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Abstract—A topic of interest in experimental psychology and cognitive neuro-
science is to understand how humans make decisions. A common approach
involves using computational models to represent the decision making process,
and use the model parameters to analyze brain imaging data. These computa-
tional models are based on the Reinforcement Learning (RL) paradigm, where
an agent learns to make decisions based on the difference between what it
expects and what it gets each time it interacts with the environment. In the
typical experimental setup, subjects are presented with a set of options, each
one associated to different numerical rewards. The task for each subject is to
learn, by taking a series of sequential actions, which option maximizes their
total reward. The sequence of actions made by the subject and the obtained
rewards are used to fit a parametric RL model. The model is fit by maximizing
the likelihood of the parameters given the experiment data. In this work we
present a Python implementation of this model fitting procedure. We extend
the implementation to fit a model of the experimental setup known as the
"contextual bandit", where the probabilities of the outcome change from trial
to trial depending on a predictive cue. We also developed an artificial agent
that can simulate the behavior of a human making decisions under the RL
paradigm. We use this artificial agent to validate the model fitting by comparing
the parameters estimated from the data with the known agent parameters.
We also present the results of a model fitted with experimental data. We use
the standard scientific Python stack (NumPy/SciPy) to compute the likelihood
function and to find its maximum. The code organization allows to easily change
the RL model. We also use the Seaborn library to create a visualization with the
behavior of all the subjects. The simulation results validate the correctness of the
implementation. The experimental results shows the usefulness and simplicity
of the program when working with experimental data. The source code of the
program is available at https://github.com/aweinstein/FHDMM.

Index Terms—decision making modeling, reinforcement learning

Introduction

As stated by the classic work of Rescorla and Wagner [Res72]
"... organisms only learn when events violate their

expectations. Certain expectations are built up about
the events following a stimulus complex; expectations
initiated by that complex and its component stimuli are
then only modified when consequent events disagree
with the composite expectation."

This paradigm allows to use the framework of Reinforcement
Learning (RL) to model the process of human decision making. In
the fields of experimental psychology and cognitive neuroscience
these models are used to fit experimental data. Once such a model
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is fitted, one can use the model parameters to draw conclusions
about individual difference between the participants. The model
parameters can be co-varied with imaging data to make obser-
vations about the neural mechanisms underpinning the learning
process. For an in-depth discussion about the connections between
cognitive neuroscience and RL see chapter 16 of [Wie12].

In this work we present a Python program able to fit experi-
mental data to a RL model. The fitting is based on a maximum
likelihood approach [Cas02]. We present simulation and experi-
mental data results.

A Decision Making Model

In this section we present the model used in this work to describe
how an agent (either an artificial one or a human) learns to interact
with an environment. The setup assumes that at the discrete time
t the agent selects action at from the set A = {1, . . . ,n}. After
executing that action the agent gets a reward rt ∈ R, according to
the properties of the environment. Typically these properties are
stochastic and are defined in terms of probabilities conditioned by
the action. This sequence is repeated T times. The objective of the
agent is to take actions to maximize the total reward

R =
T

∑
t=1

rt .

In the RL literature, this setup is known as the "n-armed bandit
problem" [Sut98].

According to the Q-learning paradigm [Sut98], the agent keeps
track of its perceived value for each action through the so called
action-value function Q(a). When the agent selects action at at
time t, it updates the action-value function according to

Qt+1(at) = Qt(at)+α(rt −Qt(at)),

where 0 ≤ α ≤ 1 is a parameter of the agent known as learning
rate. To make a decision, the agent selects an action at random
from the set A with probabilities for each action given by the
softmax rule

P(at = a) =
eβQt (a)

∑
n
i=1 eβQt (ai)

,

where β > 0 is a parameter of the agent known as inverse
temperature.

In this work we consider the case were the probabilities
associated to the reward, in addition to being conditioned by the
action, are also conditioned by a context of the environment. This
context change at each time step and is observed by the agent.
This means that the action-value function, the softmax rule, α ,
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and β also depend on the current context of the environment. In
this scenario, the update action-value and softmax rules become

Qt+1(at ,ct) = Qt(at ,ct)+αct (rt −Qt(at ,ct)) (1)

P(at = a,ct) =
eβct Qt (a,ct )

∑
n
i=1 eβct Qt (ai,ct )

, (2)

where ct is the cue observed at time t. In the literature, this setup is
known as associative search [Sut98] or contextual bandit [Lan08].

