
PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016) 45

Storing Reproducible Results from Computational
Experiments using Scientific Python Packages

Christian Schou Oxvig‡∗, Thomas Arildsen‡, Torben Larsen‡

F

Abstract—Computational methods have become a prime branch of modern
science. Unfortunately, retractions of papers in high-ranked journals due to
erroneous computations as well as a general lack of reproducibility of results
have led to a so-called credibility crisis. The answer from the scientific com-
munity has been an increased focus on implementing reproducible research in
the computational sciences. Researchers and scientists have addressed this
increasingly important problem by proposing best practices as well as making
available tools for aiding in implementing them. We discuss and give an example
of how to implement such best practices using scientific Python packages. Our
focus is on how to store the relevant metadata along with the results of a com-
putational experiment. We propose the use of JSON and the HDF5 database
and detail a reference implementation in the Magni Python package. Further,
we discuss the focuses and purposes of the broad range of available tools
for making scientific computations reproducible. We pinpoint the particular use
cases that we believe are better solved by storing metadata along with results
the same HDF5 database. Storing metadata along with results is important in
implementing reproducible research and it is readily achievable using scientific
Python packages.

Index Terms—Reproducibility, Computational Science, HDF5

Introduction

Exactly how did I produce the computational results stored in
this file? Most data scientists and researchers have probably asked
this question at some point. For one to be able to answer the
question, it is of utmost importance to track the provenance of the
computational results by making the computational experiment
reproducible, i.e. describing the experiment in such detail that it is
possible for others to independently repeat it [LMS12], [Hin14].
Unfortunately, retractions of papers in high-ranked journals due
to erroneous computations [Mil06] as well as a general lack
of reproducibility of computational results [Mer10], with some
studies showing that only around 10% of computational results are
reproducible [BE12], [RGPN+11], have led to a so-call credibility
crisis in the computational sciences.

The answer has been a demand for requiring research to be re-
producible [Pen11]. The scientific community has acknowledged
that many computational experiments have become so complex
that more than a textual presentation in a paper or a technical
report is needed to fully detail it. Enough information to make

* Corresponding author: cso@es.aau.dk
‡ Faculty of Engineering and Science, Department of Electronic Systems,
Aalborg University, 9220 Aalborg, Denmark

Copyright © 2016 Christian Schou Oxvig et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

the experiment reproducible must be included with the textual
presentation [RGPN+11], [CG12], [SLP14]. Consequently, repro-
ducibility of computational results have become a requirement for
submission to many high-ranked journals [Edi11], [LMS12].

But how does one make computational experiments repro-
ducible? Several communities have proposed best practices, rules,
and tools to help in making results reproducible, see e.g. [VKV09],
[SNTH13], [SM14], [Dav12], [SLP14]. Still, this is an area
of active research with methods and tools constantly evolving
and maturing. Thus, the adoption of the reproducible research
paradigm in most scientific communities is still ongoing - and
will be for some time. However, a clear description of how the
reproducible research paradigm fits in with customary workflows
in a scientific community may help speed up the adoption of it.
Furthermore, if tools that aid in making results reproducible for
such customary workflows are made available, they may act as an
additional catalyst.

In the present study, we focus on giving guidelines for inte-
grating the reproducible research paradigm in the typical scientific
Python workflow. In particular, we propose an easy to use scheme
for storing metadata along with results in an HDF5 database.
We show that it is possible to use Python to adhere to best
practices for making computational experiments reproducible by
storing metadata as JSON serialized arrays along with the results
in an HDF5 database. A reference implementation of our proposed
solution is part of the open source Magni Python package.

The remainder of this paper is organized as follows. We
first describe our focus and its relation to a more general data
management problem. We then outline the desired workflow for
making scientific Python experiments reproducible and briefly
review the fitness of existing reproducibility aiding tools for this
workflow. This is continued by a description of our proposed
scheme for storing metadata along with results. Following this
specification, we detail a reference implementation of it and give
plenty examples of its use. The paper ends with a more general
discussion of related reproducibility aiding software packages
followed by our conclusions.

