
PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 171

Relation: The Missing Container

Scott James‡∗, James Larkin‡

F

Abstract

The humble mathematical relation1, a fundamental (if implicit)
component in computational algorithms, is conspicuously absent
in most standard container collections, including Python’s. In
this paper, we present the basics of a relation container, and
why you might use it instead of other methods. The concept
is simple to implement and easy to use. We will walk through
with code examples using our implementation of a relation
(https://pypi.python.org/pypi/relate)

Background: It’s the Little Things

In our work in surface and aviation traffic simulation we deal with
many moving pieces, terabytes of streaming information. Manag-
ing this much information pieces requires, unsurprisingly, some
significant computational machinery: clusters of multiprocessors;
different interworking database topologies: HDF5, NoSQL and
SQL; compiled code, scripted code; COTS tools, commercial and
open source code libraries. For the Python components of our
work, we are fortunate to have data crunching libraries: numpy,
pandas etc... However, we kept finding that, despite this wealth of
machinery, we would get caught up on the little things.

There may be thousands of flights in the air at any one
time, but there are far fewer types of aircraft. There may be
millions of vehicles on the road, but only a handful of vehicle
categories. Whereas we could place these mini-databases into our
data crunching tools as auxiliary tables, we didn’t. It didn’t make
sense to perform a table merge with streaming data when we could
do a quick lookup, on-the-fly, when we needed to. We didn’t want
to create a table with ten rows and two columns when we could
easily put that information into a dictionary, or a list. We didn’t
want to implement our transient, sparse table with a graph database
or create tables with an ’other’ column which we would then have
to parse anyhow. And besides the traffic specific information, there
were all those other pesky details: file tags, user aliases, color
maps.

Instead we cobbled together our mini-databases with what
we had within easy mental reach: lists, sets and dictionaries.
And when we needed to do a search, or invert keys/values, or
assure uniqueness of mappings, we would create a loop, a list
comprehension or a helper class.

* Corresponding author: scott.james@noblis.org
‡ Noblis

Copyright © 2015 Scott James et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

After some time it occurred to us that what we were really
doing with our less-than-big data was reinventing a mathematical
relation, ... over and over again. Once we realized that, we replaced
the bookkeeping code managing our mini-databases with relation
instances. This resulted in a variety of good things: reduced cod-
ing overhead, increased clarity of purpose and, oddly, improved
computational efficiency.

What is a relation and what is it good for?

A relation a simply a pairing of elements of one set, the domain,
with another, the range. Rephrasing more formally, a relation is a
collection of tuples (x,y) where x is in the domain and y is in the
range. A relation, implemented as code, can perform a variety of
common tasks:

• Inversion: quickly find the values(range) associated with
a key(domain)

• Partitioning: group values into unique buckets
• Aliasing: maintain a unique pairing between keys and

values
• Tagging: associate two sets in an arbitrary manner

These roughly correspond to the four cardinalities of a rela-
tion:

• Many-to-one (M:1): a function, each range value having
possibly multiple values in the domain

• One-to-many (1:M): a categorization, where each element
in the domain is associated with a unique group of values
in the range

• One-to-one (1:1): an isomorphism, where each element in
the domain is uniquely identified with a single range value

• Many-to-many (M:N): an unrestricted pairing of domain
and range

What is it not good for?

The relation, at least as we have implemented it, is a chisel, not a
jack-hammer. It is meant for the less-than-big data not the actually-
big data. When computational data is well-structured, vectorized
or large enough to be concerned about storage, we use existing
computational and relational libraries. A relation, by contrast, is
useful when the data is loosely structured, transient, and in no real
danger of overloading memory.

The API

Using a relation should be easy, as easy as using any fundamental
container. It should involve as little programming friction as
possible. It should feel natural and familiar. To accomplish these

https://pypi.python.org/pypi/relate
mailto:scott.james@noblis.org

172 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Method Comment

__init__ establish the cardinality and ordering of a Relation
__setitem__assign a range element to a domain element
__getitem__retrieve range element(s) for a domain element
__delitem__remove a domain element and all associated range pairings. If

the range element has no remaining pairings, delete it.
extend combine two Relation objects
values return the domain
keys returns list of domains
__invert__swap domain and range

TABLE 1

goals, we created our Relation class by inheriting and extending
MutableMapping:

In essence, it will look and feel like a dictionary, but with some
twists.