In summary, each interaction, or trial, between the agent and
the environment starts by the agent observing the environment
context, or cue. Based on that observed cue and on what the agent
has learned so far from previous interactions, the agent makes a
decision about what action to execute next. It then gets a reward
(or penalty), and based on the value of that reward (or penalty) it
updates the action-value function accordingly.

Fitting the Model Using Maximum Likelihood

In cognitive neuroscience and experimental psychology one is
interested in fitting a decision making model, as the one described
in the previous section, to experimental data [Daw11].

In our case, this means to find, given the sequences of cues,
actions and rewards

(c1,a1,r1),(c2,a2,r2) . . . ,(cT ,aT ,rT )

the corresponding αc and βc. The model is fit by maximizing the
likelihood of the parameters αc and βc given the experiment data.
The likelihood function of the parameters is given by

L (αc,βc) =
T

∏
t=1

P(at ,ct), (3)

where the probability P(at ,ct) is calculated using equations (1)
and (2).

Once one has access to the likelihood function, the parameters
are found by determining the αc and βc that maximize the
function. In practice, this is done by minimizing the negative of
the logarithm of the likelihood (NLL) function [Daw11]. In other
words, the estimate of the model parameters are given by

α̂c, β̂c = argmin
0≤α≤1,β≥0

− log(L (αc,βc)). (4)

The quality of this estimate can be estimated through the inverse of
the Hessian matrix of the NLL function evaluated at the optimum.
In particular, the diagonal elements of this matrix correspond to
the standard error associated to αc and βc [Daw11].

Details about the calculation of the likelihood function and its
optimization are given in the Implementation and Results section.

Experimental Data

The data used in this work consists on the record of a computerized
card game played by 46 participants of the experiment. The game
consists of 360 trials. Each trial begins with the presentation of
a cue during one second. This cue can be a circle, a square or a
triangle. The cue indicates the probability of winning on that trial.
These probabilities are 20%, 50% and 80%, and are unknown
to the participants. The trial continues with the presentation of
four cards with values 23, 14, 8 and 3. The participant select one
of these cards and wins or loses the amount of points indicated
on the selected card, according to the probabilities defined by
the cue. The outcome of the trial is indicated by a stimulus

23 14 8 3Cue

Chose action: place bet

Outcome: win (up) / lose (down)

Cue

1000 ms

Self-Paced

1000 ms

1000 ms

1000 ms

Intertrial inverval

Fig. 1: Schematic of the stimulus presentation. A trial begins with
the presentation of a cue. This cue can be a circle, a square or a
triangle and is associated with the probability of winning in that trial.
These probabilities are 20%, 50% and 80%, and are unknown to the
participants. The trial continues with the presentation of four cards
with values 23, 14, 8 and 3. After selecting a card, the participant
wins or lose the amount of points indicated on the card, according to
the probabilities associated with the cue. The outcome of the trial is
indicated by a stimulus, where the win or lose outcome is indicated
by an arrow up or down, respectively [Mas12].

that lasts one second (an arrow pointing up for winning and
down for losing). The trial ends with a blank inter-trial stimulus
that also last one second. Figure 1 shows a schematic of the
stimulus presentation. Participants were instructed to maximize
their winnings and minimize their losses. See [Mas12] for more
details about the experimental design.

Note that in the context with probability of winning 50% any
strategy followed by the subject will produce an expected reward
of 0. Thus, there is nothing to learn for this context. For this
reason, we do not consider this context in the following analysis.1

The study was approved by the University of Manchester
research ethics committee. Informed written consent was obtained
from all participants.

Implementation and Results

Before testing the experimental data, we present an implementa-
tion of an artificial agent that makes decisions according to the
decision model presented above. This artificial agent allows us to
generate simulated data for different parameters, and then use the
data to evaluate the estimation algorithm.

The code for the artificial agent is organized around two
classes. The class ContextualBandit provides a simulation
of the environment. The key two methods of the class are
get_context and reward. The get_context method sets
the context, or cue, for the trial uniformly at random and returns its
value. The reward method returns the reward, given the selected
action. The value of the reward is selected at random with the
probability of winning determined by the current context. The
following code snippet shows the class implementation.