The Data Management Problem

Reproducibility of computational results may be considered a part
of a more general problem of data management in a computational
study. In particular, it is closely related to the data management
tasks of documenting and describing data. A typical computational
study involves testing several combinations of various elements,
e.g. input data, hardware platforms, external software libraries,

mailto:cso@es.aau.dk


46 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Fig. 1: Illustration of a typical data management description prob-
lem as a layered graph. In this exemplified experiment, several
combinations of input data, hardware platforms, software libraries
(e.g. NumPy), algorithmic/experimental setup (described in a Python
script), and parameter values are tested. The challenging task is to
keep track of both the full set of combinations tested (marked by all
the edges in the graph) as well as the individual simulations (e.g. the
combination of highlighted vertices).

experiment specific code, and model parameter values. Such a
study may be illustrated as a layered graph like the one shown
in figure 1. Each layer corresponds to one of the elements, e.g.
the version of the NumPy library or the set of parameter values.
The edges in the graph mark all the combinations that are tested.
An example of a combination that constitutes a single simulation
or experiment is the set of connected vertices that are highlighted
in the graph in figure 1. In the present study, we focus on the
problem of documenting and describing such a single simulation.
A closely related problem is that of keeping track of all tested
combinations, i.e. the set of all paths through all layers in the graph
in figure 1. This is definitely also an interesting and important
problem. However, once the "single simulation" problem is solved,
it should be straight forward to solve the "all combinations"
problem by appropriately combining the information from all the
single simulations.

Storing Metadata Along With Results

For our treatment of reproducibility of computational results, we
adopt the meaning of reproducibility from [LMS12], [Hin14]. That
is, reproducibility of a study is the ability of others to repeat
the study and obtain the same results using a general description
of the original work. The related term replicability then means
the ability of others to repeat the study and obtain the same
results using the exact same setup (code, hardware, etc.) as in
the original work1. As pointed out in [Hin14], reproducibility
generally requires replicability.

The lack of reproducibility of computational results is often-
times attributed to missing information about critical computa-
tional details such as library versions, parameter values, or precise
descriptions of the exact code that was run [LMS12], [BPG05],
[RGPN+11], [Mer10]. Several studies have given best practices
for how to detail such metadata to make computational results
reproducible, see e.g. [VKV09], [SNTH13], [SM14], [Dav12].
Here we detail the desired workflow for storing such metadata
along with results when using a typical scientific Python workflow
in the computational experiments. That is, we detail how to

document a single experiment as illustrated by the highlighted
vertices in figure 1.

The Scientific Python Workflow

In a typical scientific Python workflow, we define an experiment
in a Python script and run that script using the Python interpreter,
e.g.
$ python my_experiment.py

The content of the my_experiment.py script would typically
have a structure like:
import some_library
import some_other_library

def some_func(...):
...

def run_my_experiment(...):
...

if __name__ == '__main__':
run_my_experiment(...)

This is a particularly generic setup that only requires the availabil-
ity of the Python interpreter and the libraries imported in the script.
We argue that for the best practices for detailing a computational
study to see broad adoption by the scientific Python community,
three elements are of critical importance: Any method or tool for
storing the necessary metadata to make the results reproducible
must

1) be very easy to use and integrate well with existing
scientific Python workflows.

2) be of high quality to be as trustworthy as the other tools
in the scientific Python stack.

3) store the metadata in an open format that is easily
inspected using standard viewers as well as programmat-
ically from Python.

These elements are some of the essentials that have made
Python so popular in the scientific community2. Thus, for storing
the necessary metadata, we seek a high quality solution which
integrates well with the above exemplified workflow. Furthermore,
the metadata must be stored in such a way that is is easy to extract
and inspect when needed.

Existing Tools

Several tools for keeping track of provenance and aiding in
adhering to best practices for reproducible research already ex-
ist, e.g. Sumatra [Dav12], ActivePapers [Hin15], or Madagascar
[Fom15]. Tools like Sumatra, ActivePapers, and Madagascar gen-
erally function as reproducibility frameworks. That is, when used
with Python, they wrap the standard Python interpreter with a
framework that in addition to running a Python script (using the
standard Python interpreter) also captures and stores metadata
detailing the setup used to run the experiment. E.g. when using
Sumatra, one would replace python my_experiment.py
with [Dav12]
$ smt run -e python -m my_experiment.py

1. Some authors (e.g. [SLP14]) swap the meaning of reproducibility and
replicability compared to the convention, we have adopted.

