated as follows. For each raw series, the
interquartile range (IQR) is calculated.

IQR = 75th percentile−25th percentile

Using the IQR, Tukey’s outer fences are calculated [Tukey].

Fenceupper = 75th percentile+3× IQR

Fencelower = 25th percentile−3× IQR

Then, the values below the lower fence and above the upper fence
are counted as extreme values. If this count is greater than 5, the
series is removed from further consideration when selecting model
orders.

Normality: Each residual series was tested for normality using
the Kolmogorov–Smirnov test. Residual series not significantly
different from normal (α = 0.01) were retained.

Constant mean: Each residual series was split into 10%
nonoverlapping windows (i.e., 10% of 50000 time points = 10
windows of 5000 time points). For each window, a one-sample
t-test was calculated (α = 0.001). A count of the number of
windows with means significantly different from zero was retained
for each residual series (maximum value = 10). Residual series
with > 1 section containing means significantly different from zero
were excluded (cMEAN in Table 1, 3 and 5).

Constant variance: For each residual series, the 10% nonover-
lapping windows were also tested for equal variances using
Bartlett’s test (α = 0.001). Each window was compared to the
variance of the full residual series. A count of the number of
windows with unequal variances was retained for each residual
series (maximum value = 10). Residual series with > 1 section
containing significantly different unequal variances were excluded
(cVAR in Table 1, 3 and 5).
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Fig. 1: White Noise Test Procedure.

Uncorrelated with other realizations: The ACF and PACF
were calculated up to AR lags and the number of lags exceeding
statistical significance were counted. To determine this, the

tstatistic =
|ACFk|

StandardError

is calculated at each lag, k, and evaluated against the null hypothe-
sis that ACFk using a two-tailed test with N-2 degrees of freedom.
A cumulative count of those exceeding

αc =
0.01
AR

(1)

are retained (note: αc incorporates a Bonferroni correction, 1
AR ,

and is rounded to the nearest integer). The result is a conservative
threshold for detecting a significant autocorrelation or partial
autocorrelation. We set a threshold for the cumulative count to
be greater than 5% of the AR order (round to nearest integer) for
either the ACF or PACF for each channel (tACF and tPACF in
Table 1, 3 and 5).

To determine whether our thresholding levels are within what
is expected by chance, we apply the White Noise Test procedure

Count xVAL tACF tPACF cMEAN cVAR

0 531 593 594 597 596
1 67 0 0 3 4
≥ 2 2 7 6 0 0

TABLE 1: White Noise Attributes, listed as extreme values (xVAL),
thresholded ACF and PACF (tACF, tPACF), constant mean (cMEAN)
and constant variance (cVAR), and the count column is the number of
randomly generated series failing a given attribute.

(Figure 1) to 600 randomly generated white noise series. Attributes
calculated on these series are shown in Table 1.

Magnetoencephalography (MEG) Dataset

To evaluate the functional brain, MEG is a useful technique be-
cause it measures magnetic fluctuations generated by synchronized
neural activity in the brain noninvasively and at high temporal
resolution. For the applications below, MEG recordings were
collected using a 248-channel axial gradiometer system (Magnes
3600WH, 4-D Neuroimaging, San Diego, CA) sampled at ~1
kHz from 50 cognitively healthy women (40 - 93 years, 70.58
± 14.77, mean ± std dev) in a task-free state (i.e., resting state).
The data were time series consisting of 50,000 values per subject
and channel. Overall, the full MEG dataset contains 50 samples x
248 channels x 50,000 time points.

Performing ARIMA Modeling

Here, we first determine which method-solver combination from
Statsmodels provides the most reliable and valid residuals, while
also maintaining a respectable processing time for the MEG
dataset. Then, using this method-solver, investigations into iden-
tifying and selecting model orders are performed, followed by
parameter value estimations on a range of model orders. Residuals
from these models are processed to detect autocorrelation and
nonstationarities using our White Noise Test. Finally, these models
are compared and evaluated.

Implementing Method-Solvers

The length and quantity of time series have a direct impact on the
ease of modeling. Therefore, we aim to implement an iterative
approach to ARIMA modeling while keeping focus on model
reliability and validity of residuals, along with incorporating an
efficiency cost (i.e., constraints on allowed processing time).
The goal for this stage is to determine which method-solver in
Statsmodels is most appropriate for the application dataset.