1. This condition was included in the original work to do a behavioral study
not related to decision making.
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class ContextualBandit(object):
def __init__(self):

# Contexts and their probabilities of
# winning
self.contexts = {'punishment': 0.2,

'neutral': 0.5,
'reward': 0.8}

self.actions = (23, 14, 8, 3)
self.n = len(self.actions)
self.get_context()

def get_context_list(self):
return list(self.contexts.keys())

def get_context(self):
k = list(self.contexts.keys())
self.context = np.random.choice(k)
return self.context

def reward(self, action):
p = self.contexts[self.context]
if np.random.rand() < p:

r = action
else:

r = -action
return r

The behavior of the artificial agent is implemented in the
ContextualAgent class. The class is initialized with parame-
ters learning rate alpha and inverse temperature beta. Then,
the run method is called for each trial, which in turn calls
the choose_action and update_action_value methods.
These methods implement equations (2) and (1), respectively. The
action-value function is stored in a dictionary of NumPy arrays,
where the key is the context of the environment. The following
code snippet shows the class implementation.

class ContextualAgent(object):
def __init__(self, bandit, beta, alpha):

# ...

def run(self):
context = self.bandit.get_context()
action = self.choose_action(context)
action_i = self.actions[action]
reward = self.bandit.reward(action_i)
# Update action-value
self.update_action_value(context, action,

reward)

def choose_action(self, context):
p = softmax(self.Q[context], self.beta)
actions = range(self.n)
action = np.random.choice(actions, p=p)
return action

def update_action_value(self, context, action,
reward):

error = reward - self.Q[context][action]
self.Q[context][action] += self.alpha * error

The function run_single_softmax_experiment shows
how these two classes interact:

def run_single_softmax_experiment(beta, alpha):
cb = ContextualBandit()
ca = ContextualAgent(cb, beta=beta, alpha=alpha)
trials = 360
for _ in range(steps):

ca.run()

In this function, after the classes are initialized, the run method
is run once per trial. The results of the simulation are stored in a
pandas dataframe (code not shown). Figure 2 shows an example of
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Fig. 2: Simulation results for an experiment with α = 0.1 and β =
0.5. Actions made by the agent when the context has a probability
of winning of 80% (top) and 20% (bottom). The plots also show a
vertical bar for each trial indicating if the agent won (blue) or lose
(red).

a simulation for α = 0.1 and β = 0.5 (same value for all contexts).
The top and bottom plots show the actions made by the agent when
it observes the context with a probability of winning of 80% and
20%, respectively. The plots also show a blue and red vertical bar
for each trial where the agent won or lost, respectively. We observe
that the agent learned to made actions close to the optimal ones.

The key step in the estimation of the parameters is the com-
putation of the likelihood function described by equation (3). As
explained before, for numerical reasons one works with the nega-
tive of the likelihood function of the parameters− log(L (αc,βc)).
The following code snippet describes the steps used to compute
the negative log likelihood function.

prob_log = 0
Q = dict([[cue, np.zeros(self.n_actions)]

for cue in self.cues])
for action, reward, cue in zip(actions, rewards, cues):

Q[cue][action] += alpha * (reward - Q[cue][action])
prob_log += np.log(softmax(Q[cue], beta)[action])

prob_log *= -1

After applying the logarithmic function to the likelihood function,
the product of probabilities becomes a sum of probabilities. We
initialize the variable prob_log to zero, and then we iterate
over the sequence (ct ,at ,rt) of cues, actions, and rewards. These
values are stored as lists in the variables actions, rewards,
and cues, respectively. The action value function Q(at ,ct) is
represented as a dictionary of NumPy arrays, where the cues
are the keys of the dictionary. The arrays in this dictionary are
initialized to zero. To compute each term of the sum of logarithms,
we first compute the corresponding value of the action-value
function according to equation (1). After updating the action-
value function, we can compute the probability of choosing the
action according to equation (2). Finally we multiply the sum of
probabilities by negative one.

Once we are able to compute the negative log-likelihood
function, to find the model parameter we just need to minimize
this function, according to equation (3). Since this is a con-
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Fig. 3: Likelihood function of the parameters given the data of
the artificial agent for the win context. The data correspond to an
agent operating with αc = 0.1 and βc = 0.5 (red square). The model
parameters estimated using the maximum likelihood are α̂c = 0.098
and β̂c = 0.508 (red triangle).

strained minimization problem, we use the L-BFGS-B algorithm
[Byr95], available as an option of the minimize function of the
scipy.optimize module. The following code snippet shows
the details.

r = minimize(self.neg_log_likelihood, [0.1,0.1],
method='L-BFGS-B',
bounds=(0,1), (0,2))

This function also computes an approximation of the inverse
Hessian matrix evaluated at the optimum. We use this matrix to
compute the standard error associated to the estimated parameter.