2. See http://cyrille.rossant.net/why-using-python-for-scientific-computing/
for an overview of the main arguments for using Python for scientific
computing.

http://cyrille.rossant.net/why-using-python-for-scientific-computing/


STORING REPRODUCIBLE RESULTS FROM COMPUTATIONAL EXPERIMENTS USING SCIENTIFIC PYTHON PACKAGES 47

Fig. 2: Illustration of the difference between a full reproducibility
framework (on the left) and an importable Python library (on the
right). The reproducibility framework calls the metadata collector
as well as the Python interpreter which in turn runs the Python
simulation script which e.g. imports NumPy. When using an im-
portable library, the metadata collector is imported in the Python
script alongside with e.g. NumPy.

This idea of wrapping a computational simulation is different from
the usual scientific Python workflow which consists of running a
Python script that imports other packages and modules as needed,
e.g. importing NumPy for numerical computations. This difference
is illustrated in figure 2.

We argue that an importable Python library for aiding in
making results reproducible has several advantages compared to
using a full blown reproducibility framework. A major element in
using any tool for computational experiments is being able to trust
that the tool does what it is expected do. The scientific community
trusts Python and the SciPy stack. For a reproducibility framework
to be adopted by the community, it must build trust as the wrapper
of the Python interpreter, it effectively is. That is, one must trust
that it handles experiment details such as input parameters, library
paths, etc. just as accurately as the Python interpreter would have
done. Furthermore, such a framework must be able to fully replace
the Python interpreter in all existing workflows which uses the
Python interpreter. A traditional imported Python library does not
have these potentially staggering challenges to overcome in order
to see wide adoption. It must only build trust among its users in the
same way as any other scientific library. Furthermore, it would be
easy to incorporate into any existing workflow. Thus, ideally we
seek a solution that allow us to update our my_experiment.py
to have a structure like:

import some_library
import some_other_library
import reproducibility_library

def some_func(...):
...

def run_my_experiment(...):
...

if __name__ == '__main__':
reproducibility_library.store_metadata(...)
run_my_experiment(...)

Interestingly, the authors of the Sumatra package has to some
degree pursued this idea by offering an API for importing the
library as an alternative to using the smt run command line
tool.

Equally important, to how to obtain the results, is how to
inspect the results afterwards. Thus, one may ask: How are the
results and the metadata stored, and how may they be accessed
later on? For example, Sumatra by default stores all metadata in a
SQLite database [Dav12] separate from simulation results (which
may be stored in any format) whereas ActivePapers stores the
metadata along with the results in an HDF5 database [Hin15]. The
idea of storing (or "caching") intermediate results and metadata
along with the final results has also been pursued in another study
[PE09].

We argue that this idea of storing metadata along with results
is an excellent solution. Having everything compiled into one stan-
dardized and open file format helps keep track of all the individual
elements and makes it easy to share the full computational experi-
ment including results and metadata. Preferably, such a file format
should be easy to inspect using a standard viewer on any platform;
just like the Portable Document Format (PDF) has made it easy
to share and inspect textual works across platforms. The HDF5
Hierarchical Data Format [FP10] is a great candidate for such a
file format due to the availability of cross-platform viewers like
HDFView3 and HDFCompass4 as well as its capabilities in terms
of storing large datasets. Furthermore, HDF5 is recognized in the
scientific Python community5 with bindings available through e.g.
PyTables6, h5py7, or Pandas [McK10]. Also, bindings for HDF5
exists in several other major programming languages.

Suggested Library Design

Our above analysis reveals that all elements needed for imple-
menting the reproducible research paradigm in scientific Python
are in fact already available in existing reproducibility aiding
tools: Sumatra may serve as a Python importable library and
the ActivePapers project shows how metadata may be stored
along with results in an HDF5 database. However, no single tool
offers all of these elements for the scientific Python workflow.
Consequently, we propose creating a scientific Python package
that may be imported in existing scientific Python scripts and
may be used to store all relevant metadata for a computational
experiment along with the results of that experiment in an HDF5
database.