To accomplish this, we randomly select 5% (round to nearest
integer) of the channels from each sample in the full MEG dataset
(i.e., 5% of 248 channels with 50 samples gives N = 600) to
construct the test dataset. Next, we select a range of model orders:
AR = {10, 20, 30, 40, 50, 60}, I = {1}, MA = {1, 3, 5}. Using
each method-solver group (N = 16) and model order combinations
(N = 18), we now have 288 testing units. For each of the testing
units, ARIMA modeling is performed on each channel in the test
dataset.

If 2% of the test dataset channels have a processing time >
5 minutes per channel, the testing unit is withdrawn from further
analysis and deemed inefficient. Otherwise, for each channel, four
measures are retained. The first measure is the AICc (Akaike
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Fig. 2: MEG CDF Ranks

Information Criterion with correction), which reflects the quality
of the statistical model’s performance. The second and third
measures are the cumulative counts of tACF and tPACF. The
final measure is the processing time, which is measured on each
channel and is the time, in seconds, for the ARIMA modeling
process to produce residuals. For all four measures, lower values
indicate better performance. After calculating the measures, for
each channel and model order, ranks for the first three measures
are calculated across the method-solver groups, with tied ranks
getting the same rank number.

For the 16 method-solver combinations tested, 7 were
inefficient at all tested model orders (css-basinhopping,
mle-bfgs, mle-newton, mle-cg, mle-ncg,
mle-powell, mle-basinhopping). The cumulative
distribution functions (CDFs) of each method-solver group
ranks are calculated and plotted in Figure 2. In this plot, larger
area under the curve indicates better performance. Thus, the
css-lbfgs has the best performance.

In Table 2, the mean time per channel for each method,
except withdrawn methods, is given, along with the highest order
able to be modeled by the given method-solver group. Mean
ranks were calculated for each method-solver, shown in Table
2, and used for the final rank calculation. In the test dataset,
the css-lbfgs method-solver outperformed all others while
maintaining a reasonable time per channel (91.47 seconds). The
results also show that the CSS methods generally outperform the
MLE methods, for long time series. The css-lbfgs method-
solver was retained for all further analysis.

Identifying and Selecting Model Orders

Before selecting the differencing model order, d, each series is
inspected for extreme values. To determine the model orders,
channels with greater than five extreme values are excluded.
As discussed previously, if a series is deemed nonstationary,
then a first differencing of the series is computed. To determine
nonstationarity, examine the ACF plot. A clear indication of
nonstationarity will be if the ACF does not tail away to zero
quickly or cut-off after a finite number of steps, which is the case
with MEG raw time series. Therefore, the MEG time series are
first differenced (d = 1).

Next we check the series for stationarity; recall, an appro-
priately differenced process should be stationary. Both the KPSS

Method-
Solver

Mean
Time (s)

Highest
Model

Mean
Ranks

Final
Rank

css-lbfgs 91.47 60-1-3 1.32 1
css-bfgs 115.22 60-1-3 2.23 2
css-powell 54.47 60-1-5 3.25 3
css-cg 132.78 50-1-1 3.77 4
css-nm 39.55 60-1-3 4.29 5
css-ncg 138.97 20-1-3 6.90 6
mle-nm 85.71 30-1-5 7.31 7
mle-lbfgs 57.7 10-1-5 8.29 8
css-newton 235.11 20-1-1 8.36 9

TABLE 2: Ranking Method-Solvers for ARIMA modeling of MEG
data.

Fig. 3: Stationarity (KPSS) and Unit Root (ADF) Tests

stationarity test and ADF unit root test are calculated for 60 lags.
Their values plotted against each other are shown in Figure 3.
The KPSS statistic ranges from 0 to 0.28; since all KPSS test
statistics calculated are less than the critical value (CV) of 0.743
at α = 0.01, the null hypothesis of stationarity cannot be rejected.
The ADF statistic ranges from -16.19 to -58.32; since all ADF
test statistics calculated are more negative than the CV of -3.43
at α = 0.01, the null hypothesis of a unit root is rejected. Taken
together, we have established lack of nonstationaritiy for our test
dataset.