Before using our implementation of the model estimation
method with real data, it is important, as a sanity check, to test the
code with the data generated by the artificial agent. Since in this
case we know the actual values of the parameters, we can compare
the estimated values with the real ones. To run this test we generate
360 trials (same number of trials as in the experimental data) with
an agent using parameters αc = 0.1 and βc = 0.5. Figure 3 shows
the likelihood function of the parameters. Using the maximum
likelihood criteria we find the estimated parameters α̂c = 0.098
and β̂c = 0.508. The actual values of the agent parameters are
shown with a red square and the estimated parameters with a red
plus sign. This result shows that our implementation is calculating
the parameter estimation as expected. The NLL function and the
quality of the estimation is similar for other parameter settings.

It is good practice to visualize the raw experimental data before
doing any further analysis. In this case, this means showing the
actions taken by each subject for each trial. Ideally, we wish to
show the behaviors of all the subject for a given context in a single
figure, to get an overview of the whole experiment. Fortunately,
the Seaborn library [Was16] allows us to do this with little effort.
Figure 5 shows the result for the context with a probability of
winning of 80%. We also add vertical lines (blue for winning and
red for losing) for each trial.

Finally, we can fit a model for each subject. To do this we
perform the maximum likelihood estimation of the parameters
using the experimental data. Figure 4 shows the estimated α̂c and
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Fig. 4: Estimated model parameters. Each point shows the estimated
α̂c and β̂c for each subject and and context. Blue upside/down trian-
gles are the estimates for the "win context" (probability of winning
80%). Red left/right triangles are the estimates for the "lose context"
(probability of winning 20%). We show the standard error for the
estimates that are a good fit.

β̂c for each subject and context. Blue upside/down triangles are
the estimates for the "win context" (probability of winning 80%).
Red left/right triangles are the estimates for the "lose context"
(probability of winning 20%). We show the standard error for the
estimates that are a good fit, declared when the standard error is
below 0.3 for both α̂c and β̂c.

We notice from this result that not all behaviors can be
properly fitted with the RL model. This is a known limitation
of this model [Daw11]. We also observe that in general the
parameters associated with the "lose context" exhibit larger values
of learning rate α and smaller values of inverse temperature β .
Although at this point of our research it is not clear the reason
for this difference, we conjecture that this phenomenon can be
explained by two factors. First, in the lose context people bet
smaller amounts after learning that the probability of wining is
low in this context. This means that the term (rt −Qt(at ,ct))
in equation (1) is smaller compared to the win context. Thus, a
larger learning rate is needed to get an update on the action value
function of a magnitude similar to the win context.2 Secondly, it
is known that humans commonly exhibit a loss aversion behavior
[Kah84]. This can explain, at least in part, the larger learning
rates observed for the lose context, since it could be argued that
people penalized more their violation of their expectations, as
reflected by the term (rt −Qt(at ,ct)) of equation (1), when they
were experiencing the losing situation.

In terms of execution time, running a simulation of the artifi-
cial agent consisting of 360 steps takes 34 milliseconds; minimiz-
ing the NLL function for a single subject takes 21 milliseconds;
and fitting the model for all 43 subjects, including loading the
experimental data from the hard disk, takes 14 seconds. All these
measurements were made using the IPython %timeit magic
function in a standard laptop (Intel Core i5 processor with 8
gigabytes of RAM).

2. This difference suggests that the experimental design should be modified
to equalize this effect between the contexts.
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Fig. 5: Actions taken by all the subjects for trials with context associated to the 80% probability of winning. The vertical bars show if the
subject won (blue) or lost (red) in that particular trial.

Discussion

We have shown a Python program able to fit a decision making
model from experimental data, using the maximum likelihood
principle. Thanks to Python and the SciPy stack, it was possible
to implement this program in a way that we believe is easy to
understand and that has a clear correspondence to the theoretical
development of the model. We think that the structure of the code
allows to easily extend the implementation to test variations in the
decision making model presented in this work.
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