Technically, there are various ways to store metadata along
with results in an HDF5 database. The probably most obvious
way is to store the metadata as attributes to HDF5 tables and
arrays containing the results. However, this approach is only
recommended for small metadata (generally < 64KB)8. For larger
metadata it is recommended to use a separate HDF5 array or table
for storing the metadata9. Thus, for the highest flexibility, we
propose to store the metadata as separate HDF5 arrays. This also
allows for separation of specific result arrays or tables and general
metadata. When using separate metadata arrays, a serialization (a
representation) of the metadata must be chosen. For the metadata
to be humanly readable using common HDF viewers, it must be
stored in an easily readable string representation. We suggest using
JSON [ECM13] for serializing the metadata. This makes for a
humanly readable representation. Furthermore, JSON is a standard
format with bindings for most major programming languages10.

3. See https://www.hdfgroup.org/products/java/hdfview/
4. See https://github.com/HDFGroup/hdf-compass
5. See https://www.youtube.com/watch?v=nddj5OA8LJo
6. See http://www.pytables.org/
7. See http://www.h5py.org/

https://www.hdfgroup.org/products/java/hdfview/
https://github.com/HDFGroup/hdf-compass
https://www.youtube.com/watch?v=nddj5OA8LJo
http://www.pytables.org/
http://www.h5py.org/


48 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Fig. 3: Illustration of the structure of the
magni.reproducibility subpackage of Magni. The main
modules are the data module for acquiring metadata and the io
module for interfacing with an HDF5 database when storing as well
as reading the metadata. A subset of available functions are listed
next to the modules.

In particular, Python bindings are part of the standard library
(introduced in Python 2.6)11. This would effectively make Python
>=2.6 and an HDF5 Python interface the only dependencies of
our proposed reproducibility aiding library. We note, though, that
the choice of JSON is not crucial. Other formats similar to JSON
(e.g. XML12 or YAML13) may be used as well. We do argue,
though, that a humanly readable format should be used such that
the metadata may be inspected using any standard HDF5 viewer.

Magni Reference Implementation

A reference implementation of the above suggested library design
is available in the open source Magni Python package [OPA+14].
In particular, the subpackage magni.reproducibility is
based on this suggested design. Figure 3 gives an overview of the
magni.reproducibility subpackage. Additional resources
for magni are:

• Official releases: doi:10.5278/VBN/MISC/Magni
• Online documentation: http://magni.readthedocs.io
• GitHub repository: https://github.com/SIP-AAU/Magni

In magni.reproducibility, a differentiation is made
between annotations and chases. Annotations are metadata that
describe the setup used for the computation, e.g. the computational
environment, values of input parameters, platform (hardware/OS)
details, and when the computation was done. Chases on the other
hand are metadata describing the specific code that was used in the
computation and how it was called, i.e. they chase the provenance
of the results.

8. See http://docs.h5py.org/en/latest/high/attr.html
9. See https://www.hdfgroup.org/HDF5/doc1.6/UG/13_Attributes.html
10. See http://www.json.org/
11. See https://docs.python.org/2/library/json.html
12. See https://www.w3.org/TR/REC-xml/
13. See http://yaml.org/

Requirements

Magni uses PyTables as its interface to HDF5 databases. Thus,
had magni.reproducibility been a package of its own,
only Python and PyTables would have been requirements for its
use. The full requirements for using magni (as of version 1.5.0)
are14

• Python >= 2.7 / 3.3
• Matplotlib [Hun07] (Tested on version >= 1.3)
• NumPy [vdWCV11] (Tested on version >= 1.8)
• PyTables15 (Tested on version >= 3.1)
• SciPy [Oli07] (Tested on version >= 0.14)
• Setuptools16 (Tested on version >= 11.3)

When using the Conda17 package management system for
handling the Python environment used in the computation,
magni.reproducibility may optionally use Conda to cap-
ture details about the Python environment. Thus, we have one
optional dependency

• Conda (Tested on version >= 3.7.0)

Usage Examples

We now give several smaller examples of how to use
magni.reproducibility to implement the best prac-
tices for reproducibility of computational result described
in [VKV09], [SNTH13], [SM14]. An extensive example of
the usage of magni.reproducibility is available at
doi:10.5278/VBN/MISC/MagniRE. This extensive example is
based on a Python script used to simulate the Mandelbrot set18

using the scientific Python workflow described above. An example
of a resulting HDF5 database containing both the Mandelbrot sim-
ulation result and metadata is also included. Finally, the example
includes a Jupyter Notebook showing how to read the metadata
using magni.reproducibility.

