
PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 133

PySPLIT: a Package for the Generation, Analysis, and
Visualization of HYSPLIT Air Parcel Trajectories

Mellissa Cross‡∗

https://www.youtube.com/watch?v=2mzhTC4Kp-Y

F

Abstract—The National Oceanic and Atmospheric Administration (NOAA) Air
Resources Laboratory’s HYSPLIT (HYbrid Single Particle Lagrangian Transport)
model [Drax98], [Drax97] uses a hybrid Langrangian and Eulerian calculation
method to compute air parcel trajectories and particle dispersion and deposition
simulations. Air parcels are hypothetical small volumes of air with uniform
characteristics. The HYSPLIT model outputs air parcel paths projected forwards
or backwards in time (trajectories) and is used in a variety of scientific contexts.
Here we present the first package in the mainstream scientific Python ecosystem
designed to facilitate HYSPLIT trajectory analysis workflow by providing an
intuitive API for generating, inspecting, and plotting trajectory paths and data.

Index Terms—HYSPLIT, trajectory analysis, matplotlib Basemap

Introduction

Government agencies and researchers use the HYSPLIT sys-
tem, particularly the particle dispersion simulations, for academic
and emergency response purposes such as monitoring nuclear
fallout, the dispersion of volcanic aerosols, and dust storms.
Trajectory simulations are also applied to a variety of tasks,
including visualizing regional atmospheric circulation patterns,
investigating meteorological controls on the isotopic composition
of precipitation, and calculating moisture uptake and transport.
HYSPLIT can also be applied to non-academic uses, such as
ballooning. The HYSPLIT model is available online via the Real-
time Environmental Applications and Display sYstem (READY)
interface [Rolph03] - and has been since the late 1990s - or as a
downloadable version compatible with PC or Mac [Drax03].

A key component of air parcel trajectory research problems
is the along-trajectory data that HYSPLIT outputs. Although the
PC and Mac versions allow for greater batch processing than
is available via the online READY interface, neither interface
provides users with a means to inspect, sort, or analyze trajectories
on the basis of along-trajectory data. Users are left with limited
options: write their own scripts for performing the desired data
analysis, or manage trajectory data by hand via spreadsheet and
GIS programs. Both options are inefficient and error-prone. Addi-
tionally, HYSPLIT ships with limited inbuilt options for trajectory
visualization, though it does provide a shapefile/KML output tool.
Using a non-Python based workflow, a figure similar to the third

* Corresponding author: cros0324@umn.edu, mellissa.cross@gmail.com
‡ Department of Earth Sciences, University of Minnesota

Copyright © 2015 Mellissa Cross. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

panel in Figure 2 took approximately three weeks to generate.
This process involved manually generating a couple hundred
trajectories, sorting out the rainy trajectories and importing their
data into Excel, calculating moisture flux, and arranging the data
for a third party program to convert to a KML file to view on
Google Earth. In contrast, after two nights of letting PySPLIT
generate trajectories (totalling 60,000 trajectories), the complete
Figure 2 was made in a single afternoon.

PySPLIT is a Python-based tool for HYSPLIT trajectory
analysis available on Github under a modified BSD license. This
package’s key aim is to provide an open source, reusable, re-
producible, flexible system for a Python-based trajectory analysis
workflow. Though a Python-based HYSPLIT frontend (physplit)
is available on Google Code, this code is poorly documented and
organized, and is incomplete, unmaintained, an not reusable, as it
contains hard-coded variables specific to particular workstations.

PySPLIT depends on NumPy [NumPy], matplotlib
[matplotlib], and the matplotlib Basemap toolkit; and comprises
five classes and a trajectory generation toolkit. The scope of this
package is currently bulk trajectory generation, trajectory data
analysis and management, and path and data visualizations.