Example 1 (Many-to-many)

For example, suppose we need to map qualitative weather condi-
tions to dates:

weather = Relation()
weather['2011-7-23']='high-wind'
weather['2011-7-24']='low-rain'
weather['2011-7-25']='low-rain'
weather['2011-7-25']='low-wind'

Note that in the last statement the assignment operator performs
an append not an overwrite. So:

weather['2014-7-25']

Produces a set of values:

{'low-rain','low-wind'}

Relation also provides an inverse:

(~weather)['low-rain']

Also producing a set of values:

{'2014-7-25','2014-7-24'}

For our work, other many-to-many relations include:

• Flight numbers and airports
• Auto makers and vehicle classes
• Neighboring planes (or autos) at an instant of time

Cardinality

Relations look like a dictionary but also provide the ability to

1) Assign many-to-many values
2) Invert the mapping directly

Relations become even more valuable when we have the
ability to enforce the degree of relationship, i.e. cardinality. As
mentioned, there are four cardinalities used in the relation object
class:

Many-to-one assignment is already supported by Python’s
built-in dictionary (minus the inversion); however, the remainder
of the cardinalities are not2.

Relationship Shortcut Pseudonyms

many-to-one M:1 function, mapping, assignment
one-to-many 1:M partition, category
one-to-one 1:1 aliasing, isomorphism
many-to-many M:N general

TABLE 2

Example 2 (One-to-One)
airport = Relation(cardinality='1:1')
airport['ATL'] = 'Hartsfield-Jackson Atlanta International'
airport['KORD'] = 'Chicago O'Hare International'

When the relation is forced to be 1:1, the results are no longer
sets:

airport['ATL']
> 'Hartsfield-Jackson Atlanta International'

And assignments overwrite both the domain and the range:

use the full four-letter international code ...
not the US 3-letter code
airport['KATL'] = 'Hartsfield-Jackson Atlanta International'
airport['ATL']
> KeyError: 'ATL'

Note that, similar to a dictionary silently overwriting a key-value
pair, a 1:1 relation silently overwrites a value-key pair, and in this
case, removes the stranded key. Also worth noting, for cardinalities
M:1 and 1:1, a dictionary literal can also serve as syntactic sugar
for an initializer:

airport = Isomorphism(
{'KATL':'Hartsfield-Jackson Atlanta International',
'KORD':'Chicago O'Hare International'})

airport['KATL']
> 'Hartsfield-Jackson Atlanta International'

For our work, other 1:1 mappings include:

• User names and company id
• Automobile manufacturers and their abbreviations
• Color codes and their representations in various simulation

tools (using a chain of 1:1 containers)

Comparing Relation Implementations

The relation container is fast, as fast as a dictionary. It should
be; it is implemented by two dictionaries: one for each mapping
direction. However, there are other ways to implement many-to-
many relations. In this section we compare the relation against
two other implementations: a Pandas data frame and a NetworkX
graph.

Our test data will consist of 200 two-digit alphanumeric values
(domain) and 1 million numeric values (range) for a total of
approximately 10 million unique entries. We describe the imple-
mentations of the lookups and then compare speeds.

Data Frame

To implement a M:N relationship using a data frame, we create a
two-column table:

A forward search can performed as follows:
df['range']==887267]['domain']
And a reverse search as:
df[df['domain']=='YR']['range']
Each of these searches can be accelerated by indexing.

RELATION: THE MISSING CONTAINER 173

Domain Range

UF 423423
OP 3242
FD 887267
YR 343
... ...

TABLE 3

Method Forward (ms) Reverse (ms)

Pandas 7.34e2 7.94e1
Pandas (indexed) 1.97e2 7.81e-2
Graph 9.47e0 6.84e-4
Relate 3.76e-4 4.58e-4

TABLE 4

NetworkX

To implement an M:N relation using a NetworkX Graph we use
a bipartite graph, that is, a graph connecting two disjoint sets,
creating the relations by linking the nodes from one set (domain)
to another set (range)

Both forward and reverse searches are performed in the same
manner:

forward, using domain nodes
G.neighbors('YR')
reverse, using range nodes
G.neighbors(887267)

Timings

We collect timings using the Python’s timeit function:
In all cases, Relate is faster, most significantly when searching

on strings as opposed to numeric values. Of course, data frames
and graphs have many more features than a relation. Also, the two-
dictionary Relation implementation is cheating: it precomputed the
only two searches it was built to handle; moreover, it did so at a
cost of doubling the memory footprint. But this is precisely the
use-case for which the relation was created: space at non-critical
levels but economy of code and code performance crucial.