Taking the differenced series, the ACF and PACF are calcu-
lated for 60 lags. The median correlation value for each lag is
plotted in Figure 4. From this figure, a mixed-model ARMA(p,
q) process is seen since both the ACF and PACF tail off with
oscillating decay. To decide on the p and q orders, we look at
Figure 4 and see the highly AR nature of the PACF plot up to
about 30 lags; we also see the MA component expressed in the
ACF up to about 10 lags. Using this, we decide to implement
a range of model orders. For the AR component, we choose to
begin with AR = 20 and end with AR = 60 in increments of 5.
For the MA component, we choose to begin with MA = 1 and
end with MA = 9 in increments of 2. We implement all possible
combinations of these ARMA orders (N = 45).
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Fig. 4: ACF and PACF of MEG data after first differencing

Final Model Order Selection

For each of the 45 model order combinations, the White Noise
Test was calculated on the residuals. In the case of the test dataset,
there were 4 channels that could not be modeled in each of the
model order combinations. Channels with greater than 5 extreme
values, and thus excluded, were relatively consistent across model
order combinations with a range of 26-29 channels (mean = 27.24,
~5% of the test dataset) per combination. Additionally, residual
series were not significantly different from normal (α = 0.01).
The remaining attributes are shown in Table 3 for up to AR = 50
(AR = 55 and 65 showed similar patterns). In the table, unique
channels is the count of unique channels across the tACF, tPACF,
cMEAN, and cVAR attributes.

The results in Table 3, show multiple model order combina-
tions provide low counts on several attributes, indicating more
than one usable model order combination. However, there are two
important patterns that emerge. First, as the AR increases (holding
the MA constant), the ACF and PACF counts generally decrease.
Second, as the MA increases (holding the AR constant), the ACF
and PACF counts generally decrease. Taken together, there exists
an ideal candidate model, namely ARIMA(30,1,3). This model
order exhibits two qualities to use in evaluating model orders: it
is within the lowest on all attribute counts as compared to other
model orders, and among those with the lowest attribute values, it
has the lowest model orders.

From an analyst perspective, an ideal candidate model is
informed by the future analysis to be performed. Basically, when
choosing the ideal candidate model, the next stage of analysis
needs to be considered and used to identify the ideal candidate
model. For instance, if the next stage of analysis is to calculate
all possible pairwise partial correlation coefficients between each
channel for ±50 lags, then the model order of choice should have
an AR ≥ 50 or at a minimum, the tACF and tPACF attributes
of the residuals need to be examined up to 50 lags. In general,
choosing an ideal candidate model will be based on several factors
including, but not limited to, the choice of method-solver, future
analytic needs, and degree of “whiteness” desired.

We compare our ACF thresholding to two autocorrelation tests,
the Ljung-Box and Breusch-Godfrey statistics for up to AR lags,

# Model
Orders

tACF tPACF cMEAN cVAR Unique
Channels

1 20-1-1 570 570 0 12 570
2 20-1-3 54 54 7 12 70
3 20-1-5 31 31 6 12 49
4 20-1-7 27 27 7 12 46
5 20-1-9 15 15 8 12 34
6 25-1-1 569 569 0 12 569
7 25-1-3 16 16 7 10 33
8 25-1-5 31 31 6 12 49
9 25-1-7 10 10 9 12 31
10 25-1-9 3 3 10 12 24
11 30-1-1 569 569 6 11 569
12 30-1-3 5 5 8 13 26
13 30-1-5 7 7 8 11 26
14 30-1-7 3 3 10 12 25
15 30-1-9 3 3 10 12 23
16 35-1-1 563 563 2 11 563
17 35-1-3 8 8 9 12 28
18 35-1-5 3 3 8 12 23
19 35-1-7 6 6 8 12 26
20 35-1-9 0 0 7 12 19
21 40-1-1 529 529 8 11 530
22 40-1-3 30 30 7 12 47
23 40-1-5 1 1 7 12 20
24 40-1-7 8 8 8 12 27
25 40-1-9 1 1 7 11 19
26 45-1-1 222 222 7 10 234
27 45-1-3 6 6 9 11 26
28 45-1-5 0 0 8 12 20
29 45-1-7 3 3 7 12 22
30 45-1-9 2 2 7 12 21
31 50-1-1 15 15 7 11 33
32 50-1-3 0 0 7 11 18
33 50-1-5 0 0 7 12 19
34 50-1-7 0 0 7 12 19
35 50-1-9 0 0 9 12 21