The API

The current PySPLIT API comprises five classes, four of which
deal with trajectory data. The fundamental class of PySPLIT
is the Trajectory; each Trajectory instance represents
one HYSPLIT air parcel trajectory. Three of the other classes,
TrajectoryGroup, Cluster, and ClusterGroup, are es-
sentially variations on a Trajectory container. The fifth data
type is MapDesign, which is not a Trajectory-related class,
but holds map construction information and draw a map, using the
matplotlib Basemap toolkit command. This class was included to
enable the user to quickly create attractive maps without detracting
focus from the trajectory analysis workflow.

Trajectory Generation

Typically the first step in a HYSPLIT workflow is trajectory
generation. This can be accomplished via the online READY
interface, or the HYSPLIT GUI, or command line, but bulk gener-
ation is inefficient. Additionally, READY users are limited to 500
trajectories per day. PySPLIT includes a method for generating
large numbers of trajectories of a particular length in hours at
various times of day and at several different altitudes in a single
call, allowing the user to set up a comprehesive batch to run
overnight without constant user monitoring or action:

https://www.youtube.com/watch?v=2mzhTC4Kp-Y
http://ready.arl.noaa.gov/HYSPLIT_traj.php
http://ready.arl.noaa.gov/HYSPLIT.php
mailto:cros0324@umn.edu, mellissa.cross@gmail.com
https://github.com/mscross/pysplit

134 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

generate_trajectories(
'example', r'C:/hysplit4/working',
r'C:/traj_dir', r'E:/meteorology',
[2007, 2008, 2009], [6, 7], [5, 11, 17, 23],
[500, 1500], (32.29, 119.05), -120,
meteo_type='gdas1')

In this example, 120-hour trajectories are launched at 500 and
1500 meters above ground level at 32.39 N and 119.05 E four
times daily ([5, 11, 17, 23]]) throughout June and July of
2007-2009. All HYSPLIT trajectory files created with this method
have the same basename of 'example', followed by the altitude,
season, and year, month, day, and hour in the format YYM-
MDDHH, for example: example1500winter09063105. The
trajectory files are extensionless and live in the specified output
directory ('C:/traj_dir').

pysplit.generate_trajectories() currently only
supports gdas1 data, which refers to the 1 x 1 degree Global
Data Assimilation System 3-hour meteorology product from the
National Weather Service’s National Centers for Environmental
Prediction (NCEP) archived in a packed format appropriate for
HYSPLIT (referred to as ARL-packed). Archived gdas1 data is
available from 2005 onwards; registered HYSPLIT users may also
access forecast data (see HYSPLIT use agreement for more infor-
mation concerning publishing and the redistribution of HYSPLIT
model results using forecast data). Future versions of PySPLIT
will support other datasets, for example ARL-packed ERA-interim
data, for which decades of data are available; and other user-
defined ARL-packed data sources.

PySPLIT comes with two additional features not available in
the READY interface or directly through HYSPLIT. One feature
enables an estimation of integration error. This error is estimated
by comparing the distance between where an original trajectory
begins and where a trajectory run in the opposite direction starting
at the endpoint of the original trajectory ends. We expect the
paths of the trajectories to be identical, but HYSPLIT uses finite-
precision arithmetic, so there is some deviation. Low integration
error is indicated by a short distance between the original tra-
jectory start and the reverse trajectory end points relative to the
total distance covered by the trajectory pair. During trajectory
generation (unless disabled), PySPLIT automatically opens a new
trajectory file, reads in the altitude, longitude, and latitude of the
last time point, and initializes the reverse trajectory. Then in the
Trajectory class, discussed below, a method is available to
estimate integration error.