A simple example of how to acquire platform metadata using
the data module from magni.reproducibility is
>>> from pprint import pprint
>>> from magni import reproducibility as rep
>>> pprint(rep.data.get_platform_info())
{'libc': '["glibc", "2.2.5"]',
'linux': '["debian", "jessie/sid", ""]',
'mac_os': '["", ["", "", ""], ""]',
'machine': '"x86_64"',
'node': '"eagle1"',
'processor': '"x86_64"',
'python': '"3.5.1"',
'release': '"3.16.0-46-generic"',
'status': 'All OK',
'system': '"Linux"',
'version': '"#62~14.04.1-Ubuntu SMP ~"',
'win32': '["", "", "", ""]'}

When using the typical scientific Python workflow described
above, one may use the functions in the io module from
magni.reproducibility to conveniently store all relevant
metadata, e.g. the create_database(h5file) to automati-
cally create an HDF5 database with a set of standard annotations

14. More details about Python and the Scientific Python Stack are available
at http://python.org and http://scipy.org

15. See http://www.pytables.org/
16. See http://setuptools.readthedocs.io/
17. See http://conda.pydata.org/docs/ as well as https://www.youtube.com/

watch?v=UaIvrDWrIWM
18. See https://en.wikipedia.org/wiki/Mandelbrot_set

http://dx.doi.org/10.5278/VBN/MISC/Magni
http://magni.readthedocs.io
https://github.com/SIP-AAU/Magni
http://docs.h5py.org/en/latest/high/attr.html
https://www.hdfgroup.org/HDF5/doc1.6/UG/13_Attributes.html
http://www.json.org/
https://docs.python.org/2/library/json.html
https://www.w3.org/TR/REC-xml/
http://yaml.org/
http://dx.doi.org/10.5278/VBN/MISC/MagniRE
http://python.org
http://scipy.org
http://www.pytables.org/
http://setuptools.readthedocs.io/
http://conda.pydata.org/docs/
https://www.youtube.com/watch?v=UaIvrDWrIWM
https://www.youtube.com/watch?v=UaIvrDWrIWM
https://en.wikipedia.org/wiki/Mandelbrot_set


STORING REPRODUCIBLE RESULTS FROM COMPUTATIONAL EXPERIMENTS USING SCIENTIFIC PYTHON PACKAGES 49

and chases. The my_experiment.py script would then have a
structure like
import tables
from magni import reproducibility as rep

def run_my_experiment(...):
...

def store_result(h5, result):
...

if __name__ == '__main__':
hdf5_db = 'database.hdf5'
rep.io.create_database(hdf5_db)
result = run_my_experiment(...)
with tables.File(hdf5_db, mode='a') as h5:

store_result(h5, result)

This would create an HDF5 database named database.hdf5
which would hold both the results and all metadata. The
HDF5 database may be inspected using any tool capable
of reading HDF5 files. As an alternative, the io module
from magni.reproducibility also includes convenience
functions for reading the annotations and chases. E.g. to
see the set of standard metadata stored in a database with
create_database(h5file), one could do
>>> from pprint import pprint
>>> import tables
>>> from magni import reproducibility as rep
>>> hdf5_db = 'database.hdf5'
>>> rep.io.create_database(hdf5_db)
>>> with tables.File(hdf5_db) as h5:
... annotations = rep.io.read_annotations(h5)
... chases = rep.io.read_chases(h5)
>>> pprint(list(annotations.keys()))
['magni_config',
'git_revision',
'datetime',
'conda_info',
'magni_info',
'platform_info']
>>> pprint(list(chases.keys()))
['main_file_source',
'stack_trace',
'main_file_name',
'main_source']

Quality Assurance

The Magni Python package is fully documented and comes with
an extensive test suite. It has been developed using best practices
for developing scientific software [WAB+14] and all code has
been reviewed by at least one other person than its author prior to
its inclusion in Magni. All code adheres to the PEP819 style guide
and no function or class has a cyclomatic complexity [McC76],
[WM96] exceeding 10. The source code is under version control
using Git and a continuous integration system based on Travis
CI20 is in use for the git repository. More details about the quality
assurance of magni are given in [OPA+14].