Sparse Matrix

One other implementation worth mentioning is a sparse matrix.
Viewing the nonzero elements of a sparse matrix as a connec-
tion between the row (domain) and column (range) indices also
produces an M:N relationship. The power of the sparse matrix
is in its suitability to large-scale numerical computations. The
relation container proposed, however, is designed to match general
datatypes, including non-numerical. Providing a direct comparison
between the two is thus somewhat difficult as the two are used for
different purposes.

More Examples

The relation object is a basic concept, and as such useful in
limitless contexts. A few more examples are worth mentioning.

Tags (Many-to-Many)

Over the last decade, we’ve seen tags invade our previously
hierarchical organized data. Tags are now ubiquitous, attached to
our: photos, files, URL bookmarks, to-do items etc ...

Tags are also exactly a many-to-many relationship:

files = Relation()

files['radar-2011-7-23.png'] = 'image'
files['radar-2011-7-23.png'] = 'KATL'
files['departure-procedures.doc'] = 'KATL'
files['departure-procedures.doc'] = 2015

#find the files associated with Atlanta
(~files)['KATL']
> {'radar-2011-7-23.png','departure-procedures.doc'}

find the attributes for particular file
files['departure-procedures.doc']
> {2015,'KATL'}

We tag our simulation products to allow flexible retrieval and
searching. With an in-code tagging scheme we can automatically
attach tags at the file system level and then query these tags with
both in-code and operating system level tools.

Taxonomies (One-to-Many)

We mentioned earlier that the 1:M relation is a partition, a way
to categorize objects into groups. Nesting 1:M relations creates
a backward-searchable taxonomy. An example in our work are
en-route air traffic sectors, the nested polyhedrons through which
aircraft fly:

sectors=Relation(cardinality='1:M')
sectors['ZNY'] = 'ZNY010'
sectors['ZNY'] = 'ZNY034'
sectors['ZNY010'] = 'ZNY010-B'
sectors['ZNY010'] = 'ZNY010-2'
sectors['ZNY034'] = 'ZNY034-B'
sectors['ZNY034'] = 'ZNY034-11'

(~sectors)['ZNY034-B']
> 'ZNY034'

(~sectors)[(~sectors)['ZNY034-B']]
> 'ZNY'

Using a taxonomy of sectors as above allows us to quickly
access aggregate information at different granularities as the flight
progresses.

When to Use What for What

Modern high-level computing languages provide us with a robust
set of containers. We feel, of course, that a relation container is
a valuable addition but, we also feel one should use the most
economical container for the task. Asking questions about the type
of data being stored and the relationship between an element and
its attributes is crucial, even for the less-than-big data:

Choosing the best matching structure for your data set doesn’t
just help with the code, it helps with the intent, providing the next
programmer touching the code with your vision of the structure,
and also some safety belts in case they didn’t see it the first time.

Conclusion

The relation object provides an easy-to-use invertible mapping
structure supporting all four relationship cardinalities: 1:1, 1:M,
M:1 and M:N. Using the relation library can simplify your

174 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Content Structure

unordered set of unique objects set
ordered set of non-unique objects list
ordered set of unique objects OrderedDict
unidirectional mapping dictionary
bidirectional mapping relation
mapping with restricted cardinalities relation
multiple, fixed attributes per element data frame/table
variant attributes per element relation

TABLE 5

code and eliminate the need for repeated, ad hoc patterns when
managing your less-than-big working data structures.

One of the best things about the relation data container is its
ease of implementation within Python. For a simple, yet complete
example, see our implementation at https://pypi.python.org/pypi/
relate.

1. http://www.purplemath.com/modules/fcns.htm
2. For 1:1 mapping, however we also recommend the excellent bidict

package https://bidict.readthedocs.org/en/master/intro.html#intro

https://pypi.python.org/pypi/relate
https://pypi.python.org/pypi/relate
http://www.purplemath.com/modules/fcns.htm
https://bidict.readthedocs.org/en/master/intro.html#intro

	Abstract
	Background: It's the Little Things
	What is a relation and what is it good for?
	What is it not good for?
	The API
	Example 1 (Many-to-many)
	Cardinality
	Example 2 (One-to-One)
	Comparing Relation Implementations
	Data Frame
	NetworkX
	Timings
	Sparse Matrix

	More Examples
	Tags (Many-to-Many)
	Taxonomies (One-to-Many)

	When to Use What for What
	Conclusion