The second feature facilitates HYSPLIT clustering. HYSPLIT
trajectory data files are plaintext with a limited number of charac-
ters per line. Typically, each timepoint is recorded on a single line.
However, there are nine possible along-trajectory meteorological
output variables, and if more than seven are selected, each time-
point overflows onto a second line. Timepoints will span multiple
lines, however, if more than seven of nine possible available output
variables are selected. HYSPLIT’s clustering method fails given
files with multi-line timepoints, but PySPLIT can account for this
when it occurs. pysplit.clip_traj() opens a trajectory
file, copies the trajectory header and path (latitude, longtitude,
altitude) data, and outputs the header and path to a new file that
HYSPLIT will readily use to perform clustering, as HYSPLIT
clusters solely on the basis of path. The clipped and reverse
trajectories live in subdirectories inside the output directory.

Trajectory

The Trajectory class is the fundamental unit in PySPLIT, de-
signed to manage and promote the analysis of air parcel trajectory
data in an intuitive manner. Each object represents one air parcel
trajectory calculated by HYSPLIT, containing latitude, longitude,
altitude (meters above ground level or meters above sea level),
along-path data, file location, path start information, and summary
data. Trajectory instances are intialized as follows:
traj = Trajectory(data, header, fullpath)

where data is the 2D array of along-trajectory data
read by PySPLIT from the HYSPLIT output file (using
pysplit.load_hysplitfile()), header is a list of
strings indicating the information present in each column, and
fullpath is the location of the output file. However, the user
will typically not initialize individual Trajectories, but will
instead initialize a TrajectoryGroup that contains them.

The 2D data array of a Trajectory is parsed into separate
attributes as 1D NumPy arrays of floats, readily exposing the data.
The data and header are also kept as attributes, and can be
reloaded into the corresponding 1D attributes at any time, wiping
out changes.

Most Trajectory analysis methods live in or are accessed
directly by the Trajectory class. These include calculations of
along-trajectory and overall great-circle distance, mean trajectory
vector, humidity data conversions, and along-trajectory moisture
flux. The results of most of these calculations are stored as
new attributes in 1D NumPy arrays of floats of identical size.
Additionally, the Trajectory class contains the methods for
loading forward trajectories and estimating trajectory integration
error in both horizontal and vertical dimensions.

The Trajectory class also includes a flexible implementa-
tion of the moisture uptake calculation from back trajectories from
Sodeman et al. [Sod08].
moistureuptake(self, rainout_threshold,

evap_threshold, uptake_window=6,
window_overlap=0,
vertical_criterion='pbl',
pressure_threshold=900.0,
mixdepth_factor=1,
q_type='specific_humidity')

Using this method, humidity is compared at the beginning and end
of a period of time with length uptake_window, repeated over
the whole back trajectory, from the earliest timepoint to the most
recent time point. A good uptake window is 6 hours, since it is a
short enough period of time that evaporation or precipitation will
dominate, and long enough that performing this calculation over
120-hour trajectories is not particularly onerous.

The purpose of this algorithm is to find moisture sources on
the Earth’s surface that contribute to the moisture received at the
starting location of the backwards trajectory. So, a criterion to dis-
tinguish surficial from atmospheric moisture sources is required.
In Sodeman’s original paper, which did not use HYSPLIT, uptakes
that occurred below the planetary boundary level were regarded
as uptakes from the Earth’s surface. In other works that have
used this algorithm but employed HYSPLIT, a particular pressure
level, often 900.0 hPa, is as the boundary between uptake from
the surface and uptake from the atmosphere. In PySPLIT, the user
can choose for their boundary the mixing depth, a pressure level,
or both.

For each window, PySPLIT records the coordinates of the
midpoint, the mean pressure, mixing depth (if available), and

PYSPLIT: A PACKAGE FOR THE GENERATION, ANALYSIS, AND VISUALIZATION OF HYSPLIT AIR PARCEL TRAJECTORIES 135

altitude; the change in humidity; and the fraction of current
humidity levels taken up below or above the vertical criteria or due
to unknown sources. Change in humidity and humidity fractions in
previous windows are also adjusted to reflect rainout and the fact
that early sources of moisture become less important as moisture
is acquired further along in the trajectory. The result is a 2D array
of moisture uptake data where each row represents a time window
and each column a variable. The array and header are stored as
Trajectory attributes.