Related Software Packages

Independently of the tool or method used, making results from
scientific computations reproducible is not only for the benefit of
the audience. As pointed out in several studies [Fom15], [CG12],
[VKV09], the author of the results gains as least as much in terms
increasing one’s productivity. Thus, using some method or tool to

19. See https://www.python.org/dev/peps/pep-0008/
20. See https://travis-ci.org/

help make the results reproducible is a win for everyone. In the
present work we have attempted to detail the ideal solution for
how to do this for the typical scientific Python workflow.

A plethora of related alternative tools exist for aiding in
making results reproducible. We have already discussed ActivePa-
pers [Hin15], Sumatra [Dav12], and Madagascar [Fom15] which
are general reproducibility frameworks that allow for wrapping
most tools - not only Python based computations. Such tools are
definitely excellent for some workflows. In particular, they seem
fit for large fixed setups which require keeping track of several
hundred runs that only differ by the selection of parameters21

and for which the time cost of initially setting up the tool is
insignificant compared to the time cost of the entire study. That
is, they are useful in keeping track of the full set of combination
in a large computations study as marked by all the edges in the
layered graph in figure 1. However, as we have argued, they are
less suitable for documenting a single experiment based on the
typical scientific Python workflow. Also these tools tend to be
designed for use on a single computer. Thus, they do not scale
well for big data applications which run on compute clusters.

Another category of related tools are graphical user interface
(GUI) based workflow managing tools like Taverna [OAF+04] or
Vistrail [SFC07]. Such tools seem to be specifically designed for
describing computational workflows in particular fields of research
(typically bioinformatics related fields). It is hard, though, to see
how they can be effectively integrated with the typical scientific
Python workflow. Other much more Python oriented tools are the
Jupyter Notebook22 as well as Dexy23. These tools, however, seem
to have more of a focus on implementing the concept of literate
programming and documentation than reproducibility of results in
general.

Conclusions

We have argued that metadata should be stored along with com-
putational results in an easily readable format in order to make
the results reproducible. When implementing this in a typical
scientific Python workflow, all necessary tools for making the
results reproducible should be available as an importable package.
We suggest storing the metadata as JSON serialized arrays along
with the result in an HDF5 database. A reference implementation
of this design is available in the open source Magni Python
package which we have detailed with several examples of its
use. All of this shows that storing metadata along with results is
important in implementing reproducible research and it is readily
achievable using scientific Python packages.

Acknowledgements

This work was supported in part by the Danish Council for
Independent Research (DFF/FTP) under Project 1335-00278B/12-
134971 and in part by the Danish e-Infrastructure Cooperation
(DeIC) under Project DeIC2013.12.23.

REFERENCES

[BE12] C. Glenn Begley and Lee M. Ellis. Drug development:
Raise standards for preclinical cancer research. Nature,
483(7391):531–533, March 2012. doi:10.1038/483531a.

21. See e.g. https://www.youtube.com/watch?v=1YJr9c-zSng
22. See http://jupyter.org/
23. See http://www.dexy.it/ as well as https://www.youtube.com/watch?v=

u6_qtDJ6ciA / https://www.youtube.com/watch?v=qFd04rA8lp0

https://www.python.org/dev/peps/pep-0008/
https://travis-ci.org/
http://dx.doi.org/10.1038/483531a
https://www.youtube.com/watch?v=1YJr9c-zSng
http://jupyter.org/
http://www.dexy.it/
https://www.youtube.com/watch?v=u6_qtDJ6ciA
https://www.youtube.com/watch?v=u6_qtDJ6ciA
https://www.youtube.com/watch?v=qFd04rA8lp0


50 PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

[BPG05] Mauro Barni and Fernando Perez-Gonzalez. Pushing Sci-
ence into Signal Processing. IEEE Signal Processing Maga-
zine, 22(4):120–119, July 2005. doi:10.1109/MSP.2005.
1458324.

[CG12] Kingshuk Roy Choudhury and Ray Gibson. Editorial: Re-
producible Research in Medical Imaging. Molecular Imaging
and Biology, 14(4):395–396, June 2012. doi:10.1007/
s11307-012-0569-8.