TABLE 3: Attributes for the White Noise Test shown for incre-
menting model order combinations, listed as thresholded ACF and
PACF (tACF, tPACF), constant mean (cMEAN) and constant variance
(cVAR), and the number of unique channels across the attributes.

tested at α = 0.001, for each residual series. Figure 5 shows a bar
graph of the Ljung-Box and ACF counts. The Ljung-Box statistic
is calculated at three levels, with degrees of freedom (df) equalling
AR, min(20, N-1) as suggested by [Box], and ln(N) as suggested
by [Tsay]. Each bar is for one model order combination with the
same labeling as in the first column of Table 3. The bar length is
the sum of the elements in the model order combination for the
given statistic. Each bar shows different colors for each statistic
and the relative contribution each statistic makes to the total sum
for that model order combination. The Breusch-Godfrey, in place
of the Ljung-Box, showed similar results. It can be seen that the
Ljung-Box corresponds well to our ACF thresholding when the df
equal the AR order but fails to identify autocorrelation using either
of the suggested df. Finally, the Breusch-Godfrey and Ljung-Box
statistics are compared in terms of the percent of residual series
failing each statistic (Table 4).
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Fig. 5: ACF and Ljung-Box Attributes Compared

df % = % 6= by 1 % 6= by > 1

AR 55.6 20.0 24.4
20 77.8 6.7 15.6
ln(N) 84.4 11.1 4.4

TABLE 4: Breusch-Godfrey test compared to Ljung-Box test

MEG Dataset Evaluation

Finally, using ARIMA(30,1,3), we apply the White Noise Test
procedure to the full MEG dataset. One channel at each stage of
modeling is shown in Figure 6. Descriptive statistics on each of
the attributes for the full MEG data are shown in Table 5 and the
overall percent of channels removed per subject is shown in Figure
7. One subject had over 200 channels removed, likely due to errors
within the recording, and was excluded from Table 5.

Conclusion

In this paper, we presented an expansion on the Box-Jenkins
methodology to ARIMA modeling. First, during model identi-
fication and selection, we implement two complementary tests
(KPSS and ADF) to establish stationarity. Using these stationary
series, we use median correlation values at each lag of the ACF
and PACF across 600 channels to identify a range of AR(p) and
MA(q) order to implement combinatorially. This methodology
allows for examining multiple time series simultaneously to de-
termine a valid model order for the majority of time series in a
dataset. Second, during parameter value estimation, we utilize the
Statsmodels package to find the method-solver combination that
provides good metrics (model reliability, validity of residuals, and

Step Min Max Median Mean Std Dev

xVAL 0 60 1 9.67 16.63
Normal 0 0 0 0.00 0.00
tACF 0 51 0 2.53 8.12
tPACF 0 0 0 0.00 0.00
cMEAN 0 8 0 0.20 1.15
cVAR 0 40 4 7.24 9.05
Channels
Removed

1 85 10 20.55 21.34

TABLE 5: Results of White Noise Test on full dataset, with the steps
listed as extreme values (xVAL), normality, thresholded ACF and
PACF (tACF, tPACF), constant mean (cMEAN) and constant variance
(cVAR), and the number of channels removed as a result.

time efficient) for long time series. We found the css-lbfgs to
outperform all other method-solver combinations on these metrics.
Third, during model evaluation, we present a novel approach
(White Noise Test: Figure 1) to diagnostic checking of ARIMA
modeling for long time series, which evaluates residual series
based on stationarity and nonautocorrelation (i.e., “whiteness”).
Using this approach, we identify the ideal candidate model for
our dataset to be ARIMA(30,1,3). Applying this model to the full
MEG dataset, we find an average of 20.55 channels removed from
the White Noise Test (i.e., fail to establish “whiteness”), which
is about 8.3% of the dataset. Overall, using our approach, an
investigator can perform ARIMA modeling and evaluate candidate
models with ease for large datasets and datasets containing long
time series.
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