TrajectoryGroup

The TrajectoryGroup is the basic container for PyS-
PLIT Trajectory objects, and is initialized simply by pro-
viding a list of Trajectory objects. Typically the first
TrajectoryGroup in a PySPLIT workflow is initialized upon
loading Trajectory objects from file as discussed above:
trajgroup, _ = make_trajectorygroup(signature)

In this method, HYSPLIT output files sharing a Bash-style
signature (with wildcards supported) are read, initialized as
Trajectorys and appended to a list, which is then used
to initialize a TrajectoryGroup. These containers are fully
iterable, returning a Trajectory when indexed and a new
TrajectoryGroup when sliced.

Once the initial TrajectoryGroup is created, a
typical PySPLIT workflow involves cycling through the
TrajectoryGroup (umn in the example workflow below),
initializing and inspecting attributes of the member Trajectory
instances. Trajectorys that meet certain criteria are then sorted
into new TrajectoryGroups.
Trajectories with integration error better than 10%
good_traj = []

for traj in umn:
traj.load_reversetraj(r'C:/traj/reversetraj')
traj.integration_error()

if self.integ_error_xy < 10:
good_traj.append(traj)

Sort out rain-bearing traj starting at 1700 UTC
(local noon) and 1500 m
umn_trajls=[]

for traj in good_traj:
traj.set_rainstatus()
if (traj.rainstatus and traj.hour[0] == 17 and

traj.altitude[0] == 1500):
umn_trajls.append(traj)

Create new TrajectoryGroup:
umn_noon = pysplit.TrajectoryGroup(umn_trajls)

And perform more calculations:
for traj in umn_noon:

traj.set_vector()
traj.set_specifichumidity()
traj.calculate_moistureflux()

Repeating sorting and analysis as necessary.
Using the visualization defaults as described in the Data

Plotting and MapDesign section below, we can quickly look at
the Trajectory paths, as seen in Figure 1.
mapd = pysplit.MapDesign([40.0, -15.0, 170.0, 60.0],

[100.0, 20.0, 30.0, 10.0])

umap = mapd.make_basemap()

Fig. 1: Simple visualization of trajectory paths using MapDesign
defaults (see Data Plotting and MapDesign section) . Red indicates
June trajectories, blue indicates July trajectories.

for traj in umn_noon:
if traj.month[0] == 6:

traj.trajcolor == 'blue'
else:

traj.trajcolor == 'red'

umn_noon.map_data_line(umap)

The TrajectoryGroup class also has additional capabilities
for organizing Trajectory instances and Trajectory data.
TrajectoryGroup instances are additive: two instances are
checked for duplicte trajectories (determined by examining the
filename and path) and can be combined into a new group of
unique trajectories. The TrajectoryGroup also comes with
methods for assembling particular member Trajectory at-
tributes and moisture uptake arrays into a single array to facilitate
scatter plotting and for interpolating along-path and moisture
uptake data to a grid. The procedure is given below and the results
are shown in These are discussed below in the Data Plotting and
MapDesign section.

Cluster and ClusterGroup

To investigate the dominant flow patterns in a set of trajectories,
HYSPLIT includes a clustering procedure. PySPLIT includes
several methods to expedite this process.

The first step is to generate a list of trajectories to be
clustered. Once the user has created a TrajectoryGroup
with trajectories that meet their specifications, then they can use
the TrajectoryGroup method make_infile() to write
member Trajectory full paths to an extensionless file called
’INFILE’ that HYSPLIT requires to perform clustering. PySPLIT
will attempt to write the full paths of the clipped versions of
the trajectories to INFILE, if available, otherwise the full paths
of the regular trajectories will be used. Clipped trajectories are
usually generated during trajectory generation, as discussed above.
However, as clipping does not actually require calculating a new
trajectory this can be performed later:

for traj in trajgroup:
clip_traj(traj.folder, traj.filename)

However, the TrajectoryGroup (trajgroup) and its mem-
ber Trajectories must be reloaded for the clipped trajectory
files to become available for clustering.