[Dav12] Andrew P. Davison. Automated Capture of Experiment Context
for Easier Reproducibility in Computational Research. Com-
puting in Science & Engineering, 14(4):48–56, July 2012.
doi:10.1109/MCSE.2012.41.

[ECM13] The JSON Data Interchange Format, October 2013.
[Edi11] Editorial. Devil in the details. Nature, 470(7334):305–306,

February 2011. doi:10.1038/470305b.
[Fom15] Sergey Fomel. Reproducible Research as a Community Effort:

Lessons from the Madagascar Project. Computing in Science
& Engineering, 17(1):20–26, January 2015. doi:10.1109/
MCSE.2014.94.

[FP10] Mike Folk and Elena Pourmal. Balancing Performance and
Preservation Lessons learned with HDF5. In Digital Preser-
vation Interoperability Framework (DPIF) Workshop, Gaithers-
burg, Maryland, USA, March 29 – 31, 2010. doi:10.1145/
2039274.2039285.

[Hin14] Konrad Hinsen. Computational science: shifting the focus from
tools to models. F1000Research, 3(101):1–16, June 2014. doi:
10.12688/f1000research.3978.2.

[Hin15] Konrad Hinsen. ActivePapers: a platform for publishing and
archiving computer-aided research. F1000Research, 3(289):14,
July 2015. doi:10.12688/f1000research.5773.3.

[Hun07] John D. Hunter. Matplotlib: A 2D Graphics Environment.
Computing in Science & Engineering, 9(3):90–95, May 2007.
doi:10.1109/MCSE.2007.55.

[LMS12] Randall J. LeVeque, Ian M. Mitchell, and Victoria Stodden.
Reproducible Research for Scientific Computing: Tools and
Strategies for Changing the Culture. Computing in Science &
Engineering, 14(4):13–17, July 2012. doi:10.1109/MCSE.
2012.38.

[McC76] Thomas J. McCabe. A Complexity Measure. IEEE Transactions
on Software Engineering, SE-2(4):308–320, December 1976.
doi:10.1109/TSE.1976.233837.

[McK10] Wes McKinney. Data Structures for Statistical Computing in
Python. In Proceedings of the 9th Python in Science Conference,
pages 51–56, Austin, Texas, USA, June 28 – July 3, 2010.

[Mer10] Zeeya Merali. Computational science: ...Error ...why scientific
programming does not compute. Nature, 467:775–777, October
2010. doi:10.1038/467775a.

[Mil06] Greg Miller. A Scientist’s Nightmare: Software Problem Leads
to Five Retractions. Science, 314(5807):1856–1857, December
2006. doi:10.1126/science.314.5807.1856.

[OAF+04] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin,
Martin Senger, Mark Greenwood, Tim Carver, Kevin Glover,
Matthew R. Pocock, Anil Wipat, and Peter Li. Taverna: a
tool for the composition and enactment of bioinformatics work-
flows. Bioinformatics, 20(17):3045–3054, June 2004. doi:
10.1093/bioinformatics/bth361.

[Oli07] Travis E. Oliphant. Python for Scientific Computing. Computing
in Science & Engineering, 9(3):10–20, May 2007. doi:10.
1109/MCSE.2007.58.

[OPA+14] Christian Schou Oxvig, Patrick Steffen Pedersen, Thomas Arild-
sen, Jan Østergaard, and Torben Larsen. Magni: A Python Pack-
age for Compressive Sampling and Reconstruction of Atomic
Force Microscopy Images. Journal of Open Research Software,
2(1):e29, October 2014. doi:10.5334/jors.bk.

[PE09] Roger D. Peng and Sandrah P. Eckel. Distributed Reproducible
Research Using Cached Computations. Computing in Science
& Engineering, 11(1):28–34, January 2009. doi:10.1109/
MCSE.2009.6.

[Pen11] Roger D. Peng. Reproducible Research in Computational Sci-
ence. Science, 334(6060):1226–1227, December 2011. doi:
10.1126/science.1213847.

[RGPN+11] Markus Rupp, Fulvio Gini, Ana Pérez-Neira, Beatrice Pesquet-
Popescu, Aggelos Pikrakis, Bulent Sankur, Patrick Vandewalle,
and Abdelhak Zoubir. Reproducible research in signal pro-
cessing. EURASIP Journal on Advances in Signal Process-
ing, 93(1):1–2, October 2011. doi:10.1186/1687-6180-
2011-93.