Once the INFILE is created, the user must open HYSPLIT to
run the cluster analysis and assign trajectories to clusters. Advice

136 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 2: Visualization of seasonal moisture flux. Place labels are
generated with the labeller in MapDesign , discussed in Data
Plotting and MapDesign section.

concerning the determination of the number of clusters (along
with all other HYSPLIT aspects) is available in the HYSPLIT
manual [Drax97]. Assigning trajectories to clusters will create a
file called ’CLUSLIST_3’ or some other number corresponding to
the number of clusters specified by the user. This file indicates the
distribution of Trajectory in the TrajectoryGroup among
clusters, and is used to create Cluster instances contained in a
ClusterGroup:

clusgroup = spawn_clusters(trajgroup, traj_distrib,
clusterpath_dir)

The Cluster class is a specialized subclass of
TrajectoryGroup. In addition to a list of member
Trajectorys (indicated by the distribution file), initialization
requires the cluster mean path data and cluster index. Like
TrajectoryGroups, Clusters are additive, but adding
Clusters creates a regular TrajectoryGroup, not a new

Cluster. As a Cluster has an associated path, some
Trajectory-like methods (distance, vector calculations) are
available.

A ClusterGroup is a container of Clusters produced in
a single clustering procedure. Iterating over a ClusterGroup
returns member Clusters.

Data Plotting and MapDesign

As visualization and figure creation is a key part of the scientific
process, a major focus of PySPLIT is exposing data and enabling
the user to create attractive maps and plots.

One part of this equation is the MapDesign class. A
MapDesign instance holds the information necessary to create an
attractive matplotlib Basemap. The user provides the coordinates
of the lower left and upper right corners of the map, as well as
a few standard parallels and meridians. From there, the defaults
are sufficient to produce a professional-looking map as shown in
Figure 1. Users can also choose between two additional neutral
color-schemes, as shown in Figures 2, and 3.

MapDesign also encompasses more complex formatting like
labelling, as shown in Figure 2. During the initialization of
MapDesign, or later using MapDesign.edit_labels(),
the user can generate a text file with example labels in defined
label categories at a given file location. The user can then edit the
example labels for their needs, and select which groups are placed
on the map, once MapDesign.make_basemap() is called and
a Basemap is generated.

Although MapDesign was created to expedite the process
of creating an attractive Basemap and let users focus on the
trajectory analysis rather than figure-tweaking, PySPLIT plot-
ting functions accept any Basemap instance, allowing users to
incorporate PySPLIT into their existing workflow. Additionally,
as all Trajectory, Cluster, TrajectoryGroup, and
ClusterGroup attributes are exposed, users are free to cre-
ate their own visualization routines beyond what is provided in
PySPLIT.

Among the Trajectory attributes are linewidth and path
color. A user can incorporate these into their plotting workflow,
setting linewidth and path color to correspond to Trajectory
instances with particular characteristics, as shown in Figure
1. Plotting the paths of a TrajectoryGroup’s member
Trajectorys is performed one-by-one on the given map. To
facilitate scatter plotting, the TrajectoryGroup assembles
Trajectory latitude, longtitude, the variable plotted as a color
change, and, if selected, the variable plotted as a size change each
into single arrays. Trajectory data, as well as moisture uptake
data, can also be interpolated onto a grid and plotted.

Prior to being passed to Basemap.plot() and
Basemap.scatter(), scatter plot data passes through
traj_scatter(). This exposes Normalize instances and other
methods of normalization (square root, natural log), allowing
users to normalize both color and size data. Square root and
natural log normalizations require the user to edit tick labels on
colorbars (or incorporate into the colorbar label itself, as in Figure
2). After plotting, wrappers around matplotlib’s colorbar creation
methods with attractive default options are available to initialize
colorbars.