[SFC07] Claudio T. Silva, Juliana Freire, and Steven P. Callahan. Prove-
nance for Visualizations: Reproducibility and Beyond. Com-
puting in Science & Engineering, 9(5):82–89, September 2007.
doi:10.1109/MCSE.2007.106.

[SLP14] Victoria Stodden, Friedrich Leisch, and Roger D. Peng, editors.
Implementing Reproducible Research. Chapman & Hall/CRC
The R Series. CRC Press, 2014.

[SM14] Victoria Stodden and Sheila Miguez. Best Practices for Compu-
tational Science: Software Infrastructure and Environments for
Reproducible and Extensible Research. Journal of Open Re-
search Software, 2(1):1–6, July 2014. doi:10.5334/jors.
ay.

[SNTH13] Geir Kjetil Sandve, Anton Nekrutenko, James Taylor, and Eivind
Hovig. Ten Simple Rules for Reproducible Computational Re-
search. PLoS Computational Biology, 9(10):e1003285, October
2013. doi:10.1371/journal.pcbi.1003285.

[vdWCV11] Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computation.
Computing in Science & Engineering, 13(2):22–30, March 2011.
doi:10.1109/MCSE.2011.37.

[VKV09] P. Vandewalle, J. Kovačević, and M. Vetterli. Reproducible
Research in Signal Processing [What, why, and how]. IEEE
Signal Processing Magazine, 26(3):37–47, May 2009. doi:
10.1109/MSP.2009.932122.

[WAB+14] Greg Wilson, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong,
Matt Davis, Richard T. Guy, Steven H. D. Haddock, Kathryn D.
Huff, Ian M. Mitchell, Mark D. Plumbley, Ben Waugh, Ethan P.
White, and Paul Wilson. Best Practices for Scientific Computing.
PloS Biology, 12(1):e1001745, January 2014. doi:10.1371/
journal.pbio.1001745.

[WM96] Arthur H. Watson and Thomas J. McCabe. Structured Testing: A
Testing Methodology Using the Cyclomatic Complexity Metric.
Special Publication 500-235, National Institute of Standards and
Technology (NIST), September 1996.

http://dx.doi.org/10.1109/MSP.2005.1458324
http://dx.doi.org/10.1109/MSP.2005.1458324
http://dx.doi.org/10.1007/s11307-012-0569-8
http://dx.doi.org/10.1007/s11307-012-0569-8
http://dx.doi.org/10.1109/MCSE.2012.41
http://dx.doi.org/10.1038/470305b
http://dx.doi.org/10.1109/MCSE.2014.94
http://dx.doi.org/10.1109/MCSE.2014.94
http://dx.doi.org/10.1145/2039274.2039285
http://dx.doi.org/10.1145/2039274.2039285
http://dx.doi.org/10.12688/f1000research.3978.2
http://dx.doi.org/10.12688/f1000research.3978.2
http://dx.doi.org/10.12688/f1000research.5773.3
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2012.38
http://dx.doi.org/10.1109/MCSE.2012.38
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1038/467775a
http://dx.doi.org/10.1126/science.314.5807.1856
http://dx.doi.org/10.1093/bioinformatics/bth361
http://dx.doi.org/10.1093/bioinformatics/bth361
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.5334/jors.bk
http://dx.doi.org/10.1109/MCSE.2009.6
http://dx.doi.org/10.1109/MCSE.2009.6
http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.1186/1687-6180-2011-93
http://dx.doi.org/10.1186/1687-6180-2011-93
http://dx.doi.org/10.1109/MCSE.2007.106
http://dx.doi.org/10.5334/jors.ay
http://dx.doi.org/10.5334/jors.ay
http://dx.doi.org/10.1371/journal.pcbi.1003285
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MSP.2009.932122
http://dx.doi.org/10.1109/MSP.2009.932122
http://dx.doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.1371/journal.pbio.1001745

	Introduction
	The Data Management Problem
	Storing Metadata Along With Results
	The Scientific Python Workflow
	Existing Tools
	Suggested Library Design

	Magni Reference Implementation
	Requirements
	Usage Examples
	Quality Assurance

	Related Software Packages
	Conclusions
	Acknowledgements
	References