As a Cluster is a specialized TrajectoryGroup,
member Trajectorys can be plotted similarly. Additionally,
Cluster mean paths can also be plotted, either individually or all

PYSPLIT: A PACKAGE FOR THE GENERATION, ANALYSIS, AND VISUALIZATION OF HYSPLIT AIR PARCEL TRAJECTORIES 137

Fig. 3: Left: Winter back trajectories arriving at Nanjing, colored to match the cluster they belong to. Right: Plot of ClusterGroup in
which member Clusters have randomly-chosen colors and linewidths corresponding to their Trajectory counts.

together in the ClusterGroup. Cluster linewdiths can either
be determined by an absolute Trajectory count or the fraction
of total Trajectorys in the ClusterGroup belonging to the
Cluster. Both Cluster and Trajectory paths shown in
Figure 3.

The Future of PySPLIT

PySPLIT provides an intuitive API for extremely efficient HYS-
PLIT trajectory data processing and for creating visualizations
using matplotlib and the matplotlib Basemap toolkit. The goal
of PySPLIT is to provide users with a powerful, flexible Python-
oriented HYSPLIT trajectory analysis workflow, and in the long-
term to become the toolkit of choice for research using HYSPLIT.
Features in the pipeline include HYSPLIT clustering process
entirely accessible via the PySPLIT interface, and a greater va-
riety of statistical, moisture uptake, and other methods available
for trajectory analysis. Additionally, there are several areas for
improvement within the trajectory generation portion of PySPLIT,
notably support for meteorologies besides gdas1, more granular
trajectory generation, and generation on pressure and condensation
levels.

Acknowledgments

I gratefully thank the reviewers for their patience, comments,
and suggestions; and the NOAA ARL for the provision of the
HYSPLIT transport and dispersion model.

REFERENCES

[Sod08] H. Sodeman, C. Schwierz, and H. Wernli. Interannual Variability
of Greenland winter precipitation sources: Lagrangian moisture
diagnostic and North Atlantic Oscillation influence, Journal of
Geophysical Research, 113:D03107, February 2008.

[Drax98] R.R. Draxler and G.D. Hess. An overview of the HYSPLIT_4
modeling system of trajectories, dispersion, and deposition, Aust.
Meteor. Mag., 47:295-308, 1998.

[Drax97] R.R. Draxler and G.D. Hess. Description of the HYSPLIT_4
modeling system, NOAA Technical Memorandum ERL ARL-
230, NOAA Air Resources Laboratory, Silver Spring, MD, 1997.

[Drax03] R.R. Draxler and G.D. Rolph. HYSPLIT (HYbrid Single-Particle
Lagrangian Integrated Trajectory) Model access via NOAA ARL
READY Website (http://www.arl.noaa.gov/ready/hysplit4.html).
NOAA Air Resources Laboratory, Silver Spring, MD, 2003.

[Rolph03] G.D. Rolph. Real-time Environmental Applications and Dis-
play sYstem (READY) Website (http://www.arl.noaa.gov/ready/
hysplit4.html). NOAA Air Resources Laboratory, Silver Spring,
MD, 2003.

[NumPy] S. van der Walt et al. The NumPy Array: A Structure for Efficient
Numerical Computation, Computing in Science & Engineering,
13:22-30, 2011.

[matplotlib] J. D. Hunter. Matplotlib: A 2D Graphics Environment*, Comput-
ing in Science & Engineering, 9:90-95, 2007.

http://www.arl.noaa.gov/ready/hysplit4.html
http://www.arl.noaa.gov/ready/hysplit4.html
http://www.arl.noaa.gov/ready/hysplit4.html

	Introduction
	The API
	Trajectory Generation
	Trajectory
	TrajectoryGroup
	Cluster and ClusterGroup

	Data Plotting and MapDesign
	The Future of PySPLIT
	Acknowledgments
	